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Inequalities for Functions Vanishing
at the Boundary

The present chapter deals with the necessary and sufficient conditions for the
validity of certain estimates for the norm ‖u‖Lq(Ω,μ), where u ∈ D(Ω) and μ
is a measure in Ω. Here we consider inequalities with the integral

∫
Ω

[
Φ(x, ∇u)

]p dx,

on the right-hand side. The function Φ(x, ξ), defined for x ∈ Ω and ξ ∈ R
n, is

positive homogeneous of degree one in ξ. The conditions are stated in terms
of isoperimetric (for p = 1 in Sect. 2.1) and isocapacitary (for p ≥ 1, in
Sects. 2.2–2.4) inequalities. For example, we give a complete answer to the
question of validity of the inequality

‖u‖Lq(Ω,μ) ≤ C

(∫
Ω

[
Φ(x, ∇u)

]p dx
)1/p

,

both for q ≥ p ≥ 1 and 0 < q < p, p ≥ 1. In particular, in the first case there
hold sharp inequalities for the best constant C

β1/p ≤ C ≤ p(p − 1)(1−p)/pβ1/p,

where

β = sup
F ⊂Ω

μ(F )p/q

(p, Φ)-cap(F,Ω)
,

with the so-called (p, Φ)-capacity of a compact subset of Ω in the denomi-
nator. Actually, this is a special case of a more general assertion concerning
Birnbaum–Orlicz spaces.

Among other definitive results we obtain criteria for the validity of multi-
plicative inequalities of the form

‖u‖Lp(Ω,μ) ≤ C
∥∥Φ(·, ∇u)

∥∥δ

Lp(Ω)
‖u‖1−δ

Lr(Ω,ν)
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as well as the necessary and sufficient conditions for compactness of related
embedding operators.

In Sect. 2.5 we give applications of the results in Sect. 2.4 to the spec-
tral theory of the multidimensional Schrödinger operator with a nonpositive
potential. Here the necessary and sufficient conditions ensuring the positiv-
ity and semiboundedness of this operator, discreteness, and finiteness of its
negative spectrum are obtained.

Certain properties of quadratic forms of the type
∫

Rn

aij(x)
∂u

∂xi

∂u

∂xj
dx

are studied in Sects. 2.6.1 and 2.6.2. Finally, Sects. 2.7 and 2.8 are devoted to
sharp constants in some multidimensional inequalities of the Hardy type.

2.1 Conditions for Validity of Integral Inequalities
(the Case p = 1)

2.1.1 Criterion Formulated in Terms of Arbitrary Admissible Sets

A bounded open set g ⊂ R
n will be called admissible if ḡ ⊂ Ω and ∂g is a C∞

manifold. In Chaps. 5–7 this definition will be replaced by a broader one.
Let N (x) denote the unit normal to the boundary of the admissible set

g at a point x that is directed toward the interior of g. Let Φ(x, ξ) be a
continuous function on Ω × R

n that is nonnegative and positive homogeneous
of the first degree with respect to ξ. We introduce the weighted area of ∂g

σ(∂g) =
∫

∂g

Φ
(
x,N (x)

)
ds(x). (2.1.1)

Let μ and ν be measures in Ω and ωn = s(∂B1).
The following theorem contains a necessary and sufficient condition for

the validity of the multiplicative inequality :

‖u‖Lq(Ω,μ) ≤ C
∥∥Φ(·, ∇u)

∥∥δ

L1(Ω)
‖u‖1−δ

Lr(Ω,ν) (2.1.2)

for all u ∈ D(Ω). This result will be proved using the same arguments as in
Theorem 1.4.2/1.

Theorem. 1. If for all admissible sets

μ(g)1/q ≤ ασ(∂g)δν(g)(1−δ)/r, (2.1.3)

where α = const > 0, δ ∈ [0, 1], r, q > 0, δ + (1 − δ)r−1 ≥ q−1, then (2.1.2)
holds for all u ∈ D(Ω) with C ≤ αrδ(rδ + 1 − δ)−δ−(1−δ)/r.
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2. If (2.1.2) holds for all u ∈ D(Ω) with q > 0, δ ∈ [0, 1], then (2.1.3)
holds for all admissible sets g and α ≤ C.

Proof. 1. First we note that by Theorem 1.2.4
∫

Ω

Φ(x, ∇u) dx =
∫

{x:|∇u|>0}
Φ

(
x,

∇u

| ∇u|

)
| ∇u| dx

=
∫ ∞

0

dt
∫

Et

Φ

(
x,

∇u

| ∇u|

)
ds =

∫ ∞

0

σ(∂Lt) dt. (2.1.4)

Here we used the fact that | ∇u| �= 0 on Et = {x : |u(x)| = t} for almost
all t and that for such t the sets Lt = {x : |u(x)| > t} are bounded by C∞

manifolds. By Lemma 1.2.3

‖u‖Lq(Ω,μ) =
(∫ ∞

0

μ(Lt) d
(
tq
))1/q

.

Since μ(Lt) is a nonincreasing function, then, applying (1.3.41), we obtain

‖u‖Lq(Ω,μ) ≤
(∫ ∞

0

μ(Lt)γ/q d
(
tγ
))1/γ

,

where γ = r(rδ+1−δ)−1, γ ≤ q. Using the fact that the sets Lt are admissible
for almost all t, from (2.1.3) we obtain

‖u‖Lq(Ω,μ) ≤ γ1/γα

(∫ ∞

0

σ(∂Lt)γδν(Lt)γ(1−δ)/rtγ−1 dt
)1/γ

.

Since γδ + γ(1 − δ)/r = 1, then by Hölder’s inequality

‖u‖Lq(Ω,μ) ≤ γ1/γα

(∫ ∞

0

σ(∂Lt) dt
)δ(∫ ∞

0

ν(Lt)tr−1 dt
)(1−δ)/r

,

which by virtue of (2.1.4) and Lemma 1.2.3 is equivalent to (2.1.2).
2. Let g be any admissible subset of Ω and let d(x) = dist(x,Rn\g),

gt = {x ∈ Ω, d(x) > t}. Let α denote a nondecreasing function, infinitely
differentiable on [0, ∞), equal to unity for d ≥ 2ε and to zero for d ≤ ε, where
ε is a sufficiently small positive number. Then we substitute uε(x) = α[d(x)]
into (2.1.2).

By Theorem 1.2.4,
∫

Ω

Φ(x, ∇uε) dx =
∫ 2ε

0

α′(t)
∫

∂gt

Φ
(
x,N (x)

)
ds(x),

where N (x) is the normal at x ∈ ∂gt directed toward the interior of gt. Since
∫

∂gt

Φ
(
x,N (x)

)
ds(x) t→0−−−→σ(∂g),
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we obtain ∫
Ω

Φ(x, ∇uε) dx ε→0−−−→ σ(∂g).

Let K be a compactum in g such that dist(K, ∂g) > 2ε. Then uε(x) = 1
on K and

‖uε‖Lq(Ω,μ) ≥ μ(K)1/q.

Using 0 ≤ uε(x) ≤ 1 and supp uε ⊂ g, we see that

‖uε‖Lr(Ω,ν) ≤ ν(g)1/r.

Now from (2.1.2) we obtain

μ(g)1/q = sup
K⊂g

μ(K)1/q ≤ Cσ(∂g)δν(g)(1−δ)/r.

The result follows. ��

2.1.2 Criterion Formulated in Terms of Balls for Ω = R
n

In the case Φ(x, ξ) = |ξ|, Ω = R
n, ν = mn it follows from (2.1.2) that for all

balls B�(x)
μ
(
B�(x)

)1/q ≤ A�δ(n−1)+(1−δ)n/r. (2.1.5)

With minor modification in the proof of Theorem 1.4.2/2 we arrive at the
converse assertion.

Theorem. If (2.1.5) holds with δ ∈ [0, 1]; q, r > 0, δ + (1 − δ)/r ≥ 1/q
for all balls B�(x), then

‖u‖Lq(μ) ≤ C
∥∥Φ(·, ∇u)

∥∥δ

L1
‖u‖(1−δ)

Lr
(2.1.6)

holds for all u ∈ D(Rn) with C ≤ cA.

Proof. As already shown in the proof of Theorem 1.2.1/2, for any bounded
open set g with a smooth boundary there exists a sequence {B�i(xi)}i≥1 of
disjoint balls with the properties

(α) g ⊂
⋃
i≥1

B3�i(xi),

(β) 2mn

(
q ∩ B�i(xi)

)
= vn�

n
i ,

(γ) s(∂g) ≥ c
∑
i≥1

�n−1
i .

From (2.1.5) it follows that

μ(g) ≤
∑
i≥1

μ
(
B3�i(xi)

)
≤ Aq

∑
i≥1

(3�i)q[δ(n−1)+(1−δ)n/r]. (2.1.7)
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Since qδ + (1 − δ)n/r ≥ 1, it follows from (2.1.7) that

μ(g) ≤ cAq

(∑
i≥1

�
q δ(n−1)+(1−δ)n/r

qδ+(1−δ)n/r

i

)qδ+(1−δ)n/r

,

which by Hölder’s inequality does not exceed

cAq

(∑
i≥1

�n−1
i

)qδ(∑
i≥1

�n
i

)(1−δ)q/r

.

To conclude the proof it remains to apply Theorem 2.1.1. ��

2.1.3 Inequality Involving the Norms in Lq(Ω, μ) and Lr(Ω, ν)
(Case p = 1)

The next theorem is proved analogously to Theorem 2.1.1.

Theorem. 1. If for all admissible sets g ⊂ Ω

μ(g)1/q ≤ ασ(∂g) + βν(g)1/r, (2.1.8)

where α ≥ 0, β ≥ 0, q ≥ 1 ≥ r, then

‖u‖Lq(Ω,μ) ≤ α
∥∥Φ(x, ∇u)

∥∥
L(Ω)

+ β‖u‖Lr(Ω,ν) (2.1.9)

holds for all u ∈ D(Ω).
2. If (2.1.9) holds for all u ∈ D(Ω), then (2.1.8) holds for all admissible

sets g.

2.1.4 Case q ∈ (0, 1)

Here we deal with the inequality

‖u‖Lq(Ω,μ) ≤ C
∥∥Φ(·, ∇u)

∥∥
L1(Ω)

(2.1.10)

for u ∈ C∞
0 (Ω). As a particular case of (2.1.9), we obtain from Theorem 2.1.3

that (2.1.10) holds with q ≥ 1 if and only if for all admissible sets g

μ(g)1/q ≤ ασ(∂g) (2.1.11)

and α is the best value of C.
We shall show that (2.1.10) can be completely characterized also for q ∈

(0, 1). Let us start with the basic properties of the so-called nonincreasing
rearrangement of a function.

Let u be a function in Ω measurable with respect to the measure μ. We
associate with u its nonincreasing rearrangement u∗

μ on (0, ∞), which is in-
troduced by
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u∗
μ(t) = inf

{
s > 0 : μ(Ls) ≤ t

}
, (2.1.12)

where Ls = {x ∈ Ω : |u(x)| > s}.
Clearly u∗

μ is nonnegative and nonincreasing on (0, ∞). We also have
u∗

μ(t) = 0 for t ≥ μ(Ω). Furthermore, it follows from the definition of u∗

that
u∗

μ

(
μ(Ls)

)
≤ s (2.1.13)

and
μ(Lu∗(t)) ≤ t, (2.1.14)

the last because the function s → μ(Ls) is continuous from the right.
The nonincreasing rearrangement of a function has the following important

property.

Lemma 1. If q ∈ (0, ∞), then
∫

Ω

∣∣u(x)
∣∣q dμ =

∫ ∞

0

(
u∗

μ(t)
)q dt.

Proof. The required equality is a consequence of the formula
∫

Ω

∣∣u(x)
∣∣q dμ =

∫ ∞

0

μ(Lt) d
(
tq
)

and the identity
m1

(
L ∗

s

)
= μ(Ls), s ∈ (0, ∞) (2.1.15)

in which L ∗
s = {t > 0 : u∗

μ(t) > s}. To check (2.1.15) we first note that

m1

(
L ∗

s

)
= sup

{
t > 0 : u∗

μ(t) > s
}

(2.1.16)

by the monotonicity of u∗
μ. Hence, (2.1.13) yields

m1

(
L ∗

s

)
≤ μ(Ls).

For the inverse inequality, let ε > 0 and t = m1(L ∗
s ) + ε. Then (2.1.16)

implies u∗
μ(t) ≤ s and therefore

m1

(
L ∗

s

)
≤ μ(Lu∗

μ(t)) ≤ t

by (2.1.14). Thus μ(Ls) ≤ m1(L ∗
s ) and (2.1.15) follows.

Definition. Let C (�) denote the infimum σ(∂g) for all admissible sets
such that μ(g) ≥ �, where σ(∂g) is the weighted area defined by (2.1.1).

Theorem. Let Ω be a domain in R
n and 0 < q < 1.

(i) (Sufficiency) If



2.1 Conditions for Validity of Integral Inequalities (the Case p = 1) 129

D :=
∫ μ(Ω)

0

(
s1/q

C (s)

) q
1−q ds

s
< ∞, (2.1.17)

then (2.1.10) holds for all u ∈ C∞(Ω). The constant C satisfies the inequality
C ≤ c1(q)D(1−q)/q.

(ii) (Necessity) If there is a constant C > 0 such that (2.1.10) holds for all
u ∈ C∞(Ω), then (2.1.17) holds and C ≥ c2(q)D(1−q)/q.

Proof. (Sufficiency) Note that (2.1.17) implies μ(Ω) < ∞ and that C is a
positive function. By monotonicity of μ(Lt), one obtains

∫
Ω

|u|q dμ =
∞∑

j=− ∞

∫ 2j+1

2j

μ(Lt) d
(
tq
)

≤
∞∑

j=− ∞
μj

(
2q(j+1) − 2qj

)
,

where μj = μ(L2j ). We claim that the estimate

m∑
j=r

μj

(
2q(j+1) − 2qj

)
≤ cD1−q

∥∥Φ(·, ∇u)
∥∥q

Lq(Ω)
(2.1.18)

is true for any integers r, m, and r < m. Once (2.1.18) has been proved,
(2.1.17) follows by letting m → ∞ and r → −∞ in (2.1.18). Clearly, the sum
on the left in (2.1.18) is not greater than

μm2q(m+1) +
m∑

j=1+r

(μj−1 − μj)2jq. (2.1.19)

Let Sr,m denote the sum over 1 + r ≤ j ≤ m. Hölder’s inequality implies

Sr,m ≤
[

m∑
j=1+r

2jC (μj−1)

]q{ m∑
j=1+r

(μj−1 − μj)1/(1−q)

C (μj−1)1/(1−q)

}1−q

. (2.1.20)

We have
(μj−1 − μj)1/(1−q) ≤ μ

1/(1−q)
j−1 − μ

1/(1−q)
j .

Hence, by the monotonicity of C , the sum in curly braces is dominated by

m∑
j=1+r

∫ μj−1

μj

C (t)q/(q−1) d
(
t1/(1−q)

)
,

which does not exceed D/(1 − q). By (2.1.4) the sum in square brackets in
(2.1.20) is not greater than
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2
∞∑

j=− ∞

∫
L2j−1 \L2j

Φ(x, ∇u) dx.

Thus
m∑

j=1+r

(μj−1 − μj)2qj ≤ cD1−q
∥∥Φ(·, ∇u)

∥∥q

L1(Ω)
.

To conclude the proof of (2.1.18), we show that the first term in (2.1.19) is
also dominated by the right part of (2.1.18). Indeed, if μm > 0, then

μm2mq ≤
(
2mC (μm)

)q((
μm/C (μm)

)q/(1−q)
μm

)1−q

≤ c
∥∥Φ(·, ∇u)

∥∥q

L1(Ω)

(∫ μm

0

(
t

C (t)

)q/(1−q)

dt
)1−q

.

The sufficiency of (2.1.17) follows.
We turn to the necessity of (2.1.17). We shall use the following two auxil-

iary assertions.

Lemma 2. Let u ∈ C0,1
0 (Ω). There exists a sequence {uν }ν≥1 of functions

uν ∈ D(Ω) such that
∫

Ω

Φ
(
x, ∇

(
uν(x) − u(x)

))
dx → 0 as ν → ∞. (2.1.21)

Proof. Let uν = Mν−1u, where Mε stands for a mollification with radius
ε. Let U be a neighborhood of supp u, Ū ⊂ Ω.

Clearly, supp uν is situated in U for all sufficiently large ν. Since Φ ∈
C(Ω × Sn−1) and u ∈ C

(0,1)
0 (Ω), it follows that

Φ
(
x, ∇

(
uν(x) − u(x)

))
= Φ

(
x,

∇(uν(x) − u(x))
| ∇(uν(x) − u(x))|

)∣∣∇
(
uν(x) − u(x)

)∣∣,

if ∇uν(x) �= ∇u(x). Therefore, the left-hand side in (2.1.21) does not exceed

max
Ū ×Sn−1

Φ

∫
Ω

∣∣∇
(
uν(x) − u(x)

)∣∣ dx → 0 as ν → ∞.

The proof is complete. ��

Lemma 3. Let {v1, . . . , vN } be a finite collection of functions in the space
C(Ω) ∩ L1

p(Ω), p ∈ [1, ∞). Then, for x ∈ Ω, the function

x �→ v(x) = max
{
v1(x), . . . , vN (x)

}

belongs to the same space and
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∥∥Φ(·, ∇v)
∥∥

L1(Ω)
≤

N∑
i=1

∥∥Φ(·, ∇vi)
∥∥

L1(Ω)
. (2.1.22)

Proof. An induction argument reduces consideration to the case N = 2.
Here

v(x) = max
{
v1(x), v2(x)

}
.

The left-hand side in (2.1.22) is equal to
∫

v1≥v2

Φ(x, ∇v1) dx +
∫

v1<v2

Φ(x, ∇v2) dx,

which implies (2.1.22) for N = 2. ��

Continuation of the proof of Theorem. (Necessity) First we remark that
the claim implies μ(Ω) < ∞ and that C (t) > 0 for all t ∈ (0, μ(Ω)]. Let j be
any integer satisfying 2j ≤ μ(Ω). Then there exists a subset gj of Ω such that

μ(gj) ≥ 2j , and σ(Ω ∩ gj) ≤ 2C
(
2j
)
.

By the definition of C and by (2.1.4) there is a function uj ∈ C∞(Ω) subject
to uj ≥ 1 on gj , uj = 0 on ∂Ω and

∫
Ω

Φ(x, ∇uj) dx ≤ 4C
(
2j
)
.

Let s be the integer for which 2s < μ(Ω) < 2s+1. For any integer r < s, we
introduce the Lipschitz function

fr,s(x) = max
r≤j≤s

βjuj(x), x ∈ Ω,

where
βj =

(
2j/C

(
2j
))1/(1−q)

.

By Lemmas 2 and 3

∥∥Φ(·, ∇fr,s)
∥∥

L1(Ω)
≤ c

s∑
j=r

βj

∥∥Φ(·, ∇uj)
∥∥

L1(Ω)
,

and one obtains the following upper bound:

∥∥Φ(·, ∇fr,s)
∥∥

L1(Ω)
≤ c

s∑
j=r

βjC
(
2j
)
. (2.1.23)

We now derive a lower bound for the norm of fr,s in Lq(Ω,μ). Since
fr,s(x) ≥ βj for x ∈ gj , r ≤ j ≤ s, and μ(gj) ≥ 2j , the inequality
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μ
({

x ∈ Ω :
∣∣fr,s(x)

∣∣ > r
})

< 2j

implies r ≥ βj . Hence

f∗
r,s(t) ≥ βj for t ∈

(
0, 2j

)
, r ≤ j ≤ s,

where f∗
r,s is the nonincreasing rearrangement of fr,s. Then

∫ μ(Ω)

0

(
f∗

r,s(t)
)q dt ≥

s∑
j=r

∫ 2j

2j−1

(
f∗

r,s

)q dt ≥
s∑

j=r

βq
j 2j−1,

which implies

‖fr,s‖q
Lq(Ω,μ) ≥

s∑
j=r

βq
j 2j−1. (2.1.24)

Next we note that by Lemma 2 if inequality (2.1.10) holds for all u ∈ C∞
0 (Ω),

then it holds for all Lipschitz u with compact supports in Ω. In particular,

‖fr,s‖Lq(Ω,μ) ≤ C
∥∥Φ(·, ∇fr,s)

∥∥
L1(Ω)

.

Now (2.1.23) and (2.1.24) in combination with the last inequality give

C ≥ c
(
∑s

j=r β
q
j 2j)1/q

∑s
j=r βj(2j)

= c

(
s∑

j=r

2j/(1−q)

(C (2j))q/(1−q)

)(1−q)/q

.

By letting r → −∞ and by the monotonicity of C , we obtain

C ≥ c

(
s∑

j=− ∞

(
2j

C (t)

) q
1−q

2j

) 1−q
q

≥ c

(∫ μ(Ω)

0

(
t

C (t)

) q
1−q

dt

) 1−q
q

.

This completes the proof of the Theorem. ��

2.1.5 Inequality (2.1.10) Containing Particular Measures

We give two examples that illustrate applications of the inequality (2.1.10).

Example 1. Let Ω = R
n, R

n−1 = {x ∈ R
n, xn = 0}, μ(A) = mn−1(A ∩

R
n−1), where A is any Borel subset of R

n. Obviously,

μ(g) ≤ 1
2
s(∂g)

and hence
‖u‖L1(Rn−1) ≤ 1

2
‖ ∇u‖L1(Rn)

for all u ∈ D(Rn).
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Example 2. Let A be any Borel subset of R
n with mn(A) < ∞ and let

μ(A) =
∫

A

|x| −α dx,

where α ∈ [0, 1]. Further, let Br be a ball centered at the origin, whose n-
dimensional measure equals mn(A). In other words,

r =
(

n

ωn
mn(A)

)1/n

.

Obviously,
∫

A

|x| −α dx ≤
∫

A∩Br

|x| −α dx + r−αmn(Br \A) ≤
∫

Br

|x| −α dx.

So

μ(A)(n−1)/(n−α) ≤ (n − α)(1−n)/(n−α)ωα(n−1)/n(n−α)
n

[
nmn(A)

](n−1)/n
.

Let g be any admissible set in R
n. By virtue of the isoperimetric inequality

[
nmn(g)

](n−1)/n ≤ ω−1/n
n s(∂g),

we have

μ(g)(n−1)/(n−α) ≤ (n − α)(1−n)/(n−α)ω(α−1)/(n−α)
n s(∂g).

This inequality becomes an equality if g is a ball. Therefore

sup
{g}

μ(g)(n−1)/(n−α)

s(∂g)
= (n − α)(1−n)/(n−α)ω(α−1)/(n−α)

n

and for all u ∈ D(Rn)

(∫
Rn

∣∣u(x)
∣∣(n−α)/(n−1)|x| −α dx

)(n−1)/(n−α)

≤ (n − α)(1−n)/(n−α)ω(α−1)/(n−α)
n ‖∇u‖L1(Rn) (2.1.25)

with the best possible constant.

2.1.6 Power Weight Norm of the Gradient on the Right-Hand Side

In this subsection we denote by z = (x, y) and ζ = (ξ, η) points in R
n+m with

x, ξ ∈ R
n, y, η ∈ R

m, m,n > 0. Further, let B(d)
r (q) be the d-dimensional ball

with center q ∈ R
d.
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Lemma 1. Let g be an open subset of R
n+m with compact closure and

smooth boundary ∂g, which satisfies
∫

B
(n+m)
r (z)∩g

|η|α dζ
/∫

B
(n+m)
r (z)

|η|α dζ =
1
2
, (2.1.26)

where α > −m for m > 1 and 0 ≥ α > −1 for m = 1. Then
∫

B
(n+m)
r (z)∩∂g

|η|α ds(ζ) ≥ crn+m−1
(
r + |y|

)α
, (2.1.27)

where s is the (n + m − 1)-dimensional area.

The proof is based on the next lemma.

Lemma 2. Let α > −m for m > 1 and 0 ≥ α > −1 for m = 1. Then for

any v ∈ C∞(B(n+m)
r ) there exists a constant V such that

∫
B

(n+m)
r

∣∣v(ζ) − V
∣∣|η|α dζ ≤ cr

∫
B

(n+m)
r

∣∣∇v(ζ)
∣∣|η|α dζ. (2.1.28)

Proof. It suffices to derive (2.1.28) for r = 1. We put B
(n+m)
1 = B and

B
(m)
1 × B

(n)
1 = Q. Let R(ζ) denote the distance of a point ζ ∈ ∂Q from the

origin, i.e., R(ζ) = (1+ |ζ|2)1/2 for |η| = 1, |ξ| < 1 and R(ζ) = (1+ |η|2)1/2 for
|ζ| = 1, |η| < 1. Taking into account that B is the quasi-isometric image of Q
under the mapping ζ → ζ/R(ζ), we may deduce (2.1.28) from the inequality

∫
Q

∣∣v(ζ) − V
∣∣|η|α dζ ≤ c

∫
Q

∣∣∇v(ζ)
∣∣|η|α dζ, (2.1.29)

which will be established now. Since (m + α)|η|α = div(|η|αη), then, after
integration by parts in the left-hand side of (2.1.29), we find that it does not
exceed

(m + α)−α

(∫
Q

| ∇v| |η|α+1 dξ +
∫

B
(n)
1

dξ
∫

∂B
(m)
1

∣∣v(ζ) − V
∣∣ ds(η)

)
. (2.1.30)

For the sake of brevity we put T = B
(n)
1 × (B(m)

1 \B(m)
1/2 ). Let m > 1. The

second summand in (2.1.30) is not greater than

c

∫
T

| ∇v| dζ + c

∫
T

|v − V | dζ.

By Lemma 1.1.11, the last assertion and (2.1.30) imply (2.1.29), where V
is the mean value of v in T . (Here it is essential that T is a domain for m > 1.)

