
2. The Perceptron Model

2.1 Introduction

The name of this chapter comes from the theory of neural networks. An ac-
cessible introduction to neural networks is provided in [83], but what these
are is not relevant to our purpose, which is to study the underlying mathe-
matics. Roughly speaking, the basic problem is as follows. What “propor-
tion” of ΣN = {−1, 1}N is left when one intersects this set with many
random half-spaces? A natural definition for a random half-space is a set
{x ∈ R

N ; x · v ≥ 0} where the random vector v is uniform over the unit
sphere of R

N . More conveniently one can consider the set {x ∈ R
N ;x·g ≥ 0},

where g is a standard Gaussian vector, i.e. g = (gi)i≤N , where gi are indepen-
dent standard Gaussian r.v.s. This is equivalent because the vector g/‖g‖ is
uniformly distributed on the unit sphere of R

N . Consider now M such Gaus-
sian vectors gk = (gi,k)i≤N , k ≤ M , all independent, the half-spaces

Uk = {x ; x · gk ≥ 0} =
{
x ,

∑
i≤N

gi,kxi ≥ 0
}

,

and the set
ΣN ∩

⋂
k≤M

Uk . (2.1)

A given point of ΣN has exactly a 50% chance to belong to Uk, so that

E card
(

ΣN ∩
⋂

k≤M

Uk

)
= 2N−M . (2.2)

The case of interest is when N becomes large and M is proportional to N ,
M/N → α > 0. A consequence of (2.2) is that if α > 1 the set (2.1) is typically
empty when N is large, because the expected value of its cardinality is � 1.
When α < 1, what is interesting is not however the expected value (2.2) of
the cardinality of the set (2.1), but rather the typical value of this cardinality,
which is likely to be smaller. Our ultimate goal is the computation of this
typical value, which we will achieve only for α small enough.

A similar problem was considered in (0.2) where ΣN is replaced by the
sphere SN of center 0 and radius

√
N . The situation with ΣN is usually
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152 2. The Perceptron Model

called the binary perceptron, while the situation with SN is usually called the
spherical perceptron. The spherical perceptron will motivate the next chapter.
We will return to both the binary and the spherical perceptron in Volume II,
in Chapter 8 and Chapter 9 respectively. Both the spherical and the binary
perceptron admit another popular version, where the Gaussian r.v.s gi,j are
replaced by independent Bernoulli r.v.s (i.e. independent random signs), and
we will also study these. Thus we will eventually investigate a total of four
related but different models. It is not very difficult to replace the Gaussian
r.v.s by random signs; but it is very much harder to study the case of ΣN

than the case of the sphere.

Research Problem 2.1.1. (Level 3!) Prove that there exists a number α∗

and a function ϕ : [0, α∗) → R with the following properties:
1 - If α > α∗, then as N → ∞ and M/N → α the probability that the set

(2.1) is not empty is at most exp(−N/K(α)).
2 - If α < α∗, N → ∞ and M/N → α, then

1
N

log card
(

ΣN ∩
⋂

k≤M

Uk

)
→ ϕ(α) (2.3)

in probability. Compute α∗ and ϕ.

This problem is a typical example of a situation where one expects “reg-
ularity” as N → ∞, but where it is unclear how to even start doing anything
relevant. In Volume II, we will prove (2.3) when α is small enough, and we
will compute ϕ(α) in that case. (We expect that the case of larger α is much
more difficult.) As a corollary, we will prove that there exists a number α0 < 1
such that if M = �αN�, α > α0, then the set (2.1) is typically empty for N
large, despite the fact that the expected value of its cardinality is 2N−M 
 1.

One way to approach the (very difficult) problem mentioned above is
to introduce a version “with a temperature”. We observe that if x ≥ 0 we
have limβ→∞ exp(−βx) = 0 if x > 0 and = 1 if x = 0. Using this for
x =

∑
k≤M 1{σ/∈Uk} where σ ∈ ΣN implies

card
(

ΣN ∩
⋂

k≤M

Uk

)
= lim

β→∞

∑
σ∈ΣN

exp
(
−β

∑
k≤M

1{σ/∈Uk}

)
, (2.4)

so that to study (2.3) it should be relevant to use the Hamiltonian

− HN,M (σ) = −β
∑
k≤M

1{σ/∈Uk} . (2.5)

If one can compute the corresponding partition function (and succeed in
exchanging the limits N → ∞ and β → ∞), one will then prove (2.3).

More generally, we will consider Hamiltonians of the type
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− HN,M (σ) =
∑
k≤M

u

(
1√
N

∑
i≤N

gi,kσi

)
, (2.6)

where u is a function, and where (gi,k) are independent standard normal r.v.s.
Of course the Hamiltonian depends on u, but the dependence is kept implicit.
The role of the factor N−1/2 is to make the quantity N−1/2

∑
i≤N gi,kσi

typically of order 1. There is no parameter β in the right-hand side of (2.6),
since this parameter can be thought of as being included in the function u.

Since it is difficult to prove anything at all without using integration
by parts we will always assume that u is differentiable. But if we want the
Hamiltonian (2.6) to be a fair approximation of the Hamiltonian (2.5), we will
have to accept that u′ takes very large values. Then, in the formulas where
u′ occurs, we will have to show that somehow these large values cancel out.
There is no magic way to do this, one has to work hard and prove delicate
estimates (as we will do in Chapter 8). Another source of difficulty is that we
want to approximate the Hamiltonian (2.5) for large values of β. That makes
it difficult to bound from below a number of quantities that occur naturally
as denominators in our computations.

On the other hand, there is a kind of beautiful “algebraic” structure
connected to the Hamiltonian (2.6), which is uncorrelated to the analytical
problems described above. We feel that it is appropriate, in a first stage,
to bring this structure forward, and to set aside the analytical problems (to
which we will return later). Thus, in this chapter we will assume a very strong
condition on u, namely that for a certain constant D we have

∀� , 0 ≤ � ≤ 3 , |u(�)| ≤ D . (2.7)

Given values of N and M we will try to “describe the system generated by the
Hamiltonian (2.6)” within error terms that become small for N large. We will
be able to do this when the ratio α = M/N is small enough, α ≤ α(D). The
notation α = M/N will be used through this chapter and until Chapter 4.

Let us now try to give an overview of what will happen, without getting
into details. We recall the notation R�,�′ = N−1

∑
i≤N σ�

iσ
�′

i . As is the case
for the SK model, we expect that in the high-temperature regime we have

R1,2 � q (2.8)

for a certain number q depending on the system. Let us define

Sk =
1√
N

∑
i≤N

gi,kσi ; S�
k =

1√
N

∑
i≤N

gi,kσ�
i . (2.9)

After one works some length of time with the system, one gets the irresistible
feeling that (in the high-temperature regime) “the quantities Sk behave like
individual spins”, and (2.8) has to be complemented by the relation
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1
N

∑
k≤M

u′(S1
k)u′(S2

k) � r (2.10)

where r is another number attached to the system. Probably the reader would
expect a normalization factor M rather than N in (2.10), but since we should
think of M/N as M/N → α > 0, this is really the same. Also, the occurrence
of u′ will soon become clear.

We will use the cavity method twice. In Section 2.2 we “remove one spin”
as in Chapter 1. This lets us guess what is the correct expression of q as
a function of r. In Section 2.3, we then use the “cavity in M”, comparing
the system with the similar system where M has been replaced by M − 1.
This lets us guess what the expression of r should be as a function of q. The
two relations between r and q that are obtained in this manner are called
the “replica-symmetric equations” in physics. We prove in Section 2.4 that
these equations do have a solution, and that (2.8) and (2.10) hold for these
values of q and r. For N large and M/N small, we will then (approximately)
compute the value of

pN,M (u) =
1
N

E log
∑
σ

exp(−HM,N (σ)) , (2.11)

(for the Hamiltonian defined by (2.6)) by an interpolation method motivated
by the idea that the quantities Sk “behave like individual spins”.

2.2 The Smart Path

It would certainly help to understand how the Hamiltonian (2.6) depends on
the last spin. Let us write

S0
k =

1√
N

∑
i≤N−1

gi,kσi ,

so that Sk = S0
k + N−1/2gN,kσN and if u is differentiable,

∑
k≤M

u(Sk) =
∑
k≤M

u(S0
k) + σN

∑
k≤M

gN,k√
N

u′(S0
k) +

σ2
N

2

∑
k≤M

g2
N,k

N
u′′(S0

k) + · · ·

(2.12)
The terms · · · are of lower order. We observe that σ2

N = 1. (This will no longer
be the case in Chapter 3, when we will consider spins taking all possible
values, so that σ2

N will no longer be constant.) We also observe that the r.v.s
gN,k are independent. So it is reasonable according to the law of large numbers
to expect that the third term on the right-hand side should behave like a
constant and not influence the Hamiltonian. By the central limit theorem, one
should expect the second term on the right-hand side of (2.12) to behave like
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σNY , where Y is a Gaussian r.v. independent of all the other r.v.s (Of course
at some point we will have to guess what is the right choice for r = EY 2, but
the time will come when this guess will be obvious.) Thus we expect that

∑
k≤M

u(Sk) �
∑
k≤M

u(S0
k) + σNY + constant . (2.13)

Rather than using power expansions (which are impractical when we do not
have a good control on higher derivatives) it is more fruitful to find a suitable
interpolation between the left and the right-hand sides of (2.13). The first idea
that comes to mind is to use the Hamiltonian

∑
k≤M

u

(
S0

k +

√
t

N
gN,kσN

)
+ σN

√
1 − tY . (2.14)

This is effective and was used in [157]. However, the variance of the Gaussian
r.v. S0

k +
√

t/NgN,kσN depends on t; when differentiating, this creates terms
that we will avoid by being more clever. Let us consider the quantity

Sk,t = Sk,t(σ, ξk) = S0
k +

√
t

N
gN,kσN +

√
1 − t

N
ξk

=
1√
N

∑
i<N

gi,kσi +

√
t

N
gN,kσN +

√
1 − t

N
ξk . (2.15)

In this expression, we should think of (ξk)k≤M not just as random constants
ensuring that the variance of Sk,t is constant but also as “new spins”. That
is, let ξ = (ξk)k≤M ∈ R

M , and consider the Hamiltonian

− HN,M,t(σ, ξ) =
∑
k≤M

u(Sk,t) + σN

√
1 − tY . (2.16)

The configurations are now points (σ, ξ) in ΣN ×R
M . Let us denote by γ the

canonical Gaussian measure on R
M . We define Gibbs’ measure on ΣN ×R

M

by the formula

〈f〉t =
1
Z

∑
σ

∫
f(σ, ξ) exp(−HN,M,t(σ, ξ))dγ(ξ) ,

where f is a function on ΣN × R
M and where Z is the normalizing factor,

Z =
∑
σ

∫
exp(−HN,M,t(σ, ξ))dγ(ξ) .

More generally for a function f on (ΣN × R
M )n = Σn

N × R
Mn, we define
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〈f〉t =
1

Zn

∑
σ1,...,σn

∫
· · ·

∫
f(σ1, . . . ,σn, ξ1, . . . , ξn)

× exp
(
−

∑
�≤n

H�
N,M,t

)
dγ(ξ1) · · ·dγ(ξn) , (2.17)

where Z is as above and

H�
N,M,t = HN,M,t(σ�, ξ�) . (2.18)

Integration of ξ with respect to γ means simply that we think of (ξk)k≤M

as independent Gaussian r.v.s and we take expectation. We recall the con-
vention that Eξ denotes expectation with respect to all r.v.s labeled
ξ (be it with subscripts or superscripts). We thus rewrite (2.17) as

〈f〉t =
1

Zn
Eξ

∑
σ1,...,σn

f(σ1, . . . ,σn, ξ1, . . . , ξn) exp
(
−

∑
�≤n

H�
N,M,t

)
; (2.19)

Z = Eξ

∑
σ

exp(−HN,M,t(σ, ξ)) .

