3. Reliable Broadcast

He said: “I could have been someone”;
She replied: “So could anyone.”
(The Pogues)

This chapter covers broadcast communication abstractions. These are used to dis-
seminate information among a set of processes and differ according to the reliability
of the dissemination. For instance, best-effort broadcast guarantees that all correct
processes deliver the same set of messages if the senders are correct. Stronger forms
of reliable broadcast guarantee this property even if the senders crash while broad-
casting their messages. Even stronger broadcast abstractions are appropriate for the
arbitrary-fault model and ensure consistency with Byzantine process abstractions.

We will consider several related abstractions for processes subject to crash faults:
best-effort broadcast, (regular) reliable broadcast, uniform reliable broadcast, stub-
born broadcast, probabilistic broadcast, and causal broadcast. For processes in the
crash-recovery model, we describe stubborn broadcast, logged best-effort broad-
cast, and logged uniform reliable broadcast. Finally, for Byzantine processes, we
introduce Byzantine consistent broadcast and Byzantine reliable broadcast. For each
of these abstractions, we will provide one or more algorithms implementing it, and
these will cover the different models addressed in this book.

3.1 Motivation

3.1.1 Client-Server Computing

In traditional distributed applications, interactions are often established between two
processes. Probably the most representative of this sort of interaction is the now
classic client—server scheme. According to this model, a server process exports an
interface to several clients. Clients use the interface by sending a request to the
server and by later collecting a reply. Such interaction is supported by point-to-point
communication protocols. It is extremely useful for the application if such a protocol

C. Cachin et al., Introduction to Reliable and Secure Distributed Programming, 73
DOI: 10.1007/978-3-642-15260-3_3,
(© Springer-Verlag Berlin Heidelberg 2011

74 3 Reliable Broadcast

is reliable. Reliability in this context usually means that, under some assumptions
(which are, by the way, often not completely understood by most system design-
ers), messages exchanged between the two processes are not lost or duplicated, and
are delivered in the order in which they were sent. Typical implementations of this
abstraction are reliable transport protocols such as TCP on the Internet. By using a
reliable point-to-point communication protocol, the application is free from dealing
explicitly with issues such as acknowledgments, timeouts, message retransmissions,
flow control, and a number of other issues that are encapsulated by the protocol
interface.

3.1.2 Multiparticipant Systems

As distributed applications become bigger and more complex, interactions are no
longer limited to bilateral relationships. There are many cases where more than
two processes need to operate in a coordinated manner. Consider, for instance, a
multiuser virtual environment where several users interact in a virtual space. These
users may be located at different physical places, and they can either directly interact
by exchanging multimedia information, or indirectly by modifying the environment.

It is convenient to rely here on broadcast abstractions. These allow a process to
send a message within a group of processes, and make sure that the processes agree
on the messages they deliver. A naive transposition of the reliability requirement
from point-to-point protocols would require that no message sent to the group be
lost or duplicated, i.e., the processes agree to deliver every message broadcast to
them. However, the definition of agreement for a broadcast primitive is not a simple
task. The existence of multiple senders and multiple recipients in a group introduces
degrees of freedom that do not exist in point-to-point communication. Consider, for
instance, the case where the sender of a message fails by crashing. It may happen
that some recipients deliver the last message sent while others do not. This may lead
to an inconsistent view of the system state by different group members. When the
sender of a message exhibits arbitrary-faulty behavior, assuring that the recipients
deliver one and the same message is an even bigger challenge.

The broadcast abstractions in this book provide a multitude of reliability guar-
antees. For crash-stop processes they range, roughly speaking, from best-effort,
which only ensures delivery among all correct processes if the sender does not fail,
through reliable, which, in addition, ensures all-or-nothing delivery semantics, even
if the sender fails, to fotally ordered, which furthermore ensures that the delivery of
messages follow the same global order, and terminating, which ensures that the pro-
cesses either deliver a message or are eventually aware that they should never deliver
the message.

For arbitrary-faulty processes, a similar range of broadcast abstractions exists.
The simplest one among them guarantees a form of consistency, which is not even
an issue for crash-stop processes, namely, to ensure that two correct processes, if
they deliver a messages at all, deliver the same message. The reliable broadcast
abstractions and total-order broadcast abstractions among arbitrary-faulty processes

3.2 Best-Effort Broadcast 75

additionally provide all-or-nothing delivery semantics and totally ordered delivery,
respectively.

In this chapter, we will focus on best-effort and reliable broadcast abstractions.
Stronger forms of broadcast will be considered in later chapters. The next three
sections present broadcast abstractions with crash-stop process abstractions. More
general process failures are considered afterward.

3.2 Best-Effort Broadcast

A broadcast abstraction enables a process to send a message, in a one-shot operation,
to all processes in a system, including itself. We give here the specification and an
algorithm for a broadcast communication primitive with a weak form of reliability,
called best-effort broadcast.

3.2.1 Specification

With best-effort broadcast, the burden of ensuring reliability is only on the sender.
Therefore, the remaining processes do not have to be concerned with enforcing
the reliability of received messages. On the other hand, no delivery guarantees are
offered in case the sender fails. Best-effort broadcast is characterized by the follow-
ing three properties depicted in Module 3.1: validity is a liveness property, whereas
the no duplication property and the no creation property are safety properties. They
descend directly from the corresponding properties of perfect point-to-point links.
Note that broadcast messages are implicitly addressed to all processes. Remember
also that messages are unique, that is, no process ever broadcasts the same message
twice and furthermore, no two processes ever broadcast the same message.

Module 3.1: Interface and properties of best-effort broadcast
Module:

Name: BestEffortBroadcast, instance beb.
Events:
Request: (beb, Broadcast | m): Broadcasts a message m to all processes.
Indication: { beb, Deliver | p, m): Delivers a message m broadcast by process p.
Properties:

BEB1: Validity: If a correct process broadcasts a message m, then every correct
process eventually delivers m.

BEB2: No duplication: No message is delivered more than once.

BEB3: No creation: If a process delivers a message m with sender s, then m was
previously broadcast by process s.

76 3 Reliable Broadcast

Algorithm 3.1: Basic Broadcast

Implements:
BestEffortBroadcast, instance beb.

Uses:
PerfectPointToPointLinks, instance pl.

upon event { beb, Broadcast | m) do
forall g € IT do
trigger (pl, Send | ¢, m);

upon event (pl, Deliver | p, m) do
trigger (beb, Deliver | p, m);

3.2.2 Fail-Silent Algorithm: Basic Broadcast

We provide here algorithm “Basic Broadcast” (Algorithm 3.1) that implements best-
effort broadcast using perfect links. This algorithm does not make any assumption
on failure detection: it is a fail-silent algorithm. The algorithm is straightforward.
Broadcasting a message simply consists of sending the message to every process in
the system using perfect point-to-point links, as illustrated by Fig. 3.1 (in the figure,
white arrowheads represent request/indication events at the module interface and
black arrowheads represent message exchanges). The algorithm works because the
properties of perfect links ensure that all correct processes eventually deliver the
message, as long as the sender of a message does not crash.

