About the Pricing Equations in Finance

Stéphane Crépey

Abstract In this article we study a decoupled forward backward stochastic
differential equation (FBSDE) and the associated system of partial integro-
differential obstacle problems, in a flexible Markovian set-up made of a jump-
diffusion with regimes.

These equations are motivated by numerous applications in financial modeling,
whence the title of the paper. This financial motivation is developed in the first part
of the paper, which provides a synthetic view of the theory of pricing and hedging
financial derivatives, using backward stochastic differential equations (BSDEs) as
main tool.

In the second part of the paper, we establish the well-posedness of reflected
BSDEs with jumps coming out of the pricing and hedging problems exposed in
the first part. We first provide a construction of a Markovian model made of a
jump-diffusion — like component X interacting with a continuous-time Markov
chain — like component N. The jump process IV defines the so-called regime of the
coefficients of X, whence the name of jump-diffusion with regimes for this model.
Motivated by optimal stopping and optimal stopping game problems (pricing equa-
tions of American or game contingent claims), we introduce the related reflected
and doubly reflected Markovian BSDEs, showing that they are well-posed in the
sense that they have unique solutions, which depend continuously on their input
data. As an aside, we establish the Markov property of the model.

In the third part of the paper we derive the related variational inequality ap-
proach. We first introduce the systems of partial integro-differential variational
inequalities formally associated to the reflected BSDEs, and we state suitable def-
initions of viscosity solutions for these problems, accounting for jumps and/or
systems of equations. We then show that the state-processes (first components Y")
of the solutions to the reflected BSDEs can be characterized in terms of the value
functions of related optimal stopping or game problems, given as viscosity solutions
with polynomial growth to related integro-differential obstacle problems. We further
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establish a comparison principle for semi-continuous viscosity solutions to these
problems, which implies in particular the unigueness of the viscosity solutions. This
comparison principle is subsequently used for proving the convergence of stable,
monotone and consistent approximation schemes to the value functions.

Finally in the last part of the paper we provide various extensions of the results
needed for applications in finance to pricing problems involving discrete dividends
on a financial derivative or on the underlying asset, as well as various forms of
discrete path-dependence.

1 Introduction

In this article, we establish the well-posedness of a decoupled forward backward
stochastic differential equation and of the associated system of partial integro-
differential obstacle problems, in a rather flexible Markovian set-up made of a
jump-diffusion model with regimes.

These equations are motivated by numerous applications in financial modeling,
whence the title of the paper. This financial motivation is developed in Part I, where
we essentially reduce the problem of pricing and hedging financial derivatives to that
of solving (typically reflected) backward stochastic differential equations (BSDEs),
or, equivalently in the Markovian case, partial integro-differential equations or vari-
ational inequalities (PIDEs or PDEs for short).

In Parts II-IV, we tackle the resulting Markovian BSDE and PDE problems. In
Crépey and Matoussi [38], a priori estimates and comparison principles were de-
rived for reflected or doubly reflected BSDE:s in the general, non-Markovian set-up
of a model driven by a continuous local martingale and an integer-valued random
measure. In Part IT we use these results to establish the well-posedness of Markovian
reflected BSDEs, which is used in Part III for studying the associated partial integro-
differential systems of obstacle problems, in a rather flexible Markovian set-up made
of a jump-diffusion model with regimes. As an aside we prove the convergence of
any stable, monotone and consistent approximation scheme for these problems. Part
IV provides various extensions of the previous results needed for applications in fi-
nance to pricing problems involving discrete dividends on a financial derivative or
on an underlying asset, as well as various forms of discrete path-dependence.

The main results are summed-up in Propositions 30 and 31, which synthesize the
major findings of Part II and III, respectively.

This paper lays the mathematical foundation of a large body of work in credit risk
and financial modeling [15, 16, 20, 39]. Even if rather expected in their statement,
many of the mathematical results derived in Parts II-1V are innovative. In particular,
doubly reflected BSDEs with a delayed or an even more general intermittent upper
barrier (RDBSDESs and RIBSDEs, see Definitions 9(ii) and 16), have not been con-
sidered elsewhere in the literature (if not for the preliminary results of Crépey and
Matoussi [38]). Also, the Markovian model which is considered in detail in Parts II
and III was already considered and some of the results of the present paper were
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already announced and used in [16,20, 38]. But the possibility to construct a model
with all the required properties was taken for granted there. The mathematical con-
struction of the model in Sect. 7 is non-trivial, and was not done elsewhere before.
The treatment of the Markovian BSDEs with jumps and of their PDE interpretation
in Parts II and III, including the proof of convergence of a numerical determinis-
tic scheme to the viscosity solution of a system of integro-differential variational
inequalities, is quite technical too.

As for Part I, we believe that, beyond providing the motivation for the mathe-
matical results of Parts II-IV, it also has the merit of giving a unified, cross market
perspective (see Sects. 3.3.3 and 6.6) on the theory of pricing and hedging financial
derivatives, via the use of BSDEs as a main tool.

Part I on one hand, and Parts II-IV on the other hand, can be read essentially
independently. The reader who would be mainly interested in the financial applica-
tions can thus read Part I first, taking for granted the results of Parts II-IV whenever
they are used therein (see Propositions 5, 6, 8, 14 and 16 in particular). Likewise
readers mainly interested by the mathematical results of Parts II-IV can skip Part I
at first reading.

