2. The Perceptron Model

2.1 Introduction

The name of this chapter comes from the theory of neural networks. An ac-
cessible introduction to neural networks is provided in [83], but what these
are is not relevant to our purpose, which is to study the underlying mathe-
matics. Roughly speaking, the basic problem is as follows. What “propor-
tion” of Xy = {—1,1}" is left when one intersects this set with many
random half-spaces? A natural definition for a random half-space is a set
{x € RNV ; x-v > 0} where the random vector v is uniform over the unit
sphere of R™V. More conveniently one can consider the set {x € RY;x-g > 0},
where g is a standard Gaussian vector, i.e. g = (g;)i<n, where g; are indepen-
dent standard Gaussian r.v.s. This is equivalent because the vector g/||g|| is
uniformly distributed on the unit sphere of RY. Consider now M such Gaus-
sian vectors g = (gi k)i<n, k < M, all independent, the half-spaces

Uy, = {x; X'ngO}Z{X7 Zgi,kwizo},
i<N

and the set

v () Uk (2.1)
E<M

A given point of X'y has exactly a 50% chance to belong to Uy, so that

Ecard(EN n N Uk> = oN-M (2.2)

k<M

The case of interest is when N becomes large and M is proportional to N,
M/N — o > 0. A consequence of (2.2) is that if & > 1 the set (2.1) is typically
empty when N is large, because the expected value of its cardinality is < 1.
When a < 1, what is interesting is not however the expected value (2.2) of
the cardinality of the set (2.1), but rather the typical value of this cardinality,
which is likely to be smaller. Our ultimate goal is the computation of this
typical value, which we will achieve only for o small enough.

A similar problem was considered in (0.2) where Xy is replaced by the
sphere Sy of center 0 and radius v/N. The situation with Yy is usually
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called the binary perceptron, while the situation with Sy is usually called the
spherical perceptron. The spherical perceptron will motivate the next chapter.
We will return to both the binary and the spherical perceptron in Volume II,
in Chapter 8 and Chapter 9 respectively. Both the spherical and the binary
perceptron admit another popular version, where the Gaussian r.v.s g; ; are
replaced by independent Bernoulli r.v.s (i.e. independent random signs), and
we will also study these. Thus we will eventually investigate a total of four
related but different models. It is not very difficult to replace the Gaussian
r.v.s by random signs; but it is very much harder to study the case of X'y
than the case of the sphere.

Research Problem 2.1.1. (Level 3!) Prove that there exists a number a*
and a function ¢ : [0,a*) — R with the following properties:

1-If a > o*, then as N — oo and M/N — « the probability that the set
(2.1) is not empty is at most exp(—N/K(«)).

2-Ifa<a*, N — oo and M/N — «, then

1
N log card (Z‘N N ﬂ Uk> — () (2.3)
k<M

in probability. Compute a* and .

This problem is a typical example of a situation where one expects “reg-
ularity” as N — oo, but where it is unclear how to even start doing anything
relevant. In Volume II, we will prove (2.3) when « is small enough, and we
will compute p(«) in that case. (We expect that the case of larger « is much
more difficult.) As a corollary, we will prove that there exists a number ag < 1
such that if M = |aN|, a > ag, then the set (2.1) is typically empty for N
large, despite the fact that the expected value of its cardinality is 2V =M > 1.

One way to approach the (very difficult) problem mentioned above is
to introduce a version “with a temperature”. We observe that if z > 0 we
have limg_,ocexp(—fz) = 0 if z > 0 and = 1 if = 0. Using this for
=3 cm liogu,} where o € Xy implies

card(ENﬂ ﬂ Uk> :6h—>ngc Z eXp(—ﬁ Z 1{0'¢Uk}> s (24)
k<M oeXN k<M

so that to study (2.3) it should be relevant to use the Hamiltonian

— HN,M(O') = —ﬂ Z 1{0¢Uk} . (2.5)
k<M

If one can compute the corresponding partition function (and succeed in
exchanging the limits N — oo and  — o0), one will then prove (2.3).
More generally, we will consider Hamiltonians of the type
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— Hy (o) = Z u(\/% Z gi,k0i> ; (2.6)

k<M i<N

where u is a function, and where (g; 1) are independent standard normal r.v.s.
Of course the Hamiltonian depends on u, but the dependence is kept implicit.
The role of the factor N=%/2 is to make the quantity N-1/2 D ien i kTi
typically of order 1. There is no parameter 3 in the right-hand side of (2.6),
since this parameter can be thought of as being included in the function wu.

Since it is difficult to prove anything at all without using integration
by parts we will always assume that w is differentiable. But if we want the
Hamiltonian (2.6) to be a fair approximation of the Hamiltonian (2.5), we will
have to accept that u’ takes very large values. Then, in the formulas where
u’ occurs, we will have to show that somehow these large values cancel out.
There is no magic way to do this, one has to work hard and prove delicate
estimates (as we will do in Chapter 8). Another source of difficulty is that we
want to approximate the Hamiltonian (2.5) for large values of 5. That makes
it difficult to bound from below a number of quantities that occur naturally
as denominators in our computations.

On the other hand, there is a kind of beautiful “algebraic” structure
connected to the Hamiltonian (2.6), which is uncorrelated to the analytical
problems described above. We feel that it is appropriate, in a first stage,
to bring this structure forward, and to set aside the analytical problems (to
which we will return later). Thus, in this chapter we will assume a very strong
condition on u, namely that for a certain constant D we have

Ve,0<0<3, |[u9<D. (2.7)

Given values of N and M we will try to “describe the system generated by the
Hamiltonian (2.6)” within error terms that become small for N large. We will
be able to do this when the ratio @ = M/N is small enough, a < a(D). The
notation « = M/N will be used through this chapter and until Chapter 4.
Let us now try to give an overview of what will happen, without getting
into details. We recall the notation Rye = N71Y", afof/. As is the case
for the SK model, we expect that in the high-temperature regime we have

RLQ ~ q (28)
for a certain number ¢ depending on the system. Let us define
Sk:izg-ka- ; sﬁ:izg-kgﬁ. (2.9)
VN VNS

After one works some length of time with the system, one gets the irresistible
feeling that (in the high-temperature regime) “the quantities Sy behave like
individual spins”, and (2.8) has to be complemented by the relation
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— Z u'(S3) ~r (2.10)

k<M

where r is another number attached to the system. Probably the reader would
expect a normalization factor M rather than N in (2.10), but since we should
think of M/N as M/N — « > 0, this is really the same. Also, the occurrence
of u’ will soon become clear.

We will use the cavity method twice. In Section 2.2 we “remove one spin”
as in Chapter 1. This lets us guess what is the correct expression of g as
a function of r. In Section 2.3, we then use the “cavity in M”, comparing
the system with the similar system where M has been replaced by M — 1.
This lets us guess what the expression of r should be as a function of ¢q. The
two relations between r and ¢ that are obtained in this manner are called
the “replica-symmetric equations” in physics. We prove in Section 2.4 that
these equations do have a solution, and that (2.8) and (2.10) hold for these
values of ¢ and r. For N large and M /N small, we will then (approximately)
compute the value of

o (u) = %Elogz exp(—Hyn (o)), (2.11)

(for the Hamiltonian defined by (2.6)) by an interpolation method motivated
by the idea that the quantities S; “behave like individual spins”.

2.2 The Smart Path

It would certainly help to understand how the Hamiltonian (2.6) depends on
the last spin. Let us write

so that S, = Sg + N_l/QngaN and if u is differentiable,

D ulSe) =) u(sy) +0N2%’Sk+ ZgNk (8% + -

k<M k<M k<M k<M
(2.12)

The terms - - - are of lower order. We observe that o% = 1. (This will no longer
be the case in Chapter 3, when we will consider spins taking all possible
values, so that o3, will no longer be constant.) We also observe that the r.v.s
gn, are independent. So it is reasonable according to the law of large numbers
to expect that the third term on the right-hand side should behave like a
constant and not influence the Hamiltonian. By the central limit theorem, one
should expect the second term on the right-hand side of (2.12) to behave like
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onY, where Y is a Gaussian r.v. independent of all the other r.v.s (Of course
at some point we will have to guess what is the right choice for » = EY2, but
the time will come when this guess will be obvious.) Thus we expect that

Z u(Sk) =~ Z u(S)) + onY + constant . (2.13)
k<M k<M

Rather than using power expansions (which are impractical when we do not
have a good control on higher derivatives) it is more fruitful to find a suitable
interpolation between the left and the right-hand sides of (2.13). The first idea
that comes to mind is to use the Hamiltonian

Z u(S,g—l—\/%gN,kaN) +onvV1—tY. (2.14)
k<M

This is effective and was used in [157]. However, the variance of the Gaussian
Ir.V. S,g ++/t/Ngn ron depends on t; when differentiating, this creates terms
that we will avoid by being more clever. Let us consider the quantity

[t 11
Skt = Sku(o, &) = Si + NINKON + ) En
1 t 1=t
= = Z 9i,k0i + [QN,kUN + &k - (2.15)
VN X N N

In this expression, we should think of (§;)r<as not just as random constants
ensuring that the variance of Sy ; is constant but also as “new spins”. That
is, let € = (§k)<m € RM  and consider the Hamiltonian

— Hya(0,6) = > ulSke) + onVI—tY . (2.16)

k<M

The configurations are now points (o, €) in Xy x RM. Let us denote by «y the
canonical Gaussian measure on R™. We define Gibbs’ measure on Xy x RM
by the formula

1
=53 [ 1. exp(-Hyamil )ar(e)
where f is a function on Xy x R™ and where Z is the normalizing factor,

2= [ exp(-Hyanelo,€)dr(E)

More generally for a function f on (X¥y x RM)" = 2% x RM" we define
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1
<f>t:ﬁ Z /"'/f(a'l,...,a‘",El,...,ﬁn)
ol ... on

. exp<— 3 Hf@,M,t>dv<sl> (e | (2.17)

<n

where Z is as above and
Hyary = Hy (o, €°) (2.18)

Integration of & with respect to v means simply that we think of (£;)k<m
as independent Gaussian r.v.s and we take expectation. We recall the con-
vention that E; denotes expectation with respect to all r.v.s labeled
& (be it with subscripts or superscripts). We thus rewrite (2.17) as

<f>t:%E§ IZ nf(ala"'7Una£17"'a€n)exp(ZHJZV,M,t>; (219)

<n
Z =E¢ ZGXP(—HN,M,t(UaS)) .

