Preface

This book provides an introduction to distributed programming abstractions and
presents the fundamental algorithms that implement them in several distributed en-
vironments. The reader is given insight into the important problems of distributed
computing and the main algorithmic techniques used to solve these problems.
Through examples the reader can learn how these methods can be applied to build-
ing distributed applications. The central theme of the book is the tolerance to
uncertainty and adversarial influence in a distributed system, which may arise from
network delays, faults, or even malicious attacks.

Content

In modern computing, a program usually encompasses multiple processes. A pro-
cess is simply an abstraction that may represent a physical computer or a virtual
one, a processor within a computer, or a specific thread of execution in a concur-
rent system. The fundamental problem with devising such distributed programs is
to have all processes cooperate on some common task. Of course, traditional cen-
tralized algorithmic issues still need to be dealt with for each process individually.
Distributed environments, which may range from a single computer to a data center
or even a global system available around the clock, pose additional challenges: how
to achieve a robust form of cooperation despite process failures, disconnections of
some of the processes, or even malicious attacks on some processes? Distributed
algorithms should be dependable, offer reliability and security, and have predictable
behavior even under negative influence from the environment.

If no cooperation were required, a distributed program would simply consist of
a set of independent centralized programs, each running on a specific process, and
little benefit could be obtained from the availability of several processes in a dis-
tributed environment. It was the need for cooperation that revealed many of the
fascinating problems addressed by this book, problems that need to be solved to
make distributed computing a reality. The book not only introduces the reader to
these problem statements, it also presents ways to solve them in different contexts.

Not surprisingly, distributed programming can be significantly simplified if
the difficulty of robust cooperation is encapsulated within specific abstractions.
By encapsulating all the tricky algorithmic issues, such distributed programming
abstractions bridge the gap between network communication layers, which are

vii



viii Preface

usually frugal in terms of dependability guarantees, and distributed application
layers, which usually demand highly dependable primitives.

The book presents various distributed programming abstractions and describes
algorithms that implement them. In a sense, we give the distributed application
programmer a library of abstract interface specifications, and give the distributed
system builder a library of algorithms that implement the specifications.

A significant amount of the preparation time for this book was devoted to for-
mulating a collection of exercises and developing their solutions. We strongly
encourage the reader to work out the exercises. We believe that no reasonable
understanding can be achieved in a passive way. This is especially true in the field
of distributed computing, where the human mind too often follows some attractive
but misleading intuition. The book also includes the solutions for all exercises, to
emphasize our intention to make them an integral part of the content. Many exercises
are rather easy and can be discussed within an undergraduate teaching classroom.
Other exercises are more difficult and need more time. These can typically be
studied individually.

Presentation

The book as such is self-contained. This has been made possible because the field
of distributed algorithms has reached a certain level of maturity, where distract-
ing details can be abstracted away for reasoning about distributed algorithms. Such
details include the behavior of the communication network, its various kinds of fail-
ures, as well as implementations of cryptographic primitives; all of them are treated
in-depth by other works. Elementary knowledge about algorithms, first-order logic,
programming languages, networking, security, and operating systems might be help-
ful. But we believe that most of our abstractions and algorithms can be understood
with minimal knowledge about these notions.

The book follows an incremental approach and was primarily written as a text-
book for teaching at the undergraduate or basic graduate level. It introduces the
fundamental elements of distributed computing in an intuitive manner and builds
sophisticated distributed programming abstractions from elementary ones in a mod-
ular way. Whenever we devise algorithms to implement a given abstraction, we
consider a simple distributed-system model first, and then we revisit the algorithms
in more challenging models. In other words, we first devise algorithms by making
strong simplifying assumptions on the distributed environment, and then we discuss
how to weaken those assumptions.

We have tried to balance intuition and presentation simplicity on the one hand
with rigor on the other hand. Sometimes rigor was affected, and this might not have
been always on purpose. The focus here is rather on abstraction specifications and
algorithms, not on computability and complexity. Indeed, there is no theorem in
this book. Correctness arguments are given with the aim of better understanding the
algorithms: they are not formal correctness proofs per se.