Correctness. The properties of best-effort broadcast are trivially derived from the
properties of the underlying perfect point-to-point links. The no creation property
follows directly from the corresponding property of perfect links. The same applies
to no duplication, which relies in addition on the assumption that messages broad-
cast by different processes are unique. Validity is derived from the reliable delivery
property and the fact that the sender sends the message to every other process in the
system.

beb-broadcast

p
X beb-deliver
q
\ X beb-deliver
‘ \
X beb-deliver
S
X beb-deliver

Figure 3.1: Sample execution of basic broadcast

3.3 Regular Reliable Broadcast 77

Performance. For every message that is broadcast, the algorithm requires a single
communication step and exchanges O(/N') messages.

3.3 Regular Reliable Broadcast

Best-effort broadcast ensures the delivery of messages as long as the sender does not
fail. If the sender fails, some processes might deliver the message and others might
not deliver it. In other words, they do not agree on the delivery of the message.
Actually, even if the process sends a message to all processes before crashing, the
delivery is not ensured because perfect links do not enforce the delivery when the
sender fails. Ensuring agreement even when the sender fails is an important property
for many practical applications that rely on broadcast. The abstraction of (regular)
reliable broadcast provides exactly this stronger notion of reliability.

3.3.1 Specification

Intuitively, the semantics of a reliable broadcast algorithm ensure that the correct
processes agree on the set of messages they deliver, even when the senders of
these messages crash during the transmission. It should be noted that a sender may
crash before being able to transmit the message, in which case no process will del-
iver it. The specification of reliable broadcast in Module 3.2 extends the properties
of the best-effort broadcast abstraction (Module 3.1) with a new liveness property
called agreement. The other properties remain unchanged (but are repeated here
for completeness). The very fact that agreement is a liveness property might seem

Module 3.2: Interface and properties of (regular) reliable broadcast
Module:

Name: ReliableBroadcast, instance rb.
Events:
Request: (rb, Broadcast | m): Broadcasts a message m to all processes.
Indication: { rb, Deliver | p, m): Delivers a message m broadcast by process p.
Properties:

RB1: Validity: If a correct process p broadcasts a message m, then p eventually
delivers m.

RB2: No duplication: No message is delivered more than once.

RB3: No creation: 1If a process delivers a message m with sender s, then m was
previously broadcast by process s.

RB4: Agreement: If a message m is delivered by some correct process, then m is
eventually delivered by every correct process.

78 3 Reliable Broadcast

counterintuitive, as the property can be achieved by not having any process ever
deliver any message. Strictly speaking, it is, however, a liveness property as it can
always be ensured in extensions of finite executions. We will see other forms of
agreement that are safety properties later in the book.

3.3.2 Fail-Stop Algorithm: Lazy Reliable Broadcast

We now show how to implement regular reliable broadcast in a fail-stop model.
In our algorithm, depicted in Algorithm 3.2, which we have called “Lazy Reliable
Broadcast,” we make use of the best-effort broadcast abstraction described in the
previous section, as well as the perfect failure detector abstraction P introduced
earlier.

Algorithm 3.2: Lazy Reliable Broadcast

Implements:
ReliableBroadcast, instance rb.

Uses:
BestEffortBroadcast, instance beb;
PerfectFailureDetector, instance P.

upon event { rb, Init) do
correct =11,

from[p] := [0]V;

upon event (rb, Broadcast | m) do
trigger (beb, Broadcast | [DATA, self,m]);

upon event (beb, Deliver | p, [DATA, s, m]) do
if m ¢ from[s| then
trigger (rb, Deliver | s, m);
from|s] := from[s] U {m};
if s & correct then
trigger (beb, Broadcast | [DATA, s, m]);

upon event (P, Crash | p) do
correct = correct \ {p};
forall m € from[p] do
trigger (beb, Broadcast | [DATA, p, m]);

To rb-broadcast a message, a process uses the best-effort broadcast primitive to
disseminate the message to all. The algorithm adds some implementation-specific
parameters to the exchanged messages. In particular, its adds a message descriptor
(DATA) and the original source of the message (process s) in the message header.
The result is denoted by [DATA, s, m| in the algorithm. A process that receives
the message (when it beb-delivers the message) strips off the message header and
rb-delivers it immediately. If the sender does not crash, then the message will be

3.3 Regular Reliable Broadcast 79

rb-delivered by all correct processes. The problem is that the sender might crash. In
this case, the process that delivers the message from some other process detects that
crash and relays the message to all others. We note that this is a language abuse: in
fact, the process relays a copy of the message (and not the message itself).

At the same time, the process also maintains a variable correct, denoting the set
of processes that have not been detected to crash by P. Our algorithm is said to
be lazy in the sense that it retransmits a message only if the original sender has
been detected to have crashed. The variable from is an array of sets, indexed by the
processes in I1, in which every entry s contains the messages from sender s that
have been rb-delivered.

It is important to notice that, strictly speaking, two kinds of events can force a
process to retransmit a message. First, when the process detects the crash of the
source, and, second, when the process beb-delivers a message and realizes that the
source has already been detected to have crashed (i.e., the source is not anymore in
correct). This might lead to duplicate retransmissions when a process beb-delivers
a message from a source that fails, as we explain later. It is easy to see that a pro-
cess that detects the crash of a source needs to retransmit the messages that have
already been beb-delivered from that source. On the other hand, a process might
beb-deliver a message from a source after it detected the crash of that source: it is,
thus, necessary to check for the retransmission even when no new crash is detected.

Correctness. The no creation (respectively validity) property of our reliable broad-
cast algorithm follows from the no creation (respectively validity) property of the
underlying best-effort broadcast primitive. The no duplication property of reliable
broadcast follows from our use of a variable from that keeps track of the messages
that have been rb-delivered at every process and from the assumption of unique
messages across all senders. Agreement follows here from the validity property
of the underlying best-effort broadcast primitive, from the fact that every process
relays every message that it rb-delivers when it detects the sender, and from the use
of a perfect failure detector.

Performance. If the initial sender does not crash then the algorithm requires a single
communication step and O(NN') messages to rb-deliver a message to all processes.
Otherwise, it may take O(N) steps and O(IN?) messages in the worst case (if the
processes crash in sequence).

3.3.3 Fail-Silent Algorithm: Eager Reliable Broadcast

In the “Lazy Reliable Broadcast” algorithm (Algorithm 3.2), when the accuracy
property of the failure detector is not satisfied, the processes might relay messages
unnecessarily. This wastes resources but does not impact correctness. On the other
hand, we rely on the completeness property of the failure detector to ensure the
broadcast agreement. If the failure detector does not ensure completeness then the
processes might omit to relay messages that they should be relaying (e.g., messages
broadcast by processes that crashed), and hence might violate agreement.

80 3 Reliable Broadcast

Algorithm 3.3: Eager Reliable Broadcast

Implements:
ReliableBroadcast, instance rb.

