
Chapter 1
Introduction

1.1 The Central Limit Theorem

The Central Limit Theorem is one of the most striking and useful results in proba-
bility and statistics, and explains why the normal distribution appears in areas as
diverse as gambling, measurement error, sampling, and statistical mechanics. In
essence, the Central Limit Theorem in its classical form states that a normal ap-
proximation applies to the distribution of quantities that can be modeled as the sum
of many independent contributions, all of which are roughly the same size.

Thus mathematically justified, at least asymptotically, in practice the normal law
may be used to approximate quantities ranging from a p-value of a hypothesis tests,
the probability that a manufacturing process will remain in control or the chance
of observing an unusual conductance reading in a laboratory experiment. However,
even though in practice sample sizes may be large, or may appear to be sufficient for
the purposes at hand, depending on that and other factors, the normal approximation
may or may not be accurate. It is here the need for the evaluation of the quality of
the normal approximation arises, which is the topic of this book.

The seeds of the Central Limit Theorem, or CLT, lie in the work of Abraham
de Moivre, who, around the year 1733, not being able to secure himself an aca-
demic appointment, supported himself consulting on problems of probability and
gambling. He approximated the limiting probabilities of the binomial distribution,
the one which governs the behavior of the number

Sn = X1 + · · · + Xn (1.1)

of successes in an experiment which consists of n independent Bernoulli trials, each
one having the same probability p ∈ (0,1) of success. de Moivre realized that even
though the sum

P(Sn ≤ m) =
∑

k≤m

(
n

k

)
pk(1 − p)n−k

that yields the cumulative probability of m or fewer successes becomes unwieldy for
even moderate values of n, there exists an easily computable, normal approximation
to such probabilities that can be quite accurate even for moderate values of n.
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2 1 Introduction

Only many years later with the work of Laplace around 1820 did it begin to be
systematically realized that the normal limit holds in much greater generality. The
result was the classical Central Limit Theorem, which states that Wn →d Z, that is,
Wn converges in distribution to Z, whenever

Wn = (Sn − nμ)/
√

nσ 2 (1.2)

is the standardization of a sum Sn, as in (1.1), of independent and identically dis-
tributed random variables each with mean μ and variance σ 2. Here, Z denotes a
standard normal variable, that is, one with distribution function P(Z ≤ x) = �(x)

given by

�(x) =
∫ x

−∞
ϕ(u)du where ϕ(u) = 1√

2π
exp

(
−1

2
u2

)
,

and we say a sequence of random variables Yn is said to converge in distribution
to Y , written Yn →d Y , if

lim
n→∞P(Yn ≤ x) = P(Y ≤ x) for all continuity points x of P(Y ≤ x). (1.3)

Generalizing further, but still keeping the variables independent, the question of
when a sum of independent but not necessarily identically distributed random vari-
ables is asymptotically normal is essentially completely answered by the Lindeberg–
Feller–Lévy Theorem (see Feller 1968b), which shows that the Lindeberg condition
is sufficient, and nearly necessary, for the normal limit to hold. For a more detailed,
and delightful account of the history of the CLT, we refer the reader to LeCam
(1986).

When the quantity Wn given by (1.2) is a normalized sum of i.i.d. variables
X1, . . . ,Xn with finite third moment, the works of Berry (1941) and Esseen (1942)
were the first to give a bound on the normal approximation error, in terms of some
universal constant C, of the form

sup
z∈R

∣∣P(Wn ≤ z) − P(Z ≤ z)
∣∣ ≤ CE|X1|3√

n
.

This prototype bound has since been well studied, generalized and applied in prac-
tice, and it appears in many guises in the pages that follows. Esseen’s original upper
bound on C of magnitude 7.59 has been markedly decreased over the years, the
record currently now held by Tyurin (2010) who proved C ≤ 0.4785.

With the independent case tending toward resolution, attention can now turn to
situations where the variables exhibit dependence. However, as there are countless
ways variables can fail to be independent, no single technique can be used to address
all situations, and no theorem parallel to the Lindeberg–Feller–Lévy theorem is ever
to be expected in this greater generality. Consequently, the literature for validating
the normal approximation in the presence of dependence now fragments somewhat
into various techniques which can handle certain specific structures, or assumptions,
two notable examples being central limit theorems proved under mixing conditions,
and those results that can be applied to martingales.