In these formulas, & = (&)k<nm, & are independent Gaussian r.v.s. One
should think of &¢ as being a “replica” of &. In this setting, replicas are
simply independent copies.

Exercise 2.2.1. Prove that when f depends on &',...,o", but not on

gl €", then (f); in (2.19) is exactly the average of f with respect to
the Hamiltonian

1 t
~H = — DY L VI—ty

where u; is defined by

1—t
exp ug(z) = Eexpu(x + Tf) , (2.20)
for £ a standard normal r.v.

The reader might wonder whether it is really worth the effort to introduce
this present setting simply in order to avoid an extra term in Proposition 2.2.3
below, a term with which it is not so difficult to deal anyway. The point is
that the mechanism of “introducing new spins” is fundamental and must be
used in Section 2.3, so we might as well learn it now.

Consistently with our notation, if f is a function on X% x RM" we define

ve(f) =E(f)e; vi(f) = 7 wlf), (2.21)
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where (f); is given by (2.19).

We also write v(f) = v1(f). When f does not depend on the r.v.s £, then
v(f) = E(f), where (-) refers to Gibbs’ measure with Hamiltonian (2.6). As
in Chapter 1, we write g, = 0%, and we recall the r.v. Y of (2.16).

Lemma 2.2.2. Given a function f~ on X% _,, and a subset I of {1,...,n},
we have
Vo <f_ Hsg> = E((¢thY)*™ )y (f7) = 1o (H 52) vo(f™) -
el el

This lemma holds whatever the value of »r = EY"2. The proof is identical to
that of Lemma 1.6.2. The Hamiltonian Hy pr,0 decouples the last spin from
the first N — 1 spins, which is what it is designed to do.

We now turn to the computation of v;(f). Throughout the chapter, we
write « = M/N. Implicitly, we think of N and M as being large but fixed.
The model then depends on the parameters N and « (and of course of u). We
recall the definition (2.15) of Sy, and consistently with the notation (2.18)

we erle
k},1 /N = ) N N k

Proposition 2.2.3. Assume that u is twice differentiable and let r = EY?2.
Then for a function f on X3, we have

Vi(f) =T+1I (2.23)

I=a Y wi(eee/(Sig)w'(Sir,)f)
1<e<t'<n
—an Z Vi (E£5n+1ul(sﬁ1,t)u/(sg/fftl)f)
<n
an(n +1)

5 (Ent1entou’ (Sy )W (S0 S) - (2.24)

I = —7’( Z yt(gé{—jelf) —-n Z Vt(€€5n+1f)

1<e<t/<n <n

+ WMEMEM f)) . (2.25)

The proposition resembles Lemma 1.6.3, so it should not be so scary
anymore. As in Lemma 1.6.3, the complication is algebraic, and each of the
terms I and II is made up of simple pieces. Moreover both terms have similar
structures. This formula will turn out to be much easier to use than one might
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think at first. In particular one should observe that by symmetry, and since
o = M/N, in the expression for I we can replace the term aw’(Sf, ,)u' (S}, )

by
~ Z (Sk.)u Sm),

k<M

so that if (2.10) is indeed correct, the terms I and IT should have a good will
to cancel each other out.

Proof. We could make this computation appear as a consequence of (1.40),
but for the rest of the book we will change policy, and proceed directly, i.e.
we write the value of the derivative and we integrate by parts. It is immediate
from (2.19) that

d d d
=2 (Gcthmor) —n(Gemaas) - e

and, writing gy for gy k,

d _ 1 9k5£ f o Y

We observe the symmetry for £ < M. All the values of k bring the same
contribution. There are M of them, and M/\/N = a\/ﬁ, so that

V(f) =TII+1V +V

III = %@(Z vi(gareen/ (Siy) f) — n (gManHu’(S;;g)f)) (2.28)

<n

V= -3 % (Z ve(E300/ (S f) — e (€7 M ’(Sxﬁ)f))

t
<n

V= —% —11—15 <£;L vi(edY f) — ”Vt(5n+1yf)> :

It remains to integrate by parts in these formulas to get the result. The easiest

case is that of the term IV, because “different replicas use independent copies
of £€”. We write the explicit formula for (£§,u’(S};,)f):, that is

<§§\4UI(SJ<4 )
= n Eg (fM Z u/(Sf;Lt)f(a'l7 i exp(— Z Hﬁﬂ,N,t)) ,
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and we see that we only have to integrate by parts in the numerator. The
dependence on &}, is through v/(Sj,,) and through the term u(SﬁM) in the
Hamiltonian and moreover
9Si, 1t
[ - )
o0&y N

(2.29)

so that

(€t (85000 F)e = | T (W (Sh) + (S50,

and therefore

v=-% (Z ut(((u”(s@mu@<sfw,t>>f)—nw((u”(S?ZS)+u’2<82‘f,£>>f>)-

L<n
The second easiest case is that of V, because we have done the same com-
putation (implicitly at least) in Chapter 1; since EY? = 7, we have V = IL
Of course, the reader who does not find this formula obvious should simply
write
vi(eeY f) = EY (eef)e

and carry out the integration by parts, writing the explicit formula for (e, f);.
To compute the term III, there is no miracle. We write

vi(gmeed (Sir,) f) = Egareeu’ (Shy o) e

and we use the integration by parts formula E(gas F(gar)) = EF'(gar) when
seeing (gu/(S,,)f)+ as a function of gas. The dependence on gy is through

the quantities Sﬁﬁv’ and

6SJZ\/I,U t
8gM - N

Writing the (cumbersome) explicit formula for (eou'(S5,,)f)¢, we get that

0 p "
gotent (St e = (W S50

+ > (oo (Shp ) (Shp) i — n<eeen+lu’<sfu,t)u’<sxz£)f>t) :
V<n

The first term arises from the dependence of the factor u/(S{,,) on gas and
the other terms from the dependence of the Hamiltonian on gp;. Consequently
we obtain

Vt(EKU/(SJ{/I,t)f) = \/%(Vt(u//(&ev[,t)f)

© 3 nereond (Sl (S50 ) — nut<ezen+1u'<sf;4,t>u'<sxf,£>f>) .

'<n
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Similarly we have

0
e (300 = 3 (8

+ Z <5€’5n+1u/(5§;1,t)u,(5}\7,_t1)f>t

0<n+1
—(n+ 1)<5n+15n+2ul(517\14+,t1)“/(SJ%E)J%> ’

and consequently

Vt(5n+1u/(SZT\L/[Tt1)f) = \/E(Vt(u”(sly\?tl)f)

+ Y vlevenau (S )u' (S5O
0 <n+1

—(n+ 1)Vt(5n+15n+2u/(SHM_‘,—tl)u/(SJT\L/IftQ)f)> .

Regrouping the terms, we see that III + IV = 1.