Uses:
BestEffortBroadcast, instance beb.

upon event (rb, Init) do
delivered = ();

upon event (rb, Broadcast | m) do
trigger (beb, Broadcast | [DATA, self,m]);

upon event (beb, Deliver | p, [DATA, s, m]) do
if m & delivered then
delivered := delivered U {m};
trigger (rb, Deliver | s, m);
trigger (beb, Broadcast | [DATA, s, m]);

In fact, we can circumvent the need for a failure detector (i.e., the need for its
completeness property) by adopting an eager scheme: every process that gets a mes-
sage relays it immediately. That is, we consider the worst case, where the sender
process might have crashed, and we relay every message. This relaying phase is
exactly what guarantees the agreement property of reliable broadcast. The resulting
algorithm (Algorithm 3.3) is called “Eager Reliable Broadcast.”

The algorithm assumes a fail-silent model and does not use any failure detec-
tor: it relies only on the best-effort broadcast primitive described in Sect. 3.2. In
Fig. 3.2, we illustrate how the algorithm ensures agreement even if the sender
crashes: process p crashes and its message is not beb-delivered by processes r and
by s. However, as process ¢ retransmits the message, i.e., beb-broadcasts it, the
remaining processes also beb-deliver it and subsequently rb-deliver it. In our “Lazy

rb—deliver

Figure 3.2: Sample execution of reliable broadcast with faulty sender

3.4 Uniform Reliable Broadcast 81

Reliable Broadcast” algorithm, process ¢ will be relaying the message only after it
has detected the crash of p.

Correctness. All properties, except agreement, are ensured as in the “Lazy Reliable
Broadcast.” The agreement property follows from the validity property of the
underlying best-effort broadcast primitive and from the fact that every correct
process immediately relays every message it rb-delivers.

Performance. In the best case, the algorithm requires a single communication step
and O(N?) messages to rb-deliver a message to all processes. In the worst case,
should the processes crash in sequence, the algorithm may incur O(NV) steps and
O(N?) messages.

3.4 Uniform Reliable Broadcast

With regular reliable broadcast, the semantics just require the correct processes to
deliver the same set of messages, regardless of what messages have been deliv-
ered by faulty processes. In particular, a process that rb-broadcasts a message might
rb-deliver it and then crash, before the best-effort broadcast abstraction can even
beb-deliver the message to any other process. Indeed, this scenario may occur in
both reliable broadcast algorithms that we presented (eager and lazy). It is thus pos-
sible that no other process, including correct ones, ever rb-delivers that message.
There are cases where such behavior causes problems because even a process that
rb-delivers a message and later crashes may bring the application into a inconsistent
state.

We now introduce a stronger definition of reliable broadcast, called uniform
reliable broadcast. This definition is stronger in the sense that it guarantees that the
set of messages delivered by faulty processes is always a subset of the messages
delivered by correct processes. Many other abstractions also have such uniform
variants.

3.4.1 Specification

Uniform reliable broadcast differs from reliable broadcast by the formulation of its
agreement property. The specification is given in Module 3.3.

Uniformity is typically important if the processes interact with the external world,
e.g., print something on a screen, authorize the delivery of money through a bank
machine, or trigger the launch of a rocket. In this case, the fact that a process has
delivered a message is important, even if the process has crashed afterward. This is
because the process, before crashing, could have communicated with the external
world after having delivered the message. The processes that did not crash should
also be aware of that message having been delivered, and of the possible external
action having been performed.

Figure 3.3 depicts an execution of a reliable broadcast algorithm that is not uni-
form. Both processes p and g rb-deliver the message as soon as they beb-deliver

82 3 Reliable Broadcast

Module 3.3: Interface and properties of uniform reliable broadcast
Module:

Name: UniformReliableBroadcast, instance urb.
Events:

Request: (urb, Broadcast | m): Broadcasts a message m to all processes.
Indication: { urb, Deliver | p, m): Delivers a message m broadcast by process p.

Properties:

URBI1-URB3: Same as properties RB1-RB3 in (regular) reliable broadcast (Mod-
ule 3.2).

URB4: Uniform agreement: If a message m is delivered by some process (whether
correct or faulty), then m is eventually delivered by every correct process.

rb—broadcast rb—deliver

p ~

q ~
rb—deliver

r

s

Figure 3.3: Nonuniform reliable broadcast

it, but crash before they are able to relay the message to the remaining processes.
Still, processes r and s are consistent among themselves (neither has rb-delivered
the message).

3.4.2 Fail-Stop Algorithm: All-Ack Uniform Reliable Broadcast

Basically, our “Lazy Reliable Broadcast” and “Eager Reliable Broadcast” algo-
rithms do not ensure uniform agreement because a process may rb-deliver a message
and then crash. Even if this process has relayed its message to all processes (through
a best-effort broadcast primitive), the message might not reach any of the remaining
processes. Note that even if we considered the same algorithms and replaced the
best-effort broadcast abstraction with a reliable broadcast one, we would still not
implement a uniform broadcast abstraction. This is because a process may deliver a
message before relaying it to all processes.

Algorithm 3.4, named “All-Ack Uniform Reliable Broadcast,” implements uni-
form reliable broadcast in the fail-stop model. Basically, in this algorithm, a process

3.4 Uniform Reliable Broadcast 83

Algorithm 3.4: All-Ack Uniform Reliable Broadcast

Implements:
UniformReliableBroadcast, instance urb.

Uses:
BestEffortBroadcast, instance beb.
PerfectFailureDetector, instance P.

upon event (urb, Init) do
delivered = ();
pending = 0;
correct =11,
forall m do ack[m] :=0;

upon event (urb, Broadcast | m) do
pending := pending U {(self,m)};
trigger (beb, Broadcast | [DATA, self,m]);

upon event (beb, Deliver | p, [DATA, s, m]) do
ack[m] := ack[m] U {p};
if (s, m) ¢ pending then
pending :=pending U {(s,m)};
trigger (beb, Broadcast | [DATA, s, m]);

upon event (P, Crash | p) do
correct = correct \ {p};

function candeliver(m) returns Boolean is
return (correct C ack[m]);

upon exists (s, m) € pending such that candeliver(m) A m & delivered do
delivered := delivered U {m};
trigger (urb, Deliver | s, m);

delivers a message only when it knows that the message has been beb-delivered
and thereby seen by all correct processes. All processes relay the message once,
after they have seen it. Each process keeps a record of processes from which it has
already received a message (either because the process originally sent the message
or because the process relayed it). When all correct processes have retransmitted the
message, all correct processes are guaranteed to deliver the message, as illustrated
in Fig. 3.4.

The algorithm uses a variable delivered for filtering out duplicate messages and
a variable pending, used to collect the messages that have been beb-delivered and
seen, but that still need to be urb-delivered.

The algorithm also uses an array ack with sets of processes, indexed by all possi-
ble messages. The entry ack[m| gathers the set of processes that the process knows
have seen m. Of course, the array can be implemented with a finite amount of

84 3 Reliable Broadcast

urb-broadcast

urb—deliver

urb—deliver

Y urb—deliver

Figure 3.4: Sample execution of all-ack uniform reliable broadcast

memory by using a sparse representation. Note that the last upon statement of the
algorithm is triggered by an internal event defined on the state of the algorithm.