1.2 A Brief History of Stein’s Method 3

Characteristic function methods have proved essential in making progress in the
analysis of dependence, and though they are quite powerful, they rely on handling
distributions through their transforms. In doing so it is doubtless that some proba-
bilistic intuition is lost. In essence, the Stein method replaces the complex valued
characteristic function with a real characterizing equation through which the random
variable, in its original domain, may be manipulated, and in particular, coupled.

1.2 A Brief History of Stein’s Method

Stein’s method for normal approximation made its first appearance in the ground
breaking work of Stein (1972), and it was here that the characterization of the normal
distribution on which this book is based was first presented. That is, the fact that
Z ∼ N (0, σ 2) if and only if

E
[
Zf (Z)

] = σ 2E
[
f ′(Z)

]
, (1.4)

for all absolutely continuous functions f for which the above expectations exist.
Very soon thereafter the work of Chen (1975) followed, applying the characterizing
equation method to the Poisson distribution based on the parallel fact that X ∼ P (λ),
a Poisson variable with parameter λ, if and only if

E
[
Zf (Z)

] = λE
[
f (Z + 1)

]
,

for all functions f for which the expectations above exist. From this point it seemed
to take a number of years for the power of the method in both the normal and Poisson
cases to become fully recognized; for Poisson approximation using Stein’s method,
see, for instance, the work of Arratia et al. (1989), and Barbour et al. (1992). The
key identity (1.4) for the normal was, however, put to good use in the meantime.

In another landmark paper, Stein (1981) applied the characterization that he had
proved earlier for the purpose of normal approximation to derive minimax estimates
for the mean of a multivariate normal distribution in dimensions three or larger.
In particular, he shows, using the multivariate version of (1.4), that when X has
the normal distribution with mean θ and identity covariance matrix, then the mean
squared error risk of the estimate X +g(X), for an almost everywhere differentiable
function g : R

p → R
p , is unbiasedly estimated by p + ‖g(X)‖2 + 2∇ · g(X). This

1981 work builds on the earlier and rather remarkable and surprising result of Stein
(1956), that shows that the usual sample mean estimate X for the true mean θ of a
multivariate normal distribution Np(θ , I) is not admissible in dimensions three and
greater; the multivariate normal characterization given in Stein (1981) provides a
rather streamlined proof of this very counterintuitive fact.

Returning to normal approximation, by 1986 Stein’s method was sufficiently co-
hesive that its foundations and some illustrative examples could be laid out in the
manuscript of Stein (1986), with the exchangeable pair approach being one notable
cornerstone. This manuscript also considers approximations using the binomial and
the Poisson, and other probability estimates related to but not directly concerning
the normal. In the realm of normal approximation, this work rather convincingly
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demonstrated the potential of the method under dependence by showing how it
could be used to assess the quality of approximations for the distribution of the
number of empty cells in an allocation model, and the number of isolated trees in
the Erdös–Rényi random graph. For a personal history up to this time from the view
point of Charles Stein, see his recollections in DeGroot (1986).

The period following the publication of Stein’s 1986 manuscript saw a veritable
explosion in the number of ideas and applications in the area, a fact well illustrated
by the wide range of topics covered here, as well as in the two volumes of Barbour
and Chen (2005b, 2005c), and those referred to in the bibliographies thereof. In-
cluding up to the present day, powerful extensions and applications of the method
continue to be discovered that were, at the time of its invention, completely unan-
ticipated.