If m = 1 then T has two components T+ = B
(n)
1 × (1/2, 1) and T− =

B
(n)
1 × (−1, −1/2). Using the same argument as in the case m > 1, we obtain
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∫
B

(n)
1

∣∣v(ξ, ±1) − V±
∣∣dξ ≤ c

∫
T±

∣∣∇v(ζ)
∣∣ dζ ≤ c

∫
Q

∣∣∇v(ζ)
∣∣|η|α dζ,

where V± are the mean values of v in T±. It remains to note that

|V+ − V− | ≤ c

∫
B

(n)
1

dξ
∫ 1

−1

∣∣∣∣∂v∂η
∣∣∣∣ dη ≤ c

∫
Q

∣∣∇v(ζ)
∣∣|η|α dζ,

provided α ≤ 0. So for m = 1 we also have (2.1.29) with V replaced by V+ or
V−. This concludes the proof of the lemma. ��

Proof of Lemma 1. For the sake of brevity let B = B
(n+m)
r (z). In (2.1.28)

we replace v by a mollification of the characteristic function χ� of the set g
with radius �. Then the left-hand side in (2.1.28) is bounded from below by
the sum

|1 − V |
∫

e1

|η|α dζ + |V |
∫

e0

|η|α dζ,

where ei = {ζ ∈ B : χ�(ζ) = i}, i = 0, 1.
Let ε be a sufficiently small positive number. By (2.1.26)

(
1
2

− ε

)(
|1 − V | + |V |

) ∫
B

|η|α dζ ≤ cr

∫
B

|η|α
∣∣∇χ�(ζ)

∣∣ dζ
for sufficiently small values of �. Consequently,

1
2

∫
B

|η|α dζ ≤ cr lim sup
�→+0

∫
B

|η|α
∣∣∇χ�(ζ)

∣∣ dζ = cr

∫
B∩∂g

|η|α ds(ζ).

It remains to note that ∫
B

|η|α dζ ≥ crm+n
(
r + |y|

)α
.

The lemma is proved. ��

Remark 1. Lemma 1 fails for m = 1, α > 0. In fact, let g = {ζ ∈ R
n+1 :

η > ε or 0 > η > −ε}, where ε = const > 0. Obviously, (2.1.26) holds for
this g. However, ∫

B
(n+1)
r ∩∂g

|η|α ds(ζ) ≤ cεα,

which contradicts (2.1.27).

Theorem 1. Let ν be a measure in R
n+m, q ≥ 1, α > −m. The best

constant in

‖u‖Lq(Rn+m,ν) ≤ C

∫
Rn+m

|y|α| ∇zu| dz, u ∈ C∞
0

(
R

n+m
)
, (2.1.31)

is equivalent to
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K = sup
z;�

(
� + |y|

)−α
�1−n−m

[
ν
(
B(n+m)

� (z)
)]1/q

. (2.1.32)

Proof. 1. First, let m > 1 or 0 ≥ α > −1, m = 1. According to Theo-
rem 2.1.3

C = sup
g

[ν(g)]1/q∫
∂g

|y|α ds(z)
,

where g is an arbitrary subset of R
n+m with a compact closure and smooth

boundary. We show that for each g there exists a covering by a sequence of
balls Bn+m

�i
(zi), i = 1, 2, . . . , such that

∑
i

�n+m−1
i

(
�i + |yi|

)α ≤ c

∫
∂g

|y|α ds(z).

Each point z ∈ g is the center of a ball B(n+m)
r (z) for which (2.1.26) is valid.

In fact, the ratio in the left-hand side of (2.1.26) is a continuous function in
r that equals unity for small values of r and converges to zero as r → ∞. By
Theorem 1.2.1 there exists a sequence of disjoint balls B

(n+m)
ri (zi) such that

g ⊂
∞⋃

i=1

B
(n+m)
3ri

(zi).

According to Lemma 1,
∫

B
(n+m)
ri (zi)∩∂g

|y|α ds(z) ≥ crn+m−1
i

(
ri + |yi|

)α
.

Thus {B(n+m)
3ri

(zi)}i≥1 is the required covering.
Obviously,

ν(g) ≤
∑

i

ν
(
B

(n+m)
3ri

(zi)
)

≤
(∑

i

[
ν
(
B

(n+m)
3ri

(zi)
)]1/q

)q

≤ cKq

(∑
i

rn+m−1
i

(
ri + |yi|

)α)q

≤
(
cK

∫
∂g

|y|α ds(z)
)q

.

Therefore C ≤ cK for m > 1 and for m = 1, 0 ≥ α > −1.
2. Now let m = 1, α > 0. We construct a covering of the set {ζ : η = 0}

by balls Bj with radii �j , equal to the distance of Bj from the hyperplane
{ζ : ξ = 0}. We assume that this covering has finite multiplicity. By {ϕj } we
denote a partition of unity subordinate to {Bj } and such that | ∇ϕj | ≤ c/�j

(see Stein [724], Chap. VI, §1.). Using the present theorem for the case α = 0,
which has already been considered (or equivalently, using Theorem 1.4.2/2),
we arrive at
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‖ϕju‖Lq(Rn+1,ν) ≤ c sup
�;z

�−n
[
νj

(
B(n+1)

� (z)
)]1/q∥∥∇(ϕju)

∥∥
L1(Rn+1)

,

where νj is the restriction of ν to Bj . It is clear that

sup
�;z

�−n
[
νj

(
B(n+1)

� (z)
)]1/q ≤ c sup

�≤�j ,z∈Bj

�−n
[
ν
(
B(n+1)

� (z)
)]1/q

.

Therefore,

‖ϕju‖Lq(Rn+1,ν)

≤ c sup
�≤�j ,z∈Bj

(� + �j)−α�−n
[
ν
(
B(n+1)

� (z)
)]1/q

∫
Rn+1

∣∣∇(ϕju)
∣∣|η|α dζ.

Summing over j and using (2.1.29), we obtain

‖u‖Lq(Rn+1,ν) ≤ cK

(∫
Rn+1

| ∇u| |η|α dζ +
∫

Rn+1
|u| |η|α−1 dζ

)
.

Since
∫

Rn+1
|u| |η|α−1 dζ ≤ α−1

∫
Rn+1

| ∇u| |η|α dζ

for α > 0, then C ≤ cK for m = 1, α > 0.
3. To prove the reverse estimate, in (2.1.31) we put U(ζ) = ϕ(�−1(ζ − z)),

where ϕ ∈ C∞
0 (B(n+m)

2 ), ϕ = 1 on B
(n+m)
1 . Since

∫
B

(n+m)
2� (z)

|η|α| ∇ζu| dζ ≤ c�−1

∫
B

(n+m)
2� (z)

|η|α dζ ≤ c�n+m−1
(
� + |y|

)α
,

the result follows. ��

Corollary. Let ν be a measure in R
n, q ≥ 1, α > −m. Then the best

constant in (2.1.31) is equivalent to

sup
x∈Rn,�>0

�1−m−n−α
[
ν
(
B(n)

� (x)
)]1/q

.

For the proof it suffices to note that K, defined in (2.1.32), is equivalent
to the preceding supremum if supp ν ⊂ R

n.

Remark 2. The part of the proof of Theorem 1 for the case m = 1, α > 0
is also suitable for m > 1, α > 1 − m since for these values of α and for all
u ∈ C∞

0 (Rn+m) we have
∫

Rn+m

|u| |η|α−1 dζ ≤ (α + m − 1)−1

∫
Rn+m

| ∇u| |η|α dζ. (2.1.33)

This implies that the best constant C in (2.1.31) is equivalent to
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K1 = sup
z∈Rn+m;�<|y|/2

|y| −α�1−n−m
[
ν
(
B(n+m)

� (z)
)]1/q

for m ≥ 1, α > 1 − m.
Since (2.1.33) is also valid for α < 1 − m with the coefficient (1 − m − α)−1

if u vanishes near the subspace η = 0, then following the arguments of the
second and third parts of the proof of Theorem 1 with obvious changes, we
arrive at the next theorem.

Theorem 2. Let ν be a measure in {ζ ∈ R
n+m : η �= 0}, q ≥ 1, α < 1 −m.

Then the best constant in (2.1.31), where u ∈ C∞
0 ({ζ : η �= 0}), is equivalent

to K1.

2.1.7 Inequalities of Hardy–Sobolev Type as Corollaries of
Theorem 2.1.6/1

Here we derive certain inequalities for weighted norms which often occur in
applications. Particular cases of them are the Hardy inequality

∥∥|x| −lu
∥∥

Lp(Rn)
≤ c‖ ∇lu‖Lp(Rn)

and the Sobolev inequality

‖u‖Lpn/(n−lp)(Rn) ≤ c‖ ∇lu‖Lp(Rn),

where lp < n and u ∈ D(Rn). We retain the notation introduced in Sect.
2.1.5.

Corollary 1. Let

1 ≤ q ≤ (m + n)/(m + n − 1), β = α − 1 +
q − 1
q

(m + n) > −m

q
.

Then ∥∥|y|βu
∥∥

Lq(Rn+m)
≤ c
∥∥|y|α∇u

∥∥
L1(Rn+m)

(2.1.34)

for u ∈ D(Rn+m).

Proof. According to Theorem 2.1.6/1 it suffices to establish the uniform
boundedness of the value

(
� + |y|

)−α
�1−n−m

(∫
|z−ζ|<�

|η|βq dζ
)1/q

with respect to � and z. Obviously, it does not exceed

c
(
� + |y|

)−α
�1−n−m+n/q

(∫
|η−y|<�

|η|βq dη
)1/q

.
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This value is not greater than c|y|β−α�1−(m+n)(q−1)/q for � ≤ c|y| and
c�β−α+1−(m+n)(q−1)/q for � > c|y|. The result follows. ��

In (2.1.34) let us replace q−1, α, and β by 1 − p−1 + q−1, α+ (1 − p)−1qβ,
and((1−p−1)q+1)β, respectively, and u by |u|s with s = (p−1)qp−1+1. Then
applying Hölder’s inequality with exponents p and p/(p − 1) to its right-hand
side we obtain the following assertion.

Corollary 2. Let m + n > p ≥ 1, p ≤ q ≤ p(n + m)(n + m − p)−1, and
β = α − 1 + (n + m)(1/p − 1/q) > −m/q. Then

∥∥|y|βu
∥∥

Lq(Rn+m)
≤ c
∥∥|y|α∇u

∥∥
Lp(Rn+m)

(2.1.35)

for all u ∈ D(Rn+m).

For p = 2, α = 1 − m/2, n > 0, the substitution of u(z) = |y| −αv(z)
into (2.1.35) leads to the next corollary.

Corollary 3. Let m + n > 2, 2 < q ≤ 2(n + m)/(n + m − 2), and
γ = −1 + (n + m)(2−1 − q−1). Then

∥∥|y|γv
∥∥2

Lq(Rn+m)
≤ c

(∫
Rn+m

(∇v)2 dz − (m − 2)2

4

∫
Rn+m

v2

|y|2 dz
)

(2.1.36)

for all v ∈ D(Rn+m), subject to the condition v(x, 0) = 0 in the case m = 1.

In particular, the exponent γ vanishes for q = 2(m + n)/(m + n − 2) and
we obtain

c‖v‖2
L 2(m+n)

m+n−2
(Rn+m) +

(m − 2)2

4

∫
Rn+m

v2

|y|2 dz ≤
∫

Rn+m

(∇v)2 dz, (2.1.37)

which is a refinement of both the Sobolev and the Hardy inequalities, the
latter having the best constant.

To conclude this subsection we present a generalization of (2.1.35) for
derivatives of arbitrary integer order l.

Corollary 4. Let m + n > lp, 1 ≤ p ≤ q ≤ p(m + n − lp)−1(m + n), and
β = α − l + (m + n)(p−1 − q−1) > −mq−1. Then

∥∥y|βu|
∥∥

Lq(Rn+m)
≤ c
∥∥|y|α∇lu

∥∥
Lp(Rn+m)

(2.1.38)

for u ∈ D(Rn+m).

Proof. Let pj = p(n + m)(n + m − p(l − j))−1. Successively applying the
inequalities ∥∥|y|βu

∥∥
Lq(Rn+m)

≤ c
∥∥|y|α∇u

∥∥
Lp1 (Rn+m)

,

∥∥|y|α∇ju
∥∥

Lpj
(Rn+m)

≤ c
∥∥|y|α∇j+1u

∥∥
Lpj+1(Rn+m)

, 1 ≤ j < l,



140 2 Inequalities for Functions Vanishing at the Boundary

which follow from (2.1.35), we arrive at (2.1.38). ��

Inequality (2.1.38) and its particular cases (2.1.34) and (2.1.35) obviously
fail for α = l+nq−1 −(m+n)p−1. Nevertheless for this critical α we can obtain
similar inequalities that are also invariant under similarity transformations in
R

n+m by changing the weight function on the left-hand side.

2.1.8 Comments to Sect. 2.1

The results of Sects. 2.1.1–2.1.3 and 2.1.5 are borrowed from the author’s
paper [543] (see also [552]).

Properties of the weighted area minimizing function C introduced in Def-
inition 2.1.4 were studied under the assumption that Φ(x, ξ) does not depend
on x and is convex. In particular, the sharp generalized isoperimetric inequal-
ity ∫

∂g

Φ
(
N (x)

)
ds(x) ≥ nκ

1/n
n mn(g) (2.1.39)

holds for all admissible sets g ⊂ R
n. Here κn is the volume of the set {ξ ∈

R
n : Ψ(ξ) ≤ 1} with

Ψ(ξ) = sup
x �=0

(x, ξ)Rn

Φ(x)

(see Busemann [158] and Burago, Zalgaller [151]). The surfaces minimizing
the integrals of the form

∫
∂g

Φ
(
N (x)

)
ds(x)

over all sets g with a fixed volume, called Wulff shapes, appeared in 1901 (see
Wulff [798]). The Wulff shape is called the crystal of the function Φ, which in
its turn is called crystalline if its crystal is polyhedral (see, in particular, J.E.
Taylor [745] for a theory of crystalline integrands as well as the bibliography).

The sharp constant

Cα =
(
α + 1
α + 2

)α+1
α+2
(

2
∫ π

0

(sin t)α dt
)− 1

α+2

, α ≥ 0,

in the weighted isoperimetric inequality

m2(g)
α+1
α+2 ≤ Cα

∫
∂g

(
N 2

1 + |x|2αN 2
2

)1/2 ds,

where (N1,N2) = N was found by Monti and Morbidelli [611], which is
equivalent to the sharp integral inequality

‖u‖L α+2
α+1

(R2) ≤ Cα

∫
R2

((
∂u

∂x

)2

+ |x|2α

(
∂u

∂y

)2)1/2

dx
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for all u ∈ C∞
0 (R2).

Theorem 2.1.4 is borrowed from Maz’ya [560], its proof being a modifica-
tion of that in Maz’ya and Netrusov [572] relating to the case p > 1. For the
contents of Sect. 2.1.6 see Sect. 2.1.5 in the author’s book [556].

Obviously, in Theorem 2.1.6/1 the role of |y| can be played by the dis-
tance to the m-dimensional Lipschitz manifold F supporting the measure ν.
Horiuchi [383] proved the sufficiency in Theorem 2.1.6/1 for an absolutely
continuous measure ν and for a more general class of sets F depending on
the behavior as ε → 0 of the n-dimensional Lebesgue measure of the tubular
neighborhood of F , {z ∈ R

n+m : dist(z, F ) < ε}.
The contents of Sect. 2.1.7 were published in [556], Sect. 2.1.6, for the first

time. Estimates similar to (2.1.38) are generally well known (except, probably,
for certain values of the parameters p, q, l, and α) but they were established
by other methods (see Il’in [395]). The multiplicative inequality

∥∥|x|γu
∥∥

Lr(Rn)
≤ C

∥∥|x|α| ∇u|
∥∥a

Lp(Rn)

∥∥|x|βu
∥∥1−a

Lq(Rn)

was studied in detail by Caffarelli, Kohn, and Nirenberg [162]. Lin [498] has
generalized their results to include derivatives of any order.

The inequality (2.1.36) was proved by Maz’ya [556], Sect. 2.1.6. Tertikas
and Tintarev [749] (see also Tintarev and Fieseler [753], Sect. 5.6, as well
as Benguria, Frank, and Loss [83]) studied the existence and nonexistence
of optimizers in (2.1.37) and found sharp constants in some cases. In one
particular instance of (2.1.36), the sharp value of c will be given in Sect. 2.7.1.
In [277], Filippas, Maz’ya, and Tertikas showed that for any convex domains
Ω ⊂ R

n the inequality

∫
Ω

| ∇u|2 dx − 1
4

∫
u2

d2
dx ≥ c(Ω)

(∫
Ω

|u| 2n
n−2 dx

)n−2
n

holds where u ∈ C∞
0 (Ω) and d = dist(x, ∂Ω). See Comments to Sect. 2.7 for

other contributions to this area.

2.2 (p, Φ)-Capacity

2.2.1 Definition and Properties of the (p, Φ)-Capacity

Let e be a compactum in Ω ⊂ R
n and let Φ be the function specified in Sect.

2.1.1. The number

inf
{∫

Ω

[
Φ(x, ∇u)

]p dx : u ∈ N(e,Ω)
}
,

where p ≥ 1, is called the (p, Φ)-capacity of e relative to Ω and is denoted by
(p, Φ)-cap(e,Ω). Here
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N(e,Ω) =
{
u ∈ D(Ω) : u ≥ 1 on e

}
.

If Ω = R
n, we omit Ω in the notations (p,Ω)-cap(e,Ω), N(e,Ω), and so

on.
In the case Φ(x, ξ) = |ξ|, we shall speak of the p-capacity of a compactum

e relative to Ω and we shall use the notation capp(e,Ω).
We present several properties of the (p, Φ)-capacity.
(i) For compact sets K ⊂ Ω, F ⊂ Ω, the inclusion K ⊂ F implies

(p, Φ)-cap(K,Ω) ≤ (p, Φ)-cap(F,Ω).

This is an obvious consequence of the definition of capacity. From the same
definition it follows that the (p, Φ)-capacity of F relative to Ω does not increase
under extension of Ω.

(ii) The equality

(p, Φ)-cap(e,Ω) = inf
{∫

Ω

[
Φ(x, ∇u)

]p dx : u ∈ P(e,Ω)
}
, (2.2.1)

where P(e,Ω) = {u : u ∈ D(Ω), u = 1 in a neighborhood of e, 0 ≤ u ≤ 1 in
R

n} is valid.

Proof. Since N(e,Ω) ⊂ P(e,Ω) it is sufficient to estimate (p, Φ)-cap(e,Ω)
from below. Let ε ∈ (0, 1) and let f ∈ N(e,Ω) be such that

∫
Ω

[
Φ(x, ∇f)

]p dx ≤ (p, Φ)-cap(e,Ω) + ε.

Let {λm(t)}m≥1 denote a sequence of functions in C∞(R1) satisfying the
conditions 0 ≤ λ′

m(t) ≤ 1 + m−1, λm(t) = 0 in a neighborhood of (−∞, 0]
and λm(t) = 1 in a neighborhood of [1, ∞), 0 ≤ λm(t) ≤ 1 for all t. Since
λm(f(x)) ∈ P(e,Ω), then

inf
{∫

Ω

[
Φ(x, ∇u)

]p dx : u ∈ P(e,Ω)
}

≤
∫

Ω

[
λ′

m

(
f(x)

)]p[
Φ
(
x, ∇f(x)

)]p dx.

Passing to the limit as m → ∞, we obtain

inf
{∫

Ω

[
Φ(x, ∇u)

]p dx : u ∈ P(e,Ω)
}

≤
∫

Ω

[
Φ(x, ∇f)

]p dx ≤ (p, Φ)-cap(e,Ω) + ε. ��

(iii) For any compactum e ⊂ Ω and ε > 0 there exists a neighborhood G
such that

(p, Φ)-cap(K,Ω) ≤ (p, Φ)-cap(e,Ω) + ε

for all compact sets K, e ⊂ K ⊂ G.
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Proof. From (2.2.1) it follows that there exists a u ∈ P(e,Ω) such that
∫

Ω

[
Φ(x, ∇u)

]p dx ≤ (p, Φ)-cap(e,Ω) + ε.

Let G denote a neighborhood of e in which u = 1. It remains to note that

(p, Φ)-cap(K,Ω) ≤
∫

Ω

[
Φ(x, ∇u)

]p dx

for any compactum K, e ⊂ K ⊂ G. ��

The next property is proved analogously.
(iv) For any compactum e ⊂ Ω and any ε > 0 there exists an open set ω,

ω̄ ⊂ Ω, such that

(p, Φ)-cap(e, ω) ≤ (p, Φ)-cap(e,Ω) + ε.

(v) The Choquet inequality

(p, Φ)-cap(K ∪ F,Ω) + (p, Φ)-cap(K ∩ F,Ω)
≤ (p, Φ)-cap(K,Ω) + (p, Φ)-cap(F,Ω)

holds for any compact sets K, F ⊂ Ω.

Proof. Let u and v be arbitrary functions in P(K,Ω) and P(F,Ω), re-
spectively. We put ϕ = max(u, v), ψ = min(u, v). Obviously, ϕ and ψ have
compact supports and satisfy the Lipschitz condition in Ω, ϕ = 1 in the
neighborhood of K ∪ F and ψ = 1 in a neighborhood of K ∩ F . Since the set
{x : u(x) �= v(x)} is the union of open sets on which either u > v or u < v,
and since ∇u(x) = ∇v(x) almost everywhere on {x : u(x) = v(x)}, then

∫
Ω

[
Φ(x, ∇ϕ)

]p dx +
∫

Ω

[
Φ(x, ∇ψ)

]p dx

=
∫

Ω

[
Φ(x, ∇u)

]p dx +
∫

Ω

[
Φ(x, ∇v)

]p dx.

Hence, having noted that mollifications of the functions ϕ and ψ belong
to P(K ∪ F,Ω) and P(K ∩ F,Ω), respectively, we obtain the required
inequality. ��

A function of compact sets that satisfies conditions (i), (iii), and (v) is
called a Choquet capacity .

Let E be an arbitrary subset of Ω. The number (p, Φ)-cap(E,Ω) =
sup{K}(p, Φ)-cap(K,Ω), where {K} is a collection of compact sets contained
in E, is called the (p, Φ) capacity of E relative to Ω. The number

inf
{G}

(p, Φ)-cap(G,Ω),
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where {G} is the collection of all open subsets of Ω containing E, is called the
outer capacity (p, Φ)-cap(E,Ω) of E ⊂ Ω. A set E is called (p, Φ) capacitable
if

(p, Φ)-cap(E,Ω) = (p, Φ)-cap(E,Ω).

From these definitions it follows that any open subset of Ω is (p, Φ) ca-
pacitable. If e is a compactum in Ω, then by property (iii), given ε > 0, there
exists an open set G such that

(p, Φ)-cap(G,Ω) ≤ (p, Φ)-cap(e,Ω) + ε.

Consequently, all compact subsets of Ω are (p, Φ) capacitable.
From the general theory of Choquet capacities it follows that analytic sets,

and in particular, Borel sets are (p, Φ) capacitable (see Choquet [186]).

2.2.2 Expression for the (p, Φ)-Capacity Containing an Integral
over Level Surfaces

Lemma 1. For any compactum F ⊂ Ω the (p, Φ)-capacity (for p > 1) can be
defined by

(p, Φ)-cap(F,Ω) = inf
u∈N(F,Ω)

{∫ 1

0

dτ
(
∫

Eτ
[Φ(x, ∇u)]p ds

|∇u| )
1/(p−1)

}1−p

, (2.2.2)

where Et = {x : |u(x)| = t}.

We introduce the following notation: Λ is the set of nondecreasing functions
λ ∈ C∞(R1), which satisfy the conditions λ(t) = 0 for t ≤ 0, λ(t) = 1 for
t ≥ 1, supp λ′ ⊂ (0, 1); Λ1 is the set of nondecreasing functions that are
absolutely continuous on R

1 and satisfy the conditions λ(t) = 0 for t ≤ 0,
λ(t) = 1 for t ≥ 1, λ′(t) is bounded.

To prove Lemma 1 we shall use the following auxiliary assertion.

Lemma 2. Let g be a nonnegative function that is integrable on [0, 1].
Then

inf
λ∈Λ

∫ 1

0

(λ′)pg dt =
(∫ 1

0

dt
g1/(p−1)

)1−p

. (2.2.3)

Proof. First we note that by Hölder’s inequality

1 =
∫ 1

0

λ′ dt ≤
(∫ 1

0

(λ′)pg dt
)1/p(∫ 1

0

dt
g1/(p−1)

)1−1/p

,

and hence the left-hand side of (2.2.3) is not smaller than the right.
Let λ ∈ Λ1, ζν(t) = λ′(t) for t ∈ [ν−1, 1 − ν−1], supp ζν ⊂ [ν−1, 1 − ν−1],

ν = 1, 2, . . . . We set
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ην(t) = ζν(t)
(∫ 1

0

ζν dτ
)−1

.

Since the sequence ην converges to λ′ on (0,1) and is bounded, it follows by
Lebesgue’s theorem that

∫ 1

0

ηp
νg dτ →

∫ 1

0

(λ′)pg dτ.

Mollifying ην , we obtain the sequence {γν }, γν ∈ C∞(R1), supp γν ⊂ (0, 1),
∫ 1

0

γν dτ = 1,
∫ 1

0

γp
νg dτ →

∫ 1

0

(λ′)pg dτ.

Setting

λν(t) =
∫ t

0

γν dτ,

we obtain a sequence of functions in Λ such that
∫ 1

0

(λ′
ν)pg dτ →

∫ 1

0

(λ′)pg dτ.

Hence,

inf
Λ

∫ 1

0

(λ′)pg dτ = inf
Λ1

∫ 1

0

(λ′)pg dτ. (2.2.4)

Let

Mε =
{
t : g(t) ≥ ε

}
, λ0(t) =

∫ t

0

η dτ,

where η(t) = 0 on R
1\Mε and

η(t) = g(t)1/(1−p)

(∫
Mε

g1/(1−p) dτ
)−1

for t ∈ Mε.

Obviously, λ0 ∈ Λ1, and
∫ 1

0

(λ′
0)

pg dτ =
(∫

Mε

g1/(1−p) dτ
)1−p

.

By (2.2.4) the left-hand side of (2.2.3) does not exceed
(∫

Mε

g1/(1−p) dτ
)1−p

.