1.1 Detailed Outline

Section 2 develops the theory of risk-neutral pricing and hedging of financial deriva-
tives, using BSDEs as a main tool (see El Karoui et al. [46] for a general reference
on BSDE:s in finance). The central result, Proposition 3, can be informally stated as
follows: Under the assumption, thoroughly investigated in Part II, that a reflected
backward stochastic differential equation (BSDE) related to a financial derivative,
relatively to a risk-neutral probability measure [P over a primary market of hedging
instruments, admits a solution I, then I7 is the minimal superhedging price up to
a P — local martingale cost process for the derivative at hand, this cost being equal
to O in the case of complete markets. This notion of hedge with local martingale
cost thus establishes a connection between arbitrage prices and hedging, in a rather
general, possibly incomplete, market.

In Sect. 3, we consider the specification of these results to the Markovian set-up.
Using the results of Part III, a complementary variational inequality approach may
then be developed, and more explicit and constructive hedging strategies may be
given (see Sect. 3.5 in particular).

Section 4 presents various extensions of the previous results. Section 4.1 general-
izes the previous risk-neutral approach to a martingale modeling approach relatively
to an arbitrary numeraire B (positive primary asset price process) which may be
used for discounting other price processes, rather than a savings account (riskless as-
set) in the risk-neutral approach. This extension is particularly important for dealing
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with interest-rate derivatives. Section 4.2, which is based on Bielecki et al. [20],
refines the risk-neutral martingale modeling approach of Sects.2 and 3 to the spe-
cific case, important for equity-to-credit applications, of defaultable derivatives,
with all cash flows killed at the default time 6 of a reference entity. Finally in
Sect. 4.3 we deal with the issue of callability and call protection (intermittent call
protection vs. call protection before a stopping time).

In Part I, well-posedness of the pricing BSDEs and PDEs is taken for granted.
The following sections of the paper (Parts II-IV) are devoted to the mathematics of
these pricing equations.

In Sect. 5 we recall the general set-up of [38] and the general form of the BSDEs
we are interested in.

In Sect. 6, we present a versatile Markovian specification of this general set-up,
made of a jump-diffusion X interacting with a pure jump process N (which in
the simplest case reduces to a Markov chain in continuous time). The interaction
between X and N is materialized by the fact that the coefficients of the dynamics
of X depend on N, and also, by a mutual dependence of the jump intensity of either
process on the other one. Such coupled dependence is motivated by applications like
modeling frailty and contagion in portfolio credit risk (see [16]).

But the construction of a model with such mutual dependence is a non-trivial
issue, and we treat it in detail in Sect. 7, resorting to a suitable Markovian change of
probability measure.

This model may also be viewed as a generalization of the interacting It6 pro-
cess and point process model considered by Becherer and Schweizer in [10]. Yet as
opposed to the set-up of [10] where linear reaction-diffusion systems of parabolic
equations (pricing equations of European contingent claims, from the point of view
of the financial interpretation) are considered from the point of view of classical
solutions, here the application one has in mind consists of more general optimal
stopping or optimal stopping game problems (pricing equations of American or
game contingent claims, see Part I) for which the related reaction-diffusion sys-
tems typically do not have classical solutions. This leads us to study in Sect. 8 the
related reflected and doubly reflected Markovian BSDEs (see [20,46,47]), showing
that they are well-posed in the sense that they have unique solutions, which depend
continuously on their input data.

In Sect. 9 we derive the associated Markov and flow properties.

In Sect. 10 we introduce the systems of partial integro-differential variational
inequalities formally associated to our reflected BSDEs, and we state suitable defi-
nitions of semi-continuous viscosity solutions and solutions for these problems.

In Sect. 11 we show that the state-processes (first components Y') of the solutions
to our reflected BSDEs can be characterized in terms of the value functions to related
optimal stopping or game problems, given as viscosity solutions with polynomial
growth to the related obstacle problems.

We establish in Sect. 12 a semi-continuous viscosity solutions comparison
principle, which implies in particular uniqueness of viscosity solutions for these
problems.
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This comparison principle is subsequently used in Sect. 13 for proving the con-
vergence of stable, monotone and consistent approximation schemes (cf. Barles and
Souganidis; see also [8] Briani et al. [28], Cont and Voltchkova [36] or Jakobsen
et al. [64]) to the viscosity solutions of the equations. These results thus extend to
models with regimes (whence systems of PDEs [9,60]) the results of [8,28], among
others.

In Sects. 14-16 we provide extensions of the previous results to a factor process
model (X, N) possibly involving further deferministic jumps at some fixed times
T}s. This is required for applications to pricing problems involving discrete divi-
dends on a financial derivative or on an underlying asset, and also, to be able to deal
with the issue of discrete path-dependence.
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Part I
Martingale Modeling in Finance

In this part (see Sect. 1 for a detailed outline), we show how the task of pricing and
hedging financial derivatives can generically be reduced to that of solving (typically
reflected) BSDEs, or, equivalently in the Markovian case, PDEs. These equations
are called pricing equations in this paper. Well-posedness of these equations in suit-
able spaces of solutions will be taken for granted whenever needed in this part, and
will then be thoroughly studied in the remaining three parts of the paper.

