
Chapter 2
Phonons and Their Interactions

2.1 The Phonon–Phonon Interaction

Within the harmonic approximation, phonons are non-interacting and have an
infinite lifetime. Including higher terms (anharmonic terms) in the expansion of the
potential leads to an interaction between phonons. As a result, a phonon from a
given state defined by the wave vector q and the branch j of the dispersion
spectrum xj(q) will decay into other phonons after a finite time. Phonon–phonon
interactions involve different number of phonons in the interaction process.

In perturbation theory, the crystal potential is expanded as a power of dis-
placement and the Hamiltonian may be written as:

H ¼ Ho þ kH3 þ k2H4 þ k3H5 þ � � � ð2:1Þ

where Ho is the harmonic Hamiltonian and H3, H4, H5,... are the perturbation
terms involving three, four, five ... interacting phonons. The simplest case is the
three-phonon interaction where a phonon decays to form two other phonons and
vice-versa. The possible interactions are shown in Fig. 2.1. The Hamiltonian for
three-phonon processes reads1:

H3 ¼
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where /(qj, q0j0, q00j00) is the 3 9 3 matrix element, q, q0, q00 are the wave vectors
of the three phonons involved in the process and G is the reciprocal lattice vector.
The d-function guarantees momentum conservation in these processes. The last

1 For a derivation of the Hamiltonian refer to [1, 2].
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three terms of Eq. 2.2 represent the different processes of creation and annihilation
of the three phonons.

The probability per unit time, that a phonon in an initial state |ii with index
q j will decay, as a result of one of the processes mentioned, into some other state
|fi is given by the Fermi ‘‘Golden rule’’:

Wði! f Þ ¼ 2p
�h
jhf jH3jiij2Df ðEÞ ð2:3Þ

where Df(E) is the density of the final states and H3 is the three-phonon Hamil-
tonian of Eq. 2.2. The lifetime of this phonon qj is then defined as the reciprocal
value of the decay rate. This rate is the sum of the rates of the processes where the
phonon qj is created, minus the rate of the processes where the phonon qj is
destroyed. Altogether it follows that the lifetime s(qj) is given by:

1
sðqjÞ ¼

p
16N
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q0j0;q00j00

j/ðqj; q0j0; q00j00Þj2

xqjxq0j0xq00j00
dqþq0þq0;G

� f½n0ðn00 þ 1Þðnþ 1Þ � nn00ðn0 þ 1Þ� � dðxq � xq0 þ xq00 Þ
þ ½n0n00ðnþ 1Þ � nðn00 þ 1Þðn0 þ 1Þ� � dðxq � xq0 � xq00 Þg

ð2:4Þ

Each partial probability contains the square of the transition matrix element
times a delta function which guarantees energy and momentum conservation. The
squares of the matrix elements for the different processes differ only in the
occupation numbers of the phonons n, n0, and n00. Higher order phonon processes,
involving four or more phonons, are more numerous and arise from higher orders
of the perturbation theory as seen from Eq. 2.1. Nevertheless the strength for these

Fig. 2.1 Three-phonon interaction processes that may destroy or create the phonon qj. Creation

of a phonon in the process contributes to the transition probability by a factor ½ð�h=2mxÞðnþ
1Þ�1=2 while a phonon destruction contributes by ½ð�h=2mxÞðnÞ�1=2
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interactions decreases as the number of phonons in the interaction process
increases.