O

Exercise 2.2.4. Suppose that we had not been as sleek as we were, and that

instead of (2.15) and (2.22) we had defined

t 1 t
_ _ Q0 _ ) .
Skt = Ski(0) = S + 4/ NgN,kUN = N i<ENgz,kO'z +14/ NgN,kUN
and

1 t
Sii = N > gikol 1 NQN,kav :

i<N

Prove that then in the formula (2.23) we would get the extra term

«

Vi=3 <Z v ((u’(S&t)%u”(SﬁLt))f) —nvy ((U'(Sﬁf)u“”(sz\ﬂl))f)> '

L<n

2.3 Cavity in M

To pursue the idea that the terms I and II in (2.23) should nearly cancel out
each other, the first thing to do is to try to make sense of the term I, and to
understand the influence of the quantities u’(S};,). The quantities Sf, , also
occur in the Hamiltonian, and we should make this dependence explicit. For

this we introduce a new Hamiltonian
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—Hym14(0,8) = D> u(Ski(o,)) +onVI—tY (2.30)

k<M—1

where the dependence on £ is stressed to point out that it will be handled as
in the case of the Hamiltonian (2.16), that is, an average (-); . with respect
to this Hamiltonian will be computed with the formula (2.31) below. Let us
first notice that, even though the right-hand side of (2.30) does not depend
on &y, we denote for simplicity of notation the Hamiltonian as a function of
o and . If f is a function on X% x RM™ we then define

ZHNM 1t)’

<n

1 n n
<f>t,~:ﬁEf Z flat, ... o™ €. . &) exp(
~ ol,..on

(2.31)
where

Z. =E¢ ZGXP(_HN,M—17t(O'7£)) ;

and where Hﬁf,Mth = Hym-1.4(0" &"). There of course E¢ includes ex-
pectation in the r.v.s §ﬁ/[, even though the Hamiltonian does not depend on
those. Since —Hﬁ,’M’t = —Hf(,,M_Lt + u(SﬁM), the identity

Z =E¢ ZQXP(_H}V,M,t) = E¢ ZQXPU(S%/M) eXp(—H}\,7M_17t)

= Z{expu(Siy)) e~

holds, and, similarly,

Ee Z f(al,...,o'",£17...,£” exp( ZHNMt)
ol ....on L<n
—Z"<fexpz SMt > .

<n

Combining these two formulas with (2.31) yields that if f is a function
on X% x RM" we have

(f exp(Xpcn u(Shra))),

(Fle= <expu(511w,t)>?,~

(2.32)

Our best guess now is that the quantities S% Mo When seen as functions
of the system with Hamiltonian (2.30), will have a jointly Gaussian behavior
under Gibbs’ measure, with pairwise correlation ¢, allowing us to approx-
imately compute the right-hand side of (2.32) in Proposition 2.3.5 below.
This again will be shown by interpolation. Let us consider a new parameter
0 < ¢ < 1 and standard Gaussian r.v.s (¢°) and z that are independent of all
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the other r.v.s already considered. (The reader will not confuse the r.v.s &°
with the r.v.s £,.) Let us set

0" =2/q+€/1—q. (2.33)

Thus these r.v.s share the common randomness z and are independent given
that randomness. For 0 < v < 1 we define

St =S4, + V108" (2.34)

The dependence on t is kept implicit; when using S’ we think of ¢ (and M)
as being fixed.

Let us pursue the idea that in (2.31), E; denotes expectation in all
r.v.s labeled ¢ including the variables £ and let us further define with this

convention
<f exp (Zzgn U(Sf)) >t,~

Vt,v(f) = E <exp U(S,Ll))>?,~

(2.35)

Using (2.32) yields
via(f) =w(f)-

The idea of (2.35) is of course that in certain cases vy o(f) should be much
easier to evaluate than v, (f) = 1v,,1(f) and that these quantities should be
close to each other if ¢ is appropriately chosen. Before we go into the details
however, we would like to explain the pretty idea that is hidden behind this
construction. The idea is simply that we consider £ “as a new spin”. To
explain this, consider a spin system where the space of configurations is the
collection of all triplets (o,&,&) for o € Xy, € € RM and ¢ € R. Consider
the Hamiltonian

—H(O’,é,g) = _HN,M—l,t(Uaé) + U(S'U) )

where S, = /vSn s + 1 — 08, for 0 = z,/q+ /T — g&. Then, for a function
fofal,...,o™ €& ... €% and €1, ... & we can define a quantity (f);, by
a formula similar to (2.19) and (2.31). As in (2.32), we have

<f eXp(Zegn “(Sﬁ)) >t,N
(expu(SH))i . ’

so that in fact vy, = E(-);.. Let us observe that the r.v. § depends also
on z, but this r.v. is not considered as a “new spin”, but rather as “new
randomness” .

The present idea of considering £ as a new spin is essential. As we men-
tioned on page 156, the idea of considering &1, ...,&)s as new spins was not
essential, but since it is the same idea, we decided to make the minimal extra
effort to use the setting of (2.19).

First, we reveal the magic of the computation of v, .

<f>t,v =
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Lemma 2.3.1. Consider 0 < ¢ <1 and define

~ Ecu'(6) exp u(f) 2
r=E ( E¢ exp u(6) ) ' (2.36)

where 0 = z,/q + &/1 — q for independent standard Gaussian r.v.s z and §
and where E¢ denotes expectation in § only. Consider a function f on X%.
This function might depend on the variables & for k < M and ¢ < n, but it
does not depend on the randomness of the variables £, or £¢. Then

vio(f) =E(fle~ (2.37)

and

veo(u' (So)u'(S3)f) = TE(f)e - (2.38)

In particular we have vy o(u/ (S3)w'(S3)f) = Tveo(f). If such an equality is
nearly true for v = 1 rather than for v = 0, we are in good shape to use
Proposition 2.2.3.

Proof. First we have

<feXpZ 94> (Fe~Eeexp > u(f’). (2.39)

L<n L<n

This follows from the formula (2.31). The quantities ¢ do not depend on the
spins o, and their randomness “in the variables labeled £” is independent of
the randomness of the other terms. Now, independence implies

E¢ exp Z = (Ecexpu(6))"
<n

Moreover (expu(#));~ = Ecexpu(d), as (an obvious) special case of
(2.39). This proves (2.37).
To prove (2.38), proceeding in a similar manner and using now that

Eg( o/ (6* expz (6% ) (Ecu'(0) exp u(@))z(Eg exp u(9))n72 ,
<n
we get
(fu' (0 )u' (6%) exp 3o, u(6°))
/ 1N,/ 2 _ n t,~
Vt,O(u (SO)U (SO>f) =E <expu(0)>?7~
= %<f>t,~ )
and this finishes the proof. a

We now turn to the proof that v, o and v ; are close. We recall that D is
the constant of (2.7).
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Lemma 2.3.2. Consider a function f on X3. This function depend on the
variables ff; for k < M and ¢ < n, but it does not depend on the randomness
of the variables z,gi v, &4 or €4 Then if B, = 1 or B, = u/(S)u/(S2),
whenever 1/11 + 1/15 = 1 we have

d 1
B < K D) (s (R a7+ U1

(2.40)
Here K(n, D) depends on n and D only.

Therefore the left-hand side is small if we can find ¢ such that R; 2 ~ g. The
reason why we write a derivative in the left-hand side rather than a partial
derivative is that when considering v , we always think of ¢ as fixed.

Proof. The core of the proof is to compute d(v; , (B, f))/dv by differentiation
and integration by parts, after which the bound (2.40) basically follows from
Holder’s inequality. It turns out that if one looks at things the right way,
there is a relatively simple expression for d(v;,, (B, f))/dv. We will not reveal
this magic formula now. Our immediate concern is to explain in great detail
the mechanism of integration by parts, that will occur again and again, and
for this we decided to use a completely pedestrian approach, writing only
absolutely explicit formulas.

First, we compute d(v;,(B,f))/dv by straightforward differentiation of
the formula (2.35). In the case where B, = u/(S})u’(S2), setting

1

1
SZ/ _ SZ _
v 2\/6 ]\/I,t 2 1 —v

9@
we find

Lo (Buf)) = v (FSE (S (S2) v (570 (51" (52)
F Y v (A8 (S0 (S (57)

<n

— (n 4 Dy, (FSP T/ (SITHY (S3)'(S)) - (2.41)

Of course the first term occurs because of the factor u’(S}) in B,, the second
term because of the factor u/(S2?) and the other terms because of the depen-
dence of the Hamiltonian on v. The rest of the proof consists in integrating
by parts. In some sense it is a straight forward application of the Gaussian
integration by parts formula (A.17). However, since we are dealing with com-
plicated expressions, it will take several pages to fill in all the details. The
notation is complicated, and this obscures the basic simplicity of the argu-
ment. Probably the ambitious reader should try to compute everything on
her own in simple case, and look at our presentation only if she gets stuck.
Even though we have written the previous formula in a compact form
using 14 ,, to integrate by parts we have to spell out the dependence of the
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Hamiltonian on the variables S’ by using the formula (2.35). For example,
the first term in the right-hand side of (2.41) is

(fSSu" (S (S7) exp (X<, ulSE)) ),
E 1
(expu(S)))7 o
To keep the formulas manageable, let us write

w:w(a'lw-wo'nygl,-nv&n —exp< ZHN]\/[ 1t)

<n

(2.42)

and let us define

wi = w. (0", &") = exp(—Hy pr1,) -

These quantities are probabilistically independent of the randomness of the
variables Sﬁ (which is why we introduced the Hamiltonian Hy ar—1, in the
first place).