In these formulas, ξ� = (ξ�
k)k≤M , ξ�

k are independent Gaussian r.v.s. One
should think of ξ� as being a “replica” of ξ. In this setting, replicas are
simply independent copies.

Exercise 2.2.1. Prove that when f depends on σ1, . . . ,σn, but not on
ξ1, . . . , ξn, then 〈f〉t in (2.19) is exactly the average of f with respect to
the Hamiltonian

−H =
∑
k≤M

ut

(
1√
N

∑
i≤N−1

gi,kσi +

√
t

N
gN,kσN

)
+ σN

√
1 − tY ,

where ut is defined by

exp ut(x) = E exp u

(
x +

√
1 − t

N
ξ

)
, (2.20)

for ξ a standard normal r.v.

The reader might wonder whether it is really worth the effort to introduce
this present setting simply in order to avoid an extra term in Proposition 2.2.3
below, a term with which it is not so difficult to deal anyway. The point is
that the mechanism of “introducing new spins” is fundamental and must be
used in Section 2.3, so we might as well learn it now.

Consistently with our notation, if f is a function on Σn
N ×R

Mn, we define

νt(f) = E〈f〉t ; ν′
t(f) =

d
dt

νt(f) , (2.21)
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where 〈f〉t is given by (2.19).
We also write ν(f) = ν1(f). When f does not depend on the r.v.s ξ�, then

ν(f) = E〈f〉, where 〈·〉 refers to Gibbs’ measure with Hamiltonian (2.6). As
in Chapter 1, we write ε� = σ�

N , and we recall the r.v. Y of (2.16).

Lemma 2.2.2. Given a function f− on Σn
N−1, and a subset I of {1, . . . , n},

we have

ν0

(
f−

∏
�∈I

ε�

)
= E

(
(thY )cardI

)
ν0(f−) = ν0

(∏
�∈I

ε�

)
ν0(f−) .

This lemma holds whatever the value of r = EY 2. The proof is identical to
that of Lemma 1.6.2. The Hamiltonian HN,M,0 decouples the last spin from
the first N − 1 spins, which is what it is designed to do.

We now turn to the computation of ν′
t(f). Throughout the chapter, we

write α = M/N . Implicitly, we think of N and M as being large but fixed.
The model then depends on the parameters N and α (and of course of u). We
recall the definition (2.15) of Sk,t, and consistently with the notation (2.18)
we write

S�
k,t =

1√
N

∑
i<N

gi,kσ�
i +

√
t

N
gN,kε� +

√
1 − t

N
ξ�
k . (2.22)

Proposition 2.2.3. Assume that u is twice differentiable and let r = EY 2.
Then for a function f on Σn

N , we have

ν′
t(f) = I + II (2.23)

I = α
∑

1≤�<�′≤n

νt

(
ε�ε�′u

′(S�
M,t)u

′(S�′

M,t)f
)

− αn
∑
�≤n

νt

(
ε�εn+1u

′(S�
M,t)u

′(Sn+1
M,t )f

)

+ α
n(n + 1)

2
νt

(
εn+1εn+2u

′(Sn+1
M,t )u′(Sn+2

M,t )f
)

. (2.24)

II = −r

( ∑
1≤�<�′≤n

νt(ε�ε�′f) − n
∑
�≤n

νt(ε�εn+1f)

+
n(n + 1)

2
νt(εn+1εn+2f)

)
. (2.25)

The proposition resembles Lemma 1.6.3, so it should not be so scary
anymore. As in Lemma 1.6.3, the complication is algebraic, and each of the
terms I and II is made up of simple pieces. Moreover both terms have similar
structures. This formula will turn out to be much easier to use than one might
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think at first. In particular one should observe that by symmetry, and since
α = M/N , in the expression for I we can replace the term αu′(S�

M,t)u
′(S�′

M,t)
by

1
N

∑
k≤M

u′(S�
k,t)u

′(S�′

k,t) ,

so that if (2.10) is indeed correct, the terms I and II should have a good will
to cancel each other out.

Proof. We could make this computation appear as a consequence of (1.40),
but for the rest of the book we will change policy, and proceed directly, i.e.
we write the value of the derivative and we integrate by parts. It is immediate
from (2.19) that

d
dt

〈f〉t =
∑
�≤n

〈
d
dt

(−H�
N,M,t)f

〉

t

− n

〈
d
dt

(−Hn+1
N,M,t)f

〉

t

, (2.26)

and, writing gk for gN,k,

d
dt

(−H�
N,M,t) =

∑
k≤M

1
2
√

N

(
gkε�√

t
− ξ�

k√
1 − t

)
u′(S�

k,t) −
ε�Y

2
√

1 − t
. (2.27)

We observe the symmetry for k ≤ M . All the values of k bring the same
contribution. There are M of them, and M/

√
N = α

√
N , so that

ν′
t(f) = III + IV + V

III =
α

2

√
N

t

(∑
�≤n

νt

(
gMε�u

′(S�
M,t)f

)
− nνt

(
gMεn+1u

′(Sn+1
M,t )f

)
)

(2.28)

IV = −α

2

√
N

1 − t

(∑
�≤n

νt

(
ξ�
Mu′(S�

M,t)f
)
− nνt

(
ξn+1
M u′(Sn+1

M,t )f
)
)

V = −1
2

1√
1 − t

(∑
�≤n

νt(ε�Y f) − nνt(εn+1Y f)

)
.

It remains to integrate by parts in these formulas to get the result. The easiest
case is that of the term IV, because “different replicas use independent copies
of ξ”. We write the explicit formula for 〈ξ�

Mu′(S�
M,t)f〉t, that is

〈ξ�
Mu′(S�

M,t)f〉t

=
1

Zn
Eξ

(
ξ�
M

∑
σ1,...,σn

u′(S�
M,t)f(σ1, . . . ,σn) exp

(
−

∑
�≤n

H�
M,N,t

))
,
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and we see that we only have to integrate by parts in the numerator. The
dependence on ξ�

M is through u′(S�
M,t) and through the term u(S�

M,t) in the
Hamiltonian and moreover

∂S�
M,t

∂ξ�
M

=

√
1 − t

N
, (2.29)

so that

〈ξ�
Mu′(S�

M,t)f〉t =

√
1 − t

N

〈
(u′′(S�

M,t) + u′2(S�
M,t))f

〉
t
,

and therefore

IV = −α

2

(∑
�≤n

νt

(
((u′′(S�

M,t)+u′2(S�
M,t))f

)
−nνt

(
(u′′(Sn+1

M,t )+u′2(Sn+1
M,t ))f

))
.

The second easiest case is that of V, because we have done the same com-
putation (implicitly at least) in Chapter 1; since EY 2 = r, we have V = II.
Of course, the reader who does not find this formula obvious should simply
write

νt(ε�Y f) = EY 〈ε�f〉t ,

and carry out the integration by parts, writing the explicit formula for 〈ε�f〉t.
To compute the term III, there is no miracle. We write

νt(gMε�u
′(S�

M,t)f) = EgM 〈ε�u
′(S�

M,t)f〉t
and we use the integration by parts formula E(gMF (gM )) = EF ′(gM ) when
seeing 〈ε�u

′(S�
M,t)f〉t as a function of gM . The dependence on gM is through

the quantities S�
M,v, and

∂S�
M,v

∂gM
= ε�

√
t

N
.

Writing the (cumbersome) explicit formula for 〈ε�u
′(S�

M,t)f〉t, we get that

∂

∂gM
〈ε�u

′(S�
M,t)f〉t =

√
t

N

(
〈u′′(S�

M,t)f〉t

+
∑
�′≤n

〈ε�ε�′u
′(S�

M,t)u
′(S�′

M,t)f〉t − n〈ε�εn+1u
′(S�

M,t)u
′(Sn+1

M,t )f〉t
)

.

The first term arises from the dependence of the factor u′(S�
M,t) on gM and

the other terms from the dependence of the Hamiltonian on gM . Consequently
we obtain

νt(ε�u
′(S�

M,t)f) =

√
t

N

(
νt(u′′(S�

M,t)f)

+
∑
�′≤n

νt(ε�ε�′u
′(S�

M,t)u
′(S�′

M,t)f) − nνt(ε�εn+1u
′(S�

M,t)u
′(Sn+1

M,t )f)
)

.
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Similarly we have

∂

∂gM
〈εn+1u

′(Sn+1
M,t )f〉t =

√
t

N

(
〈u′′(Sn+1

M,t )f〉t

+
∑

�′≤n+1

〈
ε�′εn+1u

′(S�′

M,t)u
′(Sn+1

M,t )f
〉

t

− (n + 1)
〈
εn+1εn+2u

′(Sn+1
M,t )u′(Sn+2

M,t )f
〉

t

)
,

and consequently

νt(εn+1u
′(Sn+1

M,t )f) =

√
t

N

(
νt(u′′(Sn+1

M,t )f)

+
∑

�′≤n+1

νt(ε�′εn+1u
′(S�′

M,t)u
′(Sn+1

M,t )f)

− (n + 1)νt(εn+1εn+2u
′(Sn+1

M,t )u′(Sn+2
M,t )f)

)
.

Regrouping the terms, we see that III + IV = I. ��

Exercise 2.2.4. Suppose that we had not been as sleek as we were, and that
instead of (2.15) and (2.22) we had defined

Sk,t = Sk,t(σ) = S0
k +

√
t

N
gN,kσN =

1√
N

∑
i<N

gi,kσi +

√
t

N
gN,kσN

and

S�
k,t =

1√
N

∑
i<N

gi,kσ�
i +

√
t

N
gN,kσ�

N .

Prove that then in the formula (2.23) we would get the extra term

VI =
α

2

(∑
�≤n

νt

((
u′(S�

M,t)
2+u′′(S�

M,t)
)
f
)
−nνt

((
u′(Sn+1

M,t )2+u′′(Sn+1
M,t )

)
f
))

.