As the temperature tends to zero, due to the absence of thermal phonon pop-
ulation (n0 and n00 = 0), the decay probabilities for up-conversion processes
vanish. The intrinsic phonon lifetime (due to p–p interaction) is thus dominated by
spontaneous down-conversion decay towards lower energy phonons (Fig. 2.1d). In
the case of a normal phonon dispersion, it has been discussed that four-phonon
interaction is the lowest order decay process [3]. Three-phonon decay processes
are kinematically not allowed. For anomalous phonon dispersion, however, where
the phonon phase velocity exceeds the sound velocity, collinear (i.e. wave vectors
of the involved phonons are all along the same direction) intra-branch three-
phonon decay processes for transverse phonons become kinematically allowed.
This leads to a finite phonon lifetime even at zero temperature. The phonon
spectrum of superfluid helium exhibits such an anomaly, and spontaneous phonon
decay at very low temperatures is experimentally observed for phonons with
vg [ vs [4, 5] (vg and vs are the group velocity and the sound velocity, respec-
tively). Figure 2.2 shows such an anomalous phonon dispersion. Within the range
q1 \ q \ q2, the phonon phase velocity, vp, exceeds the sound velocity. Only
phonons within this range can decay to lower-energy phonons and therefore
exhibit a finite lifetime at zero temperature.

2.2 The Electron–Phonon Interaction

In the band model description, electrons in a solid are quasi-particles which
occupy one-electron states. They are described by Bloch functions |k, ri, where
k is the wave vector of the electron and r is the spin.

In a perfect crystal, an electron propagates without scattering, however, the
perfect periodicity is destroyed by the lattice vibrations of the atoms. These
vibrations cause the electrons to have a certain probability of being scattered.

The electron–phonon interaction process induces the annihilation or creation of
a phonon (q, j) and a simultaneous excitation or de-excitation of the electron from

q1 q2 q

ω

Fig. 2.2 Anomalous phonon dispersion, as is the case for liquid helium. Within the range
q1 \ q \ q2, the phonon phase velocity, vp exceeds the sound velocity vs and spontaneous decay
is allowed. vs = x/q as q? 0; vp = dx/dq
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state |k, ri to |k ± q, ri. These two processes are illustrated in the top row of
Fig. 2.3. Another two possible processes are illustrated in the second row of
Fig. 2.3: recombination of an electron–hole pair with the creation of a phonon, and
the creation of an electron–hole pair by the annihilation of a phonon. These four
basic processes can be described quantum mechanically by a first-order pertur-
bation calculation. The Hamiltonian of the electron–phonon interaction is2:

He�p ¼
X

k;qj

gðk1; k2; qjÞcyk1jck2jðay�qj þ aqjÞ ð2:5Þ

where cyk1j and ck2jck2j are the creation and annihilation operators for the quasi-

particles with wave vectors k1 = k ? q and k2 = k, respectively; ayqj and aqj are
the creation and the annihilation operators of the phonon of energy xqj and wave
vector q. The latter two operators in the Hamiltonian mean that two interactions
are possible, one in which a phonon with wave vector q in branch j is created, and
a second in which a phonon q, j is annihilated. Both processes are accompanied by
an electron transition from an initial state k1 into a final state k2. The matrix
element g(k1, k2; qj) describes the electron–phonon coupling and is defined as:

gðk1; k2; qjÞ ¼ �ieðq; jÞ � qVðqÞ ð2:6Þ

Fig. 2.3 The different possible electron–phonon interaction processes

2 For more details and derivation of the Hamiltonian we point to the corresponding chapters in
the books by Ziman [1], Grimvall [6], and Reissland [2].
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where V(q) is the matrix element of the electron–phonon pseudopotential and
e(q, j) is the phonon polarisation. Due to the factor e(q, j) � q, transverse phonons
in the first Brillouin zone will not interact with the electrons. However in higher
Brillouin zones, due to Umklapp processes the factor e(q, j) � q = 0 in general.