The quantity (2.42) is then equal to

Ef Zo’l ...,on ’IUS})/C
E Z” , (2.43)
where
Z =E¢ Z w!expu(Sl),
0'1
and where

¢ = (s (s (L ulst) )

<n
Let us now make an observation that will be used many times. The r.v.
Z is independent of all the r.v.s labeled £, so that
Ef Zo‘l,...,cr" w SII)IC Za—l,...,a" w Sil;lc
zn = Eg zn ’

and thus the quantity (2.43) is then equal to

EEe > w S;’Zn_E Z S;’Zn. (2.44)

0-1’“"0-n

Let us now denote by Eq integration in the randomness of g; ar, EJZM, z and
&*, given all the other sources of randomness. Therefore, since the quantities
w do not depend on any of the variables g; s, §£, z or £ the quantity (2.44)
equals

E Z wEOS;’Zn. (2.45)



166 2. The Perceptron Model

The main step in the computation is the calculation of the quantity
EoSL'C/Z™ by integration by parts. We advise the reader to study the el-
ementary proof of Lemma 2.4.4 below as a preparation to this computation
in a simpler setting. To apply the Gaussian integration by parts formula
(A.17), we need to find a jointly Gaussian family (g, 21, ..., 2p) of r.v.s such
that g = S} and that C'/Z" is a function F(zi,...,2p) of z1,...,2p. The
first idea that comes to mind is to use for the r.v.s (z,) the following family
of variables, indexed by o and /,

2g = V0Sari(a, &) + V1 — 06"

= \/5(\/% KZNgi,JWUi + \/%QN,MUN +4/ %55\4)
+VI-o(z/g+E1-9q),

where o € Xy takes all possible values and ¢ is an integer. Of course these
variables depend on v but the dependence is kept implicit because we think
now of v as fixed. We observe that

v

SE=2L,, (2.46)
so that we can think of C as a function of these quantities:

C= CO'I,...,O'” = Fal,...,a"((zﬁ-)) ’ (247>

where Fp1  on is the function of the variables xf; given by

Foi on((zh)) = f(o!,...,0™)u" (zk)u (222) exp <Z u(zﬁ,ﬁ) . (2.48)

<n

Condition (2.47) holds simply because to compute Fa-17.”’a-n((zﬁ_g)), we sub-
stitute zfr . = Sﬁ to x{" . in the previous formula. This construction however
does not suffice, because Z cannot be considered as a function of the quan-
tities 25 : the effect of the expectation E¢ is that “the part depending on the
r.v.s labeled ¢ has been averaged out”. The part of 2, that does not depend
on the r.v.s labeled ¢ is simply

1 t
Yo = \/5(— Z 9i,MOi+ 4/ —gN,MUN> +V1-vqz.
\/NKN N
Defining
1-—t
fﬁzﬁ\/TﬁfQ*‘vl—v\/l—%ea

we then have
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It is now possible to express Z as a function of the r.v.s y.. This is shown
by the formula

Z = Fi((ys)) ,

where Fj is the function of the variables z, given by

Fi((#0)) = Ee 3 wal0, € expuleg +€1) (2.49)

Let us now define

1 1
0r ¥4
Zg = —=9S o, -
20 Mi(0, &) 20i—0v

1 1 Z n [t n /1—t£e
==\ —7= i, MO7q ~ g -
2\/5 \/NKNQ,M NQN,M N N M

A VT,

so that S¥ = zf;’,z. The family of all the r.v.s 25, yo, ¢, and 2¥ is a Gaussian
family, and this is the family we will use to apply the integration by parts
formula. In the upcoming formulas, the reader should take great care to
distinguish between the quantities z and z (The position of the / is not
the same).

We note the relations

E(0°)2 =1 =E(Smu(0,65,))%; € #0 = E9" =¢

040 = ESy(0,64) S0 (T, 65) = Ri (o, T) Z ot + oNTN ,
N
so that
E2l2L =0 040 = Ezl2l = %(Rt(a,‘r) -q), (2.50)
and
Ezly, = (Rt(O',T) —q). (2.51)

We will simply use the integration by parts formula (A.17) and these
relations to understand the form of the quantity

C
E()S,ilﬁ = EOZi.Il (252)
Let us repeat that this integration by parts takes place given all the
sources of randomness other than the r.v.s g; a, §£ for k < M, z and &
(so that it is fine if f depends on some randomness independent of these).
The exact result of the computation is not relevant now (it will be given
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in Chapter 9). For the present result we simply need the information that
Ay (Byf)/dv is a sum of terms of the type (using the notation Rj, =

Ri(at, "))
Vewo(f (R — )A) (2.53)

where A is a monomial in the quantities u'(S7),u” (S™),u®® (S™) for m <
n + 2. So, let us perform the integration by parts in (2.52):

R OF g1 on 1
E 6— Eozti 2LE 7 (20) 5
ey~ & B g O g
(9F1 Fa-l,...,a'”((zﬁ-))
nz EOZg-lyTEO 8 ((yo‘)) Fl((ya))n+1

It is convenient to refer to the last term in the above (or similar) formula “as
the term created by the denominator” when performing the integration by
parts in (2.52). (It would be nice to remember this, since we will often use this
expression in our future attempts at describing at a high level computations
similar to the present one.) We first compute this term. We observe that

O B (r € (e + ) expulay 1)

Therefore using (2.51) we see that the term created by the denominator in
(2.52) is

n 1 n ZZ Wy - exp u(yr i
_—EOZ(Rt(o-lﬂ_)_q)Fa o ((26))Bews (T (f )))Elyﬂm) puys &)

Since y + &L = 2L, the contribution of this term to (2.44) is then

n L1 Foi . on((25))Ecw. (T, (21) exp u(zy)
_ §E Z w(R' (o7, 7)—q) Filyo))™ .

(2.54)
Now,

ng*(r,fl)u/( 1)expu( +) = Eew. (T ,€”+1)u/(zz_’+1)expu( "+1),

so that, changing the name of T into ™1, and since w2 ™t = w, (o™ 1, €7 +1),
the quantity (2.54) is equal to (using (2.46) in the second line)

For,  on((z ))ng”“u’(zgﬁl) exp u(zgﬁl)

_—E Z Rl ;n+1 Q) Fl(( 0_))n+1

o.n+1

n CEewl T/ (S7 ) expu(S5Tt)
= _§E Z (Rl ;n+1 Q) Zn+l :

ol,...,on+l
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In a last step we observe that in the above formula we can remove the expec-
tation E¢. This is because the r.v.s labeled £ that occur in this expectation
(namely €"*1 and £"*1!) are independent of the other r.v.s labeled ¢ that
occur in C' and w. In this manner we finally see that the contribution of this
quantity to the computation of (2.42) is

ey C(R 41 — Quwwi ™/ (S expu(Sy*)

—3F Zn+1

0.1,.“’0-714»1

n
= — 5V (F(BL 1 = Qu"(Sy)u/ (SO (S77) -

In a similar manner we compute the contribution in (2.52) of the dependence
of Fy1, . o» on the variables 2L at a given value of £, i.e of the quantity

O0F ;1 n 1
1 e T .0 £
E“_ EOZo'lz-rEO ax£ ((Za))Fl((ya))n . (255>

We observe in particular from (2.48) that

OFg1, . on
T((Zﬁ)) =0

unless 7 = o, so that the quantity (2.55) equals

OF 51 . on
e (C3)
ot

1
Fi((ye))"

Since Ez% 2% = 0 by (2.50) we see that for £ = 1 the contribution of this term
is 0.
When ¢ > 3, we have

P (0)) = S0 oo b a  exo (Y el )

<n

Eozli 25 Eo (2.56)

so that the term (2.55) is simply

1

S (£~ u (S (S2)u'(51))

If ¢ = 2, there is another term because of the factor u/(S2), and this term is

sveo (f(RE 5 — q)u”(S%)u”(Sg)). So actually we have shown that

Vo (F8) U (S ( (Ri 2 — q)u"(S;)u"(S9))

vio(f
Z F(RL = q)u" (Sy)u' (S7)u'(Sy))

2<¢

MI;)’ l\3|H

<n
Vew (F(RY iy — @)u” (S))u' (SDu'(S571) -
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We strongly suggest to the enterprising reader to compute now all the
other terms of (2.41). This is the best way to really understand the mechanism
at work. There is no difficulty whatsoever, this just requires patience.

Calculations similar to the previous one will be needed again and again.
We will not anymore explain them formally as above. Rather, we will give
the result of the computation with possibly a few words of explanation. It is
worth making now a simple observation that helps finding the result of such
a computation. It is the fact that from (2.51) we have

Ezly, = E2¥n+1 .
In a sense this means that when performing the integration by parts, we
obtain the same result as if Z were actually a function of the variables 2271

It is useful to formulate this principle as a heuristic rule:

The result of the expectation E¢ in the definition of Z is somehow

“to shift the dependence of Z in S, on a new replica” . (2.57)

When describing in the future the computation of a quantity such as
veo (FSYU"(SHu'(S2)) by integration by parts, we will simply say: we inte-
grate by parts using the relations

ES!/S! =03 ESUS! = 5(Rio —a). (259
and we will expect that the reader has understood enough of the algebraic
mechanism at work to be able to check that the result of the computation is
indeed the one we give, and the heuristic rule (2.57) should be precious for
this purpose. There are two more such calculations in the present chapter,
and the algebra in each is much simpler than in the present case. As a good
start to develop the understanding of this mechanism, the reader should at

the very least check the following two formulas involved in the computation
of (2.41):

v (/830 (53 (1) (52)

= Svn(F(RS — a)u (S (SH)u'(52))
50 (F (RS2 — ) (2 (1) (2))

S° v (F(Rh — ) (S (Shu (52)u/ (1))

Ve (F(RS oy — @) (S) (Sy)u/ (S7)u/ (S5F)

and
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v (£S5 (Sy U (Sy)u' (S7))
1

= St (F(Bhr 1 — @ (S (Sl (52)
(PRl — 0w (ST (S (52))
S (F(Rh e — ) (S (Sl (52 (55)
<n
U (F (Rl — 0 (ST (S (20 (S172))

We bound a term (2.53) by
KE(D)vro (| fIIR ¢ —ql)

and we write |R} , — q| < |Rye — g| +1/N to obtain the inequality

d 1
‘@w,v(vi)‘ < K(n, D)( S wullfliRee —ab) + Nut,v<|f|>> .
1<0<' <n42
(2.59)
To conclude we use Hoélder’s inequality. a

Exercise 2.3.3. Let us recall the notation Si,t of Proposition 2.2.3 and de-
fine

SU — 1 (gkw 3 ),
T 2YN\ WVt VTt

so that (2.27) becomes

d EgY
ar HNJV[t Zsktu Skt

k<M 2v1—t
Observe the relations
0 ol ol 1 / ’
ESk,tSk:7t =0 3 ESk,tSk:7t 2N€[52/ if ¢ % é ; Sk’ = =0if k ?é k.