We complete the proof by passing to the limit as ε → 0. ��

Proof of Lemma 1. Let u ∈ N(F,Ω), λ ∈ Λ. From the definition of capacity
and Theorem 1.2.4 we obtain
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(p, Φ)-cap(F,Ω) =
∫

Ω

[
λ′(u)Φ(x, ∇u)

]p dx =
∫ 1

0

(λ′)pg dt,

where
g(t) =

∫
Et

[
Φ(x, ∇u)

]p ds
| ∇u| . (2.2.5)

By Lemma 2

(p, Φ)-cap(F,Ω) ≤
(∫ 1

0

g1/(1−p) dτ
)1−p

.

To prove the opposite inequality it is enough to note that

∫
Ω

[
Φ(x, ∇u)

]p dx ≥
∫ 1

0

g dτ ≥
(∫ 1

0

g1/(1−p) dτ
)1−p

.

The lemma is proved. ��

Recalling the property (2.2.1) of the (p, Φ)-capacity, note that, in passing,
we have proved here also the following lemma.

Lemma 3. For any compactum F ⊂ Ω the (p, Φ)-capacity (p > 1) can be
defined as

(p, Φ)-cap(F,Ω) = inf
u∈P(F,Ω)

{∫ 1

0

dt
(
∫

Et
[Φ(x, ∇u)]p ds

|∇u| )
1/(p−1)

}1−p

.

2.2.3 Lower Estimates for the (p, Φ)-Capacity

Lemma. For any u ∈ D(Ω) and almost all t ≥ 0,

[
σ(∂Lt)

]p/(p−1) ≤
[

− d
dt

mn(Lt)
](∫

∂Lt

[
Φ(x, ∇u)

]p ds
| ∇u|

)1/(p−1)

, (2.2.6)

where, as usual, Lt = {x ∈ Ω : |u(x)| > t}.

Proof. By Hölder’s inequality, for almost all t and T , t < T ,

(∫
Lt \LT

|u|p−1Φ(x, ∇u) dx
)p/(p−1)

≤
∫

Lt \LT

|u|p dx
(∫

Lt \LT

[
Φ(x, ∇u)

]p dx
)1/(p−1)

.

Using Theorem 1.2.4, we obtain
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(∫ T

t

τp−1σ(∂Lτ ) dτ
)p/(p−1)

≤
∫

Lt \LT

|u|p dx
(∫ T

t

dτ
∫

Eτ

[
Φ(x, ∇u)

]p ds
| ∇u|

)1/(p−1)

.

We divide both sides of the preceding inequality by (T −t)p/(p−1) and estimate
the first factor on the right-hand side

(
1

T − t

∫ T

t

τp−1σ(∂Lτ ) dτ
)p/(p−1)

≤ T pmn(Lt\LT )
T − t

(
1

T − t

∫ T

t

dτ
∫

∂Lτ

[
Φ(x, ∇u)

]p ds
| ∇u|

)1/(p−1)

.

Passing to the limit as T → t, we obtain (2.2.6) for almost all t > 0. The
lemma is proved. ��

From Lemma 2.2.2/3 and from the Lemma of the present subsection we
immediately obtain the following corollary.

Corollary 1. The inequality

(p, Φ)-cap(F,Ω) ≥ inf
u∈P(F,Ω)

{
−
∫ 1

0

d
dτ

mn(Lτ )
dτ

[σ(∂Lτ )]p/(p−1)

}1−p

(2.2.7)

holds.

Definition. In what follows we use the function C introduced in Defini-
tion 2.1.4 assuming μ = mn, that is, C stands for the infimum σ(∂g) for all
admissible sets such that mn(g) ≥ �. Then from (2.2.7) we obtain the next
corollary, containing the so-called isocapacitary inequalities.

Corollary 2. The inequality

(p, Φ)-cap(F,Ω) ≥
(∫ mn(Ω)

mn(F )

d�
[C (�)]p/(p−1)

)1−p

(2.2.8)

is valid.

By virtue of the classical isoperimetric inequality

s(∂g) ≥ n(n−1)/nω1/n
n

[
mn(g)

](n−1)/n
, (2.2.9)

in the case Φ(x, ξ) = |ξ| we have

C (�) = n(n−1)/nω1/n
n �(n−1)/n.

Therefore,
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capp(F,Ω) ≥ ωp/n
n n(n−p)/n

∣∣∣∣p − n

p − 1

∣∣∣∣
p−1∣∣mn(Ω)(p−n)/n(p−1)

− mn(F )(p−n)/n(p−1)
∣∣1−p (2.2.10)

for p �= n and

capp(F,Ω) ≥ nn−1ωn

(
log

mn(Ω)
mn(F )

)1−n

(2.2.11)

for p = n.
In particular, for n > p,

capp(F ) ≥ ωp/n
n n(n−p)/n

(
n − p

p − 1

)p−1

mn(F )(n−p)/n. (2.2.12)

2.2.4 p-Capacity of a Ball

We show that the estimates (2.2.10) and (2.2.11) become equalities if Ω and
F are concentric balls of radii R and r, R > r, i.e.,

capp(F,Ω) = ωn

(
|n − p|
p − 1

)p−1∣∣R(p−n)/(p−1) − r(p−n)/(p−1)
∣∣1−p (2.2.13)

for n �= p and

capn(F,Ω) = ωn

(
log

R

r

)1−n

(2.2.14)

for n = p.
Let the centers of the balls Ω and F coincide with the origin O of spherical

coordinates (�, ω), |ω| = 1. Obviously,

capp(F,Ω) ≥ inf
u∈N(F,Ω)

∫
∂B1

dω
∫ R

r

∣∣∣∣∂u∂�
∣∣∣∣
p

�n−1 d�

≥
∫

∂B1

dω inf
u∈N(F,Ω)

∫ R

r

∣∣∣∣∂u∂�
∣∣∣∣
p

�n−1 d�.

The inner integral attains its infimum at the function

[r,R] ∈ � → v(�) =

⎧⎨
⎩

R(p−n)/(p−1)−�(p−n)/(p−1)

R(p−n)/(p−1)−r(p−n)/(p−1) for p �= n,

log(�R−1)
log(rR−1) for p = n.

This implies the required lower estimates for the p-capacity. The substitution
of v(�) into the integral

∫
Ω

| ∇u|p dx leads to (2.2.13) and (2.2.14).
In particular, the p-capacity of the n-dimensional ball Br relative to R

n is
equal to ωn(n−p

p−1 )p−1rn−p for n > p and to zero for n ≤ p. Since the p-capacity
is a monotone set function, then for any compactum p-cap(F,Rn) = 0, if
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n ≤ p. In the case p ≤ n the capacity of a point relative to any open set Ω,
containing this point, equals zero. If p > n, then the p-capacity of the center
of the ball BR relative to BR equals ωn(p−n

p−1 )p−1Rn−p. Therefore, in the last
case, the p-capacity of any compactum relative to any bounded open set that
contains this compactum is positive.

2.2.5 (p, Φ)-Capacity for p = 1

Lemma. For any compactum F ⊂ Ω

(1, Φ)-cap(F,Ω) = inf σ(∂g),

where the infimum is taken over all admissible sets g in Ω containing F .

Proof. Let u ∈ N(F,Ω). Applying Theorem 1.2.4, we obtain
∫

Ω

Φ(x, ∇u) dx =
∫ 1

0

σ(∂Lt) dt ≥ inf
g⊃F

σ(∂g).

This implies the lower estimate for the capacity.
Let g be an admissible set containing F . The function uε(x) = α(d(x))

defined in the proof of the second part of Theorem 2.1.1 belongs to N(F,Ω)
for sufficiently small ε > 0. So

(1, Φ)-cap(F,Ω) ≤
∫

Ω

Φ(x, ∇uε) dx.

In the proof of the second part of Theorem 2.1.1, it was shown that the pre-
ceding integral converges to σ(∂g), which yields the required upper estimate
for the capacity. The lemma is proved. ��

2.2.6 The Measure mn−1 and 2-Capacity

Lemma. If B(n−1)
� is an (n − 1)-dimensional ball in R

n, n > 2, then

cap2

(
B(n−1)

� ,Rn
)

=
ωn

cn
�n−2, (2.2.15)

where c3 = π
3 , c4 = 1, and cn = (n − 4)!!/(n − 3)!! for odd n ≥ 5 and

cn = π
2 (n − 4)!!/(n − 3)!! for even n ≥ 6.

Proof. We introduce ellipsoidal coordinates in R
n: x1 = � sinhψ cos θ1,

xj = � coshψ sin θ1, . . . , sin θj−1 cos θj , j = 2, . . . , n − 1, xn = � coshψ sin θ1,
. . . , sin θn−1. A standard calculation leads to the formulas

dx = �n
(
cosh2 ψ − sin2 θ1

)
(coshψ)n−2 dψ dω,

(∇u)2 = �−2

(
∂u

∂ψ

)2(
cosh2 ψ − sin2 θ1

)−1 + · · · ,
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where dω is the surface element of the unit ball in R
n and the dots denote a

positive quadratic form of all first derivatives of u except ∂u/∂ψ. The equation
of the ball B(n−1)

� in the new coordinates is ψ = 0. Therefore

cap2

(
B(n−1)

� ,Rn
)

≥ �n−2

∫
|ω|=1

(
inf

{u}

∫ ∞

0

(
∂u

∂ψ

)2

(coshψ)n−2 dψ
)

dω,

where {u} is a set of smooth functions on [0, ∞) with compact supports. The
infimum on the right-hand side is equal to

(∫ ∞

0

dψ
(coshψ)n−2

)−1

= c−1
n .

This value is attained at the function

v =
∫ ∞

ψ

dτ
(cosh τ)n−2

(∫ ∞

0

dτ
(cosh τ)n−2

)−1

,

which equals unity on B
(n−1)
� and decreases sufficiently rapidly at infinity.

Substituting v into the Dirichlet integral, we obtain

cap2

(
B(n−1)

� ,Rn
)

≤ ωn�
n−2

∫ ∞

0

(
∂v

∂ψ

)2

(coshψ)n−2 dψ =
ωn

cn
�n−2.

This proves the lemma. ��

We now recall the definition of the symmetrization of a compact set K in
R

n relative to the (n − s)-dimensional subspace R
n−s.

Let any point x ∈ R
n be denoted by (y, z), where y ∈ R

n−s, z ∈ R
s. The

image K∗ of the compact set K under symmetrization relative to the subspace
z = 0 is defined by the following conditions:

1. The set K∗ is symmetric relative to z = 0.
2. Any s-dimensional subspace, parallel to the subspace y = 0 and crossing

either K or K∗ also intersects the other one and the Lebesgue measures of
both cross sections are equal.

3. The intersection of K∗ with any s-dimensional subspace, which is par-
allel to the subspace y = 0, is a ball in R

s centered at the hyperplane z = 0.
Below we follow Pólya and Szegö [666] who established that the 2-capacity

does not increase under the symmetrization relative to R
n−1. Let π be an

(n − 1)-dimensional hyperplane and let PrπF be the projection of F onto π.
We choose π so that mn−1(Prπ F ) attains its maximum value. We symmetrize
F relative to π and obtain a compactum that is also symmetrized relative to a
straight line perpendicular to π. So we obtain a body whose capacity does not
exceed 2-cap F and whose intersection with π is an (n − 1)-dimensional ball
with volume mn−1(PrπF ). Thus the (n − 1)-dimensional ball has the largest
area of orthogonal projections onto an (n − 1)-dimensional plane among all
compacta with fixed 2-capacity.
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This and the Lemma imply the isocapacitary inequality
[
mn−1

(
F ∩ R

n−1
)](n−2)/(n−1)

≤
(
ωn−1

n − 1

)(n−2)/(n−1)
cn

ωn
cap2

(
F ,Rn

)
, (2.2.16)

where cn is the constant defined in the Lemma.

2.2.7 Comments to Sect. 2.2

The capacity generated by the integral
∫

Ω

f(x, u, ∇u) dx

was introduced by Choquet [186] where it served as an illustration of general
capacity theory. Here the presentation follows the author’s paper [543].

Lemma 2.2.2/1 for p = 2, Φ(x, ξ) = |ξ| is the so-called Dirichlet principle
with prescribed level surfaces verified in the book by Pólya and Szegö [666]
under rigid assumptions on level surfaces of the function u. As for the gen-
eral case, their proof can be viewed as a convincing heuristic argument. The
same book also contains isocapacitary inequalities, which are special cases of
(2.2.10) and (2.2.11).

Lemma 2.2.3, leading to lower estimates for the capacity, was published
for Φ(x, ξ) = |ξ| in 1969 by the author [538] and later by Talenti in [741],
p. 709.

Properties of symmetrization are studied in the books by Pólya and
Szegö [666] and by Hadwiger [334] et al. See, for instance, the book by
Hayman [357] where the circular symmetrization and the symmetrization
with respect to a straight line in R

2 are considered. Nevertheless, Hayman’s
proofs can be easily generalized to the n-dimensional case. Lemma 2.2.5 is a
straightforward generalization of a similar assertion due to Fleming [281] on
1-capacity.

In the early 1960s the p-capacity was used by the author to obtain the nec-
essary and sufficient conditions for the validity of continuity and compactness
properties of Sobolev-type embedding operators [527, 528, 530, 531].

Afterward various generalizations of the p-capacity proved to be useful in
the theory of function spaces and nonlinear elliptic equations. A Muckenhoupt
Ap-weighted capacity was studied in detail by Heinonen, Kilpeläinen, and
Martio [375] and Nieminen [636] et al. A general capacity theory for monotone
operators

W 1
p � u → −div

(
a(x,Du)

)
∈
(
W 1

p

)∗

was developed by Dal Maso and Skrypnik [220], whose results were extended
to pseudomonotone operators by Casado-Dı́az [174]. Biroli [104] studied the
p-capacity related to the norm
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(
m∑

i=1

∫
Ω

|Xiu|p dx +
∫

Ω

|u|p dx

)1/p

,

where Xi are vector fields subject to Hörmander’s condition: They and their
commutators up to some order span at every point all R

n. Properties of a
capacity generated by the Sobolev space W 1

p(·) with the variable exponent p :
R

n → (1, ∞) were investigated by Harjulehto, Hästö, Koskenoja, and Varonen
[353]. Another relevant area of research is the p-capacity on metric spaces with
a measure (see, for instance, Kinnunen and Martio [425] and Gol’dshtein,
Troyanov [317]), in particular, on the Carnot group and Heisenberg group
(see Heinonen and Holopainen [374]).

A generalization of the inequality (2.2.8) was obtained by E. Milman [603]
in a more general framework of measure metric spaces for the case Φ(x, ξ) =
|ξ|. Similarly to Sect. 2.3.8, if we introduce the p-capacity minimizing function

νp(t) = inf capp(F,Ω),

where the infimum is taken over compacta F ⊂ Ω with mn(F ) ≥ t, then for
any p1 ≥ p0 ≥ 1

1
νp1(t)

≤
( q0

q1
− 1)p1/q0

(1 − q1
q0

)p1/q1

(∫ mn(Ω)

t

ds
(s − t)q1/q0νp0(s)q1/p0

)p1/q1

, (2.2.17)

where qi = pi/(pi − 1) denote the corresponding conjugate exponents. Clearly
(2.2.17) coincides with (2.2.8) when p0 = 1 by Lemma 2.2.5.

Under an appropriate curvature lower bound on the underlying space, it
was also shown in [603, 605] that (2.2.17) may, in fact, be reversed, to within
numeric constants. An application of this fact was given by E. Milman [604]
to the stability of the first positive eigenvalue of the Neumann Laplacian on
convex domains, with respect to perturbation of the domain.

2.3 Conditions for Validity of Integral Inequalities
(the Case p > 1)

2.3.1 The (p, Φ)-Capacitary Inequality

Let u ∈ D(Ω) and let g be the function defined by (2.2.5) with p > 1. Further,
let

T
def= sup

{
t > 0 : (p, Φ)-cap(Nt, Ω) > 0

}
> 0, (2.3.1)

where Nt = {x ∈ Ω : |u(x)| ≥ t}. From (2.3.1) it follows that

ψ(t) def=
∫ t

0

dτ
[g(τ)]1/(p−1)

≤ ∞ (2.3.2)
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for 0 < t < T . In fact, let

v(x) = t−2
[
u(x)

]2
.

Since v ∈ N(Nt, Ω), then from Lemma 2.2.2/1 and (2.3.1) we obtain
∫ 1

0

(∫
{x:v(x)=τ }

[
Φ(x, ∇v)

]p ds
| ∇v|

)1/(1−p)

dτ

≤
[
(p, Φ)-cap(Nt, Ω)

]1/(1−p)
< ∞,

and it remains to note that
∫ 1

0

dτ
g(τ)1/(p−1)

=
∫ 1

0

(∫
{x:v(x)=τ }

[
Φ(x, ∇v)

]p ds
| ∇v|

)1/(p−1)

dτ.

Since by Theorem 1.2.4
∫ ∞

0

g(τ) dτ =
∫

Ω

[
Φ(x, ∇u)

]p dx < ∞,

it follows that g(t) < ∞ for almost all t > 0 and the function ψ(t) is strictly
monotonic. Consequently, on the interval [0, ψ(T )) the function t(ψ), which is
the inverse of ψ(t), exists.

Lemma. Let u be a function in D(Ω) satisfying condition (2.3.1). Then
the function t(ψ) is absolutely continuous on any segment [0, ψ(T − δ)], where
δ ∈ (0, T ), and ∫

Ω

[
Φ(x, ∇u)

]p dx ≥
∫ ψ(t)

0

[
t′(ψ)

]p dψ. (2.3.3)

If T = max |u|, then we may write the equality sign in (2.3.3).

Proof. Let 0 = ψ0 < ψ1 < · · · < ψm = ψ(T − δ) be an arbitrary partition
of the segment [0, ψ(T − δ)]. By Hölder’s inequality,

[t(ψk+1) − t(ψk)]p

(ψk+1 − ψk)p−1
=

[t(ψk+1) − t(ψk)]p

[
∫ t(ψk+1)

t(ψk)
g(τ)1/(1−p) dτ ]p−1

≤
∫ t(ψk+1)

t(ψk)

g(τ) dτ,

and consequently,

m−1∑
k=0

[t(ψk+1) − t(ψk)]p

(ψk+1 − ψk)p−1
≤

m−1∑
k=0

∫ t(ψk+1)

t(ψk)

g(τ) dτ

=
∫ T −δ

0

g(τ) dτ ≤
∫

Ω

[
Φ(x, ∇u)

]p dx. (2.3.4)

The last inequality follows from Theorem 1.2.4. By (2.3.4) and F. Riesz’s
theorem (see Natanson [627]), the function t(ψ) is absolutely continuous and
its derivative belongs to Lp(0, ψ(T − δ)). By Theorem 1.2.4,
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∫
Ω

[
Φ(x, ∇u)

]p dx ≥ lim
δ→+0

∫ T −δ

0

g(τ) dτ. (2.3.5)

Since t(ψ) is a monotonic absolutely continuous function, we can make the
change of variable τ = t(ψ) in the last integral. Then

∫ T −δ

0

g(τ) dτ =
∫ ψ(T −δ)

0

t′(ψ)g(ψ) dψ =
∫ ψ(T −δ)

0

[
t′(ψ)

]p dψ,

which, along with (2.3.5), completes the proof. ��

Theorem. (Capacitary Inequality) Let u ∈ D(Ω). Then for p ≥ 1,
∫ ∞

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)

≤ pp

(p − 1)p−1

∫
Ω

[
Φ(x, ∇u)

]p dx. (2.3.6)

For p = 1 the coefficient in front of the integral on the right-hand side
of (2.3.6) is equal to one. The constant pp(p − 1)1−p is optimal.

Proof. To prove (2.3.6) it is sufficient to assume that the number T , defined
in (2.3.1), is positive. Since by Lemma 2.2.5

(1, Φ)-cap(Nt, Ω) ≤ σ(∂Lt)

for almost all t > 0, we see that (2.3.6) follows from (2.1.4) for p = 1.
Consider the case p > 1. Let ψ(t) be a function defined by (2.3.2) and let

t(ψ) be the inverse of ψ(t). We make the change of variable

∫ ∞

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)

=
∫ T

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)

=
∫ ψ(T )

0

(p, Φ)-cap(Nt(ψ), Ω) d
(
t(ψ)p

)
.

Setting v = t−2u2, ξ = t−2τ2 in (2.3.2), we obtain

ψ(t) =
∫ 1

0

(∫
{x:v(x)=ξ}

[
Φ(x, ∇v)

]p ds
| ∇v|

)1/(1−p)

dξ. (2.3.7)

Since v ∈ N(Nt, Ω), then by Lemma 2.2.2/1 the right-hand side of (2.3.7)
does not exceed [

(p, Φ)-cap(Nt(ψ), Ω)
]1/(1−p)

.

Consequently,

∫ ∞

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)

≤
∫ ψ(T )

0

d[t(ψ)]p

ψp−1
= p

∫ ψ(T )

0

[
t(ψ)
ψ

]p−1

t′(ψ) dψ.

Applying the Hölder inequality and the Hardy inequality
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∫ ψ(T )

0

[t(ψ)]p

ψp
dψ ≤

(
p

p − 1

)p ∫ ψ(T )

0

[
t′(ψ)

]p dψ, (2.3.8)

we arrive at
∫ ∞

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)

≤ pp

(p − 1)p−1

∫ ψ(T )

0

[
t′(ψ)

]p dψ,

which together with Lemma 2.3.1 yields (2.3.6).
To show that the constant factor in the right-hand side of (2.3.6) is sharp,

it suffices to put Φ(x, y) = |y| and u(x) = f(|x|). Then (2.2.13) and (2.3.6)
imply

|n − p|p
(p − 1)p−1

∫ ∞

0

|f(r)|p
rp

rn−1 dr ≤ pp

(p − 1)p−1

∫ ∞

0

∣∣f ′(r)
∣∣prn−1 dr,

which is a particular case of the sharp Hardy inequality (1.3.1). �

Remark 1. The inequality
∫ ∞

0

(p, Φ)-cap(Nt, Ω) d
(
tp
)

≤ C

∫
Ω

[
Φ(x, ∇u)

]p dx, (2.3.9)

with a cruder constant than in (2.3.6) can be proved more simply in the
following way. By the monotonicity of capacity, the integral in the left-hand
side does not exceed

Ξ
def=
(
2p − 1

) +∞∑
j=− ∞

2pj(p, Φ)-cap(N2j , Ω).

Let λε ∈ C∞(R1), λε(t) = 1 for t ≥ 1, λε(t) = 0 for t ≤ 0, 0 ≤ λ′
ε(t) ≤ 1 + ε,

and let
uj(x) = λε

(
21−j

∣∣u(x)
∣∣ − 1

)
.

Since uj ∈ N(N2j , Ω), we have

Ξ ≤ 2p−1
∞∑

j=− ∞
2pj

∫
N2j−1 \N2j

[
Φ(x, ∇uj)

]p dx

≤ 22p−1
∞∑

j=− ∞

∫
N2j−1 \N2j

[
λ′

ε

(
21−j |u| − 1

)]p[
Φ(x, ∇u)

]p dx

≤ (1 + ε)p22p−1

∫
Ω

[
Φ(x, ∇u)

]p dx.

Letting ε tend to zero, we obtain (2.3.9) with the constant C = 22p−1, which
completes the proof.

Remark 2. In fact, the inequality just obtained is equivalent to the following
one stronger than (2.3.9) (modulo the best constant)
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∫ ∞

0

(p, φ)-cap(N2t,Lt) d
(
tp
)

≤ c

∫
Ω

[
Φ(x, ∇u)

]p dx. (2.3.10)

Such conductor inequalities will be considered in Chap. 3.

2.3.2 Capacity Minimizing Function and Its Applications

Definition. Let νp(t) denote

inf(p, Φ)-cap(ḡ, Ω),

where the infimum is taken over all admissible sets g with

μ(g) ≥ t.

Note that by Lemma 2.2.5

ν1(t) = C (t),

where C is the weighted area minimizing function introduced in Defini-
tion 2.1.4.

The following application of the capacity minimizing function νp is imme-
diately deduced from the capacitary inequality (2.3.6)

∫ ∞

0

νp

(
μ(Nt)

)
d
(
tp
)

≤ C

∫ [
Φ(x, ∇u)

]p dx, (2.3.11)

where C ≥ pp(p− 1)1−p. Conversely, minimizing the integral in the right-hand
side over P(F,Ω), we see that (2.3.11) gives the isocapacitary inequality

νp

(
μ(F )

)
≤ C(p, Φ)-cap(F,Ω).

If for instance, μ = mn, then (2.2.8) leads to the estimate

∫ ∞

0

(∫ mn(Ω)

mn(Nt)

dρ
[C (ρ)]p/(p−1)

)1−p

d
(
tp
)

≤ pp

(p − 1)p−1

∫
Ω

[
Φ(x, ∇u)

]p dx.

(2.3.12)
In particular, being set into (2.3.6) with p = n and Φ(x, ξ) = |ξ|, the isoca-
pacitary inequality (2.2.11) implies

∫ ∞

0

(
log

mn(Ω)
mn(Nt)

)1−n

d
(
tn
)

≤ n

(n − 1)nωn

∫
Ω

| ∇u|n dx, (2.3.13)

for all u ∈ C∞
0 (Ω), where C = n(n − 1)1−nω−1

n .



2.3 Conditions for Validity of Integral Inequalities (the Case p > 1) 157

Clearly, the inequality (2.3.11) and its special cases (2.3.12) and (2.3.13)
can be written in terms of the nonincreasing rearrangement u∗

μ of u introduced
by (2.1.12):

∫ mn(Ω)

0

[
u∗

μ(s)
]p dνp(s) ≤ C

∫
Ω

[
Φ(x, ∇u)

]p dx,

where C is the same as in (2.3.11). In particular, (2.3.13) takes the form
∫ mn(Ω)

0

[
u∗

mn
(s)
]n ds

(log mn(Ω)
s )n

≤ C

∫
Ω

| ∇u|n dx (2.3.14)

for all u ∈ C∞
0 (Ω).