2 General Set-Up

The evolution of a financial market model is given throughout this part in terms of
stochastic processes defined on a continuous time stochastic basis ({2, F, P), where
P denotes the objective (also called statistical, historical, physical..) probability mea-
sure. We may and do assume that the filtration I satisfies the usual completeness
and right-continuity conditions, and that all semimartingales are cadlag (i.e., almost
surely right continuous with left limits). Finally, since we are always in the con-
text of pricing contingent claims with a fixed maturity 7', we further assume that
F = (Ft)tejo, ) with Fo trivial and Fr = F. Moreover, we declare that a process
on [0, 7] (resp. a random variable) has to be F-adapted (resp. F-measurable), by
definition. N

We shall typically work under a risk-neutral probability measure P ~ PP, or more
generally, under a martingale probability measure P relative to a suitable numeraire
(see Sect.4.1), such that the prices of primary assets, once properly discounted and
adjusted for dividends, are P — local martingales.

As we shall now see, under mild technical conditions, existence of such a mar-
tingale measure P is equivalent to a suitable notion of no-arbitrage.

2.1 Pricing by Arbitrage

2.1.1 Primary Market Model

To model a financial derivative with maturity 7', we consider a primary market com-
posed of the savings account B and of d primary risky assets. The discount factor 3
is supposed to be absolutely continuous with respect to the Lebesgue measure, and
given by

t
B = eXP(—/ ru du) (D
0

(30 By = 1 and 8 = B~1), for a bounded from below short-term interest rate
process .
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The primary risky assets, with R%valued price process P, may pay dividends,
whose cumulative value process, denoted by D, is assumed to be an R%valued
process of finite variation. Given the price process P, we define the cumulative price
P of the asset as

P, =P, +6{1/ B dD,,. )
[0,]

In the financial interpretation, the last term in (2) represents the current value at time
t of all dividend payments of the asset over the period [0, ¢], under the assumption
that all dividends are immediately reinvested in the savings account.

For technical reasons we assume that P is a locally bounded semimartingale.

We assume that the primary market model is free of arbitrage opportunities
(though presumably incomplete), in the sense that the so-called no free lunch with
vanishing risk (NFLVR) condition is satisfied. This NFLVR condition is a specific
no arbitrage condition involving wealth processes of admissible self-financing pri-
mary trading strategies (see Delbaen and Schachermayer [42]). We do not reproduce
here the full definition of arbitrage price, since it is rather technical and will not be
explicitly used in the sequel. It will be enough for us to recall the related notions of
trading strategies in the primary market.

Definition 1. A primary trading strategy (¢°, () built on the primary market is an
R x R'®4_yalued process, with ¢ predictable and locally bounded, where ¢° and the
row-vector ¢ represent the number of units held in the savings account and in each
of the primary risky assets. The related wealth process VV is thus given by:

Wy = (B + G P, 3)

for t € [0, T]. Accounting for dividends, we say that the strategy is self-financing if
AWy = (dBy + ¢ (dP; + dDy)

or, equivalently’ R
d(BeWr) = (e d(Be Py). “4)

If, moreover, the discounted wealth process 5V is bounded from below, the strategy
is said to be admissible.

Given the initial wealth w of a self-financing primary trading strategy and the
strategy ¢ in the primary risky assets, the related wealth process is thus given by, for
te0,T]:

! This equivalence is very general (cf. Sect.4.1), and it is an easy exercise in the present context
where 3, given by (1), is a finite variation and continuous process.



70 S. Crépey

and the process ¢ (number of units held in the savings account) is then uniquely
determined as

¢ = BWe — G Py).

In the sequel we restrict ourselves to self-financing trading strategies. We thus re-
define a (self-financing) primary trading strategy as a pair (w, ¢), made of an initial
wealth w € R and an R'®?-valued predictable locally bounded primary strategy in
the risky assets ¢, with related wealth process WV defined by (5).

2.1.2 Financial Derivatives

In the sequel we are going to extend the financial market by introducing a financial
derivative relative to the primary market. A derivative is a financial claim between
an investor (or holder of a claim) and a financial institution (or issuer), involving in
a sense made precise in Definition 2 below, some or all of the following cash flows
(or payoffs):

e A bounded variation cumulative dividend process D = (Dy);c(o,1),

e Terminal cash flows, consisting of:

— A payment £ at maturity T, where £ denotes a bounded from below real-valued
random variable,

— And, in the case of American or game products with early exercice features, put
and/or call payment processes L = (L¢);c[o,r) and U = (Ut)se[o, 11, given as real-
valued, bounded from below, cadlag processes such that L < U and Ly < ¢ < Ur.

The put payment L; corresponds to a payment made by the issuer to the holder of
the claim at time ¢, in case the holder of the claim would decide to terminate (“put”)
the contract at time ¢. Likewise, the call payment U; corresponds to a payment made
by the issuer to the holder of the claim at time ¢, in case the issuer of the claim would
decide to terminate (“call”) the contract at time .

Of course, there is also the initial cash flow (only null in the case of a swapped
derivative with initial value equal to zero, by construction), namely the purchasing
price of the contract paid at the initiation time by the holder and received by the
issuer.

The terminology “derivative” comes from the fact that all the above cash flows
are typically given as functions of the “primary” asset price processes . More gen-
erally, the price I1 of a derivative and the prices P of the primary assets may be given
as functions of a common set of factors (traded or not) X (cf. Sect. 3). One may then
consider the issue of factor hedging the claim with price process I/ by the primary
assets with price process P, via the common dependence of /7 and P on X.