1.3 The Basic Idea of Stein’s Method

To show a random variable W has a distribution close to that of a target distribution,
say that of the random variable Z, one can compare the values of the expectations
of the two distributions on some class of functions. For instance, one can compare
the characteristic function φ(u) = EeiuW of W to that of Z, thus encapsulating all
expectations of the family of functions eiuz for u ∈ R. And indeed, as this family of
functions is rich enough, closeness of the characteristic functions implies closeness
of the distributions. When studying the sum of random variables, and independent
random variables in particular, the characteristic function is a natural choice, as
convolution in the space of measures become products in the realm of characteristic
functions. Powerful as they may be, one may lose contact with probabilistic intuition
when handling complex functions in the transform domain. Stein’s method, based
instead on a direct, random variable characterization of a distribution, allows the
manipulation of the distribution through constructions involving the basic random
quantities of which W is composed, and coupling can begin to play a large role.

Consider, then, testing for the closeness of the distributions of W and Z by evalu-
ating the difference between the expectations Eh(W) and Eh(Z) over some collec-
tion of functions h. At first there appears to be no handle that we can apply, the task
as stated being perhaps overly general. Nevertheless, it seems clear that if the dis-
tribution of W is close to the distribution of Z then the difference Eh(W) − Eh(Z)

should be small for many functions h. Specializing the problem, for a specific dis-
tribution, we may evaluate the difference by relying on a characterization of Z. For
instance, by (1.4), the distribution of a random variable Z is N (0,1) if and only if

E
(
f ′(Z) − Zf (Z)

) = 0 (1.5)

for all absolutely continuous functions f for which the expectation above exists.
Again, if the distribution of W is close to that of Z, then evaluating the left hand
side of (1.5) when Z is replaced by W should result in something small. Putting
these two differences together, from the Stein characterization (1.5) we arrive at the
Stein equation

f ′(w) − wf (w) = h(w) − Eh(Z). (1.6)
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Now, given h, one solves (1.6) for f , evaluates the left hand side of (1.6) at W and
takes the expectation, obtaining Eh(W) − Eh(Z).

Perhaps at first glance the problem has not been made any easier, as the evaluation
of Eh(W)−Eh(Z) has been replaced by the need to compute E(f ′(W)−Wf (W)).
Yet the form of what is required to evaluate is based on the normal characterization,
and, somehow, for this reason, the expectation lends itself to calculation for W for
which approximation by the normal is appropriate. Borrowing, essentially, the fol-
lowing ‘leave one out’ idea from Stein’s original 1972 paper, let ξ1, . . . , ξn be in-
dependent mean zero random variables with variances σ 2

1 , . . . , σ 2
n summing to one,

and set

W =
n∑

i=1

ξi .

Then, with W(i) = W − ξi , for some given f , we have

E
(
Wf (W)

) = E

n∑

i=1

ξif (W) = E

n∑

i=1

ξif
(
W(i) + ξi

)
.

If f is differentiable, then the summand may be expanded as

ξif
(
W(i) + ξi

) = ξif
(
W(i)

) + ξ2
i

∫ 1

0
f ′(W(i) + uξi

)
du,

and, since W(i) and ξi are independent, the first term on the right hand side vanishes
when taking expectation, yielding

E
(
Wf (W)

) = E

n∑

i=1

ξ2
i

∫ 1

0
f ′(W(i) + uξi

)
du.

On the other hand, again with reference to the left hand side of (1.6), since
σ 2

1 , . . . , σ 2
n sum to 1, and ξi and W(i) are independent, we may write

Ef ′(W) = E

n∑

i=1

σ 2
i f ′(W)

= E

n∑

i=1

σ 2
i f ′(W(i)

) + E

n∑

i=1

σ 2
i

(
f ′(W) − f ′(W(i)

))

= E

n∑

i=1

ξ2
i f ′(W(i)

) + E

n∑

i=1

σ 2
i

(
f ′(W) − f ′(W(i)

))
.

Taking the difference we obtain the expectation of the left hand side of (1.6) at W ,

E
(
f ′(W) − Wf (W)

) = E

n∑

i=1

ξ2
i

∫ 1

0

(
f ′(W(i)

) − f ′(W(i) + uξi

))
du

+ E

n∑

i=1

σ 2
i

(
f ′(W) − f ′(W(i)

))
. (1.7)
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When n is large, as ξ1, . . . , ξn are random variables of comparable size, it now
becomes apparent why this expectation is small, no matter the distribution of the
summands. Indeed, W and W(i) only differ by the single variable ξi , accounting for
roughly 1/

√
n of the total variance, so the differences in both terms above are small.