2.3.3 Estimate for a Norm in a Birnbaum–Orlicz Space

We recall the definition of a Birnbaum–Orlicz space (see Birnbaum and Orlicz
[103], Krasnosel’skǐı and Rutickǐı [463], and Rao and Ren [671]).

On the axis −∞ < u < ∞, let the function M(u) admit the representation

M(u) =
∫ |u|

0

ϕ(t) dt,

where ϕ(t) is a nondecreasing function, positive for t > 0, and continuous
from the right for t ≥ 0, satisfying the conditions ϕ(0) = 0, ϕ → ∞ as t → ∞.
Such functions M are sometimes called Young functions. Further, let

ψ(s) = sup
{
t : ϕ(t) ≤ s

}
,

be the right inverse of ϕ(t). The function

P (u) =
∫ |u|

0

ψ(s) ds

is called the complementary function to M(u).
Let LM (Ω,μ) denote the space of μ-measurable functions for which

‖u‖LM (Ω,μ) = sup
{∣∣∣∣
∫

Ω

uv dμ
∣∣∣∣ :
∫

Ω

P (v) dμ ≤ 1
}

< ∞.

In particular, if M(u) = q−1|u|q, q > 1, then P (u) = (q′)−1|u|q′
, q′ =

q(q − 1)−1 and
‖u‖LM (Ω,μ) = (q′)1/q′

‖u‖Lq(Ω,μ).

The norm in LM (Ω,μ) of the characteristic function χE of the set E is

‖χE ‖LM (Ω,μ) = μ(E)P −1

(
1

μ(E)

)
,
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where P −1 is the inverse of the restriction of P to [0, ∞).
In fact, if v = P −1(1/μ(E))χE , then

∫
Ω

P (v) dμ = 1,

and the definition of the norm in LM (Ω,μ) implies

‖χE ‖LM (Ω,μ) ≥
∫

Ω

χEv dμ = μ(E)P −1
(
1/μ(E)

)
.

On the other hand, by Jensen’s inequality,
∫

Ω

χEv dμ ≤ μ(E)P −1

(
1

μ(E)

∫
E

P (v) dμ
)
,

and if we assume that ∫
Ω

P (v) dμ ≤ 1,

then the definition of the norm in LM (Ω,μ) yields

‖χE ‖LM (Ω,μ) ≤ μ(E)P −1
(
1/μ(E)

)
.

Although formally M(t) = |t| does not satisfy the definition of the Birnbaum–
Orlicz space, all the subsequent results concerning LM (Ω,μ) include this case
provided we put P −1(t) = 1. Then we have LM (Ω,μ) = L1(Ω,μ).

Theorem. 1. If there exists a constant β such that for any compactum
F ⊂ Ω

μ(F )P −1
(
1/μ(F )

)
≤ β(p, Φ)-cap(F,Ω) (2.3.15)

with p ≥ 1, then for all u ∈ D(Ω),

∥∥|u|p
∥∥

LM (Ω,μ)
≤ C

∫
Ω

[
Φ(x, ∇u)

]p dx, (2.3.16)

where C ≤ pp(p − 1)1−pβ.
2. If (2.3.16) is valid for any u ∈ D(Ω), then (2.3.15) holds for all com-

pacta F ⊂ Ω with β ≤ C.

Proof. 1. From Lemma 1.2.3 and the definition of the norm in LM (Ω,μ)
we obtain

∥∥|u|p
∥∥

LM (Ω,μ)
= sup

{∫ ∞

0

∫
Nτ

v dμd
(
τp
)

:
∫

Ω

P (v) dμ ≤ 1
}

≤
∫ ∞

0

sup
{∫

Ω

χNτ v dμ :
∫

Ω

P (v) dμ ≤ 1
}

d
(
τp
)

=
∫ ∞

0

‖χNτ ‖Lm(Ω,μ) d
(
τp
)
.
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Consequently,
∥∥|u|p

∥∥
LM (Ω,μ)

≤
∫ ∞

0

μ(Nτ )P −1
(
1/μ(Nτ )

)
d
(
τp
)
.

Using (2.3.15) and Theorem 2.3.1, we obtain
∥∥|u|p

∥∥
LM (Ω,μ)

≤ β

∫ ∞

0

(p, Φ)-cap(Nτ , Ω) d
(
τp
)

≤ ppβ

(p − 1)p−1

∫
Ω

[
Φ(x, ∇u)

]p dx.

2. Let u be any function in N(F,Ω). By (2.3.16),

‖χF ‖LM (Ω,μ) ≤ C

∫
Ω

[
Φ(x, ∇u)

]p dx.

Minimizing the right-hand side over the set N(F,Ω), we obtain (2.3.15). The
theorem is proved. ��

Remark 1. Obviously the isocapacitary inequality (2.3.15) can be written
in terms of the capacity minimizing function νp as follows:

sP
(
s−1
)

≤ β νp(s).

Remark 2. Let Φ(x, y) be a function satisfying the conditions stated in
Sect. 2.1.1 and let the function Ψ(x, u, y) : Ω × R

1 × R
n → R

1, satisfy:
(i) the Caratheodory conditions: i.e., Ψ is measurable in x for all x, y, and

continuous in x and y for almost all x.
(ii) The inequality

Ψ(x, u, y) ≥
[
Φ(x, y)

]p
holds.

(iii) For all u ∈ D(Ω)

lim inf
λ→+∞

λ−p

∫
Ω

Ψ(x, λu, λ∇u) dx ≤ K

∫
Ω

[
Φ(x, ∇u)

]p dx.

Then (2.3.16) in the Theorem can be replaced by the following more general
estimate: ∥∥|u|p

∥∥
LM (Ω,μ)

≤ C

∫
Ω

Ψ(x, u, ∇u) dx. (2.3.17)

As an illustration, note that Theorem 2.1.1 shows the equivalence of the in-
equality

‖u‖Lq(μ) ≤
∫

Ω

√
1 + (∇u)2 dx,

where u ∈ D(Ω) and q ≥ 1, and the isoperimetric inequality μ(g)1/q ≤ σ(∂g).
Here, to prove the necessity of (2.3.15) for (2.3.17), we must set u = λv,

where v ∈ N(F,Ω), in (2.3.17) and then pass to the limit as λ → ∞. An
analogous remark can be made regarding Theorems 2.1.1, 2.1.2, and others.
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2.3.4 Sobolev Type Inequality as Corollary of Theorem 2.3.3

Theorem 2.3.3 contains the following assertion, which is of interest in itself.

Corollary. 1. If there exists a constant β such that for any compactum
F ⊂ Ω

μ(F )αp ≤ β(p, Φ)-cap(F,Ω), (2.3.18)

where p ≥ 1, α > 0, αp ≤ 1, then for all u ∈ D(Ω)

‖u‖p
Lq(Ω,μ) ≤ C

∫
Ω

[
Φ(x, ∇u)

]p dx, (2.3.19)

where q = α−1 and C ≤ pp(p − 1)1−pβ.
2. If (2.3.19) holds for any u ∈ D(Ω) and if the constant C does not

depend on u, then (2.3.18) is valid for all compacta F ⊂ Ω with α = q−1 and
β ≤ C.

Remark. Obviously, the isocapacitary inequality (2.3.18) is equivalent to
the weak-type integral inequality

sup
t>0

(
tμ(Lt)1/q

)
≤ C1/p

∥∥Φ(·, ∇u)
∥∥

Lp(Ω)
(2.3.20)

with Lt = {x : |u(x)| > t} and this, along with the Corollary, can be inter-
preted as the equivalence of the weak and the strong Sobolev-type estimates
(2.3.20) and (2.3.19).

2.3.5 Best Constant in the Sobolev Inequality (p > 1)

From the previous corollary and the isoperimetric inequality (2.2.12) we obtain
the Sobolev (p > 1)-Gagliardo (p = 1) inequality

‖u‖Lpn/(n−p) ≤ C‖ ∇u‖Lp , (2.3.21)

where n > p ≥ 1, u ∈ D(Rn) and

C = p(n − p)(1−p)/pω−1/n
n n(p−n)/pn.

The value of the constant C in (2.3.21) is sharp only for p = 1 (cf. The-
orem 1.4.2/1). To obtain the best constant one can proceed in the following
way.

By Lemma 2.3.1

∫ ψ(max |u|)

0

[
t′(ψ)

]p dψ =
∫

Rn

| ∇u|p dx.

Putting
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ψ =
p − 1

ω
1/(p−1)
n (n − p)

r(n−p)/(1−p), t(ψ) = γ(r),

and assuming t(ψ) = const for ψ ≥ ψ(max |u|), we obtain

ωn

∫ ∞

0

∣∣γ′(r)
∣∣prn−1 dr =

∫
Rn

| ∇u|p dx.

Furthermore, by Lemma 1.2.3,

∫
Rn

|u|pn/(n−p) dx =
∫ max |u|

0

mn(Nt) d
(
tpn/(n−p)

)
.

The definition of the function ψ(t), Lemma 2.2.3, and the isoperimetric in-
equality (2.2.9) imply

ψ(t) ≤ ω1/(1−p)
n

p − 1
n − p

[
n

ωn
mn(Nt)

](n−p)/n(1−p)

.

Consequently,
mn(Nt(ψ)) ≤ ωnn

−1rn

and ∫
Rn

|u|pn/(n−p) dx ≤ ωn

n

∫ ∞

0

rn d
[
γ(r)pn/(n−p)

]
.

Since ∫ ∞

0

∣∣γ′(r)
∣∣prn−1 dr < ∞,

it follows that γ(r)r(n−p)/p → 0 as r → ∞. After integration by parts, we
obtain ∫

Rn

|u|pn/(n−p) dx ≤ ωn

∫ ∞

0

[
γ(r)

]pn/(n−p)
rn−1 dr.

Thus,

sup
u∈D

‖u‖Lpn/(n−p)

‖∇u‖Lp

= ω−1/n
n sup

{γ}

(
∫∞
0

[γ(r)]pn/(n−p)rn−1 dr)(n−p)/pn

(
∫∞
0

|γ′(r)|prn−1 dr)1/p
, (2.3.22)

where {γ} is the set of all nonincreasing nonnegative functions on [0, ∞) such
that γ(r)r(n−p)/p → 0 as r → ∞. Thus, we reduced the question of the best
constant in (2.3.21) to a one-dimensional variational problem that was solved
explicitly by Bliss [109] as early as 1930 by classical methods of the calculus
of variations. Paradoxically, the best constant in the Sobolev inequality had
been obtained earlier than the inequality itself appeared. The sharp upper
bound in (2.3.22) is attained at any function of the form

γ(r) =
(
a + brp/(p−1)

)1−n/p
, a, b = const > 0,
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and equals

n−1/p

(
p − 1
n − p

)(p−1)/p[
p − 1
p

B

(
n

p
,
n(p − 1)

p

)]−1/n

.

Finally, the sharp constant in (2.3.21) is given by

C = π−1/2n−1/p

(
p − 1
n − p

)(p−1)/p{
Γ (1 + n/2)Γ (n)

Γ (n/p)Γ (1 + n − n/p)

}1/n

, (2.3.23)

and the equality sign can be written in (2.3.21) if

u(x) =
[
a + b|x|p/(p−1)

]1−n/p
, (2.3.24)

where a and b are positive constants (although u does not belong to D it can
be approximated by functions in D in the norm ‖∇u‖Lp(Rn)).

2.3.6 Multiplicative Inequality (the Case p ≥ 1)

The following theorem describes conditions for the equivalence of the general-
ized Sobolev-type inequality (2.3.19) and a multiplicative integral inequality.

We denote by β the best constant in the isocapacitary inequality (2.3.18).

Theorem. 1. For any compactum F ⊂ Ω let the inequality (2.3.18) hold
with p ≥ 1, α > 0. Further, let q be a positive number satisfying one of the
conditions (i) q ≤ q∗ = α−1, for αp ≤ 1, or (ii) q < q∗ = α−1, for αp > 1.

Then the inequality

‖u‖Lq(Ω,μ) ≤ C

(∫
Ω

[
Φ(x, ∇u)

]p dx
)(1−κ)/p

‖u‖κ

Lr(Ω,μ) (2.3.25)

holds for any u ∈ D(Ω), where r ∈ (0, q), κ = r(q∗ − q)/q(q∗ − r), C ≤
cβ(1−κ)/p.

2. Let p ≥ 1, 0 < q∗ < ∞, r ∈ (0, q∗] and for some q ∈ (0, q∗] and any
u ∈ D(Ω) let the inequality (2.3.25) hold with κ = r(q∗ − q)/q(q∗ − r) and a
constant C independent of u.

Then (2.3.18) holds for all compacta F ⊂ Ω with α = (q∗)−1 and β ≤
cCp/(1−κ).

Proof. 1. Let αp ≤ 1. By Hölder’s inequality,
∫

Ω

|u|q dμ =
∫

Ω

|u|q
∗(q−r)/(q∗ −r)|u|r(q

∗ −q)/(q∗ −r) dμ

≤
(∫

Ω

|u|q
∗
dμ
)(q−r)/(q∗ −r)(∫

Ω

|u|r dμ
)(q∗ −q)/(q∗ −r)

,

or equivalently,
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‖u‖Lq(Ω,μ) ≤ ‖u‖1−κ

Lq∗ (Ω,μ)‖u‖κ

Lr(Ω,μ).

Estimating the first factor by (2.3.19), we obtain (2.3.25) for αp ≤ 1. Let
αp > 1. By Lemma 1.2.3,

∫
Ω

|u|q dμ = q

∫ ∞

0

μ(Nt)tq−1 dt.

To the last integral we apply inequality (1.3.42), where x = tq, f(x) = μ(Nt),
b = p(q∗)−1 > 1, a > 1 is an arbitrary number, λ = a(q − r)q−1, μ =
p(q∗ − q)/q∗q

∫ ∞

0

μ(Nt)tq−1 dt ≤ c

(∫ ∞

0

[
μ(Nt)

]a
tar−1 dt

)(q∗ −q)/a(q∗ −r)

×
(∫ ∞

0

[
μ(Nt)

]p/q∗

tp−1 dt
)q∗(q−r)/p(q∗ −r)

.

Since a > 1 and μ(Nt) does not increase, we can apply (1.3.41) to the first
factor in the following way:

∫ ∞

0

[
μ(Nt)

]a
tar−1 dt ≤ c

(∫ ∞

0

μ(Nt)tr−1 dt
)a

.

Thus,

‖u‖Lq(Ω,μ) ≤ c

(∫ ∞

0

[
μ(Nt)

]p/q∗

tp−1 dt
)(1−κ)/p

‖u‖κ

Lr(Ω,μ).

From condition (2.3.18) and Theorem 2.3.1 we obtain
∫ ∞

0

[
μ(Nt)

]p/q∗

tp−1 dt ≤ cβ

∫
Ω

[
Φ(x, ∇u)

]p dx.

The proof of the first part of the theorem is complete.
2. Let G be a bounded open set Ḡ ⊂ Ω. We fix a number δ > 0 and we

put

βδ = sup
μ(F )pα

(p, Φ)-cap(F,G)

on the set of all compacta F in G satisfying the condition (p, Φ)-cap(F,G) ≥ δ.
(If (p, Φ)-cap(F,G) = 0 for any compactum F ⊂ G, then the substitution of
an arbitrary u ∈ N(F,G) into (2.3.25) immediately leads to μ = 0.) Obviously,

βδ ≤ δ−1μ(G)pα < ∞.

Let v be an arbitrary function in N(F,G) and let γ = max(pr−1, q∗r−1).
We substitute the function u = vγ into (2.3.25). Then
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μ(F )1/q ≤ cC

(∫
Ω

vp(γ−1)
[
Φ(x, ∇v)

]p dx
)(1−κ)/p∥∥vγ

∥∥κ

Lr(Ω,μ)
. (2.3.26)

Let ψ(t) be the function defined in (2.3.2), where u is replaced by v. In our
case T = max v = 1. Clearly,

∫
G

vγr dμ =
∫ ∞

0

μ
(
Nt

)
d(tγr) =

∫ 1

0

μ(Nt)
[
ψ(t)

]q∗/p′ d(tγr)
[ψ(t)]q∗/p′ ,

where Nt = {x ∈ G : v(x) ≥ t}. Since Nt ⊃ F , we have by Lemma 2.2.2/3

μ(Nt)ψ(t)q∗/p′
≤ μ(Nt)

[(p, Φ)-cap(Nt, G)]q∗/p
≤ β

q∗/p
δ .

Hence ∫
G

vγr ≤ β
q∗/p
δ

∫ 1

0

[
ψ(t)

]−q∗/p′

d
(
tγr
)
.

Since [ψ(t)]−q∗/p′
is a nonincreasing function, from (1.3.41) we obtain

∫
G

vγr dμ ≤ β
q∗/p
δ

(∫ 1

0

[
ψ(t)

]q∗(1−p)/γr d
(
tp
))γr/p

≤ β
q∗/p
δ ψ(1)(γr−q∗)/p′

(∫ 1

0

d(tp)
[ψ(t)]p−1

)γr/p

.

Setting t = t(ψ) in the last integral and applying the inequality (2.3.8) and
Lemma 2.3.1, we obtain

∫ ψ(1)

0

d[t(ψ)]p

ψp−1
≤ c

∫ ψ(1)

0

[
t′(ψ)

]p dψ = c

∫
G

[
Φ(x, ∇v)

]p dx.

Thus,

‖vγ ‖Lr(Ω,μ) ≤ cβ
q∗/pr
δ ψ(1)(γr−q∗)/rp′

(∫
G

[
Φ(x, ∇v)

]p dx
)γ/p

≤ cβ
q∗/pr
δ

[
(p, Φ)-cap(F,G)

](q∗ −γr)/rp
(∫

G

[
Φ(x, ∇v)

]p dx
)γ/p

.

(2.3.27)

The last inequality follows from the estimate

[
ψ(1)

]p−1 ≤
[
(p, Φ)-cap(F,G)

]−1

(see Lemma 2.2.2/3). Since 0 ≤ v ≤ 1 and γ ≥ 1, from (2.3.26) and (2.3.27)
it follows that
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μ(F )1/q ≤ cCβ
q∗

κ/pr
δ

[
(p, Φ)-cap(F,G)

]κ(q∗ −γr)/rp

×
(∫

G

[
Φ(x, ∇v)

]p dx
)[1+κ(γ−1)]/p

.

Minimizing ∫
G

[
Φ(x, ∇v)

]p dx

on the set P(F,G), we obtain

μ(F )1/q ≤ cCβ
q∗

κ/pr
δ

[
(p, Φ)-cap(F,G)

]1/p+κ(q∗ −r)/pr

= cCβ
q∗

κ/pr
δ

[
(p, Φ)-cap(F,G)

]q∗/qp
.

Hence
μ(F )p/q∗

≤ cCqp/q∗
β

(q∗ −q)/(q∗ −r)
δ (p, Φ)-cap(F,G).

Consequently,
βδ ≤ cCpq(q∗ −r)/q∗(q−r) = cCp/(1−κ).

Since βδ is majorized by a constant that depends neither on δ nor G, using the
property (iv) of the (p, Φ)-capacity we obtain β ≤ cCp/(1−κ). The theorem is
proved. ��

Remark. The theorem just proved shows, in particular, the equivalence of
the multiplicative inequality (2.3.25) and the Sobolev-type inequality (2.3.19).

2.3.7 Estimate for the Norm in Lq(Ω, μ) with q < p (First
Necessary and Sufficient Condition)

A characterization of (2.3.19) with q ≥ p was stated in Corollary 2.3.4. Now we
obtain a condition for the validity of (2.3.19), which is sufficient if p > q > 0
and necessary if p > q ≥ 1.

Definition. Let S = {gj } ∞
j=− ∞ be any sequence of admissible subsets of

Ω with ḡi ⊂ gi+1. We put μi = μ(gi), γi = (p, Φ)-cap(ḡi, gi+1), and

κ = sup
{S}

[ ∞∑
i=− ∞

(
μ

p/q
i

γi

)q/(p−q)
](p−q)/q

. (2.3.28)

(The terms of the form 0/0 are considered to be zeros.)

Theorem. (i) If κ < ∞, then

‖u‖p
Lq(Ω,μ) ≤ C

∫
Ω

[
Φ(x, ∇u)

]p dx, (2.3.29)

where u ∈ D(Ω) and p > q > 0, C ≤ cκ.
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(ii) If there exists a constant C such that (2.3.29) holds for all u ∈ D(Ω)
with p > q ≥ 1, then κ ≤ cC.

Proof. (i) Let tj = 2−j + εj , j = 0, ±1, ±2, . . . , where εj is a decreasing
sequence of positive numbers satisfying εj2j → 0 as j → ±∞. We assume
further that the sets Ltj are admissible. Obviously,

‖u‖q
Lq(Ω,μ) =

∞∑
j=− ∞

∫ tj−1

tj

μ(Lt) d
(
tq
)

≤ c

∞∑
j=− ∞

2−qjμ(Ltj ).

Let gj = Ltj . We rewrite the last sum as

c

∞∑
j=− ∞

(
μ

p/q
j

γj

)q/p(
2−pjγj

)q/p

and apply Hölder’s inequality. Then

‖u‖q
Lq(Ω,μ) ≤ cκq/p

( ∞∑
j=− ∞

2−pjγj

)q/p

.

Let λε ∈ C∞(R1), λε(t) = 1 for t ≥ 1, λε(t) = 0 for t ≤ 0, 0 ≤ λ′
ε(t) ≤ 1 + ε,

(ε > 0) and let

uj(x) = λε

[
|u(x)| − tj+1

tj − tj+1

]
.

Since uj ∈ N(ḡj , gj+1), it follows that

∞∑
j=− ∞

2−pjγj ≤ c

∞∑
j=− ∞

(tj − tj+1)p

∫
gj+1\gj

[
Φ(x, ∇uj)

]p dx

= c
∞∑

j=− ∞

∫
gj+1\gj

[
λ′

ε

(
u − tj+1

tj − tj+1

)]p[
Φ(x, ∇u)

]p dx.

Letting ε tend to zero, we obtain

∞∑
j=− ∞

2−pjγj ≤ c

∫
Ω

[
Φ(x, ∇u)

]p dx. (2.3.30)

(ii) We introduce the sequence

S = {gj } ∞
j=− ∞

and put τN+1 = 0 and

τk =
N∑

j=k

(
μj

γj

)1/(p−q)
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for k = −N, −N+1, . . . , 0, . . . , N−1, N . By uk we denote an arbitrary function
in P(ḡk, gk+1) and define the function

uk = (τk − τk+1)uk + τk+1 on gk+1\gk,

u = τ−N on g−N , u = 0 on Ω\gN+1.

Since u ∈ D(Ω), it satisfies (2.3.29). Obviously,

∫
Ω

uq dμ = v
∫∞
0

μ(Lt) d
(
tq
)

=
N∑

k=−N

∫ τk

τk+1

μ(Lt) d
(
tq
)

≥
N∑

k=−N

μk

(
τ q
k − τ q

k+1

)
.

Therefore, (2.3.29) and the inequality (τk − τk+1)q ≤ (τ q
k − τ q

k+1) implies

[
N∑

k=−N

μk(τk − τk+1)q

]p/q

≤ C

N∑
k=−N

∫
gk+1\gk

[
Φ(x, ∇uk)

]p dx

= C

N∑
k=−N

(τk − τk+1)p

∫
gk+1\gk

[
Φ(x, ∇uk)

]p dx.

Since uk is an auxiliary function in P(ḡk, gk+1), it follows by minimizing the
last sum that

[
N∑

k=−N

μ(τk − τk+1)q

]p/q

≤ C
N∑

k=−N

(τk − τk+1)pγk.

Putting here

τk − τk+1 = μ
1/(p−q)
k γ

1/(q−p)
k ,

we arrive at the result

∣∣∣∣∣
N∑

k=−N

(
μ

p/q
k γk

)q/(p−q)

∣∣∣∣∣
(p−q)/q

≤ C.
��

2.3.8 Estimate for the Norm in Lq(Ω, μ) with q < p (Second
Necessary and Sufficient Condition)

Lemma. Let g1, g2, and g3 be admissible subsets of Ω such that ḡ1 ⊂ g2,
ḡ2 ⊂ g3. We set

γij = (p, Φ)-cap(ḡi, gj),
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where i < j. Then

γ
−1/(p−1)
12 + γ

−1/(p−1)
23 ≤ γ

−1/(p−1)
13 .

Proof. Let ε be any positive number. We choose functions uk ∈ P(ḡk, gk+1),
k = 1, 2, so that

γ
−1/(p−1)
k,k+1 ≤

∫ 1

0

[∫
E k

τ

[
Φ(x, ∇uk)

]p ds
| ∇uk |

]−1/(p−1)

dτ + ε,

where E k
τ = {x : uk(x) = τ}. We put u(x) = 1

2u2(x) for x ∈ g3\g2 and
u(x) = (u1(x) + 1)/2 for x ∈ g2. Then

∫ 1

0

[∫
E 1

τ

[
Φ(x, ∇u1)

]p ds
| ∇u1|

]1/(1−p)

dτ

=
∫ 1

1/2

[∫
Eτ

[
Φ(x, ∇u)

]p ds
| ∇u|

]1/(1−p)

dτ,

∫ 1

0

[∫
E 2

τ

[
Φ(x, ∇u2)

]p ds
| ∇u2|

]1/(1−p)

dτ

=
∫ 1/2

0

[∫
Eτ

[
Φ(x, ∇u)

]p ds
| ∇u|

]1/(1−p)

dτ,

where Eτ = {x : u(x) = τ}. Therefore,

γ
1/(1−p)
12 + γ

1/(1−p)
23 ≤

∫ 1

0

(∫
Eτ

[
Φ(x, ∇u)

]p ds
| ∇u|

)1/(1−p)

dτ + 2ε.

Since u ∈ P(ḡ1, g3), by Lemma 2.2.2/3 the right-hand side of the last inequal-
ity does not exceed γ

1/(1−p)
13 + 2ε. The lemma is proved. ��

Let νp be the capacity minimizing function introduced in Definition 2.3.2.
It can be easily checked that condition (2.3.15) is equivalent to

βνp(t) ≥ tP −1(1/t)

and condition (2.3.18) to
βνp(t) ≥ tαp.

