Introduction

Let us denote by Sy the sphere of RY of center 0 and radius /N, and by
1y the uniform measure on Sy. For i,k > 1, consider independent standard
Gaussian random variables (r.v.s) g; x and the subset Uy, of RY given by

U, = {(xl,...,xz\/) e RV, Zglkxz ZO}.

i<N

The direction of the vector (g;)i<n is random (with uniform distribution
over all possible directions) so that Uy is simply a half-space through the
origin of random direction. (It might not be obvious now why we use Gaussian
r.v.s to define a space of random direction, but this will become gradually
clear.) Consider the set Sy Nk<ar Uk, the intersection of Sy with many such
half-spaces. Denoting by E mathematical expectation, it should be obvious

that
E(HN (gN kgj Uk)> =M (0.1)

because every point of Sy has a probability 2= to belong to all the sets Uy,
k < M. This however is not really interesting. The fascinating fact is that
when N is large and M/N ~ «, if a > 2 the set Sy Ng<mr Uy is typically
empty (a classical result), while if o < 2, with probability very close to 1, we
have .

- 1oguN <SN m Uk) ~ RS(Oé) . (0.2)

N
k<M

: 24/q 1 ¢ 1

RS(a) = Jmin, (a Elog <m> + - . +3 log(1 — q)> ,
where N (z) denotes the probability that a standard Gaussian r.v. g is > z,
and where logz denotes (as everywhere through the book) the natural log-
arithm of . Of course you should rush to require medical attention if this
formula seems transparent to you. We simply give it now to demonstrate
that we deal with a situation whose depth cannot be guessed beforehand.
The wonderful fact (0.2) was not discovered by a mathematician, but by
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a physicist, E. Gardner. More generally theoretical physicists have discov-
ered wonderful new areas of mathematics, which they have explored by their
methods. This book is an attempt to correct this anomaly by exploring these
areas using mathematical methods, and an attempt to bring these marvelous
questions to the attention of the mathematical community. This is a book of
mathematics. No knowledge of physics or statistical mechanics whatsoever is
required or probably even useful to read it. If you read enough of this volume
and the next, then in Volume II you will be able to understand (0.2).

More specifically, this is a book of probability theory (mostly). Attempt-
ing first a description at a “philosophical” level, a fundamental problem is
as follows. Consider a large finite collection (X)g<as of random variables.
What can we say about the largest of them? More generally, what can we say
about the “few largest” of them? When the variables X}, are probabilistically
independent, everything is rather easy. This is no longer the case when the
variables are correlated. Even when the variables are identically distributed,
the answer depends very much on their correlation structure. What are the
correlation structures of interest? Most of the familiar correlation structures
in Probability are low-dimensional, or even “one-dimensional”. This is be-
cause they model random phenomena indexed by time, or, equivalently, by
the real line, a one-dimensional object. In contrast with these familiar situ-
ations, the correlation structures considered here will be “high-dimensional”
— in a sense that will soon become clear — and will create new and truly
remarkable phenomena. This is a direction of probability theory that has not
yet received the attention it deserves.

A natural idea to study the few largest elements of a given realization
of the family (Xg)r<ar is to assign weights to these elements, giving large
weights to the large elements. Ideas from statistical mechanics suggest that,
considering a parameter 3, weights proportional to exp X} are particularly
appropriate. That is, the (random) weight of the k-th element is

exp Xy

S e i (0.3)

These weights define a random probability measure on the index set.
Under an appropriate normalization, one can expect that this probability
measure will be essentially supported by the indices k£ for which X} is ap-
proximately a certain value x(3). This is because the number of variables
X} close to a given large value x should decrease as x increases, while the
corresponding weights increase, so that an optimal compromise should be
reached at a certain level. The number z(/3) will increase with 5. Thus we
have a kind of “scanner” that enables us to look at the values of the family
(Xk)r<m close to the (large) number z(5), and this scanner is tuned with
the parameter 3.

We must stress an essential point. We are interested in what happens for
a typical realization of the family (X}). This can be very different (and much
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harder to understand) than what happens in average of all realizations. To
understand the difference between typical and average, consider the situation
of the Spinland State Lottery. It sells 10?3 tickets at a unit price of one spin
each. One ticket wins the single prize of 10%® spins. The average gain of a
ticket is 1 spin, but the typical gain is zero. The average value is very different
from the typical value because there is a large contribution coming from a
set of very small probability. This is exactly the difference between (0.1) and
(0.2). If M/N ~ o < 2, in average, un (Sy Ni<ar Ux) = 27N, but typically
Nt log /.LN(SN mkgM Uk) ~ RS((X)

In an apparently unrelated direction, let us consider a physical system that
can be in a (finite) number of possible configurations. In each configuration,
the system has a given energy. It is maintained by the outside world at a given
temperature, and is subject to thermal fluctuations. If we observe the system
after it has been left undisturbed for a long time, what is the probability to
observe it in a given configuration?