Correctness. The validity property follows from the completeness property of the
failure detector and from the validity property of the underlying best-effort broad-
cast. The no duplication property relies on the delivered variable to filter out
duplicates. No creation is derived from the no creation property of the underlying
best-effort broadcast. Uniform agreement is ensured by having each process wait to
urb-deliver a message until all correct processes have seen and relayed the message.
This mechanism relies on the accuracy property of the perfect failure detector.

Performance. When considering the number of communication steps, in the best
case, the algorithm requires two communication steps to urb-deliver a message to
all processes. In such scenario, in the first step it sends /N messages and in the
second step N (N — 1) messages, for a total of N2 messages. In the worst case, if the
processes crash in sequence, N + 1 steps are required. Therefore, uniform reliable
broadcast requires one step more to deliver a message than its regular counterpart.

3.4.3 Fail-Silent Algorithm: Majority-Ack Uniform Reliable Broadcast

The “All-Ack Uniform Reliable Broadcast” algorithm of Sect. 3.4.2 (Algorithm 3.4)
is not correct if the failure detector is not perfect. Uniform agreement would be
violated if accuracy is not satisfied and validity would be violated if completeness
is not satisfied.

We now give a uniform reliable broadcast algorithm that does not rely on a per-
fect failure detector but assumes a majority of correct processes, i.e., N > 2f if we
assume that up to f processes may crash. We leave it as an exercise to show why the
majority assumption is needed in the fail-silent model, without any failure detector.
Algorithm 3.5, called “Majority-Ack Uniform Reliable Broadcast,” is similar to
Algorithm 3.4 (“All-Ack Uniform Reliable Broadcast”) in the fail-silent model,
except that processes do not wait until all correct processes have seen a message,
but only until a majority quorum has seen and retransmitted the message. Hence, the
algorithm can be obtained by a small modification from the previous one, affecting
only the condition under which a message is delivered.

3.5 Stubborn Broadcast 85

Algorithm 3.5: Majority-Ack Uniform Reliable Broadcast

Implements:
UniformReliableBroadcast, instance urb.

Uses:
BestEffortBroadcast, instance beb.

/I Except for the function candeliver(-) below and for the absence of (Crash) events
// triggered by the perfect failure detector, it is the same as Algorithm 3.4.

function candeliver(m) returns Boolean is
return # (ack[m]) > N/2;

Correctness. The algorithm provides uniform reliable broadcastif N > 2 f. The no
duplication property follows directly from the use of the variable delivered. The no
creation property follows from the no creation property of best-effort broadcast.

To argue for the uniform agreement and validity properties, we first observe that if
a correct process p beb-delivers some message m then p eventually urb-delivers m.
Indeed, if p is correct, and given that p beb-broadcasts m according to the algorithm,
then every correct process beb-delivers and hence beb-broadcasts m. As we assume
a majority of the processes to be correct, p eventually beb-delivers m from more
than /2 processes and urb-delivers it.

Consider now the validity property. If a correct process p urb-broadcasts a mes-
sage m then p beb-broadcasts m, and hence p beb-delivers m eventually; according
to the above observation, p eventually also urb-delivers m. Consider now uniform
agreement, and let ¢ be any process that urb-delivers m. To do so, ¢ must have beb-
delivered m from a majority of the processes. Because of the assumption of a correct
majority, at least one correct process must have beb-broadcast m. Hence, all correct
processes eventually beb-deliver m by the validity property of best-effort broadcast,
which implies that all correct processes also urb-deliver m eventually according to
the observation made earlier.

Performance. The performance of the algorithm is similar to the performance of the
“All-Ack Uniform Reliable Broadcast™ algorithm.

3.5 Stubborn Broadcast

This section presents a stubborn broadcast abstraction that works with crash-stop
process abstractions in the fail-silent system model, as well as with crash-recovery
process abstractions in the fail-recovery model.

3.5.1 Specification

The stubborn broadcast abstraction hides a retransmission mechanism and delivers
every message that is broadcast by a correct process an infinite number of times,

86 3 Reliable Broadcast

Module 3.4: Interface and properties of stubborn best-effort broadcast
Module:

Name: StubbornBestEffortBroadcast, instance sbeb.
Events:
Request: (sbeb, Broadcast | m): Broadcasts a message m to all processes.
Indication: (sbeb, Deliver | p, m): Delivers a message m broadcast by process p.
Properties:

SBEBI1: Best-effort validity: If a process that never crashes broadcasts a message m,
then every correct process delivers m an infinite number of times.

SBEB2: No creation: If a process delivers a message m with sender s, then m was
previously broadcast by process s.

similar to its point-to-point communication counterpart. The specification of best-
effort stubborn broadcast is given in Module 3.4. The key difference to the best-
effort broadcast abstraction (Module 3.1) defined for fail-no-recovery settings lies
in the stubborn and perpetual delivery of every message broadcast by a process that
does not crash. As a direct consequence, the no duplication property of best-effort
broadcast is not ensured.

Stubborn broadcast is the first broadcast abstraction in the fail-recovery model
considered in this chapter (more will be introduced in the next two sections). As the
discussion of logged perfect links in Chap. 2 has shown, communication abstrac-
tions in the fail-recovery model usually rely on logging their output to variables in
stable storage. For stubborn broadcast, however, logging is not necessary because
every delivered message is delivered infinitely often; no process that crashes and
recovers finitely many times can, therefore, miss such a message.

The very fact that processes now have to deal with multiple deliveries is the
price to pay for saving expensive logging operations. We discuss a logged best-
effort broadcast in the next section, which eliminates multiple deliveries, but adds
at the cost of logging the messages.

The stubborn best-effort broadcast abstraction also serves as an example for
stronger stubborn broadcast abstractions, implementing reliable and uniform reli-
able stubborn broadcast variants, for instance. These could be defined and imple-
mented accordingly.

3.5.2 Fail-Recovery Algorithm: Basic Stubborn Broadcast
Algorithm 3.6 implements stubborn best-effort broadcast using underlying stubborn
communication links.

Correctness. The properties of stubborn broadcast are derived directly from the
properties of the stubborn links abstraction used by the algorithm. In particular,

3.6 Logged Best-Effort Broadcast 87

Algorithm 3.6: Basic Stubborn Broadcast

Implements:
StubbornBestEffortBroadcast, instance sbeb.

Uses:
StubbornPointToPointLinks, instance sl.

upon event (sbeb, Recovery) do
// do nothing

upon event (sbeb, Broadcast | m) do
forall g € IT do
trigger (s/, Send | g, m);

upon event (s/, Deliver | p, m) do
trigger (sbeb, Deliver | p, m);

validity follows from the fact that the sender sends the message to every process in
the system.