The theorem of the present subsection yields the following necessary and
sufficient condition for the validity of (2.3.29) with p > q > 0:

K =
∫ μ(Ω)

0

[
τ

νp(τ)

]q/(p−q)

dτ < ∞. (2.3.31)
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Theorem. Let p > q > 0, p > 1.
1. If K < ∞, then (2.3.29) holds for all u ∈ D(Ω) with C ≤ cK(p−q)/q.
2. If (2.3.29) holds with C < ∞, then (2.3.31) is valid with K(p−q)/q ≤ cC.

Proof. 1. By Theorem 2.3.7 it suffices to prove the inequality

sup
{S}

∞∑
j=− ∞

(
μ

p/q
j

γj

)q/(p−q)

≤ p

p − q

∫ μ(Ω)

0

[
τ

νp(τ)

]q/(p−q)

dτ, (2.3.32)

where the notation of Sect. 2.3.7 is retained.
Let the integral in the right-hand side converge, let N be a positive integer,

and let Γj = (p, Φ)-cap(ḡj , gN+1) for j ≤ N , ΓN+1 = ∞. By the Lemma,

γ
1/(1−p)
j ≤ Γ

1/(1−p)
j − Γ

1/(1−p)
j+1 , j ≤ N.

Since q(p − 1)/(p − q) ≥ 1, then

|a − b|q(p−1)/(p−q) ≤
∣∣aq(p−1)/(p−q) − bq(p−1)/(p−q)

∣∣
and hence

γ
−q/(p−q)
j ≤ Γ

−q/(p−q)
j − Γ

−q/(p−q)
j+1 .

This implies

σN
def=

N∑
j=−N

(
μ

p/q
j

γj

)q/(p−q)

≤
N∑

j=−N

μ
p/(p−q)
j

(
Γ

−q/(p−q)
j − Γ

−q/(p−q)
j+1

)

≤
N∑

j=−N+1

(
μ

p/(p−q)
j − μ

p/(p−q)
j−1

)
Γ

−q/(p−q)
j + μ

p/(p−q)
−N Γ

−q/(p−q)
−N .

It is clear that Γj ≥ (p, Φ)-cap(ḡj , Ω) ≥ νp(μj). Since the function νp does not
decrease then

μ
p/(p−q)
−N

[
νp(μ−N )

]q/(p−q) ≤
∫ μ−N

0

d(τp/(p−q))
[νp(τ)]q/(p−q)

.

Similarly,

(
μ

p/(p−q)
j − μ

p/(p−q)
j−1

)[
νp(μj)

]q/(p−q) ≤
∫ μj

μj−1

d(τp/(p−q))
[νp(τ)]q/(p−q)

.

Consequently,

σN ≤
∫ μN

0

[
νp(τ)

]q/(q−p) d
(
τp/(p−q)

)
.

The result follows.
2. With a μ-measurable function f we connect its nonincreasing rearrange-

ment
f∗

μ(t) = inf
{
s : μ

{
x ∈ Ω : f(x) ≥ s

}
≤ t
}
. (2.3.33)
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By Lemma 2.1.4/1

‖f‖Lq(Ω,μ) =
(∫ μ(Ω)

0

(
f∗

μ(t)
)q dt

)1/q

, 0 < q < ∞. (2.3.34)

We note that the inequality (2.3.29) implies that μ(Ω) < ∞ and that
νp(t) > 0 for all t ∈ (0, μ(Ω)]. Let l be any integer satisfying 2l ≤ μ(Ω). We
introduce an admissible subset gl of Ω such that

μ(ḡl) ≥ 2l, (p, Φ)-cap(gl, Ω) ≤ 2νp

(
2l
)
.

By ul we denote a function in P(ḡl, Ω) satisfying
∫

Ω

[
Φ(x, ∇ul)

]p dx ≤ 4νp

(
2l
)
. (2.3.35)

Let s be the integer for which 2s ≤ μ(Ω) < 2s+1. We define the function in
C0,1

0 (Ω)
fr,s(x) = sup

r≤l≤s
βlul(x), x ∈ Ω,

where r < s and the values βl are defined by

βl =
(

2l

νp(2l)

)1/(p−q)

.

By Lemma 2.1.4/2 and by Lemma 2.1.4/3 with Φp instead of Φ we have

∫
Ω

[
Φ(x, ∇fr,s)

]p dx ≤
s∑

l=r

βp
l

∫
Ω

[
Φ(x, ∇ul)

]p dx.

By (2.3.35) the right-hand side is majorized by

c

s∑
l=r

βp
l νp

(
2l
)
.

Now we obtain a lower estimate for the norm of fr,s in Lq(Ω,μ). Since
fr,s(x) ≥ βl on the set gl, r ≤ l ≤ s, and μ(ḡl) ≥ 2l, the inequality

μ
({

x ∈ Ω :
∣∣fr,s(x)

∣∣ > τ
})

< 2l

implies τ ≥ βl. Hence

f∗
r,s(t) ≥ βl for t ∈

(
0, 2l

)
, r ≤ l ≤ s. (2.3.36)

By (2.3.34) and (2.3.36)

‖fr,s‖q
Lq(Ω,μ) =

∫ μ(Ω)

0

(
(fr,s)∗

μ(t)
)q dt ≥ c

s∑
l=r

(
(fr,s)∗

μ(2l)
)q2l ≥ c

s∑
l=r

βq
l 2l.
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Therefore,

B := sup
‖u‖Lq(Ω,μ)

(
∫

Ω
[Φ(x, ∇u)]p dx)1/p

≥ c
(
∑s

l=r β
q
l 2l)1/q

(
∑s

l=r β
p
l νp(2l))1/p

= c

(
s∑

l=r

2lp/(p−q)

νp(2l)q/(p−q)

)1/q−1/p

.

With r → −∞ we obtain

B ≥
(

s∑
l=− ∞

2lp/(p−q)

νp(2l)q/(p−q)

)1/q−1/p

≥ c

(∫ 2s−1

0

s∑
l=− ∞

tp/(p−q)

(νp(t))q/(p−q)

dt
t

)1/q−1/p

.

Hence by monotonicity of νp we obtain

B ≥ c

(∫ μ(Ω)

0

tp/(p−q)

(νp(t))q/(p−q)

dt
t

)1/q−1/p

.

The proof is complete. ��

We give a sufficient condition for inequality (2.3.29) with μ = mn formu-
lated in terms of the weighted isoperimetric function C introduced in Defini-
tion 2.2.3.

Corollary. If p > q > 0, p > 1, and

∫ mn(Ω)

0

(∫ mn(Ω)

t

d�
(C (�))p/(p−1)

) q(p−1)
p−q

t
q

p−q dt < ∞,

then (2.3.29) with μ = mn and any u ∈ D(Ω) holds.

Proof. The result follows directly from the last Theorem and Corol-
lary 2.7.2. ��

2.3.9 Inequality with the Norms in Lq(Ω, μ) and Lr(Ω, ν)
(the Case p ≥ 1)

The next theorem gives conditions for the validity of the inequality

‖u‖p
Lq(Ω,μ) ≤ C

(∫
Ω

[
Φ(x, ∇u)

]p dx + ‖u‖p
Lr(Ω,ν)

)
(2.3.37)

for all u ∈ D(Ω) with q ≥ p ≥ r, p > 1 (compare with Theorem 2.1.3).
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Theorem. Inequality (2.3.37) holds if and only if

μ(g)p/q ≤ cC
[
(p, Φ)-cap(ḡ,G ) +

[
ν(G )

]p/r] (2.3.38)

for all admissible sets g and G with ḡ ⊂ G .

Proof. Sufficiency. By Lemma 1.2.3 and inequality (1.3.41),

‖u‖p
Lq(Ω,μ) =

[∫ ∞

0

μ(Lt) d
(
tq
)]p/q

≤
∫ ∞

0

[
μ(Lt)

]p/q d
(
tp
)

≤ c
∞∑

j=− ∞
2−pjμ(gj)p/q,

where gj = Ltj and {tj } is the sequence of levels defined in the proof of
part (i) of Theorem 2.3.7. We set γj = (p, Φ)-cap(ḡj , gj+1) and using the
condition (2.3.38), we arrive at the inequality:

‖u‖p
Lq(Ω,μ) ≤ cC

[ ∞∑
j=− ∞

2−pjγj +
∞∑

j=− ∞
2−pjν(gj)p/r

]
. (2.3.39)

We can estimate the first sum on the right-hand side of this inequality by
means of (2.3.30). The second sum does not exceed

c

∫ ∞

0

[
ν(Lt)

]p/r d
(
tp
)

≤ c

(∫ ∞

0

ν(Lt) d
(
tr
))p/r

= c‖u‖p
Lr(Ω,ν).

Necessity. Let g and G be admissible and let ḡ ⊂ G . We substitute any
function u ∈ P(ḡ,G ) into (2.3.37). Then

μ(g)p/q ≤ C

[∫
Ω

[
Φ(x, ∇u)

]p dx + ν(G )p/r

]
.

Minimizing the first term on the right of the set P(ḡ, G), we obtain (2.3.38).
��

Remark. Obviously, a sufficient condition for the validity of (2.3.37) is the
inequality

μ(g)p/q ≤ C1

[
(p, Φ)-cap(g,Ω) + ν(g)p/r

]
, (2.3.40)

which is simpler than (2.3.38). In contrast to (2.3.37) it contains only one set g.
However, as the following example shows, the last condition is not necessary.

Let Ω = R
3, q = p = r = 2, Φ(x, y) = |y|, and let the measures μ and ν

be defined as follows:

μ(A) =
∞∑

k=0

s(A ∩ ∂B2k),

ν(A) =
∞∑

k=0

s(A ∩ ∂B2k+1),
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where A is any Borel subset of R
3 and s is a two-dimensional Hausdorff

measure. The condition (2.3.40) is not fulfilled for these measures and the
2-capacity. Indeed, for the sets gk = B2k+1\B̄2k −1, k = 2, 3, . . . , we have
μ(gk) = π4k+1, ν(gk) = 0, 2-cap(gk,R

3) = 4π(2k + 1).
We shall show that (2.3.37) is true. Let u ∈ D(R3) and let (�, ω) be

spherical coordinates with center O. Obviously,

[
u
(
2k, ω

)]2 ≤ 2
∫ 2k+1

2k

(
∂u

∂�
(�, ω)

)2

d� + 2
[
u
(
2k + 1, ω

)]2
.

Hence

4k

∫
∂B1

[
u
(
2k, ω

)]2 dω ≤ 2
∫

B2k+1\B2k

(
∂u

∂�

)2

dx+2·4k

∫
∂B1

[
u
(
2k+1, ω

)]2 dω.

Summing over k, we obtain
∫

R3
u2 dμ ≤ c

(∫
R3

| ∇u|2 dx +
∫

R3
u2 dν

)
.

The proof is complete.

2.3.10 Estimate with a Charge σ on the Left-Hand Side

The following assertion yields a condition close in a certain sense to being
necessary and sufficient for the validity of the inequality

∫
Ω

|u|p dσ ≤ c

∫
Ω

[
Φ(x, ∇u)

]p dx, u ∈ D(Ω), (2.3.41)

where σ is an arbitrary charge in Ω, not a nonnegative measure as in Theo-
rem 2.3.6. (Theorem 2.1.3 contains a stronger result for p = 1.)

Theorem. Let σ+ and σ− be the positive and negative parts of the
charge σ.

1. If for some ε ∈ (0, 1) and for all admissible sets g and G with ḡ ⊂ G we
have the inequality

σ−(g) ≤ Cε(p, Φ)-cap(ḡ, G) + (1 − ε)σ−(G), (2.3.42)

where Cε = const, then (2.3.41) is valid with C ≤ cCε.
2. If for all u ∈ D(Ω) inequality (2.3.41) holds, then

σ+(g) ≤ C(p, Φ)-cap(ḡ,G ) + σ−(G ) (2.3.43)

for all admissible sets g and G , ḡ ⊂ G .

Proof. Let δ = (1 − ε)−1/2p and gj = Lδj , j = 0, ±1, . . . . By Lemma 1.2.3,
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‖u‖p
Lp(Ω,σ+) =

∫ ∞

0

σ+(Lt) d
(
tp
)

=
∞∑

j=− ∞

∫ δj+1

δj

σ+(Lt) d
(
tp
)

≤
∞∑

j=− ∞
σ+(Lδj )

(
δ(j+1)p − δjp

)
.

This and (2.3.42) imply

‖u‖p
Lp(Ω,σ+) ≤ Cε

∞∑
j=− ∞

(p, Φ)-cap(L̄δj ,Lδj−1)
(
δ(j+1)p − δjp

)

+ (1 − ε)
∞∑

j=− ∞
σ−(Lδj−1)

(
δ(j+1)p − δjp

)
. (2.3.44)

Using the same arguments as in the derivation of (2.3.30), we obtain that
the first sum in (2.3.44) does not exceed

(δp − 1)δp

(δ − 1)p

∫
Ω

[
Φ(x, ∇u)

]p dx.

Since σ−(Lt) is a nondecreasing function, then

(
δ(j−1)p − δ(j−2)p

)
σ−(Lδj−1) ≤

∫ δj−1

δj−2
σ−(Lt) d

(
tp
)

and hence
∞∑

j=− ∞
σ−(Lδj−1)

(
δ(j+1)p − δjp

)
≤ δ2p

∫ ∞

0

σ−(Lt) d
(
tp
)
.

Thus

‖u‖p
Lp(Ω,σ+) ≤ Cε

(δp − 1)δp

(δ − 1)p

∫
Ω

[
Φ(x, ∇u)

]p dx + δ2p(1 − ε)‖u‖p
Lp(Ω,σ+).

It remains to note that δ2p(1 − ε) = 1.
2. The proof of the second part of the theorem is the same as that of

necessity in Theorem 2.3.9. The theorem is proved. ��

2.3.11 Multiplicative Inequality with the Norms in Lq(Ω, μ) and
Lr(Ω, ν) (Case p ≥ 1)

The following assertion gives a necessary and sufficient condition for the va-
lidity of the multiplicative inequality

‖u‖p
Lq(Ω,μ) ≤ C

{∫
Ω

[
Φ(x, ∇u)

]p dx
}δ

‖u‖p(1−δ)
Lr(Ω,ν) (2.3.45)
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for p ≥ 1 (cf. Theorem 2.1.1).

Theorem. 1. Let g and G be any admissible sets such that ḡ ⊂ G . If a
constant α exists such that

μ(g)p/q ≤ α
[
(p, Φ)-cap(ḡ,G )

]δ
ν(G )(1−δ)p/r, (2.3.46)

then (2.3.45) holds for all functions u ∈ D(Ω) with C ≤ cα, 1/q ≤ (1 −δ)/r+
δ/p, r, q > 0.

2. If (2.3.45) is true for all u ∈ D(Ω), then (2.3.46) holds for all admissible
sets g and G such that ḡ ⊂ G . The constant α in (2.3.46) satisfies α ≤ C.

Proof. 1. By Lemma 1.2.3 and inequality (1.3.41),

‖u‖Lq(Ω,μ) =
[∫ ∞

0

μ(Lτ ) d
(
τ q
)]1/q

≤ γ1/γ

[∫ ∞

0

μ(Lτ )γ/qτγ−1 dτ
]1/γ

,

where γ = pr[p(1 − δ) + δr]−1, γ ≤ q. Consequently,

‖u‖p
Lq(Ω,μ) ≤ c

[ ∞∑
j=− ∞

2−γjμ(gj)γ/q

]p/γ

≤ cα

{ ∞∑
j=− ∞

2−γj
[
(p, Φ)-cap(ḡj , gj+1)

]δγ/p
ν(gj+1)(1−δ)γ/r

}p/γ

,

where gj = Ltj and {tj } is the sequence of levels defined in the proof of the
first part of Theorem 2.3.7. Hence,

‖u‖p
Lq(Ω,μ) ≤ cα

[ ∞∑
j=− ∞

2−pj(p, Φ)-cap(ḡj , gj+1)

]δ

×
[ ∞∑

j=− ∞
2−rjν(gj+1)

](1−δ)p/r

. (2.3.47)

By (2.3.30),
∞∑

j=− ∞
2−pj(p, Φ)-cap(ḡj , gj+1) ≤ c

∫
Ω

[
Φ(x, ∇u)

]p dx.

Obviously, the second sum in (2.3.47) does not exceed c‖u‖r
Lr(Ω,ν). Thus

(2.3.45) follows.
2. Let g and G be admissible sets with ḡ ⊂ G . We substitute any function

u ∈ P(ḡ,G ) into (2.3.45). Then

μ(g)p/q ≤ C

[∫
Ω

[
Φ(x, ∇u)

]p dx
]δ

ν(G )(1−δ)p/r,

which yields (2.3.46). The theorem is proved. ��
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2.3.12 On Nash and Moser Multiplicative Inequalities

An important role in Nash’s classical work on local regularity of solutions to
second-order parabolic equations in divergence form with measurable bounded
coefficients [625] is played by the multiplicative inequality

(∫
Rn

u2 dx
)1+2/n

≤ C

∫
Rn

| ∇u|2 dx
(∫

Rn

|u| dx
)4/n

, u ∈ C∞
0 . (2.3.48)

Another inequality of a similar nature

‖u‖1+2/n
L2+4/n

≤ c‖u‖2/n
L2

‖ ∇u‖L2 , u ∈ C∞
0 , (2.3.49)

was used by Moser in his proof of the Harnack inequality for solutions of
second-order elliptic equations with measurable bounded coefficients in diver-
gence form [617].

These two inequalities are contained as very particular cases in the
Gagliardo–Nirenberg inequality for all u ∈ C∞

0 (Rn)

‖ ∇ju‖Lq ≤ c‖ ∇lu‖α
Lp

‖u‖1−α
Lr

, (2.3.50)

where 1 ≤ p, r ≤ ∞, 0 ≤ j < l, j/l ≤ α, ≤ 1, and

1
q

=
j

n
+ α

(
1
p

− l

n

)
+

1 − α

r
.

If 1 < p < ∞ and l − j − n/p is a nonnegative integer then (2.3.50) holds only
for α ∈ [j/n, 1) (see Gagliardo [299] and Nirenberg [640]).

If n > 2, the Nash and Moser inequalities follow directly by the Hölder
inequality from the Sobolev inequality

‖u‖L2n/(n−2) ≤ c‖ ∇u‖L2 , u ∈ C∞
0 . (2.3.51)

We know by the second part of Theorem 2.3.6 that conversely, (2.3.48) and
(2.3.49) imply (2.3.51). The just-mentioned theorem does not contain (2.3.48)
and (2.3.49) for n = 2, which formally corresponds to the exceptional case
α = 0. However, we show here that both (2.3.48) and (2.3.49) with n = 2,
and even the more general inequality

∫
Rn

|u|q dx ≤ c

(∫
Rn

| ∇u|n dx
) q−r

n
∫

Rn

|u|r dx, (2.3.52)

where q ≥ r > 0 can be deduced from Theorem 2.3.11. In fact, by this theorem,
(2.3.52) holds if and only if

mn(g) ≤ const
(
capn(ḡ, G)

) q−r
n mn(G), (2.3.53)
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where g and G are arbitrary bounded open sets with smooth boundaries,
ḡ ⊂ G, and capn is the n capacity of ḡ with respect to G. By the isocapacitary
inequality (2.2.11),

capn(ḡ, G) ≥ nn−1ωn

(
log

mn(G)
mn(g)

)1−n

.

Hence (2.3.53) is a consequence of the boundedness of the function

(0, 1) � x → x

(
log

1
x

) (q−r)(n−1)
n

,

which, in its turn, implies the multiplicative inequality (2.3.52). ��

The original proof of (2.3.52) (see Nirenberg [640], p. 129) is as follows.
First, one notes that it suffices to obtain (2.3.52) for large q. Then (2.3.52) re-
sults by putting |u|q(1−n)/n instead of u into (1.4.49) and using an appropriate
Hölder’s inequality.

Extensions of Nash’s inequality (2.3.48) to weighted inequalities with in-
definite weights on the left-hand side were obtained by Maz’ya and Verbitsky
[594] with simultaneously necessary and sufficient conditions on the weights.

2.3.13 Comments to Sect. 2.3

The basic results of Sects. 2.3.1–2.3.4 were obtained by the author in [531,
534] for p = 2, Φ(x, ξ) = |ξ|, M(u) = |u|, and in [543] for the general case.
Some of these results were repeated by Stredulinsky [729]. We shall return to
capacitary inequalities similar to (2.3.6) in Chaps. 3 and 11. The inequality
(2.3.14) can be found also in Brezis and Wainger [146] and Hansson [348].

Regarding the criterion in Sect. 2.3.3, see Comments to Sect. 2.4, where
other optimal embeddings of Birnbaum–Orlicz–Sobolev spaces into C and
Birnbaum–Orlicz spaces are discussed.

Inequality (2.3.21) is (up to a constant) the Sobolev (p > 1)-Gagliardo–
Nirenberg (p = 1) inequality. The best constant for the case p = 1 (see (1.4.14))
was found independently by Federer and Fleming [273] and by the author [527]
using the same method.

The best constant for p > 1, presented in Sect. 2.3.5 was obtained by
Aubin [55] and Talenti [740] (the case n = 3, p = 2 was considered earlier
by Rosen [682]), whose proofs are a combination of symmetrization and the
one-dimensional Bliss inequality [109] (see Sect. 2.3.5). The uniqueness of the
Bliss optimizer was proved by Gidas, Ni, and Nirenberg [307].

A different approach leading to the best constant in the Sobolev inequality,
which is based on the geometric Brunn–Minkowski–Lyusternik inequality, was
proposed in Bobkov and Ledoux [118].



178 2 Inequalities for Functions Vanishing at the Boundary

The extremals exhibited in (2.3.24) of the Sobolev inequality (2.3.21) in
the whole of R

n, with sharp constant C, are the only ones—see Cordero-
Erausquin, Nazaret, and Villani [212] who used the mass transportation tech-
niques referred to in Comments to Sect. 1.4. Strengthened, quantitative ver-
sions of this inequality are also available. They involve a remainder term
depending on the distance of the function u from the family of extremals. The
first result in this connection was established by Bianchi and Egnell [96] for
p = 2. The case when p = 1 was considered in Cianchi [199] and sharpened
in Fusco, Maggi, and Pratelli [296] as far as the exponent in the remainder
term is concerned. The general case when 1 < p < n is the object of Cianchi,
Fusco, Maggi, and Pratelli [204]. Related results for p > n are contained in
Cianchi [202].

In [811], Zhang proved an improvement of the inequality (1.4.14), called
the L1 affine Sobolev inequality,

∫
Sn−1

‖ ∇uf‖ −n
L1

dsu ≤ n

(
ωn

2ωn−1

)n

‖f‖ −n
L n

n−1
, (2.3.54)

where ∇uf is the partial derivative of f in direction u, dsu is the surface mea-
sure on Sn−1 and the constant factor on the right-hand side is sharp. Modi-
fications of (2.3.54) for the Lp-gradient norm with p > 1 and for the Lorentz
and Birnbaum–Orlicz settings are due to Zhang [811]; Lutwak, D. Yang, and
Zhang [510]; Haberl and Schuster [333]; Werner and Ye [794]; and Cianchi,
Lutwak, D. Yang, and Zhang [206].

A Sobolev-type trace inequality, which attracted much attention, is the
following trace inequality:

‖f‖L p(n−1)
n−p

(∂R
n
+) ≤ Kn,p‖ ∇f‖Lp(Rn

+), (2.3.55)

where n > p > 1. In the case p = 2, Beckner [78] and Escobar [259], using
different approaches, found the best value of Kn,2. Xiao [799] generalized their
result to the inequality

‖f‖L 2(n−1)
n−1−2α

(∂R
n
+) ≤ C(n, α)

∫
R

n
+

∣∣∇f(x)
∣∣2x1−2α

n dx, (2.3.56)

showing that

C(n, α) =
(

21−4α

παΓ (2(1 − α))

)(
Γ ((n − 1 − 2α)/2)
Γ ((n − 1 + 2α)/2)

)(
Γ (n − 1)

Γ ((n − 1)/2)

) 2α
n−1

.

An idea in [799] is that it suffices to prove (2.3.56) for solutions of the
Euler equation

div
(
x1−2α

n ∇u
)

= 0 on R
n
+.

Then by the Fourier transform with respect to x′ = (x1, . . . , xn−1) the integral
on the right-hand side of (2.3.56) takes the form
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const
∥∥(−Δx′ )α/2u

∥∥2

L2(Rn−1)
,

and the reference to the Lieb formula (1.4.48) gives the above value of C(n, α).
More recently, Nazaret proved, by using the mass transportation method

mentioned in Comments to Sect. 1.4, that the only minimizer in (2.3.55) has
the form

const
(
(xn + λ)2 + |x|2

) p−n
2(p−1) ,

where λ = const > 0. Sharp Sobolev-type inequalities proved to be crucial in
the study of partial differential equations and nowadays there is extensive lit-
erature dealing with them. To the works mentioned earlier we add the papers:
Gidas, Ni, and Nirenberg [307]; Lieb [496]; Lions [501]; Han [335]; Beckner [78,
79]; Adimurthi and Yadava [29]; Hebey and Vaugon [362, 363]; Hebey [359];
Druet and Hebey [243]; Lieb and Loss [497]; Del Pino and Dolbeault [231];
Bonder, Rossi, and Ferreira [125]; Biezuner [99]; Ghoussoub and Kang [306];
Dem’yanov and A. Nazarov [233]; Bonder and Saintier [126]; et al.

The study of minimizers in the theory of Sobolev spaces based on the so-
called concentration compactness is one of the topics in the book by Tintarev
and Fieseler [753] where relevant historical information can be found as well.

The material of Sects. 2.3.6–2.3.11 is due to the author [543]. The suffi-
ciency in Theorem 2.3.8 can be found in Maz’ya [543] and the necessity is due
to Maz’ya and Netrusov [572].