The system we will mostly consider is ¥y = {—1,1}", where N is a
(large) integer. A configuration o = {o1,...,0n} is an element of Xy. It
tells us the values of the N “spins” o;, each of which can take the values +1.
When in the configuration o, the system has an energy Hy (o). Thus Hy
is simply a real-valued function on Xy. It is called the Hamiltonian of the
system. We consider a parameter 8 (that physically represents the inverse of
the temperature). We weigh each configuration proportionally to its so-called
Boltzmann factor exp(—8 Hy (o)). This defines Gibbs’ measure, a probability
measure on Xy given by

exp(—fHn (o))

Gu({o}) = “P (0.4
N
where the normalizing factor Zy is given by
Zy = Zn(B) = )_exp(~GHy(a)) . (0.5)
o

The summation is of course over o in Y. The factor Zy is called the par-
tition function. Statistical mechanics asserts that Gibbs’ measure represents
the probability of observing a configuration o after the system has reached
equilibrium with an infinite heat bath at temperature 1/5. (Thus the ex-
pression “high temperature” will mean “g8 small” while the expression “low
temperature” will mean “g large”.) Of course the reader might wonder why
(0.4) is the “correct definition”. This is explained in physics books such as
[102], [126], [125], and is not of real concern to us. That this definition is very
fruitful will soon become self-evident.

The reason for the minus sign in Boltzmann’s factor exp(—SHy (o)) is
that the system favors low (and not high) energy configurations. It should be
stressed that the (considerable...) depth of the innocuous looking definition
(0.4) stems from the normalizing factor Zy. This factor, the partition func-
tion, is the sum of many terms of widely different orders of magnitude, and it
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is unclear how to estimate it. The (few) large values become more important
as [ increases, and predominate over the more numerous smaller values. Thus
the problem of understanding Gibbs’ measure gets typically harder for large
0 (low temperature) than for small 8 (high temperature).

At this stage, the reader has already learned all the statistical
mechanics (s)he needs to know to read this work.

The energy levels Hy (o) are closely related to the “interactions” between
the spins. When we try to model a situation of “disordered interactions” these
energy levels will become random variables, or, equivalently, the Hamiltonian,
and hence Gibbs’ measure, will become random. There are two levels of ran-
domness (a probabilist’s paradise). The “disorder”, that is, the randomness
of the Hamiltonian Hy, is given with our sample system. It does not evolve
with the thermal fluctuations. It is frozen, or “quenched” as the physicists
say. The word “glass” of the expression “spin glasses” conveys (among many
others) this idea of frozen disorder.

Probably the reader has met with skepticism the statement that no further
knowledge of statistical mechanics is required to read this book. She might
think that this could be formally true, but that nonetheless it would be
very helpful for her intuition to understand some of the classical models
of statistical mechanics. This is not the case. When one studies systems at
“high temperature” the fundamental mental picture is that of the model with
random Hamiltonian Hy (o) = — ),y hio; where h; are ii.d. Gaussian
random variables (that are not necessarily centered). This particular model
is completely trivial because there is no interaction between the sites, so it
reduces to a collection of N models consisting each of one single spin, and
each acting on their own. (All the work is of course to show that this is in
some sense the way things happen in more complicated models.) When one
studies systems at “low temperature”, matters are more complicated, but
this is a completely new subject, and simply nothing of what had rigorously
been proved before is of much help.

In modeling disordered interactions between the spins, the problem is to
understand Gibbs’ measure for a typical realization of the disorder. As we
explained, this is closely related to the problem of understanding the large
values among a typical realization of the family (—Hy(o)). This family is
correlated. One reason for the choice of the index set X'y is that it is suitable
to create extremely interesting correlation structures with simple formulas.