2.3 Cavity in M

To pursue the idea that the terms I and II in (2.23) should nearly cancel out
each other, the first thing to do is to try to make sense of the term I, and to
understand the influence of the quantities u′(S�

M,t). The quantities S�
M,t also

occur in the Hamiltonian, and we should make this dependence explicit. For
this we introduce a new Hamiltonian
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− HN,M−1,t(σ, ξ) =
∑

k≤M−1

u(Sk,t(σ, ξk)) + σN

√
1 − tY , (2.30)

where the dependence on ξ is stressed to point out that it will be handled as
in the case of the Hamiltonian (2.16), that is, an average 〈·〉t,∼ with respect
to this Hamiltonian will be computed with the formula (2.31) below. Let us
first notice that, even though the right-hand side of (2.30) does not depend
on ξM , we denote for simplicity of notation the Hamiltonian as a function of
σ and ξ. If f is a function on Σn

N × R
Mn, we then define

〈f〉t,∼ =
1

Zn
∼

Eξ

∑
σ1,...,σn

f(σ1, . . . ,σn, ξ1, . . . , ξn) exp
(
−

∑
�≤n

H�
N,M−1,t

)
,

(2.31)
where

Z∼ = Eξ

∑
σ

exp(−HN,M−1,t(σ, ξ)) ,

and where H�
N,M−1,t = HN,M−1,t(σ�, ξ�). There of course Eξ includes ex-

pectation in the r.v.s ξ�
M , even though the Hamiltonian does not depend on

those. Since −H�
N,M,t = −H�

N,M−1,t + u(S�
M,t), the identity

Z = Eξ

∑
σ

exp(−H1
N,M,t) = Eξ

∑
σ

exp u(S1
M,t) exp(−H1

N,M−1,t)

= Z∼〈exp u(S1
M,t)〉t,∼

holds, and, similarly,

Eξ

∑
σ1,...,σn

f(σ1, . . . ,σn, ξ1, . . . , ξn) exp
(
−

∑
�≤n

H�
N,M,t

)

= Zn
∼

〈
f exp

∑
�≤n

u(S�
M,t)

〉

t,∼
.

Combining these two formulas with (2.31) yields that if f is a function
on Σn

N × R
Mn, we have

〈f〉t =

〈
f exp

(∑
�≤n u(S�

M,t)
)〉

t,∼
〈exp u(S1

M,t)〉nt,∼
. (2.32)

Our best guess now is that the quantities S�
M,t, when seen as functions

of the system with Hamiltonian (2.30), will have a jointly Gaussian behavior
under Gibbs’ measure, with pairwise correlation q, allowing us to approx-
imately compute the right-hand side of (2.32) in Proposition 2.3.5 below.
This again will be shown by interpolation. Let us consider a new parameter
0 ≤ q ≤ 1 and standard Gaussian r.v.s (ξ�) and z that are independent of all
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the other r.v.s already considered. (The reader will not confuse the r.v.s ξ�

with the r.v.s ξ�
M .) Let us set

θ� = z
√

q + ξ�
√

1 − q . (2.33)

Thus these r.v.s share the common randomness z and are independent given
that randomness. For 0 ≤ v ≤ 1 we define

S�
v =

√
vS�

M,t +
√

1 − vθ� . (2.34)

The dependence on t is kept implicit; when using S�
v we think of t (and M)

as being fixed.
Let us pursue the idea that in (2.31), Eξ denotes expectation in all

r.v.s labeled ξ including the variables ξ� and let us further define with this
convention

νt,v(f) = E

〈
f exp

(∑
�≤n u(S�

v)
)〉

t,∼
〈exp u(S1

v)〉nt,∼
. (2.35)

Using (2.32) yields
νt,1(f) = νt(f) .

The idea of (2.35) is of course that in certain cases νt,0(f) should be much
easier to evaluate than νt(f) = νt,1(f) and that these quantities should be
close to each other if q is appropriately chosen. Before we go into the details
however, we would like to explain the pretty idea that is hidden behind this
construction. The idea is simply that we consider ξ “as a new spin”. To
explain this, consider a spin system where the space of configurations is the
collection of all triplets (σ, ξ, ξ) for σ ∈ ΣN , ξ ∈ R

M and ξ ∈ R. Consider
the Hamiltonian

−H(σ, ξ, ξ) = −HN,M−1,t(σ, ξ) + u(Sv) ,

where Sv =
√

vSM,t +
√

1 − vθ, for θ = z
√

q +
√

1 − qξ. Then, for a function
f of σ1, . . . ,σn, ξ1, . . . , ξn and ξ1, . . . , ξn we can define a quantity 〈f〉t,v by
a formula similar to (2.19) and (2.31). As in (2.32), we have

〈f〉t,v =

〈
f exp

(∑
�≤n u(S�

v)
)〉

t,∼
〈exp u(S1

v)〉nt,∼
,

so that in fact νt,v = E〈·〉t,v. Let us observe that the r.v. θ depends also
on z, but this r.v. is not considered as a “new spin”, but rather as “new
randomness”.

The present idea of considering ξ as a new spin is essential. As we men-
tioned on page 156, the idea of considering ξ1, . . . , ξM as new spins was not
essential, but since it is the same idea, we decided to make the minimal extra
effort to use the setting of (2.19).

First, we reveal the magic of the computation of νt,0.
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Lemma 2.3.1. Consider 0 ≤ q ≤ 1 and define

r̂ = E

(
Eξu

′(θ) exp u(θ)
Eξ exp u(θ)

)2

, (2.36)

where θ = z
√

q + ξ
√

1 − q for independent standard Gaussian r.v.s z and ξ
and where Eξ denotes expectation in ξ only. Consider a function f on Σn

N .
This function might depend on the variables ξ�

k for k < M and � ≤ n, but it
does not depend on the randomness of the variables ξ�

M or ξ�. Then

νt,0(f) = E〈f〉t,∼ , (2.37)

and
νt,0(u′(S1

0)u′(S2
0)f) = r̂E〈f〉t,∼ . (2.38)

In particular we have νt,0(u′(S1
0)u′(S2

0)f) = r̂νt,0(f). If such an equality is
nearly true for v = 1 rather than for v = 0, we are in good shape to use
Proposition 2.2.3.

Proof. First we have
〈
f exp

∑
�≤n

u(θ�)
〉

t,∼
= 〈f〉t,∼Eξ exp

∑
�≤n

u(θ�) . (2.39)

This follows from the formula (2.31). The quantities θ� do not depend on the
spins σ, and their randomness “in the variables labeled ξ” is independent of
the randomness of the other terms. Now, independence implies

Eξ exp
∑
�≤n

u(θ�) = (Eξ exp u(θ))n .

Moreover 〈exp u(θ)〉t,∼ = Eξ exp u(θ), as (an obvious) special case of
(2.39). This proves (2.37).

To prove (2.38), proceeding in a similar manner and using now that

Eξ

(
u′(θ1)u′(θ2) exp

∑
�≤n

u(θ�)
)

=
(
Eξu

′(θ) exp u(θ)
)2(

Eξ exp u(θ)
)n−2

,

we get

νt,0(u′(S1
0)u′(S2

0)f) = E

〈
fu′(θ1)u′(θ2) exp

∑
�≤n u(θ�)

〉
t,∼

〈exp u(θ)〉nt,∼
= r̂E〈f〉t,∼ ,

and this finishes the proof. ��

We now turn to the proof that νt,0 and νt,1 are close. We recall that D is
the constant of (2.7).
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Lemma 2.3.2. Consider a function f on Σn
N . This function depend on the

variables ξ�
k for k < M and � ≤ n, but it does not depend on the randomness

of the variables z, gi,M , ξ�
M or ξ�. Then if Bv ≡ 1 or Bv = u′(S1

v)u′(S2
v),

whenever 1/τ1 + 1/τ2 = 1 we have
∣∣∣∣

d
dv

νt,v(Bvf)
∣∣∣∣ ≤ K(n, D)

(
νt,v(|f |τ1)1/τ1νt,v(|R1,2−q|τ2)1/τ2 +

1
N

νt,v(|f |)
)

.

(2.40)
Here K(n, D) depends on n and D only.

Therefore the left-hand side is small if we can find q such that R1,2 � q. The
reason why we write a derivative in the left-hand side rather than a partial
derivative is that when considering νt,v we always think of t as fixed.

Proof. The core of the proof is to compute d(νt,v(Bvf))/dv by differentiation
and integration by parts, after which the bound (2.40) basically follows from
Hölder’s inequality. It turns out that if one looks at things the right way,
there is a relatively simple expression for d(νt,v(Bvf))/dv. We will not reveal
this magic formula now. Our immediate concern is to explain in great detail
the mechanism of integration by parts, that will occur again and again, and
for this we decided to use a completely pedestrian approach, writing only
absolutely explicit formulas.

First, we compute d(νt,v(Bvf))/dv by straightforward differentiation of
the formula (2.35). In the case where Bv = u′(S1

v)u′(S2
v), setting

S�′
v =

1
2
√

v
S�

M,t −
1

2
√

1 − v
θ� ,

we find

d
dv

(νt,v(Bvf)) = νt,v

(
fS1′

v u′′(S1
v)u′(S2

v)
)

+ νt,v

(
fS2′

v u′(S1
v)u′′(S2

v)
)

+
∑
�≤n

νt,v

(
fS�′

v u′(S�
v)u′(S1

v)u′(S2
v)

)

− (n + 1)νt,v

(
fSn+1′

v u′(Sn+1
v )u′(S1

v)u′(S2
v)

)
. (2.41)

Of course the first term occurs because of the factor u′(S1
v) in Bv, the second

term because of the factor u′(S2
v) and the other terms because of the depen-

dence of the Hamiltonian on v. The rest of the proof consists in integrating
by parts. In some sense it is a straight forward application of the Gaussian
integration by parts formula (A.17). However, since we are dealing with com-
plicated expressions, it will take several pages to fill in all the details. The
notation is complicated, and this obscures the basic simplicity of the argu-
ment. Probably the ambitious reader should try to compute everything on
her own in simple case, and look at our presentation only if she gets stuck.

Even though we have written the previous formula in a compact form
using νt,v, to integrate by parts we have to spell out the dependence of the
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Hamiltonian on the variables S�
v by using the formula (2.35). For example,

the first term in the right-hand side of (2.41) is

E

〈
fS1′

v u′′(S1
v)u′(S2

v) exp
(∑

�≤n u(S�
v)

)〉
t,∼

〈exp u(S1
v)〉nt,∼

. (2.42)

To keep the formulas manageable, let us write

w = w(σ1, . . . ,σn, ξ1, . . . , ξn) = exp
(
−

∑
�≤n

H�
N,M−1,t

)

and let us define

w�
∗ = w∗(σ�, ξ�) = exp(−H�

N,M−1,t) .

These quantities are probabilistically independent of the randomness of the
variables S�

v (which is why we introduced the Hamiltonian HN,M−1,t in the
first place).

The quantity (2.42) is then equal to

E
Eξ

∑
σ1,...,σn wS1

v
′C

Zn
, (2.43)

where
Z = Eξ

∑
σ1

w1
∗ expu(S1

v) ,

and where

C = fu′′(S1
v)u′(S2

v) exp
(∑

�≤n

u(S�
v)

)
.