Here and henceforth all the financial cash flows are seen from the point of view
of the holder of the claim. In this perspective, the assumption above that all the cash
flows are bounded from below, which from the mathematical point of view ensures
their integrability in R U {+o0}, is indeed satisfied by a vast majority of real-life
financial derivatives.
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Remark 1. Usually in the derivative pricing and hedging literature, dividends are
implicitly set to zero, or equivalently, implicitly amalgamated with the terminal cash
flows L, U and . The related notion of price thus effectively corresponds to a cum-
dividend price (present value of future cash flows plus already perceived dividends
reinvested in the savings account), as opposed to the market notion of ex-dividend
price. Since an important proportion of financial derivatives (starting with all
swapped derivatives) only entails dividends (terminal cash flows L = U = £ = 0),
it is our opinion that it is better to make the dividends appear explicitly. This is in
fact a necessity for the study of defaultable derivatives in Sect. 4.2, where we shall
see that the specific structure of the products’ cash flows and their distribution be-
tween dividends (in the sense of coupons and recovery) and terminal payoffs, is
fruitfully exploited in the so-called reduced form approach to these problems.

We are now in a position to introduce the formal definition of a financial deriva-
tive, distinguishing more specifically European claims, American claims and game
claims. It will soon become apparent that European claims can be considered as
special cases of American claims, which are themselves included in game claims,
so that we shall eventually be able to reduce attention to game claims.

In the following definitions, the put time (put or maturity time, to be precise) T,
and the call (or maturity) time o, represent stopping times at the holder’s and at the
issuer’s convenience, respectively.

Definition 2. (i) An European claim is a financial claim with dividend process D,
and with payment £ at maturity 7.

(i) An American claim is a financial claim with dividend process D, and with pay-
ment at the terminal (put or maturity) time 7 given by,

LireryLr + 1—my€. (6)

(iii) A game claim is a financial claim with dividend process D, and with payment
at the terminal (call, put or maturity) time v = 7 A o given by,”

Lo—reryLr + Loy Us + Lipm) €. (7

Moreover, there may be a call protection modeled in the form of a stopping time &
such that calls are not allowed to occur before &.

Example 1. In the simplest case of an European vanilla call/put option with maturity
T and strike K on S = P!, the first primary risky asset, one has D = 0 and
¢=(Sr - K)*.

Note 1. (i) The above classification, which is good enough for the purpose of this
article, is by no means exhaustive. For instance Bermudan products corresponding

2 With priority of a put over a call, here, though this happens to be rather immaterial in terms of
pricing and hedging the claim.
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to constrained put policies might also be introduced. Note however that Bermudan
products can be included in the above set-up by considering a suitably adjusted
put payoff process L. This is indeed a consequence of Proposition 1(ii) below, in
conjunction with our boundedness from below assumption on all the cash flows
at hand.

On the opposite the explicit introduction of call protections appears to be a useful

modeling ingredient. Such protections are actually quite typical in the case of real-
life callable products like, for instance, convertible bonds (see Sect. 4.2.1), with the
effect of making the product cheaper to the investor (holder of the claim). The in-
troduction of such call protections also allows one to consider an American claim
as a game claim with call protection & = T..
(ii) In Sect. 4.3, building on the mathematical results of Sect. 16, we consider prod-
ucts with more general, hence potentially more realistic forms of infermittent call
protection, namely call protection whenever a certain condition is satisfied, rather
than more specifically call protection before a stopping time above.

By classic arbitrage theory (see, e.g., [18, 32, 42]), the NFLVR condition in a
perfect market (without transaction costs, in particular) is equivalent to the existence
of a risk-neutral measure P € M, where M denotes the set of probability measures
P ~ P such that 3P is a P — local martingale.

In the sequel, the statement (I1;);c[o,7] is an arbitrage price for a derivative
is to be understood as (P, IT;).c[0,1 is an arbitrage price for the extended mar-
ket consisting of the primary market and the derivative. The notion of arbitrage
price process of a financial derivative referred to in the next result is the clas-
sical notion of No Free Lunch with Vanishing Risk condition of Delbaen and
Schachermayer [42] in the case of European claims, subsequently extended to game
(including American) claims by Kallsen and Kiihn [67]. The proof of this result is
based on a rather straightforward application of Theorem 2.9 in Kallsen and Kiihn
[67] (see Bielecki et al. [18] for the details).

Let 7; and 7; (or simply 7 and 7, in case ¢ = 0) denote the set of [t, T'|-valued
and [t V &, T]-valued stopping times. Let also v stand for o A 7, for any (o,7) €
T x Ty.