Preface ix
Organization

The book has six chapters, grouped in two parts. The first part establishes the
common ground:

e In Chapter 1, we motivate the need for distributed programming abstractions
by discussing various applications that typically make use of such abstractions.
The chapter also introduces the modular notation and the pseudo code used to
describe the algorithms in the book.

e In Chapter 2, we present different kinds of assumptions about the underlying
distributed environment. We introduce a family of distributed-system models for
this purpose. Basically, a model describes the low-level abstractions on which
more sophisticated ones are built. These include process and communication link
abstractions. This chapter might be considered as a reference to other chapters.

The remaining four chapters make up the second part of the book. Each chapter is
devoted to one problem, containing a broad class of related abstractions and various
algorithms implementing them. We will go from the simpler abstractions to the more
sophisticated ones:

e In Chapter 3, we introduce communication abstractions for distributed program-
ming. They permit the broadcasting of a message to a group of processes and
offer diverse reliability guarantees for delivering messages to the processes. For
instance, we discuss how to make sure that a message delivered to one process
is also delivered to all other processes, despite the crash of the original sender
process.

e In Chapter 4, we discuss shared memory abstractions, which encapsulate simple
forms of distributed storage objects, accessed by read and write operations. These
could be files in a distributed storage system or registers in the memory of a
multi-processor computer. We cover methods for reading and writing data values
by clients, such that a value stored by a set of processes can later be retrieved,
even if some of the processes crash, have erased the value, or report wrong data.

e In Chapter 5, we address the consensus abstraction through which a set of pro-
cesses can decide on a common value, based on values that the processes initially
propose. They must reach the same decision despite faulty processes, which may
have crashed or may even actively try to prevent the others from reaching a
common decision.

e In Chapter 6, we consider variants of consensus, which are obtained by extend-
ing or modifying the consensus abstraction according to the needs of important
applications. This includes total-order broadcast, terminating reliable broadcast,
(non-blocking) atomic commitment, group membership, and view-synchronous
communication.

The distributed algorithms we study not only differ according to the actual ab-
straction they implement, but also according to the assumptions they make on the
underlying distributed environment. We call the set of initial abstractions that an
algorithm takes for granted a distributed-system model. Many aspects have a funda-
mental impact on how an algorithm is designed, such as the reliability of the links,



X Preface

the degree of synchrony of the system, the severity of the failures, and whether a
deterministic or a randomized solution is sought.

In several places throughout the book, the same basic distributed program-
ming primitive is implemented in multiple distributed-system models. The intention
behind this is two-fold: first, to create insight into the specific problems encoun-
tered in a particular system model, and second, to illustrate how the choice of a
model affects the implementation of a primitive.

A detailed study of all chapters and the associated exercises constitutes a rich and
thorough introduction to the field. Focusing on each chapter solely for the specifica-
tions of the abstractions and their underlying algorithms in their simplest form, i.e.,
for the simplest system model with crash failures only, would constitute a shorter,
more elementary course. Such a course could provide a nice companion to a more
practice-oriented course on distributed programming.

Changes Made for the Second Edition

This edition is a thoroughly revised version of the first edition. Most parts of the
book have been updated. But the biggest change was to expand the scope of the
book to a new dimension, addressing the key concept of security against malicious
actions. Abstractions and algorithms in a model of distributed computing that allows
adversarial attacks have become known as Byzantine fault-tolerance.

The first edition of the book was titled “Introduction to Reliable Distributed Pro-
gramming.” By adding one word (“secure”) to the title — and adding one co-author —
the evolution of the book reflects the developments in the field of distributed systems
and in the real world. Since the first edition was published in 2006, it has become
clear that most practical distributed systems are threatened by intrusions and that
insiders cannot be ruled out as the source of malicious attacks. Building dependable
distributed systems nowadays requires an interdisciplinary effort, with inputs from
distributed algorithms, security, and other domains.

On the technical level, the syntax for modules and the names of some events have
changed, in order to add more structure for presenting the algorithms. A module
may now exist in multiple instances at the same time within an algorithm, and every
instance is named by a unique identifier for this purpose. We believe that this has
simplified the presentation of several important algorithms.

The first edition of this book contained a companion set of running examples
implemented in the Java programming language, using the Appia protocol compo-
sition framework. The implementation addresses systems subject to crash failures
and is available from the book’s online website.