At the beginning of the already long story of spin glasses are “real” spin
glasses, alloys with strange magnetic properties, which are of considerable
interest, both experimentally and theoretically. It is believed that their re-
markable properties arise from a kind of disorder among the interactions of
magnetic impurities. To explain (at least qualitatively) the behavior of real
spin glasses, theoretical physicists have invented a number of models. They
fall into two broad categories: the “realistic” models, where the interacting
atoms are located at the vertices of a lattice, and where the strength of
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the interaction between two atoms decreases when their distance increases;
and the “mean-field” models, where the geometric location of the atoms in
space is forgotten, and where each atom interacts with all the others. The
mean-field models are of special interest to mathematicians because they are
very basic mathematical objects and yet create extremely intricate struc-
tures. (As for the “realistic” models, they appear to be intractable at the
moment.) Moreover, some physicists believe that these structures occur in
a wide range of situations. The breadth, and the ambition, of these physi-
cists’ work can in particular be admired in the book “Spin Glass Theory and
Beyond” by M. Mézard, G. Parisi, M.A. Virasoro, and in the book “Field
Theory, Disorder and Simulation” by G. Parisi. The methods used by the
physicists are probably best described here as a combination of heuristic ar-
guments and numerical simulation. They are probably reliable, but they have
no claim to rigor, and it is often not even clear how to give a precise mathe-
matical formulation to some of the central predictions. The recent book [102]
by M. Mézard and A. Montanari is much more friendly to the mathemati-
cally minded reader. It covers a wide range of topics, and succeeds well at
conveying the depth of the physicists’ ideas.

It was rather paradoxical for a mathematician like the author to see sim-
ple, basic mathematical objects being studied by the methods of theoretical
physics. It was also very surprising, given the obvious importance of what the
physicists have done, and the breadth of the paths they have opened, that
mathematicians had not succeeded yet in proving any of their conjectures.

Despite considerable efforts in recent years, the program of giving a sound
mathematical basis to the physicists’ work is still in its infancy. We already
have tried to make the case that in essence this program represents a new
direction of probability theory. It is hence not surprising that, as of today, one
has not yet been able to find anywhere in mathematics an already developed
set of tools that would bear on these questions. Most of the methods used
in this book belong in spirit to the area loosely known as “high-dimensional
probability”, but they are developed here from first principles. In fact, for
much of the book, the most advanced tool that is not proved in complete
detail is Holder’s inequality. The book is long because it attempts to fulfill
several goals (that will be described below) but reading the first two chapters
should be sufficient to get a very good idea of what spin glasses are about,
as far as rigorous results are concerned.

The author believes that the present area has a tremendous long-term
potential to yield incredibly beautiful results. There is of course no way of
telling when progress will be made on the really difficult questions, but to
provide an immediate incitement to seriously learn this topic, the author has
stated as research problems a number of interesting questions (the solution
of which would likely deserve to be published) that he believes are within the
reach of the already established methods, but that he purposely did not, and
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will not, try to solve. (On the other hand, there is ample warning about the
potentially truly difficult problems.)

This book, together with a forthcoming second volume, forms a second
edition of our previous work [157],“Spin Glasses, a Challenge for Mathemati-
cians”. One of the goals in writing [157] was to increase the chance of signifi-
cant progress by making sure that no stone was left unturned. This strategy
greatly helped the author to obtain the solution of what was arguably at the
time the most important problem about mean-field spin glasses, the validity
of the “Parisi Formula”. This advance occurred a few weeks before [157] ap-
peared, and therefore could not be included there. Explaining this result in
the appropriate context is a main motivation for this second edition, which
also provides an opportunity to reorganize and rewrite with considerably
more details all the material of the first edition.

The programs of conferences on spin glasses include many topics that
are not touched here. This book is not an encyclopedia, but represents the
coherent development of a line of thought. The author feels that the real
challenge is the study of spin systems, and, among those, considers only pure
mean-field models from the “statics” point of view. A popular topic is the
study of “dynamics”. In principle this topic also bears on mean-field models
for spin glasses, but in practice it is as of today entirely disjoint from what
we do here.

This work is divided in two volumes, that total a rather large number
of pages. How is a reader supposed to attack this? The beginning of an
answer is that many of the chapters are largely independent of each other,
so that in practice these two volumes contain several “sub-books” that can
be read somewhat independently of each other. For example, there is the
“perceptron book” (Chapters 2, 3, 8, 9). On the other hand, we must stress
that we progressively learn how to handle technical details. Unless the reader
is already an expert, we highly recommend that she studies most of the first
four chapters before attempting to read anything else in detail.