Let us now make an observation that will be used many times. The r.v.
Z is independent of all the r.v.s labeled ξ, so that

Eξ

∑
σ1,...,σn w S1

v
′C

Zn
= Eξ

∑
σ1,...,σn w S1

v
′C

Zn
,

and thus the quantity (2.43) is then equal to

EEξ

∑
σ1,...,σn

w S1
v
′ C

Zn
= E

∑
σ1,...,σn

w S1
v
′ C

Zn
. (2.44)

Let us now denote by E0 integration in the randomness of gi,M , ξ�
M , z and

ξ�, given all the other sources of randomness. Therefore, since the quantities
w do not depend on any of the variables gi,M , ξ�

k, z or ξ�, the quantity (2.44)
equals

E
∑

σ1,...,σn

w E0S
1
v
′ C

Zn
. (2.45)
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The main step in the computation is the calculation of the quantity
E0S

1
v
′C/Zn by integration by parts. We advise the reader to study the el-

ementary proof of Lemma 2.4.4 below as a preparation to this computation
in a simpler setting. To apply the Gaussian integration by parts formula
(A.17), we need to find a jointly Gaussian family (g, z1, . . . , zP ) of r.v.s such
that g = S1

v
′ and that C/Zn is a function F (z1, . . . , zP ) of z1, . . . , zP . The

first idea that comes to mind is to use for the r.v.s (zp) the following family
of variables, indexed by σ and �,

z�
σ =

√
vSM,t(σ, ξ�

M ) +
√

1 − vθ�

=
√

v

(
1√
N

∑
i<N

gi,Mσi +

√
t

N
gN,MσN +

√
1 − t

N
ξ�
M

)

+
√

1 − v(z
√

q + ξ�
√

1 − q) ,

where σ ∈ ΣN takes all possible values and � is an integer. Of course these
variables depend on v but the dependence is kept implicit because we think
now of v as fixed. We observe that

S�
v = z�

σ� , (2.46)

so that we can think of C as a function of these quantities:

C = Cσ1,...,σn = Fσ1,...,σn((z�
σ)) , (2.47)

where Fσ1,...,σn is the function of the variables x�
σ given by

Fσ1,...,σn((x�
σ)) = f(σ1, . . . ,σn)u′′(x1

σ1)u′(x2
σ2) exp

(∑
�≤n

u(x�
σ�)

)
. (2.48)

Condition (2.47) holds simply because to compute Fσ1,...,σn((z�
σ�)), we sub-

stitute z�
σ� = S�

v to x�
σ� in the previous formula. This construction however

does not suffice, because Z cannot be considered as a function of the quan-
tities z�

σ: the effect of the expectation Eξ is that “the part depending on the
r.v.s labeled ξ has been averaged out”. The part of z�

σ that does not depend
on the r.v.s labeled ξ is simply

yσ =
√

v

(
1√
N

∑
i<N

gi,Mσi +

√
t

N
gN,MσN

)
+

√
1 − v

√
qz .

Defining

ξ�
∗ =

√
v

√
1 − t

N
ξ�
M +

√
1 − v

√
1 − qξ� ,

we then have
z�
σ = yσ + ξ�

∗ .
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It is now possible to express Z as a function of the r.v.s yσ. This is shown
by the formula

Z = F1((yσ)) ,

where F1 is the function of the variables xσ given by

F1((xσ)) = Eξ

∑
σ

w∗(σ, ξ1) exp u(xσ + ξ1
∗) . (2.49)

Let us now define

z�′
σ =

1
2
√

v
SM,t(σ, ξ�

M ) − 1
2
√

1 − v
θ�

=
1

2
√

v

(
1√
N

∑
i<N

gi,Mσi +

√
t

N
gN,MσN +

√
1 − t

N
ξ�
M

)

− 1
2
√

1 − v
(
√

qz +
√

1 − qξ�) ,

so that S�′
v = z�′

σ� . The family of all the r.v.s z�
σ, yσ, ξ�

∗, and z�′
σ is a Gaussian

family, and this is the family we will use to apply the integration by parts
formula. In the upcoming formulas, the reader should take great care to
distinguish between the quantities z�′

σ and z�′

σ (The position of the ′ is not
the same).

We note the relations

E(θ�)2 = 1 = E(SM,t(σ, ξ�
M ))2 ; � �= �′ ⇒ Eθ�θ�′ = q .

� �= �′ ⇒ ESM,t(σ, ξ�
M )SM,t(τ , ξ�′

M ) = Rt(σ, τ ) :=
1
N

∑
i<N

σiτi +
t

N
σNτN ,

so that
Ez�′

σz�
σ = 0 ; � �= �′ ⇒ Ez�′

σz�′

τ =
1
2
(Rt(σ, τ ) − q) , (2.50)

and
Ez�′

σyτ =
1
2
(Rt(σ, τ ) − q) . (2.51)

We will simply use the integration by parts formula (A.17) and these
relations to understand the form of the quantity

E0S
1
v
′ C

Zn
= E0z

1′
σ1

Fσ1,...,σn((z�
σ))

F1((yσ))n
. (2.52)

Let us repeat that this integration by parts takes place given all the
sources of randomness other than the r.v.s gi,M , ξ�

k for k < M , z and ξ�

(so that it is fine if f depends on some randomness independent of these).
The exact result of the computation is not relevant now (it will be given
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in Chapter 9). For the present result we simply need the information that
dνt,v(Bvf)/dv is a sum of terms of the type (using the notation Rt

�,�′ =
Rt(σ�,σ�′))

νt,v(f(Rt
�,�′ − q)A) , (2.53)

where A is a monomial in the quantities u′(Sm
v ), u′′(Sm

v ), u(3)(Sm
v ) for m ≤

n + 2. So, let us perform the integration by parts in (2.52):

E0z
1′
σ1

Fσ1,...,σn((z�
σ))

F1((yσ))n
=

∑
τ ,�

E0z
1′
σ1z�

τ E0
∂Fσ1,...,σn

∂x�
τ

((z�
σ))

1
F1((yσ))n

− n
∑
τ

E0z
1′
σ1yτ E0

∂F1

∂xτ
((yσ))

Fσ1,...,σn((z�
σ))

F1((yσ))n+1
.

It is convenient to refer to the last term in the above (or similar) formula “as
the term created by the denominator” when performing the integration by
parts in (2.52). (It would be nice to remember this, since we will often use this
expression in our future attempts at describing at a high level computations
similar to the present one.) We first compute this term. We observe that

∂F1

∂xτ
= Eξw∗(τ , ξ1)u′(xτ + ξ1

∗) exp u(xτ + ξ1
∗) .

Therefore using (2.51) we see that the term created by the denominator in
(2.52) is

−n

2
E0

∑
τ

(Rt(σ1,τ )−q)
Fσ1,...,σn((z�

σ))Eξw∗(τ , ξ1)u′(yτ + ξ1
∗) exp u(yτ + ξ1

∗)
F1((yσ))n+1

.

Since yτ + ξ1
∗ = z1

τ , the contribution of this term to (2.44) is then

− n

2
E

∑
σ1,...,σn,τ

w(Rt(σ1, τ )−q)
Fσ1,...,σn((z�

σ))Eξw∗(τ , ξ1)u′(z1
τ ) exp u(z1

τ )
F1((yσ))n+1

.

(2.54)
Now,

Eξw∗(τ , ξ1)u′(z1
τ ) exp u(z1

τ ) = Eξw∗(τ , ξn+1)u′(zn+1
τ ) exp u(zn+1

τ ) ,

so that, changing the name of τ into σn+1, and since wn+1
∗ = w∗(σn+1, ξn+1),

the quantity (2.54) is equal to (using (2.46) in the second line)

= −n

2
E

∑
σ1,...,σn+1

w(Rt
1,n+1 − q)

Fσ1,...,σn((z�
σ))Eξw

n+1
∗ u′(zn+1

σn+1) exp u(zn+1
σn+1)

F1((yσ))n+1

= −n

2
E

∑
σ1,...,σn+1

w(Rt
1,n+1 − q)

CEξw
n+1
∗ u′(Sn+1

v ) exp u(Sn+1
v )

Zn+1
.
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In a last step we observe that in the above formula we can remove the expec-
tation Eξ. This is because the r.v.s labeled ξ that occur in this expectation
(namely ξn+1 and ξn+1) are independent of the other r.v.s labeled ξ that
occur in C and w. In this manner we finally see that the contribution of this
quantity to the computation of (2.42) is

−n

2
E

∑
σ1,...,σn+1

C(Rt
1,n+1 − q)wwn+1

∗ u′(Sn+1
v ) exp u(Sn+1

v )
Zn+1

= −n

2
νt,v

(
f(Rt

1,n+1 − q)u′′(S1
v)u′(S2

v)u′(Sn+1
v )

)
.

In a similar manner we compute the contribution in (2.52) of the dependence
of Fσ1,...,σn on the variables z�

σ at a given value of �, i.e of the quantity

∑
τ

E0z
1′
σ1z�

τ E0
∂Fσ1,...,σn

∂x�
τ

((z�
σ))

1
F1((yσ))n

. (2.55)

We observe in particular from (2.48) that

∂Fσ1,...,σn

∂x�
τ

((z�
σ)) = 0

unless τ = σ�, so that the quantity (2.55) equals

E0z
1′
σ1z�

σ�E0
∂Fσ1,...,σn

∂x�
σ�

((z�
σ))

1
F1((yσ))n

. (2.56)

Since Ez�′
σz�

σ = 0 by (2.50) we see that for � = 1 the contribution of this term
is 0.

When � ≥ 3, we have

∂Fσ1,...,σn

∂x�
τ

((x�
σ)) = f(σ1, . . . ,σn)u′′(x1

σ1)u′(x2
σ2)u′(x�

σ�) exp
(∑

�≤n

u(x�
σ�)

)
,

so that the term (2.55) is simply

1
2
νt,v

(
f(Rt

1,� − q)u′′(S1
v)u′(S2

v)u′(S�
v)

)
.

If � = 2, there is another term because of the factor u′(S2
v), and this term is

1
2νt,v

(
f(Rt

1,2 − q)u′′(S1
v)u′′(S2

v)
)
. So actually we have shown that

νt,v(fS1′
v u′′(S1

v)u′(S2
v)) =

1
2
νt,v

(
f(Rt

1,2 − q)u′′(S1
v)u′′(S2

v)
)

+
1
2

∑
2≤�≤n

νt,v

(
f(Rt

1,� − q)u′′(S1
v)u′(S2

v)u′(S�
v)

)

− n

2
νt,v

(
f(Rt

1,n+1 − q)u′′(S1
v)u′(S2

v)u′(Sn+1
v )

)
.
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We strongly suggest to the enterprising reader to compute now all the
other terms of (2.41). This is the best way to really understand the mechanism
at work. There is no difficulty whatsoever, this just requires patience.

Calculations similar to the previous one will be needed again and again.
We will not anymore explain them formally as above. Rather, we will give
the result of the computation with possibly a few words of explanation. It is
worth making now a simple observation that helps finding the result of such
a computation. It is the fact that from (2.51) we have

Ez�′
σyτ = Ez�′

σzn+1
τ .

In a sense this means that when performing the integration by parts, we
obtain the same result as if Z were actually a function of the variables zn+1

σ .
It is useful to formulate this principle as a heuristic rule:

The result of the expectation Eξ in the definition of Z is somehow
“to shift the dependence of Z in Sv on a new replica” . (2.57)

When describing in the future the computation of a quantity such as
νt,v(fS1′

v u′′(S1
v)u′(S2

v)) by integration by parts, we will simply say: we inte-
grate by parts using the relations

ES�′
v S�

v = 0 ; ES�′
v S�′

v =
1
2
(Rt

�,�′ − q) , (2.58)

and we will expect that the reader has understood enough of the algebraic
mechanism at work to be able to check that the result of the computation is
indeed the one we give, and the heuristic rule (2.57) should be precious for
this purpose. There are two more such calculations in the present chapter,
and the algebra in each is much simpler than in the present case. As a good
start to develop the understanding of this mechanism, the reader should at
the very least check the following two formulas involved in the computation
of (2.41):

νt,v

(
fS3′

v u′(S3
v)u′(S1

v)u′(S2
v)

)

=
1
2
νt,v

(
f(Rt

3,1 − q)u′(S3
v)u′′(S1

v)u′(S2
v)

)

+
1
2
νt,v

(
f(Rt

3,2 − q)u′(S3
v)u′(S1

v)u′′(S2
v)

)

+
1
2

∑
�	=3,�≤n

νt,v

(
f(Rt

3,� − q)u′(S3
v)u′(S1

v)u′(S2
v)u′(S�

v)
)

− n

2
νt,v

(
f(Rt

3,n+1 − q)u′(S3
v)u′(S1

v)u′(S2
v)u′(Sn+1

v )
)

,

and
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νt,v

(
fSn+1′

v u′(Sn+1
v )u′(S1

v)u′(S2
v)

)

=
1
2
νt,v

(
f(Rt

n+1,1 − q)u′(Sn+1
v )u′′(S1

v)u′(S2
v)

)

+
1
2
νt,v

(
f(Rt

n+1,2 − q)u′(Sn+1
v )u′(S1

v)u′′(S2
v)

)

+
1
2

∑
�≤n

νt,v

(
f(Rt

n+1,� − q)u′(Sn+1
v )u′(S1

v)u′(S2
v)u′(S�

v)
)

− n + 1
2

νt,v

(
f(Rt

n+1,n+2 − q)u′(Sn+1
v )u′(S1

v)u′(S2
v)u′(Sn+2

v )
)

.