To make the case more convincingly, when f has a bounded second derivative,
then for all u ∈ [0,1], with ‖g‖ denoting the supremum norm of a function g, the
mean value theorem yields

∣∣f ′(W(i)
) − f ′(W(i) + uξi

)∣∣ ≤ |ξi |‖f ′′‖.
As this bound applies as well to the second term in (1.7), it being the case u = 1,
when ξi has third moments we obtain

∣∣E
(
f ′(W) − Wf (W)

)∣∣ ≤ ‖f ′′‖
n∑

i=1

(
E

∣∣ξ3
i

∣∣ + σ 2
i E|ξi |

)

≤ 2‖f ′′‖
n∑

i=1

E
∣∣ξ3

i

∣∣, (1.8)

by Hölder’s inequality.
The calculation reveals the need for the understanding of the smoothness relation

between the solution f and the given function h. For starters, we see directly from
(1.6) that f always has one more degree of smoothness than h, which, naturally,
helps. However, as the original question was regarding the evaluation of the differ-
ence of expectations Eh(W) − Eh(Z) expressed in terms of h, we see that in order
to answer using (1.8) that bounds on quantities such as ‖f ′′‖ must be provided in
terms of some corresponding bound involving h. It is also worth noting that this il-
lustration, and therefore also the original paper of Stein, contains the germ of several
of the couplings which we will develop and apply later on, the present one bearing
the most similarity to the analysis of local dependence.

The resemblance between Stein’s ‘leave one out’ approach and the method of
Lindeberg (see, for instance, Section 8.6 of Breiman 1986) is worth some explo-
ration. Let X1,X2, . . . be i.i.d. mean zero random variables with variance 1, and for
each n let

ξi,n = Xi√
n
, i = 1, . . . , n, (1.9)

the elements of a triangular array. The basic idea of Lindeberg is to compare the
sum

Wn = ξ1,n + · · · + ξn,n

to the sum

Zn = Z1,n + · · · + Zn,n

of mean zero, i.i.d. normals Z1,n, . . . ,Zn,n with Var(Zn) = 1. Let h be a twice dif-
ferentiable bounded function on R such that h′′ is uniformly continuous and
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M = sup
x∈R

∣∣h′′(x)
∣∣ < ∞. (1.10)

For such an h, the quantity

δ(ε) = sup
|x−y|≤ε

∣∣h′′(x) − h′′(y)
∣∣

is bounded over ε ∈ R and satisfies limε↓0 δ(ε) = 0.
Write the difference Eh(Wn) − Eh(Zn) as the telescoping sum

Eh(Wn) − Eh(Zn) = E

n∑

i=1

h(Vi,n) − h(Vi−1,n), (1.11)

where

Vi,n =
i∑

j=1

ξj,n +
n∑

j=i+1

Zj,n,

with the usual convention that an empty sum is zero. In this way, the variables inter-
polate between Wn = Vn,n and Zn = V0,n. Writing

Ui,n =
i−1∑

j=1

ξj,n +
n∑

j=i+1

Zj,n,

a Taylor expansion on the summands in (1.11) yields

h(Vi,n) − h(Vi−1,n) = h(Ui,n + ξi,n) − h(Ui,n + Zi,n)

= (ξi,n − Zi,n)h
′(Ui,n)

+ 1

2
ξ2
i,nh

′′(Ui,n + uξi,n) − 1

2
Z2

i,nh
′′(Ui,n + vZi,n),

for some u,v ∈ [0,1]. Since h′ can grow at most linearly the expectation of the first
term exists, and, as ξi,n and Zi,n are independent of Ui,n, equals zero.