The equivalence of the Nash and Moser inequalities (2.3.48) and (2.3.49)
for n > 2 and Sobolev’s inequality (2.3.51) is an obvious consequence of
Theorem 2.3.6, which was proved by the author [543] (see also [552], Satz 4.3).
This equivalence was rediscovered in the 1990s by Bakry, Coulhon, Ledoux,
and Saloff-Coste [64] (see also Sect. 3.2 in the book by Saloff-Coste [687]) and
by Delin [232]. The best constant in (2.3.48) was found by Carlen and Loss
[167]:

C = 2n−1+2/n(1 + n/2)1+n/2z−1
n ω−2/n

n ,

where zn is the smallest positive root of the equation

(1 + n/2)J(n−2)/2(z) + zJ ′
(n−2)/2(z) = 0.

The existence of the optimizer is proved in Tintarev and Fieseler [753], 10.3.

2.4 Continuity and Compactness of Embedding
Operators of L̊1

p(Ω) and W̊ 1
p (Ω) into Birnbaum–Orlicz

Spaces

Let L̊l
p(Ω) and W̊ l

p(Ω) be completions of D(Ω) with respect to the norms
‖∇lu‖Lp(Ω) and ‖ ∇lu‖Lp(Ω) + ‖u‖Lp(Ω).

Let μ be a measure in Ω. By LM (Ω,μ) we denote the Birnbaum–Orlicz
space generated by a convex function M , and by P we mean the complemen-
tary function of M (see Sect. 2.3.3).
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The present section deals with some consequences of Theorem 2.3.3, con-
taining the necessary and sufficient conditions for boundedness and compact-
ness of embedding operators which map L̊1

p(Ω) and W̊ 1
p (Ω) into the space

Lp,M (Ω,μ) with the norm ‖ |u|p‖1/p
LM (Ω,μ), where μ is a measure in Ω. In the

case p = 2, M(t) = |t| these results will be used in Sect. 2.5 in the study of
the Dirichlet problem for the Schrödinger operator.

2.4.1 Conditions for Boundedness of Embedding Operators

With each compactum F ⊂ Ω we associate the number

πp,M (F,Ω) =

{
μ(F )P −1(1/μ(F ))

capp(F,Ω) for capp(F,Ω) > 0,
0 for capp(F,Ω) = 0.

In the case p = 2, M(t) = |t|, we shall use the notation π(F,Ω) instead of
πp,M (F,Ω).

The following assertion is a particular case of Theorem 2.3.3.

Theorem 1. 1. Suppose that

πp,M (F,Ω) ≤ β

for any compactum F ⊂ Ω. Then, for all u ∈ D(Ω),

∥∥|u|p
∥∥

LM (Ω,μ)
≤ C

∫
Ω

| ∇u|p dx, (2.4.1)

where C ≤ pp(p − 1)1−pβ.
2. If (2.4.1) is valid for all u ∈ D(Ω), then πp,M (F,Ω) ≤ C for all com-

pacta F ⊂ Ω.

Using this assertion we shall prove the following theorem.

Theorem 2. The inequality

∥∥|u|
∥∥p

LM (Ω,μ)
≤ C

∫
Ω

(
| ∇u|p + |u|p

)
dx, (2.4.2)

where p < n is valid for all u ∈ D(Ω) if and only if, for some δ > 0,

sup
{
πp,M (F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
< ∞, (2.4.3)

where, as usual, F is a compact subset of Ω.

Proof. Sufficiency. We construct a cubic grid in R
n with edge length cδ,

where c is a sufficiently small number depending only on n. With each cube
Qi of the grid we associate a concentric cube 2Qi with double the edge length
and with faces parallel to those of Qi. We denote an arbitrary function in
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D(Ω) by u. Let ηi be an infinitely differentiable function in R
n that is equal

to unity in Qi, to zero outside 2Qi, and such that | ∇ηi| ≤ c0/δ.
By Theorem 1,
∥∥|uηi|p

∥∥
LM (Ω,μ)

≤ c sup
{
μ(F )P −1(1/μ(F ))
capp(F, 2Qi ∩ Ω)

: F ⊂ 2Qi ∩ Ω

}∫
2Qi ∩Ω

∣∣∇(uηi)
∣∣p dx

≤ c sup
{
πp,M (F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}∫
2Qi ∩Ω

∣∣∇(uηi)
∣∣p dx.

Summing over i and noting that

∥∥|u|p
∥∥

LM (Ω,μ)
≤
∥∥∥∥
∑

i

|uηi|p
∥∥∥∥

LM (Ω,μ)

≤
∑

i

∥∥|uηi|p
∥∥

LM (Ω,μ)
,

we obtain the required inequality
∥∥|u|p

∥∥
LM (Ω,μ)

≤ c sup
{
πp,M (F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}

×
∫

Ω

(
| ∇u|p + δ−p|u|p

)
dx. (2.4.4)

Necessity. Let F be any compactum in Ω and let diam(F ) ≤ δ < 1. We
include F inside two open concentric balls B and 2B with diameters δ and 2δ,
respectively. Then we substitute an arbitrary u ∈ P(F, 2B ∩ Ω) into (2.4.2).

Since u = 1 on F , then by (2.4.2)

‖χF ‖LM (Ω,μ) ≤ C

(∫
2B

| ∇u|p dx +
∫

2B

|u|p dx
)
.

Consequently,

μ(F )P −1
(
1/μ(F )

)
≤ C

(
1 + cδp

) ∫
2B

| ∇u|p dx.

Minimizing the last integral over the set P(F, 2B ∩ Ω) we obtain

μ(F )P −1
(
1/μ(F )

)
≤ C

(
1 + cδp

)
capp(F, 2B ∩ Ω).

It remains to note that since p < n, it follows that

capp(F, 2B ∩ Ω) ≤ c capp(F,Ω), (2.4.5)

where c depends only on n and p.
In fact, if u ∈ N(F,Ω) and η ∈ D(2B), η = 1 on B, | ∇η| ≤ cδ, then

uη ∈ N(F,Ω ∩ 2B) and hence
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capp(F, 2B ∩ Ω) ≤
∫

Ω∩2B

∣∣∇(uη)
∣∣p dx

≤ c

(∫
2B

| ∇u|p dx + δ−p

∫
2B

|u|p dx
)

≤ c

(∫
Ω

| ∇u|p dx + ‖u‖p
Lpn/(n−p)(Ω)

)
.

This and the Sobolev theorem imply (2.4.5). The theorem is proved. ��

2.4.2 Criteria for Compactness

The following two theorems give the necessary and sufficient conditions for
the compactness of embedding operators that map L̊1

p(Ω) and W̊ 1
p (Ω) into

Lp,M (Ω,μ).

Theorem 1. The conditions

lim
δ→0

sup
{
πp,M (F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
= 0 (2.4.6)

and
lim

�→∞
sup
{
πp,M (F,Ω) : F ⊂ Ω\B�

}
= 0 (2.4.7)

are necessary and sufficient for any set of functions in D(Ω), bounded in
L̊1

p(Ω) (p < n), to be relatively compact in Lp,M (Ω,μ).

Theorem 2. The condition (2.4.6) and

lim
�→∞

sup{πp,M (F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ 1} = 0 (2.4.8)

are necessary and sufficient for any set of functions in D(Ω), bounded in
W̊ 1

p (Ω) (p < n), to be relatively compact in Lp,M (Ω,μ).

To prove Theorems 1 and 2 we start with the following auxiliary assertion.

Lemma. Let μ(�) be the restriction of μ to the ball B�. For an arbi-
trary set, bounded in L̊1

p(Ω) or in W̊ 1
p (Ω), p < n, to be relatively compact

in Lp,M (Ω,μ(�)) for all � > 0, it is necessary and sufficient that

lim
δ→0

sup
{
πp,M (F,Ω) : F ⊂ B� ∩ Ω, diam(F ) ≤ δ

}
= 0, (2.4.9)

for any � > 0.

Proof. Sufficiency. Since capacity does not increase under the extension
of Ω, we see that for any compactum F ⊂ B� ∩ Ω,

πp,M (F,B� ∩ Ω) ≤ πp,M (F,Ω).
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This along with (2.4.9) implies

lim
δ→0

sup
{
πp,M (F,B� ∩ Ω) : F ⊂ B� ∩ Ω, diam(F ) ≤ δ

}
= 0

for all � > 0. This equality, together with (2.4.4), where the role of Ω is played
by B2� ∩ Ω, yields

∥∥|u|p
∥∥

LM (Ω,μ(2�))
≤ ε

∫
B2� ∩Ω

| ∇u|p dx + C1(ε)
∫

B2� ∩Ω

|u|p dx

for any ε > 0 and for all u ∈ D(B2� ∩ Ω). Replacing u by uη, where η is a
truncating function, equal to unity on B� and to zero outside B2�, we obtain

∥∥|u|p
∥∥

LM (Ω,μ(�))
≤ ε

∫
Ω

| ∇u|p dx + C2(ε)
∫

B2� ∩Ω

|u|p dx. (2.4.10)

It remains to note that in the case p < n any set, bounded in L̊1
p(Ω) (and

a fortiori in W̊ 1
p (Ω)), is compact in Lp(B� ∩ Ω) for any � > 0. The sufficiency

of (2.4.8) is proved.
Necessity. Let F ⊂ B� ∩ Ω be a compactum and let diam(F ) ≤ δ < 1. We

include F inside concentric balls B and 2B with radii δ and 2δ, respectively. By
u we denote an arbitrary function in P(F, 2B ∩ Ω). Since any set of functions
in D(Ω), bounded in W̊ 1

p (Ω), is relatively compact in Lp,M (Ω,μ(�)), then for
all v ∈ D(Ω)

∥∥χB |v|p
∥∥

LM (Ω,μ(�))
≤ ε(δ)

∫
Ω

(
| ∇v|p + |v|p

)
dx,

where χB is the characteristic function of B and ε(δ) → 0 as δ → 0. To prove
this inequality we must note that Theorem 2.4.1/2, applied to the measure
μ(�), implies μ(�)(2B) → 0 as δ → 0. Since u equals zero outside 2B ∩ Ω we
have ∫

Ω

|u|p dx ≤ cδp

∫
Ω

| ∇u|p dx.

Therefore,

μ(F )P −1
(
1/μ(F )

)
≤
(
1 + cδp

)
ε(δ)

∫
2B

| ∇u|p dx.

Minimizing the last integral over P(F, 2B ∩ Ω) and using (2.4.5), we arrive at

πp,M (F,Ω) ≤
(
1 + cδp

)
ε(δ).

The necessity of (2.4.9) follows. The lemma is proved. ��

Proof of Theorem 1. Sufficiency. Let ζ ∈ C∞(Rn), 0 ≤ ζ ≤ 1, | ∇ζ| ≤ c�−1,
ζ = 0 in a neighborhood of B�/2, ζ = 1 outside B�. It is clear that
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∥∥|u|p
∥∥1/p

LM (Ω,μ)
≤
∥∥(1 − ζ)p|u|p

∥∥1/p

LM (Ω,μ)
+
∥∥ζp|u|p

∥∥1/p

LM (Ω,μ)

≤
∥∥|u|p

∥∥1/p

LM (Ω,μ(�))
+
∥∥|ζu|p

∥∥1/p

LM (Ω,μ)
. (2.4.11)

By the first part of Theorem 2.4.1/1, applied to the set Ω\B̄�/2, by (2.4.7)
and the inequality

πp,M (F,Ω\B̄�/2) ≤ πp,M (F,Ω),

given any ε, there exists a number � > 0 such that
∥∥|ζu|p

∥∥1/p

LM (Ω,μ)
≤ ε
∥∥∇(ζu)

∥∥
Lp(Ω)

.

Since | ∇ζ| ≤ c�−1 ≤ c|x| −1 and
∥∥|x| −1u

∥∥
Lp(Ω)

≤ c‖ ∇u‖Lp(Ω),

we have ∥∥|ζu|p
∥∥1/p

LM (Ω,μ)
≤ cε‖ ∇u‖Lp(Ω).

The last inequality along with (2.4.11) implies
∥∥|u|p

∥∥1/p

LM (Ω,μ)
≤
∥∥|u|p

∥∥1/p

LM (Ω,μ(�))
+ cε‖∇u‖Lp(Ω). (2.4.12)

Obviously, (2.4.6) implies (2.4.9). Therefore, the lemma guarantees that any
set of functions in D(Ω), bounded in L̊1

p(Ω), is compact in Lp,M (Ω,μ(�)). This
together with (2.4.12) completes the proof of the first part of the theorem.

Necessity. Let F be a compactum in Ω with diam(F ) ≤ δ < 1. Duplicating
the proof of necessity in the Lemma and replacing μ(�) there by μ, we arrive
at the inequality πp,M (F,Ω) ≤ (1 + cδp)ε(δ) and hence at (2.4.6).

Now let F ⊂ Ω\B̄�. Using the compactness in Lp,M (Ω,μ) of any set of
functions in D(Ω), which are bounded in L̊1

p(Ω), we obtain

∥∥χΩ\B�
|u|p
∥∥1/p

LM (Ω,μ)
≤ ε�‖∇u‖Lp(Ω),

where ε� → 0 as � → 0 and u is an arbitrary function in D(Ω). In particular,
the last inequality holds for any u ∈ P(F,Ω) and therefore

μ(F )P −1
(
1/μ(F )

)
≤ εp

�‖ ∇u‖p
Lp(Ω).

Minimizing the right-hand side over the set P(F,Ω), we arrive at (2.4.7). The
theorem is proved. ��

Proof of Theorem 2. We shall use the same notation as in the proof of
Theorem 1.

Sufficiency. From (2.4.4), where δ = 1 and Ω is replaced by Ω\B̄�/2,
together with (2.4.8), it follows that given any ε > 0, there exists a � > 0 such
that
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∥∥|ζu|p
∥∥1/p

LM (Ω,μ)
≤ ε
(∥∥∇(uζ)

∥∥
Lp(Ω)

+ ‖ζu‖Lp(Ω)

)
.

This together with (2.4.11) yields
∥∥|u|p

∥∥1/p

LM (Ω,μ)
≤
∥∥|u|p

∥∥1/p

LM (Ω,μ(�))
+ cε‖u‖W 1

p (Ω).

The remainder of the proof is the same as the proof of sufficiency in the
preceding theorem.

Necessity. The condition (2.4.6) can be derived in the same way as in the
proof of necessity in Theorem 1.

Let F ⊂ Ω\B̄�, � > 8, diam(F ) ≤ 1. From the compactness in Lp,M (Ω,μ)
of any set of functions in D(Ω), bounded in W̊ 1

p (Ω), it follows that
∥∥χΩ\B�/2

|u|p
∥∥

LM (Ω,μ)
≤ ε�‖u‖p

W 1
p (Ω),

where ε� → 0 as � → ∞ and u is an arbitrary function in D(Ω). We include
F inside concentric balls B and 2B with radii 1 and 2 and let u denote any
function in P(F, 2B∩Ω). Using the same argument as in the proof of necessity
in the Lemma we arrive at

πp,M (F,Ω) ≤ (1 + c)ε�,

which is equivalent to (2.4.8). The theorem is proved. ��

Remark. Let us compare (2.4.6) and (2.4.9). Clearly, (2.4.9) results from
(2.4.6). The following example shows that the converse assertion is not valid.
Consider a sequence of unit balls B(ν) (ν = 1, 2, . . . ), with dist (B(ν),B(μ)) ≥
1 for μ �= ν. Let Ω = R

n and

μ(F ) =
∫

F

p(x) dx,

where

p(x) =
{
�−2+ν−1

for x ∈ B(ν),
0 for x /∈

⋃∞
ν=1 B(ν).

Here � is the distance of x from the center of B(ν).
We shall show that the measure μ satisfies the condition (2.4.9) with p = 2,

M(t) = t. First of all we note that for any compactum F ⊂ B(ν)

μ(F ) =
∫

F

�−2+1/ν dx ≤
∫

∂B1

∫ r(F )

0

�n−3+1/ν d�dω,

where

r(F ) =
[
n

ω
mn(F )

]1/n

.

To estimate cap(F ), i.e., cap2(F,Rn), we apply the isoperimetric inequal-
ity (2.2.12)



186 2 Inequalities for Functions Vanishing at the Boundary

ω−1
n (n − 2)−1 cap(F ) ≥

[
n

ωn
mn(F )

](n−2)/n

=
[
r(F )

]n−2
.

Now

π
(
F,Rn

)
≤ r(F )1/ν

(n − 2)(n − 2 + 1/ν)
,

and (2.4.9) follows.
If F is the ball {x : � ≤ δ}, we have

π
(
F,Rn

)
=

δ1/ν

(n − 2)(n − 2 + 1/ν)
.

Consequently,

sup
{
π
(
F,Rn

)
: F ⊂ R

n, diam(F ) ≤ 2δ
}

≥ lim
ν→∞

δ1/ν

(n − 2)(n − 2 + 1/ν)
= (n − 2)−2

and (2.4.6) is not valid.

2.4.3 Comments to Sect. 2.4

The material of this section is borrowed from Sect. 2.5 of the author’s book
[552]. Sharp embeddings of Birnbaum–Orlicz–Sobolev spaces of order one into
the space L∞(Ω) will be considered in Chap. 7 of the present book (see also
Maz’ya [528, 545]).

An optimal Sobolev embedding theorem in Birnbaum–Orlicz spaces was
established by Cianchi in [194], and in alternative equivalent form, in [195].
A basic version of this result states that if Ω is an open set in R

n with finite
measure, M is any Young function, and Mn is the Young function given by

Mn(t) = M
(
H−1(t)

)
for t > 0,

where

H(s) =
(∫ s

0

(
t

M(t)

) 1
n−1

dt
)n−1

n

for s ≥ 0,

then there exists a constant C, depending on n, such that

‖u‖LMn (Ω) ≤ C‖ ∇u‖LM (Ω)

for every weakly differentiable function u vanishing, in the appropriate sense,
on ∂Ω. Moreover, the Birnbaum–Orlicz space LMn(Ω) is optimal. Analogous
results for functions that need not vanish on ∂Ω, and for domains Ω with
infinite measure [194]. The case of higher-order derivatives was dealt with by
Cianchi in [200].
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Some necessary and sufficient conditions for embeddings of Sobolev-type
spaces into Birnbaum–Orlicz spaces will be treated in Chap. 11 of this book.

Analog of certain results in the present section were obtained by Klimov
[431–435] for the so-called ideal function spaces, for which the multiplication
by any function α with |α(x)| ≤ 1 a.e. is contractive.

A few words on the so-called logarithmic Sobolev inequalities. Let μ be a
measure in Ω, μ(Ω) = 1, p ≥ 1 and let νp be the capacity minimizing function
generated by μ (see Definition 2.3.2). The inequality

exp
(

−
∫

Ω

log+ 1
|u| dμ

)
≤ 4‖ ∇u‖Lp(Ω) exp

(
− 1
p

∫ 1

0

log νp(s) ds
)

(2.4.13)

for all u ∈ L̊1
p(Ω) was proved in 1968 by Maz’ya and Havin [568]. It shows, in

particular, that ∫ 1

0

νp(s) ds = +∞

implies ∫ 1

0

log+ 1
|u| dμ = +∞

for all u ∈ L1
p(Ω). This fact allows for certain applications of (2.4.13) to

complex function theory [568] (see also Sect. 14.3 of the present book for
another logarithmic inequality of a similar nature).

Inequality (2.4.13) is completely different from the logarithmic Sobolev
inequality obtained in 1978 by Weissler [793],

exp
(

4
n

∫
Rn

|u|2 log |u| dx
)

≤ 2
πen

∫
Rn

| ∇u|2 dx,

where ‖u‖L2(Rn) = 1, which is equivalent (see Beckner and Pearson [81]) to
the well-known Gross inequality of 1975 [327],

∫
Rn

u2 log
(
u2
/∫

Rn

u2 dμ
)

dμ ≤ C

∫
Rn

| ∇u|2 dμ, (2.4.14)

where
dμ = (2π)−n/2 exp

(
−|x|2/2

)
dx.

Various extensions, proofs, and applications of (2.4.14) were the subject of
many studies: R.A. Adams [24]; Stroock and Zegarlinski [730]; Holley and
Stroock [381]; Davies [222]; Zegarlinski [810]; Beckner [77, 80]; Gross [328];
Aida, Masuda, and Shigekawa [32]; Aida and Stroock [33]; Bakry [63]; Bakry,
Ledoux, and Qian [65]; Chen [185]; F.-Y. Wang [787–790]; Bodineau and Helf-
fer [121]; Bobkov and Götze [114]; Ledoux [483–485]; Yosida [808]; Guionnet
and Zegarlinski [330]; Xiao [799]; Lugiewicz and Zegarlinski [509]; Otto and
Reznikoff [655]; Inglis and Papageorgiou [398]; Cianchi and Pick [207]; Martin
and M. Milman [521]; et al.
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2.5 Structure of the Negative Spectrum of the
Multidimensional Schrödinger Operator

In this section we show how the method and results of Sect. 2.4 can be applied
to the spectral theory of the Schrödinger operator.

2.5.1 Preliminaries and Notation

We start with some definitions from the theory of quadratic forms in a Hilbert
space H. Let L be a dense linear subset of H and let S[u, u] be a quadratic
form defined on L . If there exists a constant γ such that for all u ∈ L

S[u, u] ≥ γ‖u‖2
H , (2.5.1)

then the form S is called semibounded from below. The largest constant γ
in (2.5.1) is called the greatest lower bound of the form S and is denoted by
γ(S). If γ(S) > 0, then S is called positive definite. For such a form the set L
is a pre-Hilbert space with the inner product S[u, u]. If L is a Hilbert space
the form S is called closed. If any Cauchy sequence in the metric S[u, u]1/2

that converges to zero in H also converges to zero in the metric S[u, u]1/2,
then S is said to be closable. Completing L and extending S by continuity
onto the completion L̄ , we obtain the closure S̄ of the form S.

Now, suppose that the form S is only semibounded from below. We do not
assume γ(S) > 0. Then for any c > −γ(S) the form

S[u, u] + c[u, u] (2.5.2)

is positive definite. By definition, S is closable if the form (2.5.2) is closable
for some, and therefore for any, c > γ(S). The form S + cE − cE is called the
closure S̄ of S.

It is well known and can be easily checked that a semibounded closable
form generates a unique self-adjoint operator S̃, for which

(S̃u, u) = S[u, u] for all u ∈ L .

Let Ω be an open subset of R
n, n > 2, and let h be a positive number.

We shall consider the quadratic form

Sh[u, u] = h

∫
Ω

| ∇u|2 dx −
∫

|u|2 dμ(x)

defined on D(Ω).
We shall study the operator S̃h generated by the form Sh[u, u] under the

condition that the latter is closable. If the measure μ is absolutely continuous
with respect to the Lebesgue measure mn and the derivative p = dμ/dmn is
locally square integrable, then the operator S̃h is the Friedrichs extension of
the Schrödinger operator −hΔ − p(x).
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In this section, when speaking of capacity, we mean the 2-capacity and use
the notation cap.

Before we proceed to the study of the operator S̃h we formulate two lemmas
on estimates for capacity that will be used later. For the proofs of these lemmas
see the end of the section.

Lemma 1. Let F be a compactum in Ω ∩ Br. Then for R > r

cap(F,Br ∩ Ω) ≤
{

(1 + 2r
R−r log Re1/2

r ) cap(F,Ω) for n = 3,

(1 + 2
n−3

r
R−r ) cap(F,Ω) for n > 3.

Lemma 2. Let F be a compactum in Ω\B̄R. Then for r < R

cap(F,Ω\B̄r) ≤
(

1 +
1

n − 2
r

R − r

)
cap(F,Ω).

All the facts concerning the operator S̃h will be formulated in terms of the
function

π(F,Ω) =

{
μ(F )

cap(F,Ω) for cap(F,Ω) > 0,
0 for cap(F,Ω) = 0,

which is a particular case of the function πp,M (F,Ω), introduced in Sect. 2.4,
for M(t) = |t|, p = 2.

2.5.2 Positivity of the Form S1[u, u]

The following assertion is a particular case of Theorem 2.4.1/1.

Theorem. 1. If for any compactum F ⊂ Ω

π(F,Ω) ≤ β, (2.5.3)

then for all u ∈ D(Ω)
∫

Ω

|u|2μ(dx) ≤ C

∫
Ω

| ∇u|2 dx, (2.5.4)

where C ≤ 4β.
2. If (2.5.4) holds for all u ∈ D(Ω), then for any compactum F ⊂ Ω

π(F,Ω) ≤ C. (2.5.5)

Corollary. If

sup
F ⊂Ω

π(F,Ω) <
1
4
,
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then the form S1[u, u] is positive, closable in L2(Ω), and hence it generates a
self-adjoint positive operator S̃1 in L2(Ω).

Proof. The positiveness of S1[u, u] follows from the Theorem. Moreover,
inequality (2.5.4) implies

S1[u, u] ≥
[
1 − 4 sup

F ⊂Ω
π(F,Ω)

] ∫
Ω

| ∇u|2 dx. (2.5.6)

Let {uν }ν≥1, uν ∈ D(Ω), be a Cauchy sequence in the metric S1[u, u]1/2

and let uν converge to zero in L2(Ω). Then by (2.5.6), uν converges to zero
in L̊1

2(Ω) and it is a Cauchy sequence in L2(Ω,μ). Since
∫

Ω

|uν |2 dμ ≤ 4 sup
F ⊂Ω

π(F,Ω)
∫

Ω

| ∇uν |2 dx,

then uν → 0 in L2(Ω,μ). Thus, S1[uν , uν ] → 0 and therefore the form S1[u, u]
is closable in L2(Ω). The corollary is proved. ��

We note that close necessary and sufficient conditions for the validity of
the inequality

∫
Ω

|u|2 dσ ≤ C

∫
Ω

| ∇u|2 dx, u ∈ D(Ω),

where σ is an arbitrary charge in Ω, are contained in Theorem 2.3.10 for
Φ(x, y) = |y|, p = 2. The conditions in question coincide for σ ≥ 0. They
become the condition sup{π(F,Ω) : F ⊂ Ω} < ∞, which follows from the
Theorem.

2.5.3 Semiboundedness of the Schrödinger Operator

Theorem. 1. If

lim
δ→0

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
<

1
4
, (2.5.7)

then the form S1[u, u] is semibounded from below and closable in L2(Ω).
2. If the form S1[u, u] is semibounded from below in L2(Ω), then

lim
δ→0

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
≤ 1. (2.5.8)

Proof. 1. If Π is a sufficiently large integer, then there exists δ > 0 such
that

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
≤ 1

4

(
Π − 1
Π + 2

)n

. (2.5.9)
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We construct a cubic grid in R
n with edge length H = δ/(Π + 2)

√
n.