We bound a term (2.53) by

K(D)νt,v(|f ||Rt
1,�′ − q|) ,

and we write |Rt
�,�′ − q| ≤ |R�,�′ − q| + 1/N to obtain the inequality

∣∣∣∣
d
dv

νt,v(Bvf)
∣∣∣∣ ≤ K(n, D)

( ∑
1≤�<�′≤n+2

νt,v(|f ||R�,�′ − q|) +
1
N

νt,v(|f |)
)

.

(2.59)
To conclude we use Hölder’s inequality. ��

Exercise 2.3.3. Let us recall the notation S�
k,t of Proposition 2.2.3 and de-

fine

S�′
k,t =

1
2
√

N

(
gkε�√

t
− ξ�

k√
1 − t

)
,

so that (2.27) becomes

d
dt

(−H�
N,M,t) =

∑
k≤M

S�′
k,tu

′(S�
k,t) −

ε�Y

2
√

1 − t
.

Observe the relations

ES�′
k,tS

�
k,t = 0 ; ES�′

k,tS
�′

k,t =
1

2N
ε�ε�′ if � �= �′ ; ES�′

k,tS
�′

k′,t = 0 if k �= k′ .

(2.60)
Get convinced that the previously described mechanism yields the formula
(when � ≤ n + 1)

νt(S�′
k,tu

′(S�
k,t)f) =

1
2N

( ∑
�′ 	=�,�′≤n+1

νt(ε�ε�′u
′(S�

k,t)u
′(S�′

k,t)f)

− (n + 1)νt(ε�εn+2u
′(S�

k,t)u
′(Sn+2

k,t )f)
)

.

Then get convinced that the term I in (2.23) can be obtained “in one step”
rather than by integrating by parts separately over the r.v.s ξk,� and gk as
was done in the proof of Proposition 2.2.3.
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To follow future computations it is really important to understand the
difference between the situation (2.58) (where integration by parts “brings
a factor (Rt

�,�′ − q)/2 in each term”) and the situation (2.60), where this
integration by parts brings “a factor ε�ε�′/2N in each term”.

Let us point out that the constants K(n, D) and K(D) are simply avatars
of our ubiquitous constant K, and they need not be the same at each occur-
rence. The only difference is that here we make explicit that these constants
depend only on n and D (etc.) simply because this is easier to do when there
are so few parameters. Of course, K1(D), etc. denote specific constants.

Lemma 2.3.4. If f ≥ 0 is a function on Σn
N we have

νt,v(f) ≤ K(n, D)νt(f) . (2.61)

Proof. We use (2.40) with Bv ≡ 1, τ1 = 1, τ2 = ∞ to get
∣∣∣∣

d
dv

νt,v(f)
∣∣∣∣ ≤ K(n, D)νt,v(f) .

We integrate and we use that νt,1(f) = νt(f). ��

Proposition 2.3.5. Consider a function f on Σn
N . This function might be

random, but it does not depend on the randomness of the variables gi,M , ξ�
M ,ξ�

or z. Then, whenever 1/τ1 + 1/τ2 = 1, we have

|νt(fu′(S1
M,t)u

′(S2
M,t)) − r̂νt(f)| ≤ K(n, D)

(
νt(|f |τ1)1/τ1νt(|R1,2 − q|τ2)1/τ2

+
1
N

νt(|f |)
)

. (2.62)

This provides a good understanding of the term I of (2.23), provided we can
find q such that the right-hand side is small.

Proof. We consider Bv as in Lemma 2.3.2, we write

|νt,1(B1f) − νt,0(B0f)| ≤ max
v

∣∣∣∣
d
dv

νt,v(Bvf)
∣∣∣∣ , (2.63)

and we use (2.40) and (2.61) to get

|νt,1(B1f) − νt,0(B0f)| ≤ B , (2.64)

where B is a term as in the right-hand side of (2.62). Thus in the case Bv ≡ 1,
and since νt,1 = νt, (2.37) and (2.64) imply that

|νt(f) − E〈f〉t,∼| ≤ B . (2.65)

In the case Bv = u′(S1
v)u′(S2

v), (2.38) and (2.64) mean
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∣∣νt

(
fu′(S1

M,t)u
′(S2

M,t)
)
− r̂ E〈f〉t,∼

∣∣ ≤ B

and combining with (2.65) finishes the proof. ��
We now set r = αr̂, and (2.62) implies

∣∣ανt

(
ε�ε�′fu′(S�

M,t)u
′(S�′

M,t)
)
− rνt(ε�ε�′f)

∣∣

≤ αK(n, D)
(

νt(|f |τ1)1/τ1νt(|R1,2 − q|τ2)1/τ2 +
1
N

νt(|f |)
)

.

Looking again at the terms I and II of Proposition 2.2.3, we have proved the
following.

Proposition 2.3.6. Consider a function f on Σn
N (that does not depend on

any of the r.v.s gi,M , ξ�, ξ�
M or z). Then, whenever 1/τ1 + 1/τ2 = 1, we have

|ν′
t(f)| ≤ αK(D, n)

(
νt(|f |τ1)1/τ1νt(|R1,2 − q|τ2)1/τ2 +

1
N

νt(|f |)
)

. (2.66)

The following is an obviously helpful way to relate ν and νt.

Lemma 2.3.7. There exists a constant K(D) with the following property. If
αK(D) ≤ 1, whenever f ≥ 0 is a function on Σ2

N (that does not depend on
any of the r.v.s gi,M , ξ�, ξ�

M or z), we have

νt(f) ≤ 2ν(f) . (2.67)

Proof. We use Proposition 2.3.6 with τ1 = 1 and τ2 = ∞ to see that

|ν′
t(f)| ≤ αK1(D)νt(f) ,

from which (2.67) follows by integration if αK1(D) ≤ log 2. ��

2.4 The Replica Symmetric Solution

We recall the notation θ = z
√

q + ξ
√

1 − q where z and ξ are independent
standard Gaussian r.v.s, and that Eξ denotes expectation in ξ only.

Theorem 2.4.1. Given D > 0, there is a number K(D) with the following
property. Assume that the function u satisfies (2.7), i.e.

∀� ≤ 3 , |u(�)| ≤ D .

Then whenever α ≤ 1/K(D) the system of equations

q = E th2(z
√

r) ; r = αE

(
Eξu

′(θ) exp u(θ)
Eξ exp u(θ)

)2

(2.68)

in the unknown q and r has a unique solution, and

ν
(
(R1,2 − q)2

)
≤ L

N
. (2.69)
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Proof. Let us write the second equation of (2.68) as r = αr̂ = αr̂(q).
Differentiation and integration by parts show that |r̂′(q)| ≤ K(D) under
(2.7). The function r �→ E th2(z

√
r) has a bounded derivative; so the func-

tion q �→ ψ(q) := Eth2(z
√

αr̂(q)) has a derivative ≤ αK2(D). Therefore if
2αK2(D) ≤ 1 there is a unique solution to the equation q = ψ(q) because
then the function ψ(q) is valued in [0, 1] with a derivative ≤ 1/2.

Symmetry among sites yields

ν
(
(R1,2 − q)2

)
= ν(f) (2.70)

where f = (ε1ε2 − q)(R1,2 − q), and we write

ν(f) ≤ ν0(f) + sup
0<t<1

|ν′
t(f)| . (2.71)

Since q = E th2(z
√

r) = E th2Y , Lemma 2.2.2 implies

ν0((ε1ε2 − q)(R−
1,2 − q)) = (E th2Y − q)ν0(R−

1,2 − q) = 0 ,

and thus
ν0(f) =

1
N

ν0(1 − ε1ε2q) =
1
N

(1 − q2) . (2.72)

To compute ν′
t(f), we use Proposition 2.3.6 with n = 2 and τ1 = τ2 = 2.

Since |f | ≤ 2|R1,2 − q|, we obtain

|ν′
t(f)| ≤ αK(D)

(
νt

(
(R1,2 − q)2

)
+

1
N

ν(|f |)
)

. (2.73)

We substitute in (2.71) and use (2.67) to get the relation

ν(f) = ν
(
(R1,2 − q)2

)
≤ αK(D)

(
ν
(
(R1,2 − q)2

)
+

1
N

ν(|f |)
)

+
1
N

(1 − q2) ,

so that since |f | ≤ 4 we obtain

ν
(
(R1,2 − q)2

)
≤ αK(D)ν

(
(R1,2 − q)2

)
+

K(D)(α + 1)
N

. ��

One should observe that in the above argument we never used the unique-
ness of the solutions of the equations (2.68) to obtain (2.69), only their exis-
tence. In turn, uniqueness of these solutions follows from (2.69).

One may like to think of the present model as a kind of “square”. There
are two “spin systems”, one that consists of the σi and one that consists of the
Sk. These are coupled: the σi determine the Sk and these in turn determine
the behavior of the σi. This philosophy undermines the first proof of Theorem
2.4.2 below.

From now on in this section, q and r always denote the solutions of (2.68).
We recall the definition (2.11)
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pN,M (u) =
1
N

E log
∑
σ

exp(−HN,M (σ)) ,

and we define

p(u) = −1
2
r(1 − q) + E log(2ch(z

√
r)) + αE log Eξ exp u(z

√
q + ξ

√
1 − q) .

(2.74)

Theorem 2.4.2. Under the conditions of Theorem 2.4.1 we have

|pN,M (u) − p(u)| ≤ K(D)
N

. (2.75)

We will present two proofs of this fact.

First proof of Theorem 2.4.2. We start with the most beautiful proof,
which is somewhat challenging. It implements through interpolation the idea
that “the quantities Sk behave like individual spins”. We consider indepen-
dent standard Gaussian r.v.s z, (zk)k≤M , (z′i)i≤N , (ξk)k≤M and for 0 < s < 1
the Hamiltonian

− HM,N,s =
∑
k≤M

u(
√

sSk +
√

1 − sθk) +
∑
i≤N

σi

√
1 − sz′i

√
r (2.76)

where θk = zk
√

q + ξk

√
1 − q. In this formula, we should think of z′i and zk

as representing new randomness, and of ξk as representing “new spins”, so
that Gibbs averages are given by (2.19), and we define

pN,M,s =
1
N

E log Eξ

∑
σ

exp(−HM,N,s) .

The variables ξk are not the same as in Section 2.2; we could have denoted
them by ξ′k to insist on this fact, but we preferred simpler notation.