Considering the expectation of the remaining second order terms, write

Eξ2
i,nh

′′(Ui,n + uξi,n) = E
(
ξ2
i,nh

′′(Ui,n)
) + αE

(
ξ2
i,nδ

(|ξi,n|
))

,

for some α ∈ [−1,1], with a similar equality holding for the expectation of the
last term. As Eξ2

i,n = EZ2
i,n, taking the difference of the second order terms, using

independence, and that ξi,n and Zi,n are identically distributed, respectively, for
i = 1, . . . , n, yields

E
∣∣h(Vi,n) − h(Vi−1,n)

∣∣ ≤ 1

2

(
E

(
ξ2

1,nδ
(|ξ1,n|

)) + E
(
Z2

1,nδ
(|Z1,n|

)))
. (1.12)

Recalling (1.9), we have

E
(
ξ2

1,nδ
(|ξ1,n|

)) = 1

n
E

(
X2

1δ
(
n−1/2|X1|

))
,
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with a similar equality holding for the second term of (1.12). Hence, by (1.11), with
Z now denoting a standard normal variable, summing yields

∣∣Eh(Wn) − Eh(Z)
∣∣ ≤ 1

2

(
E

(
X2

1δ
(
n−1/2|X1|

)) + E
(
Z2δ

(
n−1/2|Z|))).

By (1.10), δ(ε) ≤ 2M for all ε ∈ R, so X2
1δ(n

−1/2|X1|) ≤ 2MX2
1. As

X2
1δ(n

−1/2|X1|) → 0 almost surely as n → ∞, the dominated convergence theo-
rem implies the first term above tends to zero. Applying the same reasoning to the
second term we obtain

lim
n→∞

∣∣Eh(Wn) − Eh(Z)
∣∣ = 0. (1.13)

As the class of functions h for which we have obtained Eh(Wn) → Eh(Z) is rich
enough, we have shown Wn →d Z.

Both the Stein and Lindeberg approaches proceed through calculations that
‘leave one out.’ However, the Stein approach seems more finely tuned to the tar-
get distribution, using the solution of a differential equation tailored to the normal.
Moreover, use of the Stein differential equation provides that the functions f being
evaluated on the variables of interest have one degree of smoothness over that of
the basic test functions h which are used to gauge the distance between W and Z.
However, the main practical difference between Stein’s method and that of Linde-
berg, as far as outcome, is the former’s additional benefit of providing a bound on
the distance to the target, and not only convergence in distribution; witness the dif-
ference between conclusions (1.8) and (1.13). Furthermore, Stein’s method allows
for a variety of ways in which variables can be handled in the Stein equation, the
‘leave one out’ approach being just the beginning.

1.4 Outline and Summary

We begin in Chap. 2 by introducing and working with the fundamentals of Stein’s
method. First we prove the Stein characterization (1.4) for the normal, and develop
bounds on the Stein equation (1.6) that will be required throughout our treatment;
the multivariate Stein equation for the normal, and its solution by the generator
method, is also introduced here.

The ‘leave one out’ coupling considered in Sect. 1.3 is but one variation on the
many ways in which variables close to the one of interest can enter the Stein equa-
tion, and is in particular related to some of the couplings we consider later on to
handle locally dependent variables. Four additional, and somewhat overlapping, ba-
sic methods for handling variables in the Stein equation are introduced in Chap. 2:
the K-function approach, the original exchangeable pair method of Stein, and the
zero bias and size bias transformations. Illustrations of how these methods allow for
various manipulations in the Stein equation are provided, as well as a number of ex-
amples, some of which will continue as themes and illustrations for the remainder of
the book. The independent case, of course, serves as one important testing ground
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throughout. A framework that includes some of our approaches is considered in
Sect. 2.4. Some technical calculations for bounds to the Stein equation appear in the
Appendix to Chap. 2, as do other such calculations in subsequent chapters.

Chapter 3 focuses on the independent case. The goal is to demonstrate a version
of the classical Berry–Esseen theorem using Stein’s method. Along the way tech-
niques are developed for obtaining L1 bounds, and the Lindeberg central limit the-
orem is shown as well. The Berry–Esseen theorem is first demonstrated for the case
where the random variables are bounded. The boundedness condition is then relaxed
in two ways, first by concentration inequalities, then by induction. This chapter con-
cludes with a lower bound for the Berry–Esseen inequality. As seen in the chapter
dependency diagram that follows, Chaps. 2 and 3 form much of the basis of this
work.