We include each cube Qi of the grid inside concentric cubes Q
(1)
i and Q

(2)
i

with faces parallel to those of Qi. Let the edge lengths of Q
(1)
i and Q

(2)
i be

(Π + 1)H and (Π + 2)H, respectively. Since diam(Q(2)
i ) = δ then for any

compactum F ⊂ Q
(2)
i ∩ Ω

π
(
F,Ω ∩ Q

(2)
i

)
≤ π(F,Ω) ≤ 1

4

(
Π − 1
Π + 2

)n

. (2.5.10)

Let u denote an arbitrary function in D(Ω) and let η denote an infinitely
differentiable function on R

n which is equal to unity in Q
(1)
i and to zero

outside Q
(2)
i . By (2.5.10) and Theorem 2.5.2 we have

∫
Q

(2)
i

|uη|2 dμ ≤
(
Π − 1
Π + 2

)n ∫
Q

(2)
i

∣∣∇(uη)
∣∣2 dx.

This implies
∫

Q
(1)
i

|u|2 dμ ≤
(
Π − 1
Π + 2

)n ∫
Q

(2)
i

(
| ∇u|2 +

c1
H2

|u|2
)

dx.

Summing over i and noting that the multiplicity of the covering {Q
(2)
i }

does not exceed (Π + 2)n and that of {Q
(2)
i } is not less than Πn, we obtain

∫
Ω

|u|2 dμ ≤
(
1 − Π−n

) ∫
Ω

(
| ∇u|2 + c

Π2

δ2
|u|2
)

dx. (2.5.11)

Thus, the form S1[u, u] is semibounded. Moreover, if K is a sufficiently
large constant, then

S1[u, u] + K

∫
Ω

|u|2 dx ≥ ε

∫
Ω

| ∇u|2 dx, ε > 0.

Further, using the same argument as in the proof of Corollary 2.5.2, we can
easily deduce that the form S1[u, u] is closable in L2(Ω).

2. Let F be an arbitrary compactum in Ω with diam(F ) ≤ δ < 1. We
enclose F in a ball B with radius δ and construct the concentric ball B′ with
radius δ1/2.

We denote an arbitrary function in P(F,B′ ∩ Ω) by u. In virtue of the
semiboundedness of the form S1[u, u] there exists a constant K such that

∫
B′

u2 dμ ≤
∫

B′
(∇u)2 dx + K

∫
B′

u2 dx.

Obviously, the right-hand side of this inequality does not exceed
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(
1 + Kλ−1δ

) ∫
B′ ∩Ω

(∇u)2 dx,

where λ is the first eigenvalue of the Dirichlet problem for the Laplace operator
in the unit ball.

Minimizing the Dirichlet integral and taking into account that u = 1 on F ,
we obtain

μ(F ) ≤
(
1 + Kλ−1δ

)
cap(F,B′ ∩ Ω).

By Lemma 2.5.1,

cap(F,B′ ∩ Ω) ≤
(
1 + o(1)

)
cap(F,Ω),

where o(1) → 0 as δ → 0. Hence

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
≤ 1 + o(1).

It remains to pass to the limit as δ → 0. The theorem is proved. ��

The two assertions stated in the following are obvious corollaries of the
Theorem. The second is a special case of Theorem 2.4.1/2.

Corollary 1. The condition

lim
δ→0

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
= 0 (2.5.12)

is necessary and sufficient for the semiboundedness of the form Sh[u, u] in
L2(Ω) for all h > 0.

Corollary 2. The inequality
∫

Ω

|u|2 dμ ≤ C

∫
Ω

(
| ∇u|2 + |u|2

)
dx,

where u is an arbitrary function in D(Ω) and C is a constant independent
of u, is valid if and only if

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
< ∞ (2.5.13)

for some δ > 0.

We shall give an example that illustrates an application of Theorem 2.5.2
and the theorem of the present subsection to the Schrödinger operator gener-
ated by a singular measure.

Example. Let M be a plane Borel subset of R
3. We define the measure

μ(F ) = m2(F ∩ M) for any compactum F ⊂ R
3. (In the sense of distribution

theory the potential p(x) is equal to the Dirac δ function concentrated on the
plane set M .) Then
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π
(
F,R3

)
=

m2(F ∩ M)
cap(F )

≤ m2(F ∩ M)
cap(F ∩ M)

.

Since
cap(F ∩ M) ≥ 8π−1/2

[
m2(F ∩ M)

]1/2

(cf. (2.2.16)), we have

π
(
F,R3

)
≤ π1/2

8
[
m2(F ∩ M)

]1/2
. (2.5.14)

By Theorem 2.5.2 the form

S1[u, u] =
∫

R3
| ∇u|2 dx −

∫
M

|u|2m2(dx)

is positive if m2(M) ≤ 4π−1. Using Corollary 1, from (2.5.14) we obtain that
the form Sh[u, u] is semibounded and closable in L2(R3) for all h > 0 for any
plane set M .

2.5.4 Discreteness of the Negative Spectrum

Let � be a fixed positive number and let μ(�) be the restriction of a measure
μ to the ball B� = {x : |x| < �}. Further, let μ� = μ − μ(�).

To exclude the influence of singularities of the measure μ, which are located
at a finite distance, we shall assume that any subset of D(Ω), bounded in
W̊ 1

2 (Ω) (or in L̊1
2(Ω)), is compact in L2(μ(�)). In Lemma 2.4.2 it is shown

that this condition is equivalent to

lim
δ→0

sup
{
π(F,Ω) : F ⊂ B� ∩ Ω, diam(F ) ≤ δ

}
= 0 (2.5.15)

for any � > 0.
Now we formulate two well-known general assertions that will be used in

the following.

Lemma 1. (Friedrichs [292]). Let A[u, u] be a closed quadratic form in a
Hilbert space H with the domain D[A], γ(A) being its positive greatest lower
bound. Further, let B[u, u] be a real form, compact in D[A]. Then the form
A − B is semibounded from below in H and closed in D[A], and its spectrum
is discrete to the left of γ(A).

Lemma 2. (Glazman [309]). For the negative spectrum of a self-adjoint
operator A to be infinite it is necessary and sufficient that there exists a linear
manifold of infinite dimension on which (Au, u) < 0.

Now we proceed to the study of conditions for the spectrum of the
Schrödinger operator to be discrete.

Theorem. Let the condition (2.5.15) hold.
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1. If

lim
δ→∞

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ δ

}
<

1
4
, (2.5.16)

then the form S1[u, u] is semibounded from below closable in L2(Ω), and the
negative spectrum of the operator S̃1 is discrete.

2. If the form S1[u, u] is semibounded from below and closable in L2(Ω),
and the negative spectrum of the operator S̃1 is discrete, then

lim
δ→∞

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ δ

}
≤ 1. (2.5.17)

Proof. 1. We show that the form S1[u, u] is semibounded from below and
closable in L2(Ω), and that for any positive γ the spectrum of the operator
S̃1+2γI is discrete to the left of γ. This will yield the first part of the theorem.

By (2.5.16), there exists a sufficiently large integer Π such that

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ δ

}
≤ 1

4

(
Π − 2
Π + 2

)n

for all δ > 0.
Given any δ, we can find a sufficiently large number � = �(δ) so that

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ δ

}
≤ 1

4

(
Π − 1
Π + 2

)n

.

Hence

sup
{

μ(�)(F )
cap(F,Ω)

: F ⊂ Ω, diam(F ) ≤ δ

}
≤ 1

4

(
Π − 1
Π + 2

)n

.

If we replace μ(�) here by μ, then we obtain the condition (2.5.9), which was
used in the first part of Theorem 2.5.3 for the proof of inequality (2.5.11). We
rewrite that inequality, replacing μ by μ(�):

∫
Ω

|u|2 dμ(�) ≤
(
1 − Π−n

) ∫
Ω

(
| ∇u|2 + c

Π2

δ2
|u|2
)

dx. (2.5.18)

Let γ denote an arbitrary positive number. We specify δ > 0 by the equal-
ity cΠ2(1 − Π−n)δ−2 = γ and find � corresponding to δ. Then

∫
Ω

|u|2 dμ(�) ≤
(
1 − Π−n

) ∫
Ω

| ∇u|2 dx + γ

∫
Ω

|u|2 dx.

Hence the form

A[u, u] =
∫

Ω

| ∇u|2 −
∫

Ω

|u|2 dμ(�) + 2γ
∫

Ω

|u|2 dx,
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majorizes

Π−n

∫
Ω

| ∇u|2 dx + γ

∫
Ω

|u|2 dx.

This means that the form A[u, u] has a positive lower bound γ and is closable in
L2(Ω). Let Ā[u, u] denote the closure of the form A[u, u]. Clearly, the domain
of the form Ā[u, u] coincides with W̊ 1

2 (Ω).
By (2.5.15) and Corollary 2.5.3/2, the form

B[u, u] =
∫

Ω

|u|2 dμ(�)

is continuous in W 1
2 (Ω) and is closable in W̊ 1

2 (Ω). Lemma 2.4.2 ensures the
compactness of the form B̄[u, u] in W̊ 1

2 (Ω). It remains to apply Lemma 1 to
Ā[u, u] and B̄[u, u].

2. Suppose that

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam ≤ δ

}
> 1 + α, α > 0,

for some δ. Then there exists a sequence of compacta Fν with diam(Fν) ≤ δ,
which tends to infinity and satisfies

μ(Fν) > (1 + α) cap(Fν , Ω). (2.5.19)

We include Fν in a ball B(ν)
δ with radius δ. Let B

(ν)
� denote a concentric ball

with a sufficiently large radius � that will be specified later. Without loss of
generality, we may obviously assume that the balls B

(ν)
� are disjoint.

By Lemma 2.5.1/1,

cap
(
Fν , B

(ν)
� ∩ Ω

)
≤
(
1 + ε(�)

)
cap(Fν , Ω),

where ε(�) → 0 as � → ∞. This and (2.5.19) imply

μ(Fν) > K cap
(
Fν , B

(ν)
� ∩ Ω

)
, (2.5.20)

where
K =

1 + α

1 + ε(�)
.

Let � be chosen so that the constant K exceeds 1. By (2.5.20) there exists a
function uν in P(Fν , B

(ν)
� ∩ Ω) such that∫
B

(ν)
�

u2
ν dμ > K

∫
B

(ν)
�

(∇uν)2 dx.

Hence
S1[uν , uν ] < −(K − 1)

λ

�2

∫
Ω

u2
ν dx,

where λ is the first eigenvalue of the Dirichlet problem for the Laplace operator
in the unit ball.

Now, Lemma 2 implies that the spectrum of the operator S̃1 has a limit
point to the left of −(K − 1)λ�−2. So we arrive at a contradiction. ��
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2.5.5 Discreteness of the Negative Spectrum of the Operator S̃h

for all h

The following assertion contains a necessary and sufficient condition for the
discreteness of the negative spectrum of the operator S̃h for all h > 0. We
note that although the measure μ in Theorem 2.5.4 is supposed to have no
strong singularities at a finite distance (condition (2.5.17)), the corresponding
criterion for the family of all operators {S̃h}h>0 is obtained for an arbitrary
nonnegative measure.

Corollary. The conditions

lim
δ→0

sup
{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
= 0 (2.5.21)

and
lim

�→∞
sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ 1

}
= 0 (2.5.22)

are necessary and sufficient for the semiboundedness of the form Sh[u, u] in
L2(Ω) and for the discreteness of the negative spectrum of the operator S̃h for
all h > 0.

We also note that the semiboundedness of the form Sh[u, u] for all h > 0
implies that Sh[u, u] is closable in L2(Ω) for all h > 0.

Proof. Sufficiency. We introduce the notation

l(δ) = lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�, diam(F ) ≤ δ

}
.

First we note that (2.5.21) implies (2.5.15). Therefore, according to Theo-
rem 2.5.4, the condition l(δ) ≡ 0, combined with (2.5.21), is sufficient for the
semiboundedness of the form Sh[u, u] and for the discreteness of the negative
spectrum of the operator S̃h for all h > 0.

To prove the sufficiency of the conditions l(1) = 0 and (2.5.21) we represent
an arbitrary compactum F with diam(F ) ≤ δ′, δ′ > δ, as the union

⋃N
ν=1 Fν ,

where diam(Fν) ≤ δ and N depends only on δ′/δ and n. Since cap(F,Ω) is a
nondecreasing function of F , then

μ(F )
cap(F,Ω)

≤
N∑

ν=1

μ(Fν)
cap(Fν , Ω)

.

This and the monotonicity of l(δ) immediately imply l(δ) ≤ l(δ′) ≤ Nl(δ),
which proves the equivalence of the conditions l(δ) ≡ 0 and l(1) = 0.

Necessity. If the form Sh[u, u] is semibounded for all h > 0, then by Corol-
lary 2.5.3/1 the condition (2.5.21) holds together with (2.5.15). Under (2.5.15)
Theorem 2.5.4 implies the necessity of l(δ) ≡ 0 which is equivalent to l(1) = 0.
The corollary is proved. ��
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2.5.6 Finiteness of the Negative Spectrum

Theorem. Suppose that the condition (2.5.15) holds.
1. If

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�

}
<

1
4
, (2.5.23)

then the form S1[u, u] is semibounded from below and closable in L2(Ω), and
the negative spectrum of the operator S̃1 is finite.

2. If the form S1[u, u] is semibounded from below and closable in L2(Ω),
and the negative spectrum of the operator S̃1 is finite, then

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�

}
≤ 1. (2.5.24)

Proof. 1. Since for any compactum F ⊂ Ω

μ(F )
cap(F,Ω)

≤ μ(F \B�)
cap(F \B�, Ω)

+
μ(F ∩ B̄�)

cap(F ∩ B̄�, Ω)
, (2.5.25)

conditions (2.5.15) and (2.5.23) imply

lim
δ→0

{
π(F,Ω) : F ⊂ Ω, diam(F ) ≤ δ

}
<

1
4
.

According to the last inequality and Theorem 2.5.3, the form S1[u, u] is
semibounded and closable in L2(Ω). From (2.5.11) it follows that the metric

C

∫
Ω

|u|2 dx + S1[u, u]

is equivalent to the metric of the space W̊ 1
2 (Ω) for C large enough.

Turning to condition (2.5.23), we note that there exists a positive constant
α such that

sup
{
π(F,Ω) : F ⊂ Ω,F ⊂ Ω\B�0

}
<

1
4

− α

for sufficiently large �0. Hence

sup
{

μ(�0)(F )
cap(F,Ω)

: F ⊂ Ω

}
<

1
4

− α,

and by Theorem 2.5.2 the form

(1 − 4α)
∫

Ω

| ∇u|2 dx −
∫

Ω

|u|2μ(�0)(dx)

is positive. Therefore for any u ∈ D(Ω)
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S1[u, u] ≥ 4α
∫

Ω

| ∇u|2 dx −
∫

Ω

|u|2μ(�0)(dx).

We estimate the right-hand side by inequality (2.4.10) with ε = 2α, p = 2,
M(t) = |t|:

S1[u, u] ≥ 2α
∫

Ω

| ∇u|2 dx − K

∫
B2�0 ∩Ω

|u|2 dx. (2.5.26)

Passing to the closure of the form S1[u, u], we obtain (2.5.26) for all u ∈
W̊ 1

2 (Ω).
Since any set, bounded in L̊1

2(Ω), is compact in the metric
(∫

B� ∩Ω

|u|2 dx
)1/2

for any � > 0, the form

2α
∫

Ω

|u|2 dx − K

∫
B2�0 ∩Ω

|u|2 dx,

is nonnegative up to a finite-dimensional manifold. Taking (2.5.26) into ac-
count, we may say the same for the form S1[u, u]. Now the result follows from
Lemma 2.5.4/2.

2. Suppose

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�

}
> 1 + α,

where α > 0.
Let {�k }k≥1 denote an increasing sequence of positive numbers such that

�k�
−1
k+1

k→∞−−−−→ 0. (2.5.27)

We construct the subsequence {�kν }ν≥1, defined as follows: Let k1 = 1. We
find a compactum F1, contained in Ω\B̄�k1

, such that π(F1, Ω) > 1 + α.
Further we select k2 to be so large that F1 is contained in B�k2

. Let F2 denote
a compactum in Ω\B�k2+1 such that π(F2, Ω) > 1 + α. If numbers k1, . . . , kν

and compacta F1, . . . , Fν have already been chosen, then kν+1 is defined by
the condition Fν ⊂ B�kν+1

. The set Fν+1 ⊂ Ω\B�kν+1+1 must be chosen to
satisfy the inequality

π(Fν+1, Ω) > 1 + α.

Thus we obtained a sequence of compacta Fν ⊂ Ω with Fν in the spherical
layer B�kν+1

\B̄�kν+1 and subject to the condition

μ(Fν) > (1 + α) cap(Fν , Ω). (2.5.28)

We introduce the notation Rν = B�kν+1+1 \B̄�kν
. By Lemma 2.5.1/2, where

r = �kν and R = �kν+1,
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cap(Fν , Ω ∩ Rν) ≤
(

1 + (n − 2)−1 �kν

�kν+1 − �kν

)
cap(Fν , Ω ∩ B�kν+1+1),

which along with condition (2.5.27) implies

cap(Fν , Ω ∩ Rν) ≤
[
1 + o(1)

]
cap(Fν , Ω ∩ B�kν+1+1). (2.5.29)

From Lemma 2.5.1/1 with r = �kν+1 and R = �kν+1+1 it follows that

cap(Fν , Ω ∩ B�kν+1+1) ≤
[
1 + o(1)

]
cap(Fν , Ω).

According to (2.5.29),

cap(Fν , Ω ∩ Rν) ≤
[
1 + o(1)

]
cap(Fν , Ω).

Hence by (2.5.28), for sufficiently large ν,

μ(Fν) > (1 + α′) cap(Fν , Ω ∩ Rν),

where α′ is a positive constant.
Now we can find a sequence of functions uν ∈ P(Fν , Ω ∩ Rν) such that

∫
Rν ∩Ω

u2
νμ(dx) > (1 + α′)

∫
Rν ∩Ω

(∇uν)2 dx,

which yields the inequality S1[uν , uν ] < 0. It remains to note that the supports
of the functions uν are disjoint and therefore the last inequality holds for all
linear combinations of uν . This and Lemma 2.5.4/2 imply that the negative
spectrum of the operator S1 is infinite. The theorem is proved. ��

2.5.7 Infiniteness and Finiteness of the Negative Spectrum of the
Operator S̃h for all h

We shall find criteria for the infiniteness and for the finiteness of the negative
spectrum of the operator S̃h for all h. We underline that here, as in the proof
of the discreteness criterion in Corollary 2.5.5, we obtain the necessary and
sufficient conditions without additional assumptions on the measure μ.

Corollary 1. Conditions (2.5.21) and

sup
{
π(F,Ω) : F ⊂ Ω

}
= ∞ (2.5.30)

are necessary and sufficient for the semiboundedness of the form Sh[u, u] in
L2(Ω) and for the infiniteness of the spectrum of the operator S̃h for all h > 0.

Proof. By Corollary 2.5.3/1, (2.5.21) is equivalent to the semiboundedness
of the form Sh[u, u] for all h > 0.

We must prove that the criterion
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lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�

}
= ∞, (2.5.31)

which follows from Theorem 2.5.6, is equivalent to (2.5.30). Obviously, (2.5.30)
is a consequence of (2.5.31). Assume that the condition (2.5.30) is valid. Taking
into account (2.5.21), we obtain

sup
{
π(F,Ω) : F ⊂ B� ∩ Ω

}
< ∞

for any �. On the other hand, (2.5.30) implies

lim
�→∞

sup
{
π(F,Ω) : F ⊂ B� ∩ Ω

}
= ∞.

We choose a sequence �ν → ∞ such that

sup
{
π(F,Ω) : F ⊂ B�ν+1 ∩ Ω

}
> 2 sup

{
π(F,Ω) : F ⊂ B�ν ∩ Ω

}
.

From this and inequality (2.5.25) we obtain

sup
{
π(F,Ω) : F ⊂ R�ν ,�ν+1 ∩ Ω

}
≥ sup

{
π(F,Ω) : F ⊂ B�ν ∩ Ω

}
,

where R�,�′ = B�′ \B̄�. Hence

sup
{
π(F,Ω) : F ⊂ R�ν ,�ν+1 ∩ Ω

} ν→∞−−−−→ ∞,

and the result follows. ��

Corollary 2. Conditions (2.5.21) and

lim
�→∞

sup
{
π(F,Ω) : F ⊂ Ω\B�

}
= 0 (2.5.32)

are necessary and sufficient for the semiboundedness of S̃h and for the finite-
ness of the negative spectrum of S̃h for all h > 0.

The necessity and sufficiency of conditions (2.5.21) and (2.5.32) immedi-
ately follow from Theorem 2.5.6.

2.5.8 Proofs of Lemmas 2.5.1/1 and 2.5.1/2

The following facts are well known (cf. Landkof [477]). For n ≥ 3 and for any
open set Ω ⊂ R

n there exists a unique Green function G(x, y) of the Dirichlet
problem for the Laplace operator.

Let μ be a nonnegative measure in Ω. Let V μ denote the Green potential
of the measure μ, i.e.,

V μ(x) =
∫

Ω

G(x, y)μ(dy).
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Obviously, V μ is a harmonic function outside the support of the measure μ.
There exists a unique capacitary distribution of a compactum F with respect
to Ω, i.e., a measure μF , supported on F , such that V μF (x) ≤ 1 in Ω and

μF (F ) = (n − 2)−1ω−1
n cap(F,Ω).

The potential V μF is called the capacitary potential of F relative to Ω. If F is
the closure of an open set with C∞-smooth boundary, then V μF is a smooth
function in Ω\F , equal to unity on F , and continuous in Ω.

Proof of Lemma 2.5.1/1. Using the continuity of the capacity from the
right, we can easily reduce the proof for an arbitrary compactum to the con-
sideration of a compactum F ⊂ Br ∩ Ω, which is the closure of an open set
with a C∞-smooth boundary.

Let V μF denote the capacitary potential of F relative to Ω and let η
denote a continuous piecewise linear function, equal to unity on [0, r], and to
zero outside [0, R].

The function u(x) = η(|x|)V μF (x) can be approximated in L̊1
2(Ω ∩ BR) by

functions in N(F,BR ∩ Ω). Hence

cap(F,BR ∩ Ω) ≤
∫

BR ∩Ω

| ∇u|2 dx. (2.5.33)

We extend V μF to be zero outside Ω. It is readily checked that
∫

BR ∩Ω

| ∇u|2 dx =
∫

BR

∣∣∇V μF
∣∣2η2 dx + A + B, (2.5.34)

where

A =
1

R − r

∫
∂Br

(
V μF

)2
s(dx),

B =
n − 1

(R − r)2

∫
BR \Br

(
V μF

)2R − |x|
|x| dx.

Obviously, ∫
Ω

∣∣∇V μF
∣∣2η2 dx ≤ cap(F,Ω). (2.5.35)

Now we note that∫
∂B�

V μF s(dx) =
∫

F

μF (dy)
∫

∂B�

G(x, y)s(dx) ≤
∫

F

μF (dy)
∫

∂B�

s(dx)
|x − y|n−2

.

The integral over ∂B� is a single-layer potential and it is equal to a constant
on ∂B�. Hence, for y ∈ B�,

∫
∂B�

s(dx)
|x − y|n−2

= ωn�.



202 2 Inequalities for Functions Vanishing at the Boundary

Thus ∫
∂B�

V μF s(dx) ≤ (n − 2)−1� cap(F,Ω). (2.5.36)

The following inequality is a direct consequence of the maximum principle

V μF (x) ≤ rn−2

|x|n−2
for |x| ≥ r.

Now, the bound for A is

A ≤ (R − r)−1

∫
∂Br

V μF s(dx) ≤ r

(n − 2)(R − r)
cap(F,Ω). (2.5.37)

We introduce spherical coordinates (�, ω) in the integral B. Then

B =
n − 1

(R − r)2

∫ R

r

�n−2(R − �) d�
∫

∂B�

(
V μF

)2
ω(dx).

Hence

B ≤ (n − 1)rn−2

R − r

∫ R

r

d�
∫

∂B�

V μF ω(dx).

Using (2.5.36), we obtain

B ≤ n − 1
n − 2

rn−2

R − r

∫ R

r

�2−n d� cap(F,Ω),

which along with (2.5.33)–(2.5.35) and (2.5.37) gives the final result. ��

Proof of Lemma 2.5.1/2. The general case can be easily reduced to the
consideration of a compactum F ⊂ Ω\B̄R, which is the closure of an open
set with a smooth boundary. Let V μF denote the capacitary potential of F
relative to Ω, extended by zero outside Ω.

The function

u(x) =

⎧⎪⎨
⎪⎩

V μF (x) for x ∈ Ω\BR,

R(|x|−r)
|x|(R−r)V

μF (x) for x ∈ Ω ∩ (BR\Br),

0 for x ∈ Ω ∩ Br,

can be approximated in L̊1
2(Ω\B̄r) by the functions in N(F,Ω\B̄r). Therefore,

cap(F,Ω\B̄r) ≤
∫

Ω\B̄r

(∇u)2 dx.

This implies

cap(F,Ω\B̄r) ≤
∫

Ω

(
∇V μF

)2 dx +
r

R(R − r)

∫
∂BR

(V μF )2s(dx). (2.5.38)
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Since V μF ≤ 1 and
∫

∂BR

V μF s(dx) ≤ (n − 2)−1R cap(F,Ω)

(cf. (2.5.36)), it follows that

r

R(R − r)

∫
∂Br

(
V μF

)2
s(dx) ≤ r

R − r
(n − 2)−1 cap(F,Ω),

which together with (2.5.38) completes the proof. ��

2.5.9 Comments to Sect. 2.5

The presentation follows the author’s paper [534] and the main results were
announced in Maz’ya [531]. A number of results on the spectrum of the
Schrödinger operator are presented in the monograph by Glazman [309] who
used the so-called splitting method. Birman [100, 101] established some impor-
tant results in the perturbation theory of quadratic forms in Hilbert spaces.
In particular, he proved that the discreteness (the finiteness) of the negative
spectrum of the operator Sh = −hΔ − p(x) in R

n for p(x) ≥ 0 and for all
h > 0 is equivalent to the compactness of the embedding of W 1

2 (Rn)(L̊1
2(R

n))
into the space with the norm

(∫
Rn

|u|2p(x) dx
)1/2

.