A key point of the present interpolation is that the equations giving the
parameters qs and rs corresponding to the parameters q and r in the case
s = 1 are now

qs = Eth2 (
√

sz
√

rs +
√

1 − sz′
√

r) (2.77)

rs = αE

(
Eξu

′(θs) exp u(θs)
Eξ expu(θs)

)2

(2.78)

where

θs =
√

s(z
√

qs + ξ
√

1 − qs) +
√

1 − s(z′
√

q + ξ′
√

1 − q) .

To understand the formula (2.77) one should first understand what hap-
pens if we include the action of a random external field in the Hamiltonian,
i.e. we add a term h

∑
i≤N giσi (where gi are i.i.d. standard Gaussian) to
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the right-hand side of (2.6). Then there is nothing to change to the proof of
Theorem 2.4.1; only the first formula of (2.68) becomes

q = E th2(z
√

r + hg) , (2.79)

where g, z are independent standard Gaussian r.v.s. We then observe that
the last term in (2.76) is an external field, that creates the term

√
1 − sz′

√
r

in (2.77). The second term in the definition of θs is created by the terms√
1 − sθk in the Hamiltonian (2.76), a source of randomness “inside u”.

The values qs = q, rs = r are solutions of the equations (2.77) and (2.78),
because for these values

√
sz
√

qs +
√

1 − sz′
√

q is distributed like z
√

q (etc.).
One could easily check that the solution of the system of equations (2.77)
and (2.78) is unique when αK(D) ≤ 1, but this is not needed.

We leave to the readers, as an excellent exercise for those who really
want to master the present ideas, the task to prove (2.69) in the case of the
Hamiltonian (2.76). Since we have already made the effort to understand the
effect of the expectations Eξ, there is really not much to change to the proof
we gave.

So, with obvious notation, one has

∀s ∈ [0, 1] , νs

(
(R1,2 − q)2

)
≤ L

N
. (2.80)

Let us define

Sk,s =
√

sSk +
√

1 − sθk ; S′
k,s =

1
2
√

s
Sk − 1

2
√

1 − s
θk ,

so that

d
ds

pN,M,s(u) =
1
N

νs

(
d
ds

(−HN,M,s)
)

=
1
N

νs

( ∑
k≤M

S′
k,su

′(Sk,s) −
1

2
√

1 − s

∑
i≤N

σiz
′
i

√
r

)
. (2.81)

The next step is to integrate by parts. It should be obvious how to proceed
for the integration by parts in z′i; this gives

1
N

νs

(
1

2
√

1 − s

∑
i≤N

σiz
′
i

√
r

)
=

r

2
(1 − νs(R1,2)) .

Let us now explain how to compute νs(S′
k,su

′(Sk,s)). Without loss of general-
ity we assume k = M . We make explicit the dependence of the Hamiltonian
on SM,s by introducing the Hamiltonian

−HM−1,N,s =
∑

k≤M−1

u(
√

sSk +
√

1 − sθk) +
∑
i≤N

σi

√
1 − sz′i

√
r .
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Denoting by 〈·〉∼ an average for this Hamiltonian, we then have

νs(S′
M,su

′(SM,s)) = E
〈S′

M,su
′(SM,s) exp u(SM,s)〉∼
〈exp u(SM,s)〉∼

. (2.82)

Let us denote as usual by an upper index � the fact “that the spins are
in the �-th replica”. For example, (since we think of ξk as a spin) θ�

k =
zk
√

q + ξ�
k

√
1 − q where ξ�

k are independent standard Gaussian r.v.s, and
S�

k,s =
√

sS�
k +

√
1 − sθ�

k, and let us observe the key relations (where the
reader will not confuse S�′

M,s with S�′

M,s)

ES�′
M,sS

�
M,s = 0 ; � �= �′ ⇒ ES�′

M,sS
�′

M,s =
1
2
(R�,�′ − q) .

Now we integrate by parts in (2.82). This integration by parts will take
place given the randomness of HM−1,N,s. We have explained in detail in
the proof of Lemma 2.3.2 how to proceed. The present case is significantly
simpler. There is only one term, “the term created by the denominator” (as
defined page 168), and we obtain

νs(S′
M,su

′(SM,s)) = −1
2
νs

(
(R1,2 − q)u′(S1

M,s)u
′(S2

M,s)
)

.

This illustrates again the principle (2.58) that the expectation Eξ in the
denominator “shifts the variables there to a new replica.” Therefore we have
found that

d
ds

pN,M,s(u) = −1
2
νs

(
(R1,2 − q)

1
N

∑
k≤M

u′(S1
k,s)u

′(S2
k,s)

)
− r

2
(1− νs(R1,2)) .

We will not use the fact that the contribution for each k ≤ M is the same,
but rather we regroup the terms as

d
ds

pN,M,s(u) = −r

2
(1 − q)

− 1
2
νs

(
(R1,2 − q)

(
1
N

∑
k≤M

u′(S1
k,s)u

′(S2
k,s) − r

))
. (2.83)

This formula should be compared to (1.65). There seems to be little hope
to get any kind of positivity argument here. This is unfortunate because
as of today, positivity arguments are almost our only tool to obtain low-
temperature results.

We get, using the Cauchy-Schwarz inequality
∣∣∣∣

d
ds

pN,M,s(u) +
r

2
(1 − q)

∣∣∣∣ ≤ νs

(
(R1,2 − q)2

)1/2 (2.84)

× νs

(( 1
N

∑
k≤M

u′(S1
k,s)u

′(S2
k,s) − r

)2
)1/2

.
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From (2.80) we see that the right-hand side is ≤ K(D)/
√

N ; but to get the
correct rate K(D)/N (rather than K(D)/

√
N) in Theorem 2.4.2, we need to

know the following, that is proved separately in Lemma 2.4.3 below:

νs

(( 1
N

∑
k≤M

u′(S1
k,s)u

′(S2
k,s) − r

)2
)

≤ K(D)
N

. (2.85)

We combine with (2.80) to obtain from (2.84) that
∣∣∣∣

d
ds

pN,M,s(u) +
r

2
(1 − q)

∣∣∣∣ ≤
K(D)

N

so that, since pN,M (u) = pN,M,1(u),

∣∣∣pN,M (u) +
r

2
(1 − q) − pN,M,0(u)

∣∣∣ ≤ K(D)
N

.

As the spins decouple in pN,M,0(u), the computation of this quantity is
straightforward and this yields (2.75). ��

Lemma 2.4.3. Inequality (2.85) holds under the conditions of Theorem
2.4.1.

Proof. Let us write

f =
1
N

∑
k≤M

u′(S1
k,s)u

′(S2
k,s) − r

f− =
1
N

∑
k<M

u′(S1
k,s)u

′(S2
k,s) − r ,

so that, using symmetry between the values of k ≤ M ,

νs(f2) = νs

(
(αu′(S1

M,s)u
′(S2

M,s) − r)f
)

≤ νs

(
(αu′(S1

M,s)u
′(S2

M,s) − r)f−)
+

K(D)
N

. (2.86)

We extend Proposition 2.3.5 to the present setting of the Hamiltonian (2.76)
to get

∣∣νs

(
(αu′(S1

M,s)u
′(S2

M,s) − r)f−)∣∣

≤ αK(D)
(
νs

(
(R1,2 − q)2

)1/2
νs

(
(f−)2

)1/2 +
1
N

)
.

Combining these, and since 2
√

ab ≤ a + b, for αK(D) ≤ 1 this yields

νs(f2) ≤ 1
2
νs

(
(R1,2 − q)2

)
+

1
2
νs

(
(f−)2

)
+

K(D)
N
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and since |f2 − (f−)2| ≤ K(D)/N we get

νs(f2) ≤ 1
2
νs

(
(R1,2 − q)2

)
+

1
2
νs(f2) +

K(D)
N

,

which completes the proof using (2.80). ��

To prepare for the second proof of Theorem 2.4.2, let us denote by
F (α, r, q) the right-hand side of (2.74), i.e.

F (α, r, q) = −1
2
r(1 − q) + E log(2ch(z

√
r)) + αE log Eξ exp u(θ) ,

where θ = z
√

q + ξ
√

1 − q and let us think of this quantity as a function of
three unrelated variables. For convenience, we reproduce the equations (2.68):

q = E th2(z
√

r) ; r = αE

(
Eξu

′(θ) exp u(θ)
Eξ exp u(θ)

)2

. (2.87)

Lemma 2.4.4. The conditions (2.87) mean respectively that ∂F/∂r = 0,
∂F/∂q = 0.

Proof. This is of course calculus, differentiation and integration by parts,
but it would be nice to really understand why this is true. We give the proof
in complete detail, but we suggest as a simple exercise that the reader tries
first to figure out these details by herself.

Integration by parts yields

∂F

∂r
=

1
2

(
q − 1 +

1√
r
E zthz

√
r

)
=

1
2

(
q − 1 + E

1
ch2(z

√
r)

)

so that ∂F/∂r = 0 if

q = 1 − E
1

ch2(z
√

r)
= E th2(z

√
r) .

Next, if

θ = z
√

q + ξ
√

1 − q, θ′ =
z

2
√

q
− ξ

2
√

1 − q
,

we have
∂F

∂q
=

r

2
+

α

2
E

(
θ′

u′(θ) exp u(θ)
Eξ exp u(θ)

)
. (2.88)

To integrate by parts, we observe that F1(z) = Eξ expu(θ) does not depend
on ξ and

dF1

dz
=

d
dz

Eξ exp u(z
√

q + ξ
√

1 − q) =
√

qEξ u′(θ) exp u(θ) .
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We appeal to the integration by parts formula (A.17) to find, since E(θ′θ) = 0,
E(θ′z) = 1/

√
q that

E

(
θ′

u′(θ) exp u(θ)
F1(z)

)
= −E

(
1

F1(z)2
u′(θ) exp u(θ)Eξ(u′(θ) exp u(θ))

)

= −E
(Eξu

′(θ) exp u(θ))2

(Eξ expu(θ))2
,

so that by (2.88), ∂F/∂q = 0 if and only if the second part of (2.87) holds. ��
If q and r are now related by the conditions (2.87), for small α they are

functions q(α) and r(α) of α (since, as shown by Theorem 1.4.1 the equations
(2.87) have a unique solution). The quantity F (α, r(α), q(α)) is function F (α)
of α alone, and

dF

dα
=

∂F

∂α
+

∂F

∂q

dq

dα
+

∂F

∂r

dr

dα
=

∂F

∂α
,

since ∂F/∂q = ∂F/∂r = 0 when q = q(α) and r = r(α). Therefore

F ′(α) = E log Eξ expu(θ) . (2.89)

Second proof of Theorem 2.4.2. We define ZN,M =
∑

σ exp(−HN,M (σ)),
and we note the identity

ZN,M+1 = ZN,M

〈
exp u

(
1√
N

∑
i≤N

gi,M+1σi

)〉

so that

pN,M+1(u) − pN,M (u) =
1
N

E log
〈

exp u

(
1√
N

∑
i≤N

gi,M+1σi

)〉
. (2.90)

To compute the right-hand side of (2.90) we introduce

Sv =
√

v

N

∑
i≤N

gi,M+1σi +
√

1 − vθ ,

where θ = z
√

q + ξ
√

1 − q, where (I almost hesitate to say it again) z and
ξ are independent standard Gaussian r.v.s, and where q is as in (2.68) for
α = M/N (so that the value of q depends on M). We set

ϕ(v) = E log Eξ〈exp u(Sv)〉 .