(2.60)
Get convinced that the previously described mechanism yields the formula
(when £ <mn+1)

1

v (SEad (SE)f) = 5 vileecon! (Sgo)u' (SE,)f)

(€’¢€,Z’§n+1
i+ 1>vt<eesn+2u/<s£,t>u/<s:f>f)) .

Then get convinced that the term I in (2.23) can be obtained “in one step”
rather than by integrating by parts separately over the r.v.s & , and gi as
was done in the proof of Proposition 2.2.3.
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To follow future computations it is really important to understand the
difference between the situation (2.58) (where integration by parts “brings
a factor (Rj, — ¢)/2 in each term”) and the situation (2.60), where this
integration by parts brings “a factor e¢e /2N in each term”.

Let us point out that the constants K (n, D) and K (D) are simply avatars
of our ubiquitous constant K, and they need not be the same at each occur-
rence. The only difference is that here we make explicit that these constants
depend only on n and D (etc.) simply because this is easier to do when there
are so few parameters. Of course, K (D), etc. denote specific constants.

Lemma 2.3.4. If f > 0 is a function on X%, we have
vio(f) < K(n, D)vi(f) - (2.61)

Proof. We use (2.40) with B, =1, 71 = 1,72 = 0o to get

d
oD < KDl
v
We integrate and we use that v, 1(f) = v (f). O

Proposition 2.3.5. Consider a function f on X%,. This function might be
random, but it does not depend on the randomness of the variables g; nr, &5,
or z. Then, whenever 1/71 + 1/7 = 1, we have

e (fu' (S ) (Sipe)) — T (f)| < K(n, D) (Vt(|f|T1)l/Tll’t(|R1,2 —q|)

+ i) (2:62)

This provides a good understanding of the term I of (2.23), provided we can
find ¢ such that the right-hand side is small.

Proof. We consider B, as in Lemma 2.3.2, we write

d
lve1(Bif) —vio(Bof)| < max @Vt’”(B”f) , (2.63)
and we use (2.40) and (2.61) to get
vea(Brf) = vio(Bof)| < B, (2.64)

where B is a term as in the right-hand side of (2.62). Thus in the case B, = 1,
and since 141 = 14, (2.37) and (2.64) imply that

e (f) —E(f)e~| <B. (2.65)
In the case B, = u/(S})u/(S?), (2.38) and (2.64) mean
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|Vt (fU/(Sle,t)“/(S?w,t)) - ?E<f>t,~| <B
and combining with (2.65) finishes the proof. O

We now set r = ar, and (2.62) implies
’CWt (5454’ ful(sfﬁ,t)ul(szlc[,t)) — T (EZEK’JC)|
< ki, ) (U wil R = )77 + D))
Looking again at the terms I and II of Proposition 2.2.3, we have proved the

following.

Proposition 2.3.6. Consider a function f on X% (that does not depend on
any of the r.v.s ginr, €4, &4 or z). Then, whenever 1/ +1/7 = 1, we have

A < @B (Do) (U7 lIRa = ™) 4 (1) - (2:60)

The following is an obviously helpful way to relate v and v;.

Lemma 2.3.7. There exists a constant K(D) with the following property. If
aK (D) < 1, whenever f > 0 is a function on X% (that does not depend on
any of the r.v.s g@M,{Z,EJ@ or z), we have

v (f) <2v(f) . (2.67)

Proof. We use Proposition 2.3.6 with 71 = 1 and 79 = 0o to see that

Wi ()] < aKy(D)n(f)
from which (2.67) follows by integration if aK; (D) < log2. O

2.4 The Replica Symmetric Solution

We recall the notation 6 = z,/q + §{+/1 — ¢ where z and { are independent
standard Gaussian r.v.s, and that E; denotes expectation in { only.

Theorem 2.4.1. Given D > 0, there is a number K(D) with the following
property. Assume that the function u satisfies (2.7), i.e.
V<3, w9 <D.

Then whenever a < 1/K (D) the system of equations

i eum . o (B @ expu®))?
q=Eth2(z2v/r) ; E( E: oxp (@) ) (2.68)

in the unknown q and r has a unique solution, and

L

v((Ri2—q)?) < N (2.69)
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Proof. Let us write the second equation of (2.68) as r = ar = ar(q).
Differentiation and integration by parts show that |7(¢)] < K(D) under
(2.7). The function 7 — Eth?(zy/7) has a bounded derivative; so the func-
tion ¢ — 1(q) := Eth*(zy/ar(q)) has a derivative < aKy(D). Therefore if
2aK5(D) < 1 there is a unique solution to the equation ¢ = 1(q) because
then the function (q) is valued in [0, 1] with a derivative < 1/2.

Symmetry among sites yields

v((Ri2 —q)%) = v(f) (2.70)

where f = (e162 — q)(R1,2 — q), and we write
v(f) <wo(f)+ sup [vi(f)]. (2.71)

0<t<1

Since ¢ = Eth?(zy/r) = Eth?Y, Lemma 2.2.2 implies
vo((e162 = q)(Riz — @) = (Eth®Y — q)ro(Ri, —q) =0,

and thus )

vo(f) = 1ol —e1e2q) = %(1 —q¢%). (2.72)

To compute v;(f), we use Proposition 2.3.6 with n = 2 and 71 = 75 = 2.
Since |f] < 2|R1,2 — q|, we obtain

Wi < K D) (n((Raz =) + D) - (279

We substitute in (2.71) and use (2.67) to get the relation

v(f) =v((Ri2—q)?) < aK(D)<V((R1,2 —q)?) + %Vﬂf\)) + %(1 -4,

so that since |f| < 4 we obtain

K(D)(a+1)

V((Ri2—q)?) < aK(D)v((Riz2 —q)?) + N

One should observe that in the above argument we never used the unique-
ness of the solutions of the equations (2.68) to obtain (2.69), only their exis-
tence. In turn, uniqueness of these solutions follows from (2.69).

One may like to think of the present model as a kind of “square”. There
are two “spin systems”, one that consists of the o; and one that consists of the
Sk. These are coupled: the o; determine the S; and these in turn determine
the behavior of the ;. This philosophy undermines the first proof of Theorem
2.4.2 below.

From now on in this section, ¢ and r always denote the solutions of (2.68).
We recall the definition (2.11)
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1
. (u) = -Elog > exp(—Hym(0))
[

and we define

1 (1 — q) + Elog(2ch(2v/r)) + aE log E¢ expu(zy/q + £y/1 — q) -

p(u) = —5"
(2.74)
Theorem 2.4.2. Under the conditions of Theorem 2.4.1 we have
K(D
P (u) — p(u)| < (T> : (2.75)

We will present two proofs of this fact.

First proof of Theorem 2.4.2. We start with the most beautiful proof,
which is somewhat challenging. It implements through interpolation the idea
that “the quantities S behave like individual spins”. We consider indepen-
dent standard Gaussian r.v.s z, (zx)k<m, (2])i<n, (§k)k<m and for 0 < s <1
the Hamiltonian

—Hyns = Z u(v/sSy + V1 — sbi) + Z o1 —s2l\/r (2.76)

k<M i<N

where 0 = 2\/q + &k\/1 — ¢. In this formula, we should think of zj and 2
as representing new randomness, and of £ as representing “new spins”, so
that Gibbs averages are given by (2.19), and we define

1
PN.M,s = NElog Ee ;exp(—HM,N,s) .

The variables & are not the same as in Section 2.2; we could have denoted
them by &}, to insist on this fact, but we preferred simpler notation.

A key point of the present interpolation is that the equations giving the
parameters ¢s; and 74 corresponding to the parameters ¢ and r in the case
s =1 are now

qs = Eth? (V/s2\/T5 + V1 — s2'\/T) (2.77)

W Ecu/(05) exp u(bs) 2
s = E( E¢ expu(fs) ) (2.78)

where

Os = V3(2v/as + &1 = a0) + VI = s(z'Va+€V1-q).