Performance. The algorithm requires a single communication step for a process to
deliver a message, and exchanges at least N messages. Of course, the stubborn links
may retransmit the same message several times and, in practice, an optimization
mechanism is needed to acknowledge the messages and stop the retransmission.

3.6 Logged Best-Effort Broadcast

This section and the next one consider broadcast abstractions in the fail-recovery
model that rely on logging. We first discuss how fail-recovery broadcast algorithms
use stable storage for logging and then present a best-effort broadcast abstraction
and its implementation.

3.6.1 Overview

Most broadcast specifications we have considered for the fail-stop and fail-silent
models are not adequate for the fail-recovery model. As explained next, even the
strongest one of our specifications, uniform reliable broadcast, does not provide use-
ful semantics in a setting where processes that crash can later recover and participate
in the computation.

For instance, suppose a message m is broadcast by some process p. Consider
another process ¢, which should eventually deliver m. But g crashes at some instant,
recovers, and never crashes again; in the fail-recovery model, q is a correct process.
For a broadcast abstraction, however, it might happen that process ¢ delivers m
and crashes immediately afterward, without having processed m, that is, before the
application had time to react to the delivery of m. When the process recovers later, it

88 3 Reliable Broadcast

Module 3.5: Interface and properties of logged best-effort broadcast
Module:

Name: LoggedBestEffortBroadcast, instance /beb.
Events:

Request: ([beb, Broadcast | m): Broadcasts a message m to all processes.

Indication: (lbeb, Deliver | delivered): Notifies the upper layer of potential up-
dates to variable delivered in stable storage (which log-delivers messages according
to the text).

Properties:

LBEBI1: Validity: If a process that never crashes broadcasts a message m, then
every correct process eventually log-delivers m.

LBEB2: No duplication: No message is log-delivered more than once.

LBEB3: No creation: If a process log-delivers a message m with sender s, then m
was previously broadcast by process s.

has no memory of m, because the delivery of m occurred asynchronously and could
not be anticipated. There should be some way for process ¢ to find out about m
upon recovery, and for the application to react to the delivery of m. We have already
encountered this problem with the definition of logged perfect links in Sect. 2.4.5.

We adopt the same solution as for logged perfect links: the module maintains a
variable delivered in stable storage, stores every delivered messages in the variable,
and the higher-level modules retrieve the variable from stable storage to determine
the delivered messages. To notify the layer above about the delivery, the broadcast
abstraction triggers an event (Deliver | delivered). We say that a message m is
log-delivered from sender s whenever an event (Deliver | delivered) occurs such
that delivered contains a pair (s, m) for the first time. With this implementation,
a process that log-delivers a message m, subsequently crashes, and recovers again
will still be able to retrieve m from stable storage and to react to m.

3.6.2 Specification

The abstraction we consider here is called logged best-effort broadcast to emphasize
that it log-delivers messages by “logging” them to local stable storage. Its specifi-
cation is given in Module 3.5. The logged best-effort broadcast abstraction has the
same interface and properties as best-effort broadcast with crash-stop faults (Mod-
ule 3.1), except that messages are log-delivered instead of delivered. As we discuss
later, stronger logged broadcast abstractions (regular and uniform) can be designed
and implemented on top of logged best-effort broadcast.

3.6 Logged Best-Effort Broadcast

89

Algorithm 3.7: Logged Basic Broadcast

Implements:

LoggedBestEffortBroadcast, instance /beb.

Uses:
StubbornPointToPointLinks, instance sl.

upon event ([beb, Init) do
delivered = ();
store(delivered);

upon event ([beb, Recovery) do
retrieve(delivered);
trigger ([beb, Deliver | delivered);

upon event ([beb, Broadcast | m) do
forall g € IT do
trigger (s/, Send | g, m);

upon event (s/, Deliver | p, m) do
if (p, m) ¢ delivered then
delivered := delivered U {(p, m)};
store(delivered);
trigger ([beb, Deliver | delivered);

3.6.3 Fail-Recovery Algorithm: Logged Basic Broadcast

Algorithm 3.7, called “Logged Basic Broadcast,” implements logged best-effort

broadcast. Its structure is similar to Algorithm 3.1 (“Basic Broadcast”). The main

differences are the following:

1. The “Logged Basic Broadcast” algorithm uses stubborn best-effort links between
every pair of processes for communication. They ensure that every message that
is sent by a process that does not crash to a correct recipient will be delivered by

its recipient an infinite number of times.

2. The “Logged Basic Broadcast” algorithm maintains a log of all delivered mes-
sages. When a new message is received for the first time, it is added to the log,
and the upper layer is notified that the log has changed. If the process crashes and
later recovers, the upper layer is also notified (as it may have missed a notification

triggered just before the crash).

Correctness. The no creation property is derived from that of the underlying stub-
born links, whereas no duplication is derived from the fact that the delivery log is
checked before delivering new messages. The validity property follows from the

fact that the sender sends the message to every other process in the system.

Performance. The algorithm requires a single communication step for a process to
deliver a message, and exchanges at least N messages. Of course, stubborn links

90 3 Reliable Broadcast

may retransmit the same message several times and, in practice, an optimization
mechanism is needed to acknowledge the messages and stop the retransmission.
Additionally, the algorithm requires a log operation for each delivered message.

3.7 Logged Uniform Reliable Broadcast

In a manner similar to the crash-no-recovery case, it is possible to define both
reliable and uniform variants of best-effort broadcast for the fail-recovery setting.

3.7.1 Specification

Module 3.6 defines a logged uniform reliable broadcast abstraction, which is
appropriate for the fail-recovery model. In this variant, if a process (either cor-
rect or not) log-delivers a message (that is, stores the variable delivered containing
the message in stable storage), all correct processes should eventually log-deliver
that message. The interface is similar to that of logged best-effort broadcast and its
properties directly correspond to those of uniform reliable broadcast with crash-stop
processes (Module 3.3).

Module 3.6: Interface and properties of logged uniform reliable broadcast
Module:

Name: LoggedUniformReliableBroadcast, instance lurb.
Events:

Request: (lurb, Broadcast | m): Broadcasts a message m to all processes.

Indication: (lurb, Deliver | delivered): Notifies the upper layer of potential up-
dates to variable delivered in stable storage (which log-delivers messages according
to the text).

Properties:

LURBI1-LURB3: Same as properties LBEB1-LBEB3 in logged best-effort broad-
cast (Module 3.5).

LURBA4: Uniform agreement: If a message m is log-delivered by some process
(whether correct or faulty), then m is eventually log-delivered by every correct
process.

3.7.2 Fail-Recovery Algorithm: Logged Majority-Ack Uniform
Reliable Broadcast

Algorithm 3.8, called “Logged Majority-Ack Uniform Reliable Broadcast,”
implements logged uniform broadcast, assuming that a majority of the processes

3.7 Logged Uniform Reliable Broadcast 91

Algorithm 3.8: Logged Majority-Ack Uniform Reliable Broadcast

Implements:
LoggedUniformReliableBroadcast, instance [urb.