Chapter 4 develops a theory for obtaining L1 bounds using the zero bias cou-
pling, and a main result is obtained which can be applied in non-independent set-
tings. A number of examples are presented for illustration. The case of independence
is considered first, with an L1 Berry–Esseen bound followed by the demonstration
of a type of contraction principle satisfied by sums of independent variables which
implies, or even in a way explains, normal convergence. Bounds in L1 are then
proved for hierarchical structures, that is, self similar, fractal type objects whose
scale at small levels is replicated on the larger. Then, making our first departure
from independence we prove L1 bounds for the projections of random vectors hav-
ing distribution concentrated on regular convex sets in Euclidean space. Next, illus-
trating a different coupling, L1 bounds to the normal for the combinatorial central
limit theorem are given. Though the combinatorial central limit theorem contains
simple random sampling as a particular case, somewhat better bounds may be ob-
tained by applying specifics in the special case; hence, an L1 bound is given for the
case of simple random sampling alone. Next we present Chatterjee’s L1 theorem
for functions of independent random variables, and apply it to the approximation of
the distribution of the volume covered by randomly placed spheres in the Euclidean
torus. Results are then given for sums of locally dependent random variables, with
applications including the number of local maxima on a graph. Chapter 4 concludes
with a consideration of a class of smooth functions, contained in the one which may
be used to determine the L1 distance, for which convergence to the normal is at the
accelerated rate of 1/n, subject to a vanishing third moment assumption.

The theme of Chap. 5 is to provide upper bounds in the L∞, or Kolmogorov
distance, that can be applied when certain bounded couplings can be constructed.
Various bounds to the normal for a random variable W are formed by constructing
an auxiliary random variable, say W̃ , on the same space as W . We have in mind here,
in particular, the cases where W̃ has the same distribution as W , or the zero bias or
size bias distribution of W . The resulting bound is often interpretable, sometimes
directly, as a distance between W and W̃ , a small bound being a reflection of a
small distance. Heuristically, being able to make a close coupling to W , shows, in a
sense, that perturbing W has only a weak effect. Being able to make a close coupling
shows the dependence making up W is weak, and, as a random variable has an
approximate normal distribution when it depends on many small weakly dependent
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factors, such a W should be approximately normal. The bounded couplings studied
in this chapter, ones where |W − W̃ | ≤ δ with probability one for some δ, and are
often much easier to manage than unbounded ones. Chapter 5 provides results when
bounded zero bias, exchangeable pair, or size bias couplings can be constructed.
The chapter concludes with the use of smoothing inequalities to obtain distances
between W and the normal over general function classes, one special case being the
derivation of Kolmogorov distance bounds when bounded size bias couplings exist.

Chapter 6 applies the L∞ results of Chap. 5 to a number of applications, all of
which involve dependence. Dependence can loosely be classified into two types,
first, the local type, such as when each variable has a small neighborhood outside
of which the remaining variables are independent, and second, dependence with a
global nature. Chapter 6 deals mainly with global dependence but begins to also
touch upon local dependence, a topic more thoroughly explored in Chap. 9. Re-
garding global dependence, the analysis of the combinatorial central limit theorem,
studied in L1 in Chap. 4, is continued here with the goal of obtaining L∞ results.
Results for the classical case are given, where the permutation is uniformly chosen
over the symmetric group, as well as for the case where the permutation is chosen
with distribution constant over some conjugacy class, such as the class of involu-
tions. Two approaches are considered, one using the zero bias coupling and one
using induction. Normal approximation bounds for the so called lightbulb process
are also given in this chapter, again an example of handling global dependence, this
time using the size bias coupling. The anti-voter model is also studied, handled by
the exchangeable pair technique, as is the binary expansion of a random integer.
Results for the occurrences of patterns in graphs and permutations, an example of
local dependence, are handled using the size bias method.

Returning to the independent case, and inspired by use of the continuity cor-
rection for the normal approximation of the binomial, in Chap. 7 we consider the
approximation of independent sums of integer valued random variables by the dis-
cretized normal distribution, in the total variation metric. The main result is shown
by obtaining bounds between the zero biased distribution of the sum and the normal,
and then treating the coupled zero biased variable as a type of perturbation.