As usual Eξ denotes expectation in all the r.v.s labeled ξ. Here this expecta-
tion is not built in the bracket 〈·〉, in contrast with what we did e.g in (2.35),
so that it must be written explicitly.
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We note that

ϕ(1) = N(pN,M+1(u) − pN,M (u)) ; ϕ(0) = E log Eξ exp u(θ) .

With obvious notation we have

ϕ′(v) = E
Eξ〈S′

v exp u(Sv)〉
Eξ〈exp u(Sv)〉 = E

〈S′
v exp u(Sv)〉

Eξ〈exp u(Sv)〉 .

We then integrate by parts, exactly as in (2.82). This yields the formula

ϕ′(v) = −1
2
E
〈(R1,2 − q)u′(S1

v)u′(S2
v) exp(u(S1

v) + u(S2
v))〉

Eξ〈exp(u(S1
v) + u(S2

v))〉 , (2.91)

where S�
v is defined as Sv, but replacing ξ by ξ� and σ by σ�. Now (2.69)

implies

|ϕ′(v)| ≤ K(D)ν(|R1,2 − q|) ≤ K(D)ν
(
(R1,2 − q)2

)1/2 ≤ K(D)√
N

.

This bound unfortunately does not get the proper rate. To get the proper
bound in K(D)/N in (2.75) one must replace the bound

|ϕ(1) − ϕ(0)| ≤ sup |ϕ′(v)|

by the bound
|ϕ(1) − ϕ(0) − ϕ′(0)| ≤ sup |ϕ′′(v)| . (2.92)

A new differentiation and integration by parts in (2.91) bring out in each
term a new factor (R�,�′ − q), so that using (2.69) we now get

|ϕ′′(v)| ≤ K(D)ν
(
(R1,2 − q)2

)
≤ K(D)

N
.

As a special case of (2.91),

ϕ′(0) = −1
2
r̂ν(R1,2 − q) .

We shall prove later (when we learn how to prove central limit theorems in
Chapter 9) the non-trivial fact that |ν(R1,2−q)| ≤ K(D)/N , and (2.92) then
implies

∣∣∣∣pN,M+1(u) − pN,M (u) − 1
N

E log Eξ exp u(θ)
∣∣∣∣ ≤

K(D)
N2

. (2.93)

One can then recover the value of pN,M (u) by summing these relations over
M . This is a non-trivial task, since the value of q (and hence of θ) depends
on M .
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Let us recall the function F (α) of (2.89). It is tedious but straightforward
to check that F ′′(α) remains bounded as αK(D) ≤ 1, so that (2.89) yields

∣∣∣∣F
(

M + 1
N

)
− F

(
M

N

)
− 1

N
E log Eξ exp u(θ)

∣∣∣∣ ≤
K(D)
N2

.

Comparing with (2.93) and summing over M then proves (2.75) (and even
better, since the summation is over M , we get a bound αK(D)/N). This
completes the second proof of Theorem 2.4.2. ��

It is worth noting that the first proof of Theorem 2.4.2 provides an easy
way to discover the formula (2.74), but that this formula is much harder to
guess if one uses the second proof. In some sense the first proof of Theo-
rem 2.4.2 is more powerful and more elegant than the second proof. However
we will meet situations (in Chapters 3 and 4) where it is not immediate to
apply this method (and whether this is possible remains to be investigated).
In these situations, we shall use instead the argument of the second proof of
Theorem 2.4.2.

2.5 Exponential Inequalities

Our goal is to improve the control of R1,2−q from second to higher moments.

Theorem 2.5.1. Given D, there is a number K(D) such that if u satisfies
(2.7), i.e. |u(�)| ≤ D for all 0 ≤ � ≤ 3 then for αK(D) ≤ 1, we have

∀ k ≥ 0 , ν
(
(R1,2 − q)2k

)
≤

(
64k

N

)k

. (2.94)

Proof. It goes by induction over k, and is nearly identical to that of Propo-
sition 1.6.7.

For 1 ≤ n ≤ N , we define An = N−1
∑

n≤i≤N (σ1
i σ2

i − q), and the induc-
tion hypothesis is that for each n ≤ N ,

ν(A2k
n ) ≤

(
64k

N

)k

. (2.95)

To perform the induction from k to k + 1, we can assume n < N , for
(2.95) holds if n = N . Using symmetry between sites yields

ν(A2k+2
n ) =

N − n + 1
N

ν(f) ,

where
f = (ε1ε2 − q)A2k+1

n .

Thus



2.5 Exponential Inequalities 183

ν(A2k+2
n ) ≤ |ν0(f)| + sup

t
|ν′

t(f)| . (2.96)

We first study the term ν0(f). Consider

A′ =
1
N

∑
n≤i≤N−1

(σ1
i σ2

i − q) .

Since by Lemma 2.2.2 we have ν0((ε1ε2 − q)A′2k+1) = 0, using the inequality

|x2k+1 − y2k+1| ≤ (2k + 1)|x − y|(x2k + y2k)

for x = An and y = A′ we get, since |x − y| ≤ 2/N and |ε1ε2 − q| ≤ 2,

|ν0(f)| ≤ 4(2k + 1)
N

(
ν0(A2k

n ) + ν0(A′2k)
)

.

We use (2.67), the induction hypothesis, and the observation that since n <
N , we have

ν(A′2k) = ν(A2k
n+1)

to obtain

|ν0(f)| ≤ 16(2k + 1)
N

(
64k

N

)k

≤ 2k + 1
4(k + 1)

(
64(k + 1)

N

)k+1

. (2.97)

To compute ν′
t(f) we use Proposition 2.3.6 with n = 4,τ1 = (2k+2)/(2k+1),

τ2 = 2k + 2 and (2.67) to get

|ν′
t(f)| ≤ αK(D)

(
ν(A2k+2

n )1/τ1ν
(
(R1,2 − q)2k+2

)1/τ2 +
1
N

ν(|An|2k+1)
)

.

Using the inequality x1/τ1y1/τ2 ≤ x + y for x = ν(A2k+2
n ) and y = ν((R1,2 −

q)2k+2) this implies

|ν′
t(f)| ≤ αK(D)

(
ν(A2k+2

n ) + ν
(
(R1,2 − q)2k+2

)
+

1
N

ν(|An|2k+1)
)

.

Combining with (2.96) and (2.97) we get if αK(D) ≤ 1/4,

ν(A2k+2
n ) ≤ 1

4
(
ν(A2k+2

n ) + ν
(
(R1,2 − q)2k+2

))

+
2k + 1

4(k + 1)

(
64(k + 1)

N

)k+1

+
1
N

ν(|An|2k+1) . (2.98)

Since |An| ≤ 2 and hence |An|2k+1 ≤ 2A2k
n , the induction hypothesis implies

that the last term of (2.98) is at most

1
32(k + 1)

(
64(k + 1)

N

)k+1

,
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so the sum of the last 2 terms is at most

1
2

(
64(k + 1)

N

)k+1

.

Since A1 = R1,2 − q, considering first the case n = 1 provides the required
inequality in that case. Using back this inequality in (2.98) provides the
required inequality for all values of n. ��

The following extends Lemma 2.4.3. Its proof is pretty similar to that
of Theorem 2.5.1, and demonstrates the power of this approach. The reader
who does not enjoy the argument should skip the forthcoming proof and make
sure she does not miss the pretty Theorem 2.5.3. We denote by K0(D) the
constant of Theorem 2.5.1.

Theorem 2.5.2. Assume that u satisfies (2.7) for a certain number D. Then
there is a number K(D), depending on D only, with the following property.
For αK0(D) ≤ 1 we have

∀k ≥ 0 , ν

((
1
N

∑
j≤M

u′(S1
j )u′(S2

j ) − r

)2k
)
≤

(
αkK(D)

N

)k

. (2.99)

Proof. We recall the definition of r̂ given by (2.36), i.e.

r̂ = E

(
Eξu

′(θ) exp u(θ)
Eξ exp u(θ)

)2

,

so that with the notation (2.87) we have r = αr̂. For 1 ≤ n ≤ M we define

Cn =
1
M

∑
n≤j≤M

(u′(S1
j )u′(S2

j ) − r̂) .

Since r = αr̂ and 1/N = α/M the left-hand side of (2.99) is α2kν(C2k
1 ).

We prove by induction over k that if αK0(D) ≤ 1 then for a suitable
number K1(D) we have for k ≥ 1 and any n ≤ M that

ν(C2k
n ) ≤

(
kK1(D)

M

)k

. (2.100)

Using this for n = 1 concludes the proof. For k = 0 (2.100) is true if one then
understands the right-hand side of (2.99) as being 1. The reader disliking this
can instead start the induction at k = 1. To prove the case k = 1 it suffices
to repeat the proof of Lemma 2.4.3 (while keeping a tighter watch on the
dependence on α). For the induction step from k to k+1 we can assume that
n < M , and we use symmetry among the values of j to obtain

ν(C2k+2
n ) = ν(f∼) , (2.101)
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where f∼ = (u′(S1
M )u′(S2

M ) − r̂)C2k+1
n . Let us define

C ′ =
1
M

∑
n≤j≤M−1

(u′(S1
j )u′(S2

j ) − r̂) .

Using the inequality

|x2k+1 − y2k+1| ≤ (2k + 1)|x − y|(x2k + y2k) (2.102)

for x = Cn and y = C ′, and since |u′(S1
M )u′(S2

M )− r̂| ≤ 2D2, we obtain that
for f∗ = (u′(S1

M )u′(S2
M ) − r̂)C ′2k+1:

ν(f∼) ≤ ν(f∗) +
2(2k + 1)D2

M
(ν(C2k

n ) + ν(C ′2k)) . (2.103)

Since n < M , symmetry among the values of j implies ν(C ′2k) = ν(C2k
n+1)

and the induction hypothesis yields

ν(f∼) ≤ ν(f∗) +
8(k + 1)D2

M

(
K1(D)k

M

)k

. (2.104)

Next, we use (2.62) for t = 1, f = C ′2k+1 and n = 2. This is permitted
because f does not depend on the randomness of ξ�

M , ξ� or gi,M . We choose
τ1 = (2k + 2)/(2k + 1) and τ2 = 2k + 2 to get

|ν(f∗)| ≤ K2(D)
(

ν(C ′2k+2)1/τ1ν
(
(R1,2 − q)2k+2

)1/τ2 +
1
N

ν(|C ′|2k+1)
)

.

Since we work under the condition αK0(D) ≤ 1, we can as well assume that
α ≤ 1, so that M ≤ N and

|ν(f∗)| ≤ K2(D)
(

ν(C ′2k+2)1/τ1ν
(
(R1,2 − q)2k+2

)1/τ2 +
1
M

ν(|C ′|2k+1)
)

.

(2.105)
We recall the inequality x1/τ1y1/τ2 ≤ x + y. Changing x to x/A and y to
Aτ2/τ1y in this inequality gives

x1/τ1y1/τ2 ≤ x

A
+ Aτ2/τ1y .

Using this for A = 2K2(D), x = ν(C ′2k+2) and y = ν((R1,2 − q)2k+2), we
deduce from (2.105) that

|ν(f∗)| ≤ 1
2
ν(C ′2k+2) + K(D)2k+1ν

(
(R1,2 − q)2k+2

)
+

K(D)
M

ν(|C ′|2k+1) .