Uses:
StubbornBestEffortBroadcast, instance sbeb.

upon event ([urb, Init) do
delivered = ();
pending = 0;
forall m do ack[m] :=0;
store(pending, delivered);

upon event (lurb, Recovery) do
retrieve(pending, delivered);,
trigger (lurb, Deliver | delivered);
forall (s, m) € pending do
trigger (sbeb, Broadcast | [DATA, s,m]);

upon event (lurb, Broadcast | m) do
pending := pending U {(self,m)};
store(pending);
trigger (sbeb, Broadcast | [DATA, self, m]);

upon event (sbeb, Deliver | p, [DATA, s, m]) do
if (s, m) ¢ pending then
pending := pending U {(s,m)};
store(pending);
trigger (sbeb, Broadcast | [DATA, s, m]);
if p & ack[m|] then
ack[m] = ackm] U {p};
if #(ackm]) > N/2 A (s, m) € delivered then
delivered := delivered U {(s,m)};
store(delivered);
trigger (lurb, Deliver | delivered);

is correct. It log-delivers a message m from sender s by adding (s, m) to the deliv-
ered variable in stable storage. Apart from delivered, the algorithm uses two other
variables, a set pending and an array ack, with the same functions as in “All-Ack
Uniform Reliable Broadcast” (Algorithm 3.4). Variable pending denotes the mes-
sages that the process has seen but not yet lurb-delivered, and is logged. Variable
ack is not logged because it will be reconstructed upon recovery. When a message
has been retransmitted by a majority of the processes, it is log-delivered. Together
with the assumption of a correct majority, this ensures that at least one correct pro-
cess has logged the message, and this will ensure the retransmission to all correct
processes.

Correctness. Consider the agreement property and assume that some correct pro-
cess p log-delivers a message m. To do so, a majority of the processes must have

92 3 Reliable Broadcast

retransmitted the message. As we assume a majority of the processes is correct, at
least one correct process must have logged the message (in its variable pending).
This process will ensure that the message is eventually sheb-broadcast to all correct
processes; all correct processes will hence sbeb-deliver the message and acknow-
ledge it. Hence, every correct process will log-deliver m. To establish the validity
property, assume some process p lurb-broadcasts a message m and does not crash.
Eventually, the message will be seen by all correct processes. As a majority of pro-
cesses is correct, these processes will retransmit the message and p will eventually
lurb-deliver m. The no duplication property is trivially ensured by the definition of
log-delivery (the check that (s,m) ¢ delivered before adding (s, m) to delivered
only serves to avoid unnecessary work). The no creation property is ensured by the
underlying links.

Performance. Suppose that some process lurb-broadcasts a message m. All correct
processes log-deliver m after two communication steps and two causally related
logging operations (the variable pending can be logged in parallel to broadcasting
the DATA message).

3.8 Probabilistic Broadcast

This section considers randomized broadcast algorithms, whose behavior is partially
determined by a controlled random experiment. These algorithms do not provide
deterministic broadcast guarantees but, instead, only make probabilistic claims
about such guarantees.

Of course, this approach can only be used for applications that do not require full
reliability. On the other hand, full reliability often induces a cost that is too high,
especially for large-scale systems or systems exposed to attacks. As we will see, it
is often possible to build scalable probabilistic algorithms that exploit randomization
and provide good reliability guarantees.

Moreover, the abstractions considered in this book can almost never be mapped
to physical systems in real deployments that match the model completely; some
uncertainty often remains. A system designer must also take into account a small
probability that the deployment fails due to such a mismatch. Even if the probabilis-
tic guarantees of an abstraction leave room for error, the designer might accept this
error because other sources of failure are more significant.

3.8.1 The Scalability of Reliable Broadcast

As we have seen throughout this chapter, in order to ensure the reliability of broad-
cast in the presence of faulty processes (and/or links with omission failures), a
process needs to send messages to all other processes and needs to collect some
form of acknowledgment. However, given limited bandwidth, memory, and proces-
sor resources, there will always be a limit to the number of messages that each
process can send and to the acknowledgments it is able to collect in due time. If the

3.8 Probabilistic Broadcast

AR

Figure 3.5: Direct vs. hierarchical communication for sending messages and receiv-
ing acknowledgments

group of processes becomes very large (say, thousands or even millions of mem-
bers in the group), a process sending out messages and collecting acknowledgments
becomes overwhelmed by that task (see Fig. 3.5a). Such algorithms inherently do
not scale. Sometimes an efficient hardware-supported broadcast mechanism is avail-
able, and then the problem of collecting acknowledgments, also known as the ack
implosion problem, is the worse problem of the two.

There are several ways to make algorithms more scalable. One way is to use some
form of hierarchical scheme to send messages and to collect acknowledgments, for
instance, by arranging the processes in a binary tree, as illustrated in Fig. 3.5b.
Hierarchies can reduce the load of each process but increase the latency of the com-
munication protocol. Additionally, hierarchies need to be reconfigured when faults
occur (which may not be a trivial task), and even with this sort of hierarchies, the
obligation to send and receive information, directly or indirectly, to and from every
other process remains a fundamental scalability problem of reliable broadcast. In the
next section we discuss how randomized approaches can circumvent this limitation.

3.8.2 Epidemic Dissemination

Nature gives us several examples of how a randomized approach can implement a
fast and efficient broadcast primitive. Consider how an epidemic spreads through a
population. Initially, a single individual is infected; every infected individual will
in turn infect some other individuals; after some period, the whole population is
infected. Rumor spreading or gossiping uses exactly the same mechanism and has
proved to be a very effective way to disseminate information.

A number of broadcast algorithms have been designed based on this principle
and, not surprisingly, these are often called epidemic, rumor mongering, gossip, or
probabilistic broadcast algorithms. Before giving more details on these algorithms,
we first define the abstraction that they implement, which we call probabilistic
broadcast. To illustrate how algorithms can implement the abstraction, we assume
a model where processes can only fail by crashing.

94 3 Reliable Broadcast

Module 3.7: Interface and properties of probabilistic broadcast
Module:

Name: ProbabilisticBroadcast, instance pb.
Events:
Request: (pb, Broadcast | m): Broadcasts a message m to all processes.
Indication: { pb, Deliver | p, m): Delivers a message m broadcast by process p.
Properties:

PB1: Probabilistic validity: There is a positive value € such that when a correct pro-
cess broadcasts a message m, the probability that every correct process eventually
delivers m is at least 1 — €.

PB2: No duplication: No message is delivered more than once.

PB3: No creation: If a process delivers a message m with sender s, then m was
previously broadcast by process s.

3.8.3 Specification

The probabilistic broadcast abstraction is depicted in Module 3.7. Its interface is the
same as for best-effort broadcast (Module 3.1), and also two of its three properties,
no duplication and no creation, are the same. Only the probabilistic validity property
is weaker than the ordinary validity property and accounts for a failure probability ¢,
which is typically small.

As for previous communication abstractions introduced in this chapter, we
assume that messages are implicitly addressed to all processes in the system, i.e.,
the goal of the sender is to have its message delivered to all processes of a given
group, constituting what we call the system.