Online Resources

More information about the book, including the implementation of many protocols
from the first edition, tutorial presentation material, classroom slides, and errata, is
available online on the book’s website at:

http://distributedprogramming.net


http://distributedprogramming.net

Preface xi

References

We have been exploring the world of distributed programming abstractions for
almost two decades now. The material of this book has been influenced by many
researchers in the field of distributed computing. A special mention is due to Leslie
Lamport and Nancy Lynch for having posed fascinating problems in distributed
computing, and to the Cornell school of reliable distributed computing, includ-
ing Ozalp Babaoglu, Ken Birman, Keith Marzullo, Robbert van Rennesse, Rick
Schlichting, Fred Schneider, and Sam Toueg.

Many other researchers have directly or indirectly inspired the material of this
book. We did our best to reference their work throughout the text. All chapters
end with notes that give context information and historical references; our intention
behind them is to provide hints for further reading, to trace the history of the pre-
sented concepts, as well as to give credit to the people who invented and worked
out the concepts. At the end of the book, we reference books on other aspects of
distributed computing for further reading.

Acknowledgments

We would like to express our deepest gratitude to our undergraduate and graduate
students from the Ecole Polytechnique Fédérale de Lausanne (EPFL) and the Uni-
versity of Lisboa (UL), for serving as reviewers of preliminary drafts of this book.
Indeed, they had no choice and needed to prepare for their exams anyway! But they
were indulgent toward the bugs and typos that could be found in earlier versions of
the book as well as associated slides, and they provided us with useful feedback.

Partha Dutta, Corine Hari, Michal Kapalka, Petr Kouznetsov, Ron Levy, Maxime
Monod, Bastian Pochon, and Jesper Spring, graduate students from the School of
Computer and Communication Sciences of EPFL, Filipe Aratjo and Hugo Miranda,
graduate students from the Distributed Algorithms and Network Protocol (DIALNP)
group at the Departamento de Informadtica da Faculdade de Ciéncias da Universi-
dade de Lisboa (UL), Leila Khalil and Robert Basmadjian, graduate students from
the Lebanese University in Beirut, as well as Ali Ghodsi, graduate student from
the Swedish Institute of Computer Science (SICS) in Stockholm, suggested many
improvements to the algorithms presented in the book.

Several implementations for the “hands-on” part of the book were developed by,
or with the help of, Alexandre Pinto, a key member of the Appia team, comple-
mented with inputs from several DIALNP team members and students, including
Nuno Carvalho, Maria Jodo Monteiro, and Luis Sardinha.

Finally, we would like to thank all our colleagues who were kind enough to com-
ment on earlier drafts of this book. These include Felix Gaertner, Benoit Garbinato,
and Maarten van Steen.



xii Preface

Acknowledgments for the Second Edition

Work on the second edition of this book started while Christian Cachin was on sab-
batical leave from IBM Research at EPFL in 2009. We are grateful for the support
of EPFL and IBM Research.

We thank again the students at EPFL and the University of Lisboa, who worked
with the book, for improving the first edition. We extend our gratitude to the students
at the Instituto Superior Técnico (IST) of the Universidade Técnica de Lisboa, at
ETH Ziirich, and at EPFL, who were exposed to preliminary drafts of the additional
material included in the second edition, for their helpful feedback.

We are grateful to many attentive readers of the first edition and to those who
commented on earlier drafts of the second edition, for pointing out problems
and suggesting improvements. In particular, we thank Zinaida Benenson, Alysson
Bessani, Diego Biurrun, Filipe Cristovao, Dan Dobre, Felix Freiling, Ali Ghodsi,
Seif Haridi, Matd$ Harvan, Riidiger Kapitza, Nikola KnezZevi¢, Andreas Knobel,
Mihai Letia, Thomas Locher, Hein Meling, Hugo Miranda, Luis Pina, Martin
Schaub, and Marko Vukolié.

Christian Cachin
Rachid Guerraoui
Luts Rodrigues



2 Springer
http://www.springer.com/978-3-642-15259-7

Introduction to Reliable and Secure Distributed
Frogramming

Cachin, C.; Guerraoui, R.; Rodrigues, L

2011, XX, 367 p., Hardcover

ISBN: @78-3-642-15259-7