We now proceed to a more detailed description of the contents of the
present volume. In Chapter 1 we study in great detail the Sherrington-
Kirkpatrick model (SK), the “original” spin glass, at sufficiently high temper-
ature. This model serves as an introduction to the basic ideas and methods.
In the remainder of the present volume we introduce six more models. In
this manner we try to demonstrate that the theory of spin glasses does not
deal only with such and such very specific model, but that the basic phe-
nomena occur again and again, as a kind of new law of nature (or at least
of probability theory). We present enough material to provide a solid under-
standing of these models, but without including any of the really difficult
results. In Chapters 2 and 3, we study the so-called “perceptron capacity
model”. This model is fundamental in the theory of neural networks, but the
underlying mathematical problem is the rather attractive question of com-
puting the “proportion” of the discrete cube (resp. the unit sphere) that is
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typically contained in the intersection of many random half-spaces, the ques-
tion to which (0.2) answers in a special case. Despite the fact that the case
of the cube and of the sphere are formally similar, the case of the sphere is
substantially easier, because one can use there fundamental tools from con-
vexity theory. In Chapter 4 we study the Hopfield model, using an approach
invented by A. Bovier and V. Gayrard, that relies on the same tools from
convexity as Chapter 3. This approach is substantially simpler than the ap-
proach first invented by the author, although it yields less complete results,
and in particular does not seem to be able to produce either the correct rates
of convergence or even to control a region of parameters of the correct shape.
Chapter 5 introduces a new model, based on V-statistics. It is connected to
the Perceptron model of Chapter 2, but with a remarkable twist. The last two
chapters present models that are much more different from the previous ones
than those are from each other. They require somewhat different methods,
but illustrate well the great generality of the underlying phenomena. Chap-
ter 6 studies a common generalization of the diluted SK model, and of the
K-sat problem (a fundamental question of computer science). It is essentially
different from the models of the previous chapters, since it is a model with
“finite connectivity”, that is, a spin interacts in average only with a number
of spins that remains bounded as the size of the system increases (so we can
kiss goodbye to the Central Limit Theorem). Chapter 7 is motivated by the
random assignment problem. It is the least understood of all the models pre-
sented here, but must be included because of all the challenges it provides.
An appendix recalls many basic facts of probability theory.

Let us now give a preview of the contents of the forthcoming Volume
II. We shall first develop advanced results about the high-temperature be-
havior of some of the models that we introduce in the present volume. This
work is heartfully dedicated to all the physicists who think that the expres-
sions “high-temperature” and “advanced results” are contradictory. We shall
demonstrate the depth of the theory even in this supposedly easier situation,
and we shall present some of its most spectacular results. We shall return
to the Perceptron model, to prove the celebrated “Gardner formula” that
gives the proportion of the discrete cube (resp. the sphere, of which (0.2)
is a special case) that lies in the intersection of many random half spaces.
We shall return to the Hopfield model to present the approach through the
cavity method that yields the correct rates of convergence, as well as a region
of parameters of the correct shape. And we shall return to the SK model
to study in depth the high-temperature phase in the absence of an external
field.

In the rest of Volume II, we shall present low-temperature results. Be-
sides the celebrated Ghirlanda-Guerra identities that hold very generally,
essentially nothing is known outside the case of the SK model and some of its
obvious generalizations, such as the p-spin interaction model for p even. For
these models we shall present the basic ideas that underline the proof of the
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validity of the Parisi formula, as well as the complete proof itself. We shall
bring attention to the apparently deep mysteries that remain, even for the
SK model, the problem of ultrametricity and the problem of chaos. A final
chapter will be devoted to the case of the p-spin interaction model, for p odd,
for which the validity of the Parisi formula will be proved in a large region
of parameters using mostly the cavity method.

At some point I must apologize for the countless typos, inaccuracies, or
downright mistakes that this book is bound to contain. I have corrected many
of each from the first edition, but doubtlessly I have missed some and created
others. This is unavoidable. I am greatly indebted to Sourav Chatterjee,
Albert Hanen and Marc Yor for laboring through this entire volume and
suggesting literally hundreds of corrections and improvements. Their input
was really invaluable, both at the technical level, and by the moral support
it provided to the author. Special thanks are also due to Tim Austin, David
Fremlin and Fréderique Watbled. Of course, all remaining mistakes are my
sole responsibility.

This book owes its very existence to Gilles Godefroy. While Director of
the Jussieu Institute of Mathematics he went out of his way to secure what
has been in practice unlimited typing support for the author. Without such
support this work would not even have been started.

While writing this book (and, more generally, while devoting a large part
of my life to mathematics) it was very helpful to hold a research position
without any other duties whatsoever. So it is only appropriate that I express
here a life-time of gratitude to three colleagues, who, at crucial junctures,
went far beyond their mere duties to give me a chance to get or to keep this
position: Jean Braconnier, Jean-Pierre Kahane, Paul-André Meyer.

It is customary for authors, at the end of an introduction, to warmly thank
their spouse for having granted them the peaceful time needed to complete
their work. I find that these thanks are far too universal and overly enthu-
siastic to be believable. Yet, I must say simply that I have been privileged
with a life-time of unconditional support. Be jealous, reader, for I yet have
to hear the words I dread the most: “Now is not the time to work”.
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