3.8.4 Randomized Algorithm: Eager Probabilistic Broadcast

Algorithm 3.9, called “Eager Probabilistic Broadcast,” implements probabilistic
broadcast. The sender selects k processes at random and sends them the message.
In turn, each of these processes selects another k processes at random and forwards
the message to those processes, and so on. The parameter k is called the fanout of
a gossip algorithm. The algorithm may cause a process to send the message back
to the same process from which it originally received the message, or to send it to
another process that has already received the message.

Each step consisting of receiving a message and resending it is called a round of
gossiping. The algorithm performs up to R rounds of gossiping for each message.

The description of the algorithm uses a function picktargets(k), which takes the
fanout £ as input and outputs a set of processes. It returns k£ random samples chosen
from IT \ {self} according to the uniform distribution without replacement. The

3.8 Probabilistic Broadcast 95

Algorithm 3.9: Eager Probabilistic Broadcast

Implements:
ProbabilisticBroadcast, instance pb.

Uses:
FairLossPointToPointLinks, instance fil.

upon event (pb, Init) do
delivered = ();

procedure gossip(msg) is
forall ¢ € picktargets(k) do trigger (fll, Send | ¢, msg);

upon event (pb, Broadcast | m) do
delivered := delivered U {m};
trigger (pb, Deliver | self, m);
gossip([GOSSIP, self,m, R));

upon event (fll, Deliver | p, [GOSSIP, s,m,]) do
if m & delivered then
delivered := delivered U {m};
trigger (pb, Deliver | s, m);
if » > 1 then gossip(|[GOSSIP, s,m,r — 1]);

function random(S) implements the random choice of an element from a set S for
this purpose. The pseudo code looks like this:

function picktargets(k) returns set of processes is
targets = (;
while # (targets) < k do
candidate := random(IT \ {self});
if candidate ¢ targets then
targets := targets U {candidate};
return fargets;

The fanout is a fundamental parameter of the algorithm. Its choice directly im-
pacts the performance of the algorithm and the probability of successful reliable
delivery (in the probabilistic validity property of probabilistic broadcast). A higher
fanout not only increases the probability of having the entire population infected but
also decreases the number of rounds required to achieve this. Note also that the al-
gorithm induces a significant amount of redundancy in the message exchanges: any
given process may receive the same message many times. A three-round execution
of the algorithm with fanout three is illustrated in Fig. 3.6 for a system consisting of
nine processes.

However, increasing the fanout is costly. The higher the fanout, the higher the
load imposed on each process and the amount of redundant information exchanged

96 3 Reliable Broadcast

(a) round 1 (b) round 2 (c) round 3

Figure 3.6: Epidemic dissemination or gossip (with fanout 3)

over the network. Therefore, to select the appropriate fanout value is of particular
importance. Note that there are runs of the algorithm where a transmitted message
may not be delivered to all correct processes. For instance, all processes that receive
the message directly from the sender may select exactly the same set of k target pro-
cesses and forward the message only to them, and the algorithm may stop there. In
such a case, if k£ is much smaller than IV, not all processes will deliver the message.
As another example, there might be one process that is simply never selected by any
process and never receives the message. This translates into the fact that reliable
delivery is not guaranteed, that is, the probability that some process never delivers
the message is nonzero. But by choosing large enough values of k and R in relation
to N, this probability can be made arbitrarily small.

Correctness. The no creation and no duplication properties are immediate from the
underlying point-to-point links and from the use of the variable delivered.

For the probabilistic validity property, the probability that for a particular broad-
cast message, all correct processes become infected and deliver the message depends
on the fanout k£ and on the maximum number of rounds R.

We now derive a simple estimate of the probability that a particular correct pro-
cess delivers a message. Suppose that the underlying fair-loss links deliver every
message sent by the first infected correct process (i.e., the original sender) but no
further message; in other words, only the sender disseminates the broadcast mes-
sage. In every round, a fraction of v = k/N processes become infected like this
(some may have been infected before). The probability that a given correct pro-
cess remains uninfected is at most 1 — ~y. Hence, the probability that this process is
infected after R rounds is at least about £y = 1 — (1 —)%

Toward a second, more accurate estimate, we eliminate the simplification that
only one process infects others in a round. Suppose a fraction of d = (N — f)/N
processes are correct; assume further that in every round, the number of actually
infected processes is equal to their expected number. Denote the expected number
of infected and correct processes after round 7 by I,.. Initially, only the sender is
infected and Iy = 1. After round r for r > 0, we observe that I,._; correct processes
stay infected. Among the remaining N — I,._; processes, we expect that a fraction
of d is correct and a fraction of v of them becomes infected:

3.8 Probabilistic Broadcast 97

1

Probability of delivery

0 5 10 15 20
Number of rounds (R)

Figure 3.7: [llustration of gossip delivery probability to one correct process using the
“Eager Probabilistic Broadcast” algorithm with R = 1, ..., 20 rounds, in terms of
estimates F; and E> from the text

I, = I, +d’y(N_Ir71)

As all I,. processes infect others in round r + 1, the infections in round r + 1 spread
about as fast as if one process would have infected the others during additional 1.
rounds. Summing this up over all R rounds, we obtain our second estimate: the
probability of some correct process being infected after R rounds is about

By = 1—(1—~)2iIr,

The two estimates E; and E5 of the delivery probability for one process are plot-
ted in Fig. 3.7 for a system of N = 100 processes, assuming that f = 25 faulty
processes crash initially, and fanout £ = 10.

Performance. The number of rounds needed for a message to be delivered by all
correct processes also depends on the fanout. Every round involves one communi-
cation step. The algorithm may send O(N) messages in every round and O(N)
messages in total, after running for R rounds; generally, the number of messages
sent by the algorithm is dominated by the messages of the last round.

3.8.5 Randomized Algorithm: Lazy Probabilistic Broadcast

The “Eager Probabilistic Broadcast” algorithm described earlier uses only gossiping
to disseminate messages, where infected processes push messages to other pro-
cesses. A major disadvantage of this approach is that it consumes considerable
resources and causes many redundant transmissions, in order to achieve reliable
delivery with high probability. A way to overcome this limitation is to rely on epi-
demic push-style broadcast only in a first phase, until many processes are infected,

98 3 Reliable Broadcast

Algorithm 3.10: Lazy Probabilistic Broadcast (part 1, data dissemination)

Implements:
ProbabilisticBroadcast, instance pb.