To understand the formula (2.77) one should first understand what hap-
pens if we include the action of a random external field in the Hamiltonian,
i.e. we add a term hZigN gi0; (where g; are ii.d. standard Gaussian) to
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the right-hand side of (2.6). Then there is nothing to change to the proof of
Theorem 2.4.1; only the first formula of (2.68) becomes

q = Eth*(zy/r + hg) , (2.79)

where g,z are independent standard Gaussian r.v.s. We then observe that
the last term in (2.76) is an external field, that creates the term /1 — sz’\/r
in (2.77). The second term in the definition of 6, is created by the terms
V1 — s, in the Hamiltonian (2.76), a source of randomness “inside u”.

The values ¢5 = ¢, rs = r are solutions of the equations (2.77) and (2.78),
because for these values \/sz,/qs ++/1 — s2',/q is distributed like z,/g (etc.).
One could easily check that the solution of the system of equations (2.77)
and (2.78) is unique when aK (D) < 1, but this is not needed.

We leave to the readers, as an excellent exercise for those who really
want to master the present ideas, the task to prove (2.69) in the case of the
Hamiltonian (2.76). Since we have already made the effort to understand the
effect of the expectations E¢, there is really not much to change to the proof
we gave.

So, with obvious notation, one has

Vs € [O, 1] s Z/S((RLQ — q)2) < (280)

2=

Let us define

Skys = V8Sk + V1 — 56k 5 Sp =

<%(—HN,M,S)>

! I ]‘ !
= NVS<Z Sk,su (Sk,s) — 2\/14?2]:\[0}21\/’;) . (281)

k<M

1
S, —
25 o/l —s
so that

d (u) = 1
dSpN,M,S u) = NVS
1

The next step is to integrate by parts. It should be obvious how to proceed
for the integration by parts in z.; this gives

%(w% ZN mm) = L w(Rin))

Let us now explain how to compute v (S},  u'(Sk,s)). Without loss of general-
ity we assume k = M. We make explicit the dependence of the Hamiltonian
on Syr,s by introducing the Hamiltonian

7]:11\4_1,]\]’S = Z u(\/ESk +v1-— Sek) + Z ovV1— SZ;\/;' .

k<M-1 1SN
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Denoting by (-). an average for this Hamiltonian, we then have

(Sh s (Sar,s) expu(Sass))~

VS(SEVI’SU/(SM,S» =E (expu(Snr,s))~

(2.82)

Let us denote as usual by an upper index ¢ the fact “that the spins are
in the (-th replica”. For example, (since we think of & as a spin) 0 =
214/ + {f;\/l — q where §£ are independent standard Gaussian r.v.s, and
S,ﬁ’s = /sS; + /1 — s, and let us observe the key relations (where the
reader will not confuse SY, , with SfCLS)

/ 1
ESShrs =05 €A = ESy Sy, = 5(Rew =) -

Now we integrate by parts in (2.82). This integration by parts will take
place given the randomness of Hj;_1 n,s. We have explained in detail in
the proof of Lemma 2.3.2 how to proceed. The present case is significantly
simpler. There is only one term, “the term created by the denominator” (as
defined page 168), and we obtain

1
Vs(Shu st (Sns)) = =5vs((Ri2 = Q' (a0 (S ) -

This illustrates again the principle (2.58) that the expectation E¢ in the
denominator “shifts the variables there to a new replica.” Therefore we have
found that

d 1 1 r

Sopant) = =y (Ria=a)g 3 w(ShI($E)) - 50 - vlRia)

2
k<M

We will not use the fact that the contribution for each k¥ < M is the same,
but rather we regroup the terms as

d r
&pN,]V[,S(u) = —5(1 -q)

- %Vs ((Rm —q) <% Z U/(SJ}:,S)U/(SI%,S) - T>> (2.83)

k<M

This formula should be compared to (1.65). There seems to be little hope
to get any kind of positivity argument here. This is unfortunate because
as of today, positivity arguments are almost our only tool to obtain low-
temperature results.

We get, using the Cauchy-Schwarz inequality

%pN,M,s(u) + g(l - Q)‘ S Vs((Rl,Z - Q)Z)

d
x ((% > (Sku'(S7) - r)2>1/2 :

k<M

1/2 (2.84)
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From (2.80) we see that the right-hand side is < K(D)/v/N; but to get the
correct rate K (D)/N (rather than K (D)/+/N) in Theorem 2.4.2, we need to
know the following, that is proved separately in Lemma 2.4.3 below:

((% S (5L (S2,) —r)z) <KD (2.85)

k<M
We combine with (2.80) to obtain from (2.84) that

d r K(D)
il (1 — < 2\
dSpN,M,s(u) + 2(1 Q)’ Sy

so that, since py am(u) = pn a1 (u),

K(D)
N

,
’PN,M(U) + 5(1 -q) _pN,M,O(U)’ <

As the spins decouple in py,aro0(u), the computation of this quantity is
straightforward and this yields (2.75). O

Lemma 2.4.3. Inequality (2.85) holds under the conditions of Theorem
2.4.1.

Proof. Let us write

u/(Sli,s)ul(Slz,s) -r

f7:

2= =2l

k<M
1 2
Z u/(Sk,s)ul(Sk,s) -7,
k<M
so that, using symmetry between the values of k < M,

vs(f?) = v ((ou' (S ' (S3ps) = 7)f)
K(D)

< ws (0w (Sar, )W (S3re) = 1) 7) + = - (2.86)

We extend Proposition 2.3.5 to the present setting of the Hamiltonian (2.76)
to get

|vs (o (Shy )’ (S3,.0) — 1) 7))

< ozK(D)(yS((RL2 _ q)2)1/2ys((f7)2)1/2 n %) .

Combining these, and since 2v/ab < a + b, for K (D) < 1 this yields

K(D)

1 1 _
vs(f?) < §Vs((R1,2 -q)°) + §Vs((f )?) + N
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and since |f? — (f7)?| < K(D)/N we get

() < (B2 =) + ) + 52

which completes the proof using (2.80). O

To prepare for the second proof of Theorem 2.4.2; let us denote by
F(a,r,q) the right-hand side of (2.74), i.e.

1
F(a,r,q) = —57‘(1 — q) + Elog(2ch(z/7)) + aElog E¢ expu(6) ,

where § = z,/q + {+/1 — q and let us think of this quantity as a function of
three unrelated variables. For convenience, we reproduce the equations (2.68):

q=Eth*(zy/r) ; r=aE (%) . (2.87)

Lemma 2.4.4. The conditions (2.87) mean respectively that OF/0r = 0,
0F/9q = 0.

Proof. This is of course calculus, differentiation and integration by parts,
but it would be nice to really understand why this is true. We give the proof
in complete detail, but we suggest as a simple exercise that the reader tries
first to figure out these details by herself.

Integration by parts yields

OF 1 1 1 1
= —=Z(g—1+—Ezth =-(¢g-14+E————
o =3 (11 ) = (o )

so that OF/dr =0 if

1 2
=1—-E———=Eth .
1 ch?(z/7) (V)
Next, if
£
0=2G+E/1—q, 0 = —— — ,
vate NN
we have oF 6) ®)
r o« ,u/(0) expu
—=—-+-El0———F"—~ ) . 2.
g 2 2 < E¢c expu(h) ) (2:88)

To integrate by parts, we observe that F;(z) = E¢ expu(6) does not depend
on £ and

dF; d
& = g Eeexpulva +€V/1—q) = VaEcu'(0) expu(f)
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We appeal to the integration by parts formula (A.17) to find, since E(8'8) = 0,
E(¢'z) = 1/,/q that
yu'(0) expu(d)) 1, /
E (9 Fi(2) =-E Fl(Z)Zu (0) exp u(8)E¢(u'(6) expu(h))
(E¢u/ () expu(6))*
(Ec expu(0))?

so that by (2.88), 0F/0q = 0 if and only if the second part of (2.87) holds. O

If ¢ and r are now related by the conditions (2.87), for small « they are
functions ¢(«) and r(a) of « (since, as shown by Theorem 1.4.1 the equations
(2.87) have a unique solution). The quantity F'(a, (), g(«)) is function F'(«)
of a alone, and

AF _oF oFdg  oFar _oF
dae  da  9gda  Irda  Oda’

since OF/0q = OF/0r = 0 when ¢ = g(a)) and r = r(a). Therefore

F'(a) = Elog E¢ expu(6) . (2.89)

Second proof of Theorem 2.4.2. We define Zy yr = > exp(—Hn,m (o)),
and we note the identity

1
LN M+1 = ZN,M<6XPU(\/—N Z gi,M+10’i>>

i<N
so that
(u) (u) ! Elo <e u( ! Z > > (2.90)
- = — X py— i g; . .
PN, M+1 PN,M N g p \/ﬁ 9i,M+1

i<N
To compute the right-hand side of (2.90) we introduce
[v
SU: N;Vgi’M+lgi+\/1_v97

where § = 2,/q + /1 — ¢, where (I almost hesitate to say it again) z and
¢ are independent standard Gaussian r.v.s, and where ¢ is as in (2.68) for
a = M/N (so that the value of ¢ depends on M). We set

¢(v) = Elog E¢(expu(Sy)) -

As usual E¢ denotes expectation in all the r.v.s labeled £. Here this expecta-
tion is not built in the bracket (-), in contrast with what we did e.g in (2.35),
so that it must be written explicitly.
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We note that
¢(1) = N(pn,m+1(w) — prvm(w)) 5 ¢(0) = Elog E¢ expu(6) .