Continuing our consideration of the independent case, in Chap. 8 we derive non-
uniform bounds for sums of independent random variables. In particular, by use
of non-uniform concentration inequalities and the Bennett–Hoeffding inequality we
provide bounds for the absolute difference between the distribution function F(z) of
a sum of independent variables and the normal �(z), which may depend on z ∈ R.
Non-uniform bounds serve as a counterpoint to the earlier derived supremum norm
bounds that are not allowed to vary with z, and give information on how the quality
of the normal approximation varies over R.

In Chap. 9 we consider local dependence using the K-function approach, and
obtain both uniform and non-uniform Berry–Esseen bounds. The results are applied
to certain scan statistics, and yield a general theorem when the local dependence can
be expressed in terms of a dependency graph whose vertices are the underlying vari-
ables, and where two non-intersecting subsets of variables are independent anytime
there is no edge in the graph connecting a element of one subset with the other.
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In Chap. 10 we develop uniform and non-uniform bounds for non-linear func-
tions T (X1, . . . ,Xn), of independent random variables X1, . . . ,Xn, that can be well
approximated by a linear term plus a non-linear remainder. Applications include U -
statistics, L-statistics and random sums. Randomized concentration inequalities are
established in order to develop the theory necessary to cover these examples.

In previous chapters we have measured the accuracy of approximations using
differences between two distributions. For the most part, the resulting measures are
sensitive to the variations between distributions in their bulk, that is, measures like
the L1 or L∞ norm typically compare two distributions in the region where most
of their mass is concentrated. In contrast, in Chap. 11, we consider moderate devia-
tions of distributions, and rather than consider a difference, compare the ratio of the
distribution function of the variable W of interest to that of the normal. Information
on small probabilities in the tail become available in this way. Applications of the
results of this chapter include the combinatorial central limit theorem, the anti-voter
model, the binary expansion of a random integer, and the Curie–Weiss model.

In Chap. 12 we consider multivariate normal approximation, extending both the
size bias and exchangeable pair methods to this setting. In the latter case we show
how in some cases the exchangeable pair ‘linearity condition’ can be achieved by
embedding the problem in a higher dimension. Applications of both methods are
applied to problems in random graphs.

We momentarily depart from normal approximation in Chap. 13. We confine our-
selves to approximations by continuous distributions for which the methods of the
previous chapters may be extended. As one application, we approximate the distri-
bution of the total spin of the Curie–Weiss model from statistical physics, at the crit-
ical inverse temperature, by a distribution with density proportional to exp(−x4/12)

using the method of exchangeable pairs. We also develop bounds for approximation
by the exponential distribution, and apply it to the spectrum of the Bernoulli Laplace
Markov chain, and first passage times for Markov chains.

In Chap. 14 we consider two applications of Stein’s method, each of which go
well beyond the confines of the method’s originally intended uses; the approxima-
tion of the distribution of characters of elements chosen uniformly from compact
Lie groups, and of random variables in a fixed Wiener chaos of Brownian motion,
using the tools of Malliavin calculus. Regarding the first topic, the study of random
characters is in some sense a generalization to abstract groups of the study of traces
of random matrices, a framework into which the combinatorial central limit theorem
can be made to fit. As for the second, joining Stein’s method to Malliavin calculus
shows that the underlying fundamentals of Stein’s method, in particular the basic
characterization of the normal which can be shown by integration by parts, can be
extended, with great benefit, to abstract Wiener spaces.

As for what this book fails to include, narrowing in as it does on what can be
shown in the realm of normal approximation by Stein’s method, we do not consider,
most notably, transform methods, mixing, or martingales. For these topics, having
more history than the one presently considered, sources already abound.

We stress to the reader that this book need not at all be read in a linear fashion,
especially if one is interested in applications and is willing to forgo the proofs of the
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theorems on which the applications are based. The following diagram reflects the
dependence of each chapter on the others.

(2) (3) (8)

(7) (4) (5) (13) (9,10,11)

(12) (6) (14)
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