Uses:
FairLossPointToPointLinks, instance fi/;
ProbabilisticBroadcast, instance upb. /I an unreliable implementation

upon event (pb, Init) do
next := [1]N;
Isn :=0;
pending = 0; stored := (),

procedure gossip(msg) is
forall ¢ € picktargets(k) do trigger (fil, Send | t, msg);

upon event { pb, Broadcast | m) do
Isn :=1Isn + 1;
trigger (upb, Broadcast | [DATA, self, m, Isn]);

upon event (upb, Deliver | p, [DATA, s, m, sn]) do

if random([0, 1]) > « then
stored := stored U {[DATA, s, m, sn|};

if sn = next[s] then
next[s] := next|s] + 1;
trigger (pb, Deliver | s, m);

else if sn > next[s] then
pending = pending U {[DATA, s, m, sn|};
forall missing € [next[s],...,sn — 1] do

if no m’ exists such that [DATA, s, m/, missing] € pending then
gossip([REQUEST, self, s, missing, R — 1]);

starttimer(A, s, sn);

and to switch to a pulling mechanism in a second phase afterward. Gossiping until,
say, half of the processes are infected is efficient. The pulling phase serves a backup
to inform the processes that missed the message in the first phase. The second phase
uses again gossip, but only to disseminate messages about which processes have
missed a message in the first phase. This idea works for scenarios where every
sender broadcasts multiple messages in sequence.

For describing an implementation of this idea in a compact way, we assume here
that the first phase is realized by an unreliable probabilistic broadcast abstraction,
as defined by Module 3.7, with a large probability ¢ that reliable delivery fails, in its
probabilistic validity property. Concretely, we expect that a constant fraction of the
processes, say, half of them, obtains the message after the first phase. The primitive
could typically be implemented on top of fair-loss links (as the “Eager Probabilistic
Broadcast” algorithm) and should work efficiently, that is, not cause an excessive
amount of redundant message transmissions.

Algorithm 3.10-3.11, called “Lazy Probabilistic Broadcast,” realizes probabilis-
tic broadcast in two phases, with push-style gossiping followed by pulling. The

3.8 Probabilistic Broadcast 99

Algorithm 3.11: Lazy Probabilistic Broadcast (part 2, recovery)

upon event (fll, Deliver | p, [REQUEST, g, s, sn, |) do
if exists m such that [DATA, s, m, sn] € stored then
trigger (fll, Send | g, [DATA, s,m, sn]);
else if » > 0 then
gossip([REQUEST, g, s, sn,r — 1]);

upon event (fll, Deliver | p, [DATA, s, m, sn]) do
pending :=pending U {[DATA, s, m, sn|};

upon exists [DATA, s, z, sn] € pending such that sn = next[s] do
next[s] := next[s] + 1;
pending :=pending \ {[DATA, s, z, sn|};
trigger (pb, Deliver | s,z);

upon event (Timeout | s, sn) do
if sn > next[s] then
next[s] :=sn + 1;

algorithm assumes that each sender is transmitting a stream of numbered messages.
Message omissions are detected based on gaps in the sequence numbers of received
messages. Each message is disseminated using an instance upb of unreliable prob-
abilistic broadcast. Each message that is retained by a randomly selected set of
receivers for future retransmission. More precisely, every process that upb-delivers
a message stores a copy of the message with probability « during some maximum
amount of time. The purpose of this approach is to distribute the load of storing
messages for future retransmission among all processes.

Omissions can be detected using sequence numbers associated with messages.
The array variable next contains an entry for every process p with the sequence num-
ber of the next message to be pb-delivered from sender p. The process detects that it
has missed one or more messages from p when the process receives a message from
p with a larger sequence number than what it expects according to next[p]. When a
process detects an omission, it uses the gossip algorithm to disseminate a retrans-
mission request. If the request is received by one of the processes that has stored
a copy of the message then this process retransmits the message. Note that, in this
case, the gossip algorithm does not have to ensure that the retransmission request
reaches all processes with high probability: it is enough that the request reaches,
with high probability, one of the processes that has stored a copy of the missing
message. With small probability, recovery will fail. In this case, after a timeout with
delay A has expired, a process simply jumps ahead and skips the missed messages,
such that subsequent messages from the same sender can be delivered.

The pseudo code of Algorithm 3.10-3.11 uses again the function picktargets(k)
from the previous section. The function random(|0, 1]) used by the algorithm returns
a random real number from the interval [0, 1]. The algorithm may invoke multiple
timers, where operation starttimer(A, parameters) starts a timer instance identified
by parameters with delay A.

100 3 Reliable Broadcast

Garbage collection of the stored message copies is omitted in the pseudo code for
simplicity. Note also that when a timeout for some sender s and sequence number sn
occurs, the pseudo code may skip some messages with sender s in pending that
have arrived meanwhile (be it through retransmissions or delayed messages from s)
and that should be processed; a more complete implementation would deliver these
messages and remove them from pending.

Correctness. The no creation and no duplication properties follow from the under-
lying point-to-point links and the use of sequence numbers.

The probability of delivering a message to all correct processes depends here on
the fanout (as in the “Eager Probabilistic Broadcast” algorithm) and on the reliabil-
ity of the underlying dissemination primitive. For instance, if half of the processes
upb-deliver a particular message and all of them were to store it (by setting o = 0)
then the first retransmission request to reach one of these processes will be suc-
cessful, and the message will be retransmitted. This means that the probability of
successful retransmission behaves like the probability of successful delivery in the
“Eager Probabilistic Broadcast” algorithm.

Performance. Assuming an efficient underlying dissemination primitive, the broad-
casting of a message is clearly much more efficient than in the “Eager Probabilistic
Broadcast” algorithm.

It is expected that, in most cases, the retransmission request message is much
smaller that the original data message. Therefore, this algorithm is also much more
resource-effective than the “Eager Probabilistic Broadcast” algorithm.

Practical algorithms based on this principle make a significant effort to optimize
the number of processes that store copies of each broadcast message. Not surpris-
ingly, the best results can be obtained if the physical network topology is taken into
account: for instance, in a wide-area system with processes in multiple LANs, an
omission in a link connecting a LAN with the rest of the system affects all pro-
cesses in that LAN. Thus, it is desirable to have a copy of the message in each LAN
(to recover from local omissions) and a copy outside the LAN (to recover from the
omission in the link to the LAN). Similarly, the retransmission procedure, instead
of being completely random, may search first for a copy in the local LAN and only
afterward at more distant processes.

3.9 FIFO and Causal Broadcast

So far, we have not considered any ordering guarantee among messages delivered by
different processes. In particular, when we consider a reliable broadcast abstraction,
messages can be delivered in any order by distinct processes.

In this section, we introduce reliable broadcast abstractions that deliver messages
according to first-in first-out (FIFO) order and according to causal order. FIFO
order ensures that messages broadcast by the same sender process are delivered in
the order in which they were sent. Causal order is a generalization of FIFO order
that additionally preserves the potential causality among messages from multiple
senders. These orderings are orthogonal to the reliability guarantees.

2 Springer
http://www.springer.com/978-3-642-15259-7

Introduction to Reliable and Secure Distributed
Frogramming

Cachin, C.; Guerraoui, R.; Rodrigues, L

2011, XX, 367 p., Hardcover

ISBN: @78-3-642-15259-7

	Introduction
	Basic Abstractions
	Reliable Broadcast
	Shared Memory
	Consensus
	Consensus Variants
	Concluding Remarks
	References
	List of Modules
	List of Algorithms
	Index