With obvious notation we have

o1 eEclShespu(S) _ _(SLexpus,)
P = B lepu(5y) — CEclexpu(Sy)

We then integrate by parts, exactly as in (2.82). This yields the formula

(R1.2 — @)u/(Sy)u'(S7) exp(u(S,) +u(S7)))
Ee(exp(u(Sy) +u(57))) ’

o (v) = _%E (2.91)

where S! is defined as S,, but replacing ¢ by ¢° and o by of. Now (2.69)
implies
/2 _ K(D)

- VN
This bound unfortunately does not get the proper rate. To get the proper
bound in K(D)/N in (2.75) one must replace the bound

¢ (v)] < K(D)v(|R12 — ql) < K(D)v((Ri2 — q)?)

|o(1) = (0)] < sup |¢'(v)]|
by the bound
lp(1) = ¢(0) = ¢"(0)] < sup |¢" (v)] . (2.92)

A new differentiation and integration by parts in (2.91) bring out in each
term a new factor (R — ¢), so that using (2.69) we now get

K(D

W] < KD ((Br2 - ) < K12

As a special case of (2.91),
/ 1.
©'(0) = —iru(RLg —q).
We shall prove later (when we learn how to prove central limit theorems in

Chapter 9) the non-trivial fact that |v(Ry 2 —¢)| < K(D)/N, and (2.92) then
implies

K(D)

= (2.93)

1
PN M+1(w) — o (u) — NElog Ec expu(f)| <

One can then recover the value of py ar(u) by summing these relations over
M. This is a non-trivial task, since the value of ¢ (and hence of 8) depends
on M.
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Let us recall the function F'(«a) of (2.89). It is tedious but straightforward
to check that F”(«) remains bounded as oK (D) < 1, so that (2.89) yields

‘F <M“> _F (%> _ %ElogEgexpu(O) < KD)

N N N2

Comparing with (2.93) and summing over M then proves (2.75) (and even
better, since the summation is over M, we get a bound aK(D)/N). This
completes the second proof of Theorem 2.4.2. a

It is worth noting that the first proof of Theorem 2.4.2 provides an easy
way to discover the formula (2.74), but that this formula is much harder to
guess if one uses the second proof. In some sense the first proof of Theo-
rem 2.4.2 is more powerful and more elegant than the second proof. However
we will meet situations (in Chapters 3 and 4) where it is not immediate to
apply this method (and whether this is possible remains to be investigated).
In these situations, we shall use instead the argument of the second proof of
Theorem 2.4.2.

2.5 Exponential Inequalities

Our goal is to improve the control of Ry 2 —¢ from second to higher moments.

Theorem 2.5.1. Given D, there is a number K(D) such that if u satisfies
(2.7), i.e. |uD| < D for all 0 < £ < 3 then for aK(D) < 1, we have

k
Yk > O7 V((Rl,g _ q)2k) < (%) . (294)

Proof. It goes by induction over k, and is nearly identical to that of Propo-
sition 1.6.7.

For 1 <n < N, we define A, = N~'Y" _._y(0lo? —q), and the induc-
tion hypothesis is that for each n < N,

V(A% < (%)k : (2.95)

To perform the induction from k to k 4+ 1, we can assume n < N, for
(2.95) holds if n = N. Using symmetry between sites yields

) N—-n+1
V(AT = —<——v(f),
where
[ =(e162— Q)AikJrl .

Thus
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V(A7) < |wo(f) +Slzp|’/£(f)| : (2.96)
We first study the term vo(f). Consider

A=z 3 (Gl

n<i<N-1

Since by Lemma 2.2.2 we have vy((g162 — q) A”?*T1) = 0, using the inequality

22K+ 2R < 2k 4 )] — y| (22 4 y2b)
for x = A,, and y = A’ we get, since |x — y| < 2/N and |e1e5 — q] < 2,

42k +1)

N (Vo(Aik) + VO(A/%)) .

()l <

We use (2.67), the induction hypothesis, and the observation that since n <
N, we have
v(A%F) = v(AZ))

to obtain

lwo(f) <

16(2k + 1) (@)’“ 2k + 1 (64(1{:—#1))’”1. (2.9

<
N N ) ~4k+1) N

To compute v;(f) we use Proposition 2.3.6 with n = 4,7, = (2k+2)/(2k+1),
T = 2k + 2 and (2.67) to get

A < QR (D) (WA (e = 0%72) 17 4 LA

Using the inequality z'/71y!/™ <z +y for = v(A2*+2) and y = v((Ry 2 —
q)%*+2) this implies

1
A < QB (D) (VAZS2) 4 v (R - 02) + o145
Combining with (2.96) and (2.97) we get if «K (D) < 1/4,

W(AZ?) < T (W(AZ2) (R — 0)P2))

2% +1 (64(k+1

k+1
Ak +1) N )> +iy(|An|2k+l)~ (2.98)

N

Since |A,| < 2 and hence |A,|?**1 < 242k the induction hypothesis implies
that the last term of (2.98) is at most

1 64(k +1)\ "t
32(k+1)( N ) ’
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so the sum of the last 2 terms is at most

%<64(1§V+ 1))’““.

Since A; = R — g, considering first the case n = 1 provides the required
inequality in that case. Using back this inequality in (2.98) provides the
required inequality for all values of n. a

The following extends Lemma 2.4.3. Its proof is pretty similar to that
of Theorem 2.5.1, and demonstrates the power of this approach. The reader
who does not enjoy the argument should skip the forthcoming proof and make
sure she does not miss the pretty Theorem 2.5.3. We denote by Ko(D) the
constant of Theorem 2.5.1.

Theorem 2.5.2. Assume that u satisfies (2.7) for a certain number D. Then
there is a number K (D), depending on D only, with the following property.
For aKy(D) <1 we have

Wk >0, ,,((% S w/(Sh(5?) —7«)%)5 (O‘ICKT“)))k o (2.99)

J<M

Proof. We recall the definition of 7 given by (2.36), i.e.

()

so that with the notation (2.87) we have r = ar. For 1 < n < M we define

1 / 1 / m
Co=37 D (W(SHU(SH) 7).

n<j<M

Since 7 = a7 and 1/N = a/M the left-hand side of (2.99) is a2kv(C?F).
We prove by induction over k that if aKy(D) < 1 then for a suitable
number K7(D) we have for £ > 1 and any n < M that

V(CP) < (’“K;}D))k .

(2.100)

Using this for n = 1 concludes the proof. For & = 0 (2.100) is true if one then
understands the right-hand side of (2.99) as being 1. The reader disliking this
can instead start the induction at k = 1. To prove the case k = 1 it suffices
to repeat the proof of Lemma 2.4.3 (while keeping a tighter watch on the
dependence on «). For the induction step from k to k+ 1 we can assume that
n < M, and we use symmetry among the values of j to obtain

v(C2H2) = u(f~) (2.101)
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where f~ = (u/(S},)u'(S2,) — 7)C2*+1. Let us define
C' = % > W(SHu'(SH —7) .
n<j<M—1
Using the inequality
|2?F L — 2R < (2 4 1) |z — y| (2% + y?*) (2.102)

for z = C,, and y = C’, and since |u/(S3,)u’(S3;) — 7| < 2D?, we obtain that
for f* _ (u’(S’}w)u’(S?w) _ ?)C/2k+1:

2(2k + 1)D?

i (v(C?*) 4 v(C'?*)) | (2.103)

v(f7) <v(f*) +

Since n < M, symmetry among the values of j implies v(C'?*) = v(CZ )
and the induction hypothesis yields

v(f7) <w(f) + (2.104)

8(k J]r\;)D2 (Klj(WD)k)k .

Next, we use (2.62) for t = 1, f = C'***! and n = 2. This is permitted
because f does not depend on the randomness of 51@, & or gi,m- We choose
71 =2k+2)/(2k+1) and 5 = 2k + 2 to get

|l/(f*)| < KQ(D) <I/(Cl2k+2)1/TlV((R172 *l])2k+2)1/7—2 + %V(|Cl|2k+1)> )

Since we work under the condition aKy(D) < 1, we can as well assume that
a <1, so that M < N and

1

|I/(f*)| < KQ(D) (V(C/zlc+2)1/nV((RL2 _ q)2k+2)1/'rz + MV(|C/|2k+1))

(2.105)
We recall the inequality z'/7y'/™ < z + y. Changing = to z/A and y to
A™/T1y in this inequality gives

l‘l/lel/T2 < % +AT2/'rly_

Using this for A = 2K5(D), z = v(C'"?**2) and y = v((R12 — q)***?), we
deduce from (2.105) that

. 1 K(D
M) < U2 1 KD (R - a2+ By o).
(2.106)
We now use the inequality

@42 — 2] < (2K + 2)|o — gl (J 5+ [y
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for z = C’" and y = C,, to obtain

2(2k +2)D?