Proposition 1. (i) For any P € M, the process I = (Il;):c[o, 1) defined by
11, :IEP{ I B, dDu+6T§|]-"t}, te 0,7 )

is an arbitrage price of the related European claim. Moreover, any arbitrage price
of the claim is of this form provided

sup Bp{ [ BudDy + ré}f < oo ©)
PeEM [0,T]

(ii) For any P € M, the process I = (IIt),c[o,1) defined by

B,IT; = esssupTETtIEH){ 7 BudDu+Br (1 ey Ly + 1 (1)) | ]—‘t}, te[0,7]
(10)
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is an arbitrage price of the related American claim as soon as it is a semimartingale.
Moreover, any arbitrage price of the claim is of this form provided

sup Epsupte[o,:r]{ / BudDy + B¢ (LgparyLe + ]l{t:T}f)} <oo; (1)
PEM [0.1]

(iii) For any P € M, the process I1 = (I1;),c(o, 1) defined by
esssupTeTtessinfgeﬁE[p{ / BudDy + Bu(L{y—rcryLr
Jt
+1{o<r}Us + Lpory€) ’-7'-1&} = Bl

— essinfaeﬁesssupTeTtE]p{ / BudDy + B (Liy—reryLr
t

+LioanUs + Lpemy€) [ R}, tE[0,T] (12)

is an arbitrage price of the related game claim as soon as it is a well-defined semi-
martingale (which supposes in particular that equality indeed holds between the
left hand side and the right hand side in (12)). Moreover, any arbitrage price of the
claim is of this form assuming (11).

In view of these results, one may interpret an European claim as an American
claim with a fictitious put payment process L defined by SL = —c, where —c is a
strict minorant of f tT Bu dDy, + pré. Indeed, in view of Propositions 1(ii), for this
specification of L, exercise of the put before maturity is always sub-optimal to the
holder of the claim. It is thus equivalent for a process II to be an arbitrage price
of the European claim with the cash flows D, &, or to be an arbitrage price of the
American claim with the cash flows D, L, £, with L thus specified.

Henceforth by default, by “financial derivative” or “game option,” we shall mean
game claim, possibly with a call protection &, including American claim (case
o = T, in particular European claim with L as specified above) as a special case.
Arbitrage prices of the form (8), (10) or (12) will be called P-prices in the sequel.

2.2 Connection with Hedging

We adopt a definition of hedging of a game option stemming from successive de-
velopments, starting from the hedging of American options examined by Karatzas
[68], and subsequently followed by El Karoui and Quenez [45], Kifer [69], Ma
and Cvitani¢ [76], Hamadene [55], and, in the context of defaultable derivatives
examined in Sect.4.2, Bielecki et al. [20, 23] (see also Schweizer [85]). This
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definition will be later shown to be consistent with the concept of arbitrage pricing
of Proposition 1(iii) for a game option (which encompasses American and European
options as special cases).

We first introduce a (very large, to be specified later) class of hedges with semi-
martingale cost process (. The issuer of a financial derivative immediately sets up
a primary hedging strategy such that the corresponding wealth process W reduces
to a cost or hedging error @), after accounting for the “dividend cost” —D and for
the “terminal loss” given by —L, —U or —¢&. The initial wealth w may then be used
as a safe issuer price, up to the hedging error @), for the derivative at hand. Recall
that we denote v = 7 A 0.

Definition 3. An hedge with semimartingale cost process Q) (issuer hedge starting
at time 0) for a game option is represented by a triplet (w, , o) such that:

e (w,() is a primary trading strategy,

e The call time o belongs to 7,

e The wealth process W of the strategy (w, ¢) satisfies for every put time 7 in 7,
almost surely,

G Wy +/0 BudQu > /0 BudDny, + By (1{V:T<T}LT + ]1{0<T}U‘7 + ]]'{T:U:T}§>’
(13)

In the special case of European derivatives, in which case ¢ = T, and if moreover
equality holds in (13) at t = T, then, almost surely,

BrWr + [ BudQu = [y BudDy + Bré. (14)

In this case one effectively deals with a replicating strategy with cost Q).

Note 2. (i) The process ( is to be interpreted as the cumulative financing cost, that
is, the amount of cash added to (if dQ); > 0) or withdrawn from (if d@; < 0) the
hedging portfolio in order to get a perfect, but no longer self-financing, hedge.

(ii) Hedges at no cost (that is, with @ = 0) are thus in effect super-hedges.

(iii) In relation with admissibility issues (see the end of Definition 1), note that the
left hand side of (13) (discounted wealth process with financing costs included) is
bounded from below, for any hedge (w, ¢, o) with cost Q.

This class of hedges with cost () is obviously too large for any practical purpose,
so we will restrict our attention to hedges with a local martingale cost () under a
particular risk-neutral measure P (cf. the related notions of risk-minimizing strat-
egy in Follmer and Sondermann [50] and mean self-financing hedge in Schweizer
[85]). Henceforth in this part, we thus work under a fixed but arbitrary risk-neutral
measure P, with P-expectation denoted by E. All the measure-dependent notions,
like martingale, or compensator, implicitly refer to this probability measure P. In
practical applications, it is convenient to think of [P as “the pricing measure chosen
by the market” to price a contingent claim. For pricing and hedging purposes this
measure is typically estimated by calibration of a model to market data.
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2.2.1 BSDE Modeling

We shall now postulate suitable integrability and regularity conditions embedded
in the standing assumption that a related reflected backward stochastic differential
equation (BSDE, see El Karoui et al. [46] for a general reference in connection
with finance and El Karoui et al. [47] for a seminal reference on reflected BSDEs)
has a solution. We shall thus introduce a reflected BSDE (15) under the probabil-
ity measure P, with data defined in terms of those of a derivative. Assuming that
(15) has a solution (for which various sets of sufficient regularity and integrability
conditions are known in the literature, see Part II and [38, 56, 57]), we shall be in
a position to deduce explicit hedging strategies with minimal initial wealth for the
related derivative.