Using such criteria, Birman derived the necessary or sufficient conditions for
the discreteness, finiteness, or infiniteness of the negative spectrum of Sh for
all h > 0. The statement of these conditions makes no use of the capacity. The
results of Birman’s paper [101] were developed in the author’s paper [534] the
content of which is followed here.

The theorems of Sect. 2.5 turned out to be useful in the study of the asymp-
totic behavior of eigenvalues of the Dirichlet problem for the Schrödinger op-
erator. Rozenblum [683] considered the operator H = −Δ + q(x) in R

n with
q = q+ − q−, where q− ∈ Ln/2,loc, n ≥ 3. We state one of his results. Let a
cubic grid be constructed in R

n with d as the edge length of each cube and
let F (d) be the union of those cubes Q of the grid that satisfies the condition

sup
{∫

E
q−(x) dx
cap(E)

: E ⊂ 2Q

}
> γ,

where 2Q is the concentric homothetic cube having edge length 2d, γ = γ(n)
is a large enough number.

Then, for λ > 0, the number N (−λ,H) of eigenvalues of H that are less
than −λ satisfies the inequality
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N (−λ,H) ≤ c1

∫
F (c2λ1/2)

(
c3λ − q(x)

)n/2

+
dx,

where c1, c2, and c3 are certain constants depending only on n.
In the case Ω = R

n by Theorem 2.5.2, the inequality (2.5.4) with Ω = R
n

holds if and only if

sup
F

μ(F )
cap(F )

< ∞,

where F is an arbitrary compact set in R
n. For the same case, other criteria

for the validity of (2.5.4) are known. The following one is due to Kerman and
Sawyer [420] (see Theorem 11.5/1 of the present book):

For every open ball B in R
n,∫

B

∫
B

dμ(x) dμ(y)
|x − y|n−2

≤ cμ(B).

Another two criteria for (2.5.4) were obtained by Maz’ya and Verbitsky [591]:

(i) The pointwise inequality

I1(I1μ)2(x) ≤ cI1(μ)(x) < ∞ a.e.

holds, where I1 stands for the Riesz potential of order 1, i.e., I1μ = |x|1−n  μ.

(ii) For every compact set F ⊂ R
n,∫

F

(I1μ)2 dx ≤ c cap(F ).

One more condition necessary and sufficient for (2.5.4) was found by Ver-
bitsky [775]:

For every dyadic cube P in R
n,

∑
Q⊂P

[
μ(Q)

|Q|1−1/n

]2
|Q| ≤ cμ(P ),

where the sum is taken over all dyadic cubes Q contained in P and c does not
depend on P .

We now state the main result of the paper [592] by the author and Ver-
bitsky, characterizing arbitrary complex-valued distributions V subject to the
inequality ∣∣∣∣

∫
Rn

|u|2V dx
∣∣∣∣ ≤ c

∫
Rn

| ∇u|2 dx for all u ∈ D . (2.5.39)

This characterization reduces the case of distributional potentials V to that
of nonnegative absolutely continuous weights. (Cf. Sect. 1.3.4, where similar
statements are established for functions of one variable.)
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Theorem. Let V ∈ D ′, n > 2. Then the inequality (2.5.39) holds, if and
only if there is a vector field Γ ∈ L2(Rn, loc) such that V = divΓ and

∫
Rn

∣∣u(x)
∣∣2∣∣Γ(x)

∣∣2 dx ≤ C

∫
Rn

∣∣∇u(x)
∣∣2 dx

for all u ∈ D . The vector field Γ can be chosen in the form Γ = ∇Δ−1V .

2.6 Properties of Sobolev Spaces Generated by
Quadratic Forms with Variable Coefficients

2.6.1 Degenerate Quadratic Form

In the preceding sections of the present chapter we showed that rather gen-
eral inequalities, containing the integral

∫
Ω

[Φ(x, ∇u)]p dx, are equivalent to
isocapacitary inequalities that relate (p, Φ)-capacity and measures. Although
such criteria are of primary interest, we should note that their verification in
particular cases is often difficult. Even for rather simple quadratic forms

[
Φ(x, ξ)

]2 =
n∑

i,j=1

aij(x)ξiξj ,

the estimates for the corresponding capacities by measures are unknown.
Thus, the general necessary and sufficient conditions obtained in the

present chapter cannot diminish the value of straightforward methods of inves-
tigation of integral inequalities without using capacity. In the present section
this will be illustrated, using as an example the quadratic form

[
Φ(x, ξ)

]2 =
(

|xn| + |x′ |2
)
ξ2
n + |ξ′ |2,

where x′ = (x1, . . . , xn−1), ξ′ = (ξ1, . . . , ξn−1).
By Corollary 2.3.4, the inequality

∫
Rn−1

[
u(x′, 0)

]2 dx′ ≤ c

∫
Rn

[
Φ(x, ∇u)

]2 dx (2.6.1)

holds for all u ∈ D(Rn) if and only if

mn−1

(
{x ∈ g, xn = 0}

)
≤ c(2, Φ)-cap(g)

for any admissible set g. A straightforward proof of the preceding isoperimetric
inequality is unknown to the author. Nevertheless, the estimate (2.6.1) is true
and will be proved in the sequel.
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Theorem 1. Let

[
Φ(x, ∇u)

]2 =
(

|xn| + |x′ |2
)
(∂u/∂xn)2 +

n−1∑
i=1

(∂u/∂xi)2.

Then (2.6.1) is valid for all u ∈ D(Rn).

Proof. Let the integral in the right-hand side of (2.6.1) be denoted by Q(u).
For any δ ∈ (0, 1/2) we have

∫
Rn−1

∣∣u(x′, 0)
∣∣2 dx′ ≤ 2

∫
Rn

(|xn| + |x′ |2)1/2

|xn|(1−δ)/2|x′ |δ

∣∣∣∣u ∂u

∂xn

∣∣∣∣ dx

≤ 2
[
Q(u)

]1/2
(∫

Rn

|xn|δ−1|x′ | −2δ |u|2 dx
)1/2

. (2.6.2)

To give a bound for the last integral we use the following well-known gener-
alization of the Hardy–Littlewood inequality:

∫
Rn−1

(∫
Rn−1

f(y) dy
|x′ − y|n−1−δ

)2 dx′

|x′ |2δ
≤ c

∫
Rn−1

[
f(y)

]2 dy. (2.6.3)

(For the proof of this estimate see Lizorkin [505]. It can also be derived as a
corollary to Theorem 1.4.1/2.) Since the convolution with the kernel |x′ |δ+1−n

corresponds to the multiplication by |ξ′ | −δ of the Fourier transform, (2.6.3)
can be written as∫

Rn−1
|u|2|x′ | −2δ dx′ ≤ c

∫
Rn−1

[
(−Δx′ )δ/2u

]2 dx′,

where (−Δx′ )δ/2 is the fractional power of the Laplace operator. Now we find
that the right-hand side in (2.6.2) does not exceed

c

(
Q(u) +

∫
Rn

|xn|δ−1
[
(−Δx′ )δ/2u

]2 dx
)
. (2.6.4)

From the almost obvious estimate∫ ∞

0

g2tδ−1 dt ≤ c

(∫ ∞

0

(g′)2t dt +
∫ ∞

0

g2 dt
)
,

it follows that

|ξ′ |2δ

∫
Rn

∣∣(Fx′ →ξ′u)(ξ′, xn)
∣∣2|xn|δ−1 dxn

≤ c

(∫
R1

∣∣∣∣
(
Fx′ →ξ′

∂u

∂xn

)
(ξ′, xn)

∣∣∣∣
2

|xn| dxn

+ |ξ′ |2
∫

R1

∣∣(Fx′ →ξ′u)(ξ′, xn)
∣∣2 dxn

)
,
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where Fx′ →ξ′ is the Fourier transform in R
n−1. So the second integral in (2.6.4)

does not exceed
c

∫
Rn

(
|xn|(∂u/∂xn)2 + (∇x′u)2

)
dx.

The result follows. ��

The next assertion shows that Theorem 1 is exact in a certain sense.

Theorem 2. The space of restrictions to R
n−1 = {x ∈ R

n : xn = 0} of
functions in the set {u ∈ D(Rn) : Q(u) + ‖u‖2

L2(Rn) ≤ 1} is not relatively

compact in L2(B
(n−1)
1 ), where B

(n−1)
� = {x′ ∈ R

n−1 : |x′ | < �}.

Proof. Let ϕ denote a function in C∞
0 (B(n−1)

1 ) such that ϕ(y) = ϕ(−y),
‖ϕ‖L2(Rn−1) = 1 and introduce the sequence {ϕm} ∞

m=1 defined by ϕm(y) =
m(n−1)/2ϕ(my). Since this sequence is normalized and weakly convergent to
zero in L2(B

(n−1)
1 ), it contains no subsequences converging in L2(B

(n−1)
1 ).

Further, let {vm} ∞
m=1 be the sequence of functions in R

n defined by

vm(x) = F −1
η′ →x′ exp

{
−〈η〉2|xn|

}
Fx′ →η′ϕm,

where η ∈ R
n−1, 〈η〉 = (|η|2 + 1)1/2.

Consider the quadratic form

T (u) =
∫

Rn

[(
|xn| + |x′ |2

)∣∣∣∣ ∂u∂xn

∣∣∣∣
2

+ | ∇x′u|2 + |u|2
]

dx.

It is clear that

T (u) = (2π)1−n

∫
Rn

(
|xn|

∣∣∣∣∂Fu

∂t

∣∣∣∣
2

+
∣∣∣∣ ∂∂t∇ηFu

∣∣∣∣
2

+ 〈η〉2|Fu|2
)

dη dxn.

Differentiating the function T (vm), we obtain from the last equality that
T (vm) does not exceed

c

∫
Rn

[(
1 + 〈η〉2|xn| + 〈η〉4|xn|3

)
〈η〉2|Fϕm|2 + 〈η〉4| ∇Fϕm|2

]

× exp
(

−2〈η〉2|xn|
)
dη dxn.

Thus we obtain

T (vm) ≤ c

∫
Rn−1

(
〈η〉2| ∇Fϕm|2 + |Fϕm|2

)
dη

= c1

(
n−1∑
i=1

‖xiϕm‖2
W 1

2 (Rn−1) + ‖ϕm‖2
L2(Rn−1)

)
≤ const.

Let ψ ∈ C∞
0 (B(n−1)

2 ), ψ = 1 on B
(n−1)
1 . It is clear that (vmψ)|Rn−1 = ϕm

and T (vmψ) ≤ const. The sequence {vmψ/(T (vmψ))1/2} ∞
m=1 is the required

counterexample. The theorem is proved. ��
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2.6.2 Completion in the Metric of a Generalized Dirichlet Integral

Consider the quadratic form

S[u, u] =
∫

Rn

(
aij(x)

∂u

∂xi

∂u

∂xj
+ u2

)
dx,

where ‖aij(x)‖n
i,j=1 is a uniformly positive definite matrix, whose elements

aij(x) are smooth real functions.
Let the completion of C0,1

0 with respect to the norm (S[u, u])1/2 be denoted
by H̊(S). Further, we introduce the space H(S) obtained as the completion
with respect to this norm of the set of functions in C0,1 with the finite integral
S[u, u].

If the elements of the matrix ‖aij ‖n
i,j=1 are bounded functions, then

H̊(S) = W̊ 1
2 , H(S) = W 1

2 and both spaces, obviously, coincide. It is also
known that H̊(S) = H(S) if the functions aij do not grow too rapidly at
infinity. Here we consider the problem of the coincidence of H̊(S) and H(S)
in the general case.

Definition. Let E ⊂ R
n. In the present subsection the set E is said to

have finite H(S) capacity if there exists a function u ∈ C0,1 ∩ H(S) that is
equal to 1 on E.

Theorem 1. The spaces H̊(S) and H(S) coincide if and only if, for an
arbitrary domain G with finite H(S) capacity, there exists a sequence of func-
tions {ϕm}m≥1 in C0,1

0 that converges in measure to unity on G and is such
that

lim
m→∞

∫
G

aij(x)
∂ϕm

∂xi

∂ϕm

∂xj
dx = 0. (2.6.5)

Before we proceed to the proof, we note that if G is a bounded domain then
the sequence {ϕm}m≥1 always exists. We can put ϕm = ϕ where ϕ ∈ C0,1

0 ,
ϕ = 1 on G.

Proof. Sufficiency. We show that any function u ∈ C0,1 ∩ H(S) can be
approximated in H(S) by functions in H̊(S). Without loss of generality we
may assume that u ≥ 0.

First, we note that if t > 0 then Lt = {x : u(x) > t} is a set of finite
H(S) capacity. In fact, the function v(x) = t−1 min{u(x), t} equals unity on
Lt, satisfies a Lipschitz condition, and S[v, v] ≤ t−2S[u, u] < ∞.

From the Lebesgue theorem it follows that the sequences min{u,m}, (u −
m−1)+, m = 1, 2, . . . , converge to u in H(S) (see Sect. 5.1.2). So we may
assume from the very beginning that u is bounded and vanishes on the exterior
of a bounded set G of finite H(S) capacity.

We denote the complements of the set G by Gj and then define the se-
quence
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u(m)(x) =

{
u(x) for x ∈

⋃
j≤m Gj ,

0 for x ∈ R
n\
⋃

j≤m Gj ,

j = 1, 2, . . . . It is clear that u(m) → u in H(S) as m → ∞. Since each u(m)

vanishes on the exterior of a finite number of domains, we may assume without
loss of generality that G is a domain.

Let {ϕm} be the sequence of functions specified for the domain G in the
statement of the theorem. Replacing {ϕm} by the sequence {ψm}, defined by
|ψm| = min{2, |ϕm| }, sgn ψm = sgn ϕm, we obtain a bounded sequence with
the same properties. Obviously, ψmu ∈ H̊(S) and ψmu → u in L2. Moreover,

∫
Rn

aij
∂

∂xi
(u − uψm)

∂

∂xj
(u − uψm) dx

≤ 2
∫

G

(1 − ψm)2aij
∂u

∂xi

∂u

∂xj
dx + 2

∫
G

u2aij
∂ψm

∂xi

∂ψm

∂xj
dx. (2.6.6)

Since the sequence

(1 − ψm)2
∑
i,j

aij
∂u

∂xi

∂u

∂xj
,

converges to zero in G with respect to the measure mn and is majorized by
the integrable function

9
∑
i,j

aij
∂u

∂xi

∂u

∂xj
,

the first integral on the right in (2.6.6) converges to zero. The convergence
to zero of the second integral follows from the boundedness of u and equal-
ity (2.6.5). Thus uψm → u in H(S). The required approximation is con-
structed.

Necessity. Let G be an arbitrary domain in R
n with finite H(S) capacity.

Let u denote a function in C0,1 ∩ H(S), which is equal to unity on G. Since
H(S) and H̊(S) coincide u can be approximated in H(S) by the sequence

{ϕm}m≥1 contained in C0,1
0 . Noting that u = 1 on G and ϕm → u in L2(G),

we obtain that ϕm → 1 in G in measure. Furthermore,
∫

G

aij
∂ϕm

∂xi

∂ϕm

∂xj
dx =

∫
G

aij
∂

∂xi
(u − ϕm)

∂

∂xj
(u − ϕm) dx m→∞−−−−→ 0.

So the theorem is proved. ��

Although the above result is not very descriptive, it facilitates verification
of concrete conditions for coincidence or noncoincidence of H(S) and H̊(S).
We now present some of them.

Theorem 2. (cf. Maz’ya [536]). The spaces H(S) and H̊(S) coincide pro-
vided n = 1 or n = 2.
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Proof. Taking into account Theorem 1 and the discussion that follows its
statement, we arrive at the equality H(S) = H̊(S) if we show that any domain
G with finite H(S) capacity is bounded. The case n = 1 is obvious. Let n = 2
and u ∈ C0,1 ∩ H(S), u = 1 on G.

Let O and P denote arbitrary points in G and let the axis Ox2 be directed
from O to P . Then

S[u, u] ≥ c

∫ |P |

0

dx2

∫
R1

((
∂u

∂x1

)2

+ u2

)
dx1 ≥ c1

∫ |P |

0

max
x1

[
u(x1, x2)

]2 dx2.

Taking into account that G is a domain and u = 1 on G we arrive at

max
x1

[
u(x1, x2)

]2 ≥ 1.

Therefore diam(G) ≤ cS[u, u], which completes the proof. ��

The following assertion shows that for n ≥ 3 the form S[u, u] must be sub-
jected to certain conditions by necessity. The result is due to Uraltseva [769].
Our proof, though different, is based on the same idea.

Theorem 3. Let n > 2. Then there exists a form S[u, u] for which H(S) �=
H̊(S).

Proof. 1. Consider the domain G = {x : 0 < xn < ∞, |x′ | < f(xn)}
where x′ = (x1, . . . , xn−1) and f is a positive decreasing function in C∞[0, ∞),
f(0) < 1. For x /∈ G we put aij(x) = δj

i .
For arbitrary functions aij on G, for any u ∈ C0,1, u = 1 on G, we have

S[u, u] = ‖u‖2
W 1

2
. This implies that G is a domain with finite H(S) capacity

if and only if cap(G) < ∞ (here, as before, cap is the Wiener capacity, i.e.,
2-cap). Clearly,

cap(G) ≤
∞∑

j=0

cap
(

{x ∈ G : j ≤ xn ≤ j + 1}
)

≤
∞∑

j=0

cap
(

{x : |x′ | ≤ f(j), j ≤ xn ≤ j + 1}
)
.

This and the well-known estimates for the capacity of the cylinder (cf. Land-
kof [477] or Proposition 13.1.3/1 of the present book) yield

cap(G) ≤ c

∞∑
j=0

[
f(j)

]n−3 for n > 3,

cap(G) ≤ c

∞∑
j=0

∣∣log f(j)
∣∣−1 for n = 3.

Therefore G is a domain with finite H(S) capacity provided
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∫ ∞

0

[
f(t)

]n−3 dt < ∞ for n > 3,
∫ ∞

0

∣∣log f(t)
∣∣−1 dt < ∞ for n = 3.

2. In the interior of G we define the quadratic form aij(x)ξiξj by

aij(x)ξiξj = ξ2 +
(
g(xn)
f(xn)

)n−1

η(x)

(
f ′(xn)

n−1∑
i=1

xiξi + ξn

)2

,

where η ∈ C∞
0 (G), 0 ≤ η ≤ 1, η(x) = 1 on the set {x : 1 < xn < ∞, |x′ | <

1
2f(xn)}, and g is an arbitrary positive function on [0, ∞) satisfying the con-
dition ∫ ∞

0

[
g(t)
]1−n dt < ∞.

Using the change of variable xn = yn, xi = f(yn)yi, 1 ≤ i ≤ n − 1, we map
G onto the cylinder {y : 0 < yn < ∞, |y′ | < 1}. Obviously,

∫
G

(
g(xn)
f(xn)

)n−1

η(x)

(
f ′(xn)

n−1∑
i=1

xi
∂ϕ

∂xi
+

∂ϕ

∂xn

)2

dx

≥
∫

C

[
g(yn)

]n−1
(

∂ϕ

∂yn

)2

dy,

where C = {y : 1 < yn < ∞, |y′ | < 1
2 }. Applying the Cauchy inequality to the

last integral we obtain
∫ ∞

1

[
g(t)
]1−n dt

∫
G

aij
∂ϕ

∂xi

∂ϕ

∂xj
dx ≥

∫
|y′ |≤1/2

(∫ ∞

1

∣∣∣∣ ∂ϕ∂yn

∣∣∣∣dyn

)2

dy′.

If ϕ ∈ C0,1
0 then the right-hand side exceeds∫

|y′ |<1/2

max
1<yn<∞

[
ϕ(y′, yn)

]2 dy′ ≥
∫

C1

ϕ2 dy,

where C1 = {y ∈ C : yn < 2}. Passing to the variables x1, . . . , xn on the right,
we arrive at∫ ∞

1

[
g(t)
]1−n dt

∫
G

aij
∂ϕ

∂xi

∂ϕ

∂xj
dx ≥

∫
G1

ϕ2 dx
[f(xn)]n−1

,

where G1 = {x : |x′ | < 1
2f(xn), 1 < xn < 2}. Thus, for any sequence {ϕm}m≥1

of functions in C0,1
0 converging in measure to unity in G we have

lim inf
m→∞

∫
G

aij∂ϕm/∂xi · ∂ϕm/∂xj dx > 0.

To conclude the proof, it remains to make use of Theorem 1. ��



212 2 Inequalities for Functions Vanishing at the Boundary

Theorem 3 has an interesting application to the problem of the self-
adjointness of an elliptic operator in L2(Rn), n ≥ 3 (cf. Uraltseva [769]).
Let the operator

u → S0u = − ∂

∂xi

(
aij(x)

∂u

∂xj

)
+ u

be defined on C∞
0 . If ‖aij ‖n

i,j=1 is the matrix constructed in Theorem 3, then
H(S) = H̊(S) and hence there exists a function w ∈ H(S), which does not
vanish identically and is orthogonal to any v ∈ C∞

0 in H(S), i.e.,

0 =
∫

Rn

(
aij

∂w

∂xi

∂v

∂xj
+ wv

)
dx =

∫
Rn

wS0v dx.

Therefore the range of the closure S̄0 does not coincide with L2. If S̄0 is self-
adjoint then w ∈ Dom(S̄0) and S̄0w = 0. This obviously implies w = 0. We
arrived at a contradiction, which means that S̄0 is not self-adjoint. Thus, the
condition of the uniform positive definiteness of the matrix ‖aij ‖n

i,j=1 alone is
insufficient for the self-adjointness of S̄0.

2.6.3 Comments to Sect. 2.6

The results of Sect. 2.6.1 are due to the author [556], Sect. 2.6. We note that
the proof of Theorem 2.6.1/2 implies nondiscreteness of the spectrum of the
Steklov problem

−
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u

∂xj

)
+ a(x)u = 0 in Ω,

n∑
i,j=1

aij cos(ν, xj)
∂u

∂xi
= λu on ∂Ω,

under the condition that ∂Ω is characteristic at least at one point. Here ν
is a normal to ∂Ω and the matrix ‖aij ‖n

i,j=1 is nonnegative a(x) > 0. The
coefficients aij , a, and the surface ∂Ω are assumed to be smooth.

In conclusion, we note that the topic of Sect. 2.6.2 was also considered in
the paper by S. Laptev [482] who studied the form

S[u, u] =
∫

Rn

(
α(x)(∇u)2 + u2

)
dx,

where α(x) ≥ const > 0. He presented an example of a function α for which
H(S) �= H̊(S) and showed that H(S) and H̊(S) coincide in each of the follow-
ing three cases: (i) α is a nondecreasing function in |x|, (ii) α(x) = O(|x|2+1),
and (iii) n = 3 and α depends only on |x|.
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2.7 Dilation Invariant Sharp Hardy’s Inequalities

2.7.1 Hardy’s Inequality with Sharp Sobolev Remainder Term

Here we find the best value of C for a particular case of the inequality
∫

R
n
+

| ∇v|2 dx ≥ 1
4

∫
R

n
+

|v|2
x2

n

dx + C‖xγ
nv‖2

Lq(Rn
+), (2.7.1)

which is equivalent to (2.1.36) with m = 1.

Theorem. For all u ∈ C∞(Rn
+), u = 0 on R

n−1, the sharp inequality

∫
R

n
+

| ∇u|2 dx ≥ 1
4

∫
R

n
+

|u|2
x2

n

dx

+
πn/(n+1)(n2 − 1)

4(Γ (n
2 + 1))2/(n+1)

∥∥x−1/(n+1)
n u

∥∥2

L 2(n+1)
n−1

(Rn
+)

(2.7.2)

holds.

Proof. We start with the Sobolev inequality
∫

Rn+1
| ∇w|2 dz ≥ Sn+1‖w‖2

L 2(n+1)
n−1

(Rn+1) (2.7.3)

with the best constant

Sn+1 =
π(n+2)/(n+1)(n2 − 1)

4n/(n+1)(Γ (n
2 + 1))2/(n+1)

(2.7.4)

(see (2.3.23)).
Let us introduce the cylindrical coordinates (r, ϕ, x′), where r ≥ 0, ϕ ∈

[0, 2π), and x′ ∈ R
n−1. Assuming that w does not depend on ϕ, we write

(2.7.3) in the form

2π
∫

Rn−1

∫ ∞

0

(∣∣∣∣∂w∂r
∣∣∣∣
2

+ | ∇x′w|2
)
r dr dx′

≥ (2π)(n−1)/(n+1)Sn+1

(∫
Rn−1

∫ ∞

0

|w|2(n+1)/(n−1)r dr dx′
)(n−1)/(n+1)

.

Replacing r by xn, we obtain

∫
R

n
+

| ∇w|2xn dx ≥ (2π)−2/(n+1)Sn+1

(∫
R

n
+

|w|2(n+1)/(n−1)xn dx
)(n−1)/(n+1)

.

It remains to set here w = x
1/2
n v and to use (2.7.4). ��
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2.7.2 Two-Weight Hardy’s Inequalities

As usual, here and elsewhere R
n
+ = {x = (x1, . . . , xn) ∈ R

n, xn > 0} and
C∞

0 (Rn
+) and C∞

0 (Rn
+) stand for the spaces of infinitely differentiable functions

with compact support in R
n
+ and R

n
+, respectively.

Theorem 1. The inequality
∫

R
n
+

|u(x)|p
(x2

n−1 + x2
n)1/2

≤ (2p)p

∫
R

n
+

xp−1
n

∣∣∇u(x)
∣∣p dx (2.7.5)

holds for all u ∈ C∞
0 (Rn

+).

Proof. We put �2