(2.106)
We now use the inequality

|x2k+2 − y2k+2| ≤ (2k + 2)|x − y|(|x|2k+1 + |y|2k+1)
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for x = C ′ and y = Cn to obtain

ν(C ′2k+2) ≤ ν(C2k+2
n ) +

2(2k + 2)D2

M

(
ν(|C ′|2k+1) + ν(|Cn|2k+1)

)
.

We combine this with (2.106), we use that |Cn|2k+1 ≤ 2D2C2k
n and |C ′|2k+1 ≤

2D2C ′2k and the induction hypothesis to get

|ν(f∗)| ≤ 1
2
ν(C2k+2

n ) + K(D)2k+2ν
(
(R1,2 − q)2k+2

)

+
(k + 1)K(D)

M

(
K1(D)k

M

)k

,

and combining with (2.101) and (2.104) that

ν(C2k+2
n ) ≤ 1

2
ν(C2k+2

n ) + K(D)2k+2ν
(
(R1,2 − q)2k+2

)

+
(k + 1)K(D)

M

(
K1(D)k

M

)k

.

Finally we use (2.94) to conclude the proof that ν(C2k+2
n ) ≤ (K1(D)(k +

1)/M)k+1 if K1(D) has been chosen large enough. This completes the induc-
tion. ��

The following central limit theorem describes the fluctuations of pN,M (u)
(given by (2.11)). We recall that a(k) = Ezk where z is a standard Gaussian
r.v. and that O(k) denotes a quantity A = AN with |A| ≤ KN−k/2 where K
does not depend on N . We recall the notation p(u) of (2.74),

p(u) = −1
2
r(1 − q) + E log(2ch(z

√
r)) + αE log Eξ exp u(z

√
q + ξ

√
1 − q) .

Theorem 2.5.3. Let

b = E(log ch(z
√

r))2 − (E log ch(z
√

r))2 − qr .

Then for each k ≥ 1 we have

E(pN,M (u) − p(u))k =
(

b

N

)k/2

a(k) + O(k + 1) .

Proof. This argument resembles that in the proof of Theorem 1.4.11, and
it would probably help the reader to review the proof of that theorem now.
The present proof is organized a bit differently, avoiding the a priori estimate
of Lemma 1.4.12. The interpolation method of the first proof of Theorem
2.4.2 is at the center of the argument, so the reader should feel comfortable
with this proof in order to proceed. We recall the Hamiltonian (2.76) and
we denote by 〈·〉s an average for the corresponding Gibbs measure. In the
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proof O(k) will denote a quantity A = AN such that |A| ≤ KN−k/2 where
K does not depend on N or s, and we will take for granted that Theorems
2.5.1 and 2.5.2 hold uniformly over s. (This fact is left as a good exercise for
the reader.)

Consider the following quantities

A(s) =
1
N

log
∑
σ

Eξ exp(−HN,M,s(σ))

RS(s) = E log 2ch(z
√

r) + αE log Eξ expu(z
√

q + ξ
√

1 − q) − s

2
r(1 − q)

V (s) = A(s) − RS(s)
b(s) = E(log ch(z

√
r))2 − (E log ch(z

√
r))2 − rqs .

The quantities EA(s), RS(s) and b(s) are simply the quantities corresponding
for the interpolating system respectively to the quantities pN,M (u), pu, and
b. Fixing k, we set

ψ(s) = EV (s)k .

We aim at proving by induction over k that ψ(s) = (b(s)/N)k/2a(k)+O(k+1),
which, for s = 1, proves the theorem. Consider ϕ(s, a) = E(A(s)−a)k, so that
ψ(s) = ϕ(s,RS(s)) and by straightforward differentiation ∂ϕ/∂s is given by
the quantity

k

2N
E

(〈 ∑
j≤M

(
Sj√

s
− θj√

1 − s

)
u′(Sj,s) −

∑
i≤N

σi√
1 − s

z′i
√

r

〉

s

(A(s) − a)k−1

)
,

where Sj,s =
√

sSj +
√

1 − sθj . Next, defining S�
j,s as usual we claim that

∂ϕ/∂s = I + II, where

I =
k

2
E

(〈
− 1

N

∑
j≤M

(R1,2 − q)u′(S1
j,s)u

′(S2
j,s)− r(1−R1,2)

〉

s

(A(s)− a)k−1

)

and II is the quantity

k(k − 1)
2N

E

(〈
1
N

∑
j≤M

(R1,2 − q)u′(S1
j,s)u

′(S2
j,s) − rR1,2

〉

s

(A(s) − a)k−2

)
.

This follows by integrating by parts as in the proof of (2.83). The term I
is created by the dependence of the bracket 〈·〉s on the r.v.s Sj , θj and z′i,
and the term II by the dependence on these variables of A(s). We note the
obvious identity I = III + IV where

III = −k

2
E

(〈
(R1,2 − q)

(
1
N

∑
j≤M

u′(S1
j,s)u

′(S2
j,s) − r

)〉

s

(A(s) − a)k−1

)
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and

IV = −kr(1 − q)
2

E((A(s) − a)k−1) .

Similarly we have also II = V + VI where V is the quantity

k(k − 1)
2N

E

(〈
(R1,2 − q)

(
1
N

∑
j≤M

u′(S1
j,s)u

′(S2
j,s) − r

)〉

s

(A(s) − a)k−2

)

and
VI = − rq

2N
k(k − 1)E((A(s) − a)k−2) .

Now,

ψ′(s) =
d
ds

ϕ(s,RS(s)) =
∂ϕ

∂s
(s,RS(s)) + RS′(s)

∂ϕ

∂a
(s,RS(s)) . (2.107)

Since RS′(s) = −r(1 − q)/2 and ∂ϕ/∂a(s,RS(s)) = −kEv(s)k−1, the second
term of (2.107) cancels out with the term IV and we get

ψ′(s) = VII + VIII + IX (2.108)

where

VII = −k

2
E

(〈
(R1,2 − q)

(
1
N

∑
j≤M

u′(S1
j,s)u

′(S2
j,s) − r

)〉

s

V (s)k−1

)

VIII =
k(k − 1)

2N
E

(〈
(R1,2 − q)

(
1
N

∑
j≤M

u′(S1
j,s)u

′(S2
j,s) − r

)〉

s

V (s)k−2

)

IX = − rq

2N
k(k − 1)EV (s)k−2 .

The idea is that each of the factors R1,2−q, (N−1
∑

j≤M u′(S1
j,s)u

′(S2
j,s)−r)

and V (s) “counts as N−1/2”. This follows from Theorems 2.5.1 and 2.5.2 for
the first two terms, but we have not proved it yet in the case of V (s). (In the
case of Theorem 1.4.11, the a priori estimate of Lemma 1.4.12 showed that
V (s) “counts as N−1/2”.) Should this be indeed the case, the terms VII and
VIII will be of lower order O(k+1). We turn to the proof that this is actually
the case.

A first step is to show that

VII ≤ K(k)
N

(E|V (s)|k)
k−1

k ; VIII ≤ K(k)
N2

(E|V (s)|k)
k−2

k . (2.109)

In the case of VII, setting A = R1,2 − q and

B =
1
N

∑
j≤M

u′(S1
j,s)u

′(S2
j,s) − r
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we write, using Hölder’s inequality and Theorems 2.5.1 and 2.5.2:

E(〈AB〉sV (s)k−1) ≤ E〈A2k〉1/2k
s E〈B2k〉1/2k

s (E|V (s)|k)
k−1

k

≤ K(k)
N

E|V (s)|k)
k−1

k .

We proceed in a similar manner for VIII, i.e. we write that

E(〈AB〉sV (s)k−1) ≤ E〈|A|k〉1/k
s E〈|B|k〉1/k

s (E|V (s)|k)
k−2

k

≤ K(k)
N

(E|V (s)|k)
k−2

k ,

and this proves (2.109).
Since xy ≤ xτ1 + yτ2 for τ2 = k/(k − 2) and τ1 = k/2 we get

1
N

(E|V (s)|k)
k−2

k ≤ 1
Nk/2

+ E|V (s)|k .

This implies in particular

IX ≤ K(k)
N

(E|V (s)|k)
k−2

k ≤ K(k)
(

1
Nk/2

+ E|V (s)|k
)

and

VIII ≤ K(k)
N

(
1

Nk/2
+ E|V (s)|k

)
≤ K(k)

(
1

Nk/2
+ E|V (s)|k

)
.

Next, we use that xy ≤ xτ1 + yτ2 for τ2 = k/(k − 1) and τ1 = k to get

1
N

(E|V (s)|k)
k−1

k ≤ 1
Nk

+ E|V (s)|k ≤ 1
Nk/2

+ E|V (s)|k .

When k is even (so that |V (s)|k = V (s)k and E|V (s)|k = ψ(s)) we have
proved that

ψ′(s) ≤ K(k)
(

1
Nk/2

+ ψ(s)
)

. (2.110)

Thus (2.110) and Lemma A.13.1 imply that

ψ(s) ≤ K(k)
(

ψ(0) +
1

Nk/2

)
.

Since it is easy (as the spins decouple) to see that ψ(0) ≤ K(k)Nk/2, we
have proved that for k even we have EV (s)k = O(k). Since E|V (s)|k ≤
(EV (s)2k)1/2 this implies that E|V (s)|k = O(k) for each k so that by (2.109)
we have VII = O(k + 1) and VIII = O(k + 1). Thus (2.108) yields

ψ′(s) = − rq

2N
k(k − 1)EV (s)k−2 + O(k + 1)

=
b′(s)
N

k

2
(k − 1)EV (s)k−2 + O(k + 1) .
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As in Theorem 1.4.11, one then shows by induction over k that

EV (s)k = a(k)
(

b(s)
N

)k/2

+ O(k + 1) ,

using that this is true for s = 0, which is again proved as in Theorem 1.4.11.
��

Exercise 2.5.4. Rewrite the proof of Theorem 1.4.11 without using the a
priori estimate of Lemma 1.4.12. This allows to cover the case where the r.v.
h is not necessarily Gaussian.

Research Problem 2.5.5. (Level 1+) Prove the result corresponding to
Theorem 1.7.1 for the present model.

This problem has really two parts. The first (easier) part is to prove results
for the present model. For this, the approach of “separating the numerator
from the denominator” as explained in Section 9.1 seems likely to succeed.
The second part (harder) is to find arguments that will carry over when we
will have much less control over u as in Chapter 9. For this second part, the
work is partially done in [100], but reaching only the rate 1/

√
N rather than

the correct rate 1/N .

Research Problem 2.5.6. (Level 2) For the present model prove the TAP
equations.

These equations have two parts. One part expresses 〈σi〉 as a function of
(〈u′(Sk)〉)k≤M , and one part expresses 〈u′(Sk)〉 as a function of (〈σi〉)i≤N . It
is (perhaps) not too difficult to prove these equations when one has a good
control over all derivatives of u, but it might be another matter to prove
something as precise as Theorem 1.7.7 in the setting of Chapter 9.

2.6 Notes and Comments

The problems considered in this chapter are studied in [63] and [52].
It is predicted in [90] that the replica-symmetric solution holds up to

α∗, so Problem 2.1.1 amounts to controlling the entire replica-symmetric
(=“high-temperature”) region, typically a very difficult task.

It took a long time to discover the proof of Theorem 2.4.1. The weaker
methods developed previously [148] for this model or for the SK and the
Hopfield models just would not work. During this struggle, it became clear
that the smart path method as used here was a better way to go for these
three models.
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