We assume further for the sake of simplicity that dD; = Cdt for some progres-
sively measurable time-integrable coupon rate process C'.

Remark 2. 1t is important to note for applications that it is also possible to deal with
discrete dividends: see [20] and Sect. 14 in Part IV.

We then consider the following reflected BSDE with data 8, C, &, L, U, G:

Belly = Bré+ [ BuCudu + [ Bu(dK, —dM,), te[0,T)
L <II, <U;, te[0,T] (15)

Jy i, - L) dK = [ (U, — I1,) dK; =0

where, with the convention that 0 X +=0o = 0 in the last line above,
U = Lji<5300 + L5y Us (16)

Definition 4. (See Part Il for more formal definitions, including in particular the
specification of spaces for the inputs and outputs to (15)). By a P-solution to (15),
we mean a triplet (I7, M, K') such that all conditions in (15) are satisfied, where:

o The state-process 11 is a real valued, cadlag process,

e )M is a P-martingale vanishing at time 0,

e K is a non-decreasing continuous process null at time 0, and K+ denote the
components of the Jordan decomposition of K.

By the Jordan decomposition of K in the last bullet point, we mean the unique
decomposition K = K — K~ into the difference of non-decreasing processes K+
null at 0, defining mutually singular random measures on [0, T'].

Remark 3. The first line of (15) can be interpreted as giving the Doob—Meyer de-
composition fg Bu(dK, — dM,) of the special semimartingale

t
Belly == Byl +/ BuCydu. (17)
0



76 S. Crépey

So an equivalent definition of a solution to (15) would be that of a special
semimartingale I (rather than a triplet of processes (I1, M, K)) such that all
conditions in (15) are satisfied, where M and K therein are to be understood as the
canonical local martingale and finite variation predictable components of process

Jio.g B¢ (B IT).

Note that the first line of (15) is equivalent to
T
I =¢ +/ (Cu — rulL)du + (Kr — Kp) — (My — M), t€[0,T). (18)
t

As established in [38, 56, 57], existence and uniqueness of a solution to (15)
(under suitable Lo-integrability conditions on the data and the solution) are es-
sentially equivalent to the so-called Mokobodski condition, namely, the existence
of a quasimartingale Y (special semimartingale with additional integrability prop-
erties, Sect. 16.2.2) such that L <Y <U on [0, 7). Existence and uniqueness of
a solution to (15) thus hold when one of the barriers is a quasimartingale and,
in particular, when one of the barriers is given as S V ¢, where S is a square-
integrable Itd process and ¢ is a constant in RU{—oo} (see [38] as well as Note 8(v)
and Proposition 30 in Part IT). This covers, for instance, the put payment process
L of an American vanilla option, or of a convertible bond (see Definition 7 and
Bielecki et al. [18, 19]). Moreover one typically has K = 0 in the case of an
European derivative.
We thus work henceforth in this part under the following hypothesis.

Assumption 1 Equation (15) admits a solution (17, M, K), with K equal to zero
in the special case of an European derivative.

Proposition 2. I1 is the P-price process of the derivative.
Proof. 1f (II, M, K) is a solution to (15), then IT is a (special) semimartingale (see
(18)), and, by a standard verification principle (cf. Proposition 18 in Part II), /I sat-

isfies (12), which in the special cases of American (resp. European) options reduces
to (10) (resp. (8)). One thus concludes by an application of Proposition 1. |

We are now ready to interpret the P-price /7, thus defined via (15), in terms of
the notion of hedging introduced in Sect. 2.2. Let us set

o =inf{uetve T]; I, >U,} AT. (19)

Using the minimality condition (third line) in (15) and the continuity of K+, one
thus has,

K- =0and K =Kt >0o0n[0,0%], s« = Uy on{c* <T}. (20)

Note that for any primary strategy ¢, the issuer’s Profit and Loss (or Tracking
Error) process (e)¢c(o,7) relative to the price process IT of Proposition 2 is given
for¢ € [0,T] by:
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frew = Mo — /0 ' BuCudu + /0 Cad(BuPu) — BT, — /0 t (~d(BuTTa) + Cud(5uP)
@1)

where 17 is defined by (17), so that, in view of Proposition 2, IT can be interpreted
as the P — cumulative price of the option (cf. (2)). Observe in view of (18) that the
tracking error process e is a special semimartingale. Let the P — local martingale
p = p(¢) be such that py = 0 and fo Bidpy is the local martingale component of the
special semimartingale (e, so (cf. (21), (18))

dpe = dM; — ;B d(B:P,) (22)
Brer = [y BudKy — [ Budpu. (23)

The arguments underlying the following result are classical, and already present for
instance in Lepeltier and Maingueneau [75] (in the specific contexts of the Cox—
Ross—Rubinstein or Black—Scholes models, analogous results can also be found in
Kifer [69]).

Proposition 3. (i) For any primary strategy ¢, (Ily,(,0*), is an hedge with P —
local martingale cost p(C);

(ii) 11y is the minimal initial wealth of an hedge with P — local martingale cost;
(iii) In the special case of an European derivative with K = 0, then (I1y, () is a
replicating strategy with PP — local martingale cost p. Il is thus also the minimal
initial wealth of a replicating strategy with P — local martingale cost.