12k+2 < 2k+2
y(CIHH2) < p(C22) + T

((ICPE) + v(ICuM )

We combine this with (2.106), we use that |C,,|?**1 < 2D2C2* and |C|#*+1 <
2D?C"?F and the induction hypothesis to get

V() < GrC22) 4 KD ((Br s - 0)+?)

L (k+DE(D) (Kl(D)k;>k ’

M M

and combining with (2.101) and (2.104) that

v(C2F2) + K(D)2k+2V((R1,2 - Q)2k+2)

(k+ 1)K (D) [ Ki(D)k\"
ke < L ) .

Finally we use (2.94) to conclude the proof that v(C2**2) < (Ky(D)(k +
1)/M)*+1 if K1(D) has been chosen large enough. This completes the induc-
tion. O

The following central limit theorem describes the fluctuations of py s (u)
(given by (2.11)). We recall that a(k) = Ez* where z is a standard Gaussian
r.v. and that O(k) denotes a quantity A = Ay with |A] < KN~F/2 where K
does not depend on N. We recall the notation p(u) of (2.74),

1
plu) = —57“(1 — q) + Elog(2ch(z/T)) + aElog E¢ expu(z/q + £\/1 — q) .
Theorem 2.5.3. Let

b = E(log ch(z+/7))? — (Elog ch(z/7))? — qr .
Then for each k > 1 we have

k/2
Elpwar(u) =) = () alb)+O(h+1)

Proof. This argument resembles that in the proof of Theorem 1.4.11, and
it would probably help the reader to review the proof of that theorem now.
The present proof is organized a bit differently, avoiding the a priori estimate
of Lemma 1.4.12. The interpolation method of the first proof of Theorem
2.4.2 is at the center of the argument, so the reader should feel comfortable
with this proof in order to proceed. We recall the Hamiltonian (2.76) and
we denote by (-)s an average for the corresponding Gibbs measure. In the
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proof O(k) will denote a quantity A = Ay such that |A| < KN~*/2 where
K does not depend on N or s, and we will take for granted that Theorems
2.5.1 and 2.5.2 hold uniformly over s. (This fact is left as a good exercise for
the reader.)

Consider the following quantities

A(s) = % log Z E¢ exp(—Hn,a,s(0))

RS(s) = Elog2ch(zv/r) + aElog E¢ expu(zy/q + &v/1 — q) — gr(l —q)
V(s) = A(s) — RS(s)
b(s) = E(logch(zy/7))? — (Elogch(zv/7))? — rgs .
The quantities EA(s), RS(s) and b(s) are simply the quantities corresponding

for the interpolating system respectively to the quantities py ar(w), py, and
b. Fixing k, we set

U(s) = EV(s)*

We aim at proving by induction over k that (s) = (b(s)/N)*/?a(k)+O(k+1),
which, for s = 1, proves the theorem. Consider (s, a) = E(A(s) —a)¥, so that
¥(s) = ¢(s,RS(s)) and by straightforward differentiation dp/ds is given by
the quantity

%E<<§;w(57ﬂ"f) 5= 3 = V7 ) (A - a>“>,

where S; s = \/ESJ- + /1 —s0;. Next, defining SeS as usual we claim that
0p/0s =1+ 11, where

1= §E<< 5 D (Rip— (S (52, — (1 - R172)>

j<M

(A(s) —a)“)

S

and II is the quantity

k(/;;] 1) E<<% Z (Ri — q)u' (S} )/ (S2,) — rR112>S(A(S) _ a)k—2> .

Jj<M

This follows by integrating by parts as in the proof of (2.83). The term I
is created by the dependence of the bracket (-); on the r.v.s S;, 6; and 2,
and the term IT by the dependence on these variables of A(s). We note the
obvious identity I = III 4+ IV where

o — —§E<<(R1,2 — 9 (% > (8] (S2,) - r)>s(A(3) - G)kl)

J<M
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and
B e ((a(s) - a) ).

Similarly we have also IT = V + VI where V is the quantity

%E<<(R1,2 —q) (% D (S)u(S],) - T)>

Jj<M s

v =—

(A(s) — a)kQ)
and rq -

Now,

P (s) = %@(S,RS(S)) = g—f(s,RS(s)) + RS,(S)g—i(S,RS(S)) . (2.107)

Since RS'(s) = —r(1 — ¢)/2 and d¢/da(s, RS(s)) = —kEv(s)*~1, the second
term of (2.107) cancels out with the term IV and we get

Y’ (s) = VII + VIII + IX (2.108)
where
Vit = —§E<<<R1,2 ~o(y X st ) >Sv<s>k-1>
VI = %E«(Hm ~q) &ZA; (81 )0/ (2,) - r>>SV(s)k_2>

rq k—2
X =—-—— —1E .
Lk (k — DEV(s)

The idea is that each of the factors Ry 2 —q, (N~* Zj<M u’(S}’S)u’(SJZ)S) —r)
and V(s) “counts as N~1/2”_ This follows from Theorems 2.5.1 and 2.5.2 for
the first two terms, but we have not proved it yet in the case of V(s). (In the
case of Theorem 1.4.11, the a priori estimate of Lemma 1.4.12 showed that
V(s) “counts as N~1/27.) Should this be indeed the case, the terms VII and
VIII will be of lower order O(k+1). We turn to the proof that this is actually
the case.
A first step is to show that
K(k)

VII < T(E|V(s)|’f)k—? . VIII < %?(Ew(s)m% . (2.109)

In the case of VII, setting A = Ry 2 — g and

1
B= > w(S)u(S,) —r

J<M
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we write, using Holder’s inequality and Theorems 2.5.1 and 2.5.2:

E((AB).V(s)* ") < E(A%)2E(BF) VPR ENV (5)F) 5
K(k) k-1
< ——E .
SLEV()) T
We proceed in a similar manner for VIII, i.e. we write that

2

E((AB).V(5)~") < E(LAP)FE( B (EV (9)1) 7
< 50 gy

and this proves (2.109).
Since zy < 2™ +y™ for 7o = k/(k — 2) and 7 = k/2 we get

1
k/2

LEVEE < V()

This implies in particular

K(k)

k=2 1
x < SPEVONT < K0 g

i +EVEI)

and

VIII < %(Niﬂ + E|V(s)lk) < K(k)<Ni/2 +E[V(s )I'“) :

Next, we use that xy < 2™ 4+ y™ for 7 = k/(k — 1) and 71 = k to get

SEVENT < 1 V< g +EV()E
When k is even (so that |V (s)[¥ = V(s)* and E|V(s)|¥ = 9(s)) we have

proved that
W(s) < K(k) (ﬁ + ¢(s)) . (2.110)

Thus (2.110) and Lemma A.13.1 imply that
1
0(6) < K9 (000 + 117 )

Since it is easy (as the spins decouple) to see that ¥(0) < K(k)N*/2, we
have proved that for k even we have EV(s)* = O(k). Since E|V(s)|F <
(EV (5)?*)'/2 this implies that E|V (s)|* = O(k) for each k so that by (2.109)
we have VII = O(k + 1) and VIII = O(k + 1). Thus (2.108) yields

Y'(s) = —Wk(k —~DEV(s)" 2 +O0(k+1)
_V(s)k -
= Tg(k ~DEV(s)" 2+ 0(k+1).
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As in Theorem 1.4.11, one then shows by induction over k that

b b(s) "
using that this is true for s = 0, which is again proved as in Theorem 1.4.11.
O

Exercise 2.5.4. Rewrite the proof of Theorem 1.4.11 without using the a
priori estimate of Lemma 1.4.12. This allows to cover the case where the r.v.
h is not necessarily Gaussian.

Research Problem 2.5.5. (Level 1*) Prove the result corresponding to
Theorem 1.7.1 for the present model.

This problem has really two parts. The first (easier) part is to prove results
for the present model. For this, the approach of “separating the numerator
from the denominator” as explained in Section 9.1 seems likely to succeed.
The second part (harder) is to find arguments that will carry over when we
will have much less control over u as in Chapter 9. For this second part, the
work is partially done in [100], but reaching only the rate 1/ VN rather than
the correct rate 1/N.

Research Problem 2.5.6. (Level 2) For the present model prove the TAP
equations.

These equations have two parts. One part expresses (0;) as a function of
((w'(Sk)))k<m, and one part expresses (u'(Sk)) as a function of ({0;))i<n. It
is (perhaps) not too difficult to prove these equations when one has a good
control over all derivatives of u, but it might be another matter to prove
something as precise as Theorem 1.7.7 in the setting of Chapter 9.

2.6 Notes and Comments

The problems considered in this chapter are studied in [63] and [52].

It is predicted in [90] that the replica-symmetric solution holds up to
a*, so Problem 2.1.1 amounts to controlling the entire replica-symmetric
(=“high-temperature”) region, typically a very difficult task.

It took a long time to discover the proof of Theorem 2.4.1. The weaker
methods developed previously [148] for this model or for the SK and the
Hopfield models just would not work. During this struggle, it became clear
that the smart path method as used here was a better way to go for these
three models.

*
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