2.2.1 Kohn Anomalies in the Phonon Dispersion of Metals

The coupling function (Eq. 2.6) refers to the scattering of a quasi-particle from a
point k1 to a point k2 in momentum space with q = k1 - k2. Energy and
momentum conservation require that both k1 and k2 lie on the Fermi surface.3 This
immediately introduces a restriction on the phonon wave vector q: phonon wave
vectors connecting nested parts of the Fermi surface will strongly interact with the
electrons leading to a large phonon damping, whereas those which do not span the
Fermi surface will not interact with the electrons. It has been pointed out by Kohn
[7] that the interaction of phonons with the conduction electrons in a metal should
cause anomalies in the phonon spectra. The phonon dispersion should exhibit
kinks at wave vectors q ? G = 2kF, where kF is the Fermi wave vector and G is
the reciprocal lattice vector. Figure 2.4a illustrates a schematic two-dimensional
(2D) Fermi surface. Phonons with wave vector q ? G \ 2kF (represented by the
short arrow in Fig. 2.4a) can always excite quasi-particle quasi-hole pair since they
span the Fermi surface. Their self-energy is therefore renormalized with respect to
the bare phonon energy. For q ? G [ 2kF this condition is not fulfilled and those
phonons do not interact with the electrons. At q ? G = 2kF a discontinuity results
in the momentum dependence of the electron–phonon interaction. This is reflected

3 This is due to the fact that the typical phonon energy is in the meV range which is three orders
of magnitude smaller that the typical electron energy.
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Fig. 2.4 a Schematic 2D Fermi surface. The arrows correspond to phonon wave vectors.
b Phonon dispersion along q. The kink corresponds to the Kohn anomaly at q = 2kF
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in the phonon dispersion illustrated schematically in Fig. 2.4b. The anomaly at
q ? G = 2kF is the Kohn anomaly after Walter Kohn [7].

The strength of the Kohn anomaly depends on the joint density of occupied and
unoccupied electronic states. If their quantity is large, conduction electrons may,
become unstable with respect to a spatially inhomogeneous perturbation. To first
order, the response of the electrons to such a perturbation is measured by the
generalized susceptibility vq. Instability sets in when this quantity diverges. This
happens in a nesting situation, that is, in a situation in which there are large areas
of the Fermi surface which are parallel or nearly parallel. In two-dimensional
systems, such instabilities usually lead to a charge- or spin-density wave ground
state.

Highly accurate neutron measurements of x(q) are required to reveal these
anomalies. Such measurements were performed on various metals and indicate
a structure of singularities that is consistent with the Fermi surface geometry.
Figure 2.5 shows the phonon dispersion in elemental Pb along the (nn0)L branch
[8] and the (nn0)T branches (measured on TRISP). Kohn anomalies can be seen in
the dispersion. The locations of those anomalies correspond to diameter of the
Fermi surface [10]. Similar Kohn anomalies have also been observed in the
phonon dispersion of transition-metal dichalcogenides 2H-TaSe2 and 2H-NbSe2

[9]. Pronounced softening were detected by inelastic neutron scattering at q = 0.2
in both systems due to the quasi-two-dimensional nature of their Fermi surface
which leads to a charge density wave ground state.

Figure 2.6 shows the phonon dispersion of the (nnn)L branch in Pb1-xTlx alloys
[11]. Pure Pb exhibits a strong Kohn anomaly at q & 0.42 rlu. By doping Pb with
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Fig. 2.5 Phonon dispersion of Pb along the (nn 0) branch. Kohn anomalies are observed which
are consistent with the Fermi surface geometry. The transverse branches (T1 and T2) were
measured on TRIPS whereas the data for longitudinal branch is taken from Brockhouse [8]
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Tl (hole doping since Tl has one fewer electron), the Fermi surface shrinks. This is
reflected in the location of the Kohn anomaly, which gradually moves to smaller
wave vectors.

In the above figures, the phonon dispersion was plotted along a specific
direction. In two or three dimensions, the locus of Kohn anomalies form a surface,
the Kohn surface whose shape and strength reflect the geometry of the Fermi
surface. For example, from Fig. 2.4a, the Kohn anomaly along kx lies at a smaller
wave vector than that along the ky direction. The strengths of the anomalies also
differ due to the different curvatures along those directions.
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Fig. 2.6 Dispersion curves
for Pb1-xTlx alloys along the
(nnn)L branch. The lines are
guide to the eye. The arrows
indicate the location of the
Kohn anomalies which, via
doping Pb with Tl,
progressively move to lower
momenta due to change of the
Fermi surface. Figure is taken
from Ng et al. [11]
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