Proof. (i) One must show that for any 7 € 7, almost surely:
o* AT =N o AT
HO + / Cud(ﬂupu) + / ﬁudpu
0 0

o AT
> / ﬂucudu'i_ﬂﬂ*/\T (ﬂ{U*AT:T<T}Lt + 1{0’*<T}UU* + ]l{a*:'r:T}f)
0
(24)

or equivalently, using (22):

o AT
0

*

o AT
> / ﬂucudu + 6«7*/\7' (ﬂ{d*/\T:T<T}LT + 1{0’*<T}UU* + ]l{U*:T:T}§)
0
(25)
where by the first line in (15):

AT

o AT o o AT
HO + / ﬁudMu = B(T*/\THO'*/\T + / ﬁucudu + / /GudKu
0 0 0
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Inequality (25) then follows from (20) and from the following relations, which are
valid by the terminal and put conditions in (15):

HT:§7 HTZLT'

(ii) There exists an hedge with initial wealth 11 and IP — local martingale cost, by (i)
applied with, for instance, ¢ = 0. Moreover, for any hedge (w, ¢, o) with P —local
martingale cost ), one has for every ¢t € [0, T

oAt N oAt
wt / Gud(BuB) + / BudQ.
0 0
oAt
> [ BuCudu + o (Lommsen L+ LoV + Ligmimi€) 26
0

The left hand side is thus a bounded from below local martingale, hence it is a
supermartingale. Moreover, (26) also holds with a stopping time 7 € 7 instead of ¢
therein. So, by taking expectations in (26) with 7 instead of ¢ therein:

w>E { OUAT ﬁucudu + ﬁa/\r (]1{0/\:7'<T}LT + ]l{U<T}UT + 1{0:T:T}§>} .

Hence w > I follows, by (12).
(iii) In the special case of an European derivative, the stated results follow by setting
K = 0 in the previous points of the proof. O

Note 3. (i) Proposition 3 thus characterizes the P-price (arbitrage price relative to
the risk-neutral measure IP) of a derivative as the smallest initial wealth of a hedge
with [P — local martingale cost, under the assumption that the related reflected BSDE
(15) has a solution. For related results, see also Follmer and Sondermann [50] or
Schweizer [85].

(ii) The special case p = 0 in the previous results corresponds to a suitable form of
model completeness (replicability of European options, cf. point (iii) of the propo-
sition), in which the issuer of the option wishes to hedge all the risks embedded in
the option.

The case p # 0 corresponds to either model incompleteness, or a situation of
model completeness in which the issuer wishes not to hedge all the risks embedded
in the product at hand, for instance because she wants to limit transaction costs, or
because she wishes to take some bets in specific risk directions.

(iii) In case where p may be taken equal to O in Proposition 3, the minimality state-
ments in this proposition can be used to prove uniqueness of the related arbitrage
prices.

(iv) Analogous definitions and results hold for holder hedges.

(v) It is also easy to see that one could state analogous definitions and results regard-
ing hedging a defaultable game option starting at any date ¢ € [0, T, rather than at
time O above.
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3 Markovian Set-Up

3.1 Markovian FBSDE Approach

In order to be usable in practice, a dynamic pricing model needs to be constructive,
or Markovian in some sense, relatively to a given derivative. This will be achieved by
assuming that the related BSDE (15) is Markovian (see Sect. 4 of [46] and Part II).

Definition 5. We say that the BSDE (15) is a Markovian backward stochastic
differential equation if the input data r, C, £, L and U of (15) are given by Borel-
measurable functions of some R?-valued (I, P)-Markov factor process X, so

Ty = T(t’Xt)’ Ct = C(taXt)a 5 = g(XT)a Lt = L(tht)a Ut = U(tht) 3
(27)

and is & is the first time of entry, capped at T, of the process (¢, X ), into a given
closed subset of [0, 7] x RY.

Remark 4. By a slight abuse of notation, the related functions are thus denoted in
(27) by the same symbols as the corresponding processes or random variables.

In particular, the system made of the specification of a forward dynamics for X,
together with the BSDE (15), constitutes a decoupled Markovian forward backward
system of equations in (X, IT, M, K). The system is decoupled in the sense that the
forward component of the system serves as an input for the backward component
(X 1is an input to (15), cf. (27)), but not the other way round. See Definition 11 in
Part IT for more complete and formal statements.

From the point of view of interpretation, the components of X are observable
factors. These are intimately, though non-trivially, related with the primary risky
asset price process P, as follows:

e Most factors are typically given as primary price processes. The components of
X that are not included in P (if any) are to be understood as simple factors that
may be required to “Markovianize” the payoffs of the derivative at hand, such as
factors accounting for path dependence in the derivative’s payoff, and/or non-traded
factors such as stochastic volatility in the dynamics of the assets underlying the
derivative;

e Some of the primary price processes may not be needed as factors, but are used
for hedging purposes.

Note that observability of the factor process X in the mathematical sense of
F-adaptedness is not sufficient in practice. In order for a factor process model to
be usable in practice, a constructive mapping from a collection of meaningful and
directly observable economic variables to X is needed. Otherwise, the model will
be useless.
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3.2 Factor Process Dynamics

Under a rather generic specification for the Markov factor process X, we now derive
a variational inequality approach for pricing and hedging a financial derivative. We
thus assume that the factor process X is an (F = F":¥ P)-solution of the following
Markovian (forward) stochastic differential equation in R?:

dXt :b(t,Xt)dt+U(t,Xt)th +5(t,Xt7)dNt, (28)

where:

e W is a g-dimensional Brownian motion, and

o N is a compensated integer-valued random measure with finite jump intensity
measure A(t, Xy, dz), for some deterministic function A.

In particular 6(¢, X;—)dNy in (28) is a short-hand for [, 6(¢t, X;—, z)N(dt, dx),
where the integration is with respect to the x variable. The response jump size func-
tion § and the intensity measure \, like the other model coefficients b and o of X,
are to be specified depending on the application at hand: see Sect. 3.3 for specific
examples and Definition 10 in Part II for more precise statements.

Remark 5. The generic and “abstract” jump-diffusion (28) will be made precise and
specified in Part IT in the form of a process X = (X, N) in which a jump-diffusion —
like component X interacts with a continuous-time Markov chain — like component
N; so the process X in Part II corresponds to X here.

Let us introduce the following additional notation:
e .J;, arandom variable on R? with law %
represents the “mark” of the jump of X in 6(¢, X;—, x),
e (t;), the ordered sequence of the times of jumps of N (note that we deal with a
finite jump measure A, so (¢;) is well defined),

e For any vector-valued function « on R? and for every ¢ € [0, T,

conditional on X;_, where x

Sult, ,y) = u(t,z +8(t, ,9)) — u(t,x), du(t,x) = | Su(t, =, y)A(t, z,dy)
R4

§ut = (5u(t,Xt_, Jt), gut = Su(t,Xt_) . (29)

We apologize to the reader for this admittedly heavy notation, which is motivated
by the wish to give intuitive and compact forms below to various expressions of the
model’s dynamics, generator and It formula. Denoting further

g(t,(ﬁ) = SId]Rq (t,.’L’) = §(t7$7y>/\(t7x7 dy) 9 (St = 6(t7Xt—7 Jt) )
Ra

St = S(tv th)v
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one thus has for instance:

0(t, Xi—)dNy = d (Z 5tz> — bt (30)
t <t
and the dynamics (28) of X may be rewritten as
dXy = b(t, X,)dt + o(t, X;) dW; + d ( ) 5tl> 31)
<t

where we set b(t,z) = b(t, ) — 8(t, z).

3.2.1 Ito Formula and Model Generator

In view of (31), the following variant of the It6 formula holds, for any real-valued
function u of class C1:2 on [0, T] x RY:

du(t, X;) = Gu(t, Xy) dt + Ou(t, X;) o (t, X;) dW + d | Y du, (32)
t <t
with
Gult, z) = duu(t, ) + dult, 2)b(t, ) + %Tr[a(t, 2YHu(t, z)] (33)

where a(t,z) = o(t,z)o(t,x)T, and where Vu and Hu denote the row-gradient

and the Hessian of u with respect to « — so in particular

Trla(t, o) Hu(t,z)] = Y oik(t, 2)ojk(t, 2)02, , u(t, ).

1<i,j,k<q

Using the short-hand du(t, X; - )dN; = [, _p, du(t, X;—, x)N(dt, dx), note that
one has (cf. (30)),

Su(t, X;_)dN; = d (Z 5ut,> — Suydt. (34)

t <t
The It6 formula (32) may thus be rewritten as

du(t, Xt) = gu(t, Xt) dt + Vu(t, Xt) O'(t, Xt) th + 5U(t, Xt,)dNt (35)
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where we set
Gu(t,z) = Gu(t,x) + du(t, z)
— duult, ) + Vult, 2)b(t, ) + %Tr[a(t, oY Hult, )]
+ du(t,x) — Vu(t,z)o(t, z). (36)

The process X is thus a Markov process with generator G (see Proposition 29 in
Part III for a more formal derivation).

Remark 6. By a convenient abuse of terminology we call here and henceforth G the
generator of X, whereas strictly speaking G is the generator of the time-extended
process (t, X ) (the generator of X does not contain the 9; term).

3.2.2 Brackets

Let I7¢ and O°¢, resp. AIl and A©, denote the continuous local martingale compo-
nents, resp. the jump processes, of two given real-valued semimartingales /7 and O.
Recall that the quadratic covariation or bracket [I1, O] is given by

dlII, 0], = d(I1,6,) — II,_dO, — 6,_dII, (37)
= d(IT°,0%) +d | > All,AO, (38)
s<t

with the initial condition [I1, ®]g = 0. The sharp bracket (II,©) corresponds to
the compensator of |11, ©], which is well defined provided [I1, O] is of locally inte-
grable variation (see, e.g., Protter [84]). Assuming I7 and © to be defined in terms
of the process X of (28) by II; = u(t, X;) and ©; = v(t, X;) for determinis-
tic and “smooth enough” functions v and v, then (38) yields, in view of the It6
formula (35):

d[I1,0)]; = Vua(Vv)T (t, X;) dt + d ( > 5ut15vtl> .

t1 <t

The bracket [II,©] thus admits a compensator < II,© > given as a time-
differentiable process with the following Lebesgue-density:

d<lIIl,® >,

dt = (’U,, 1)) (tv Xt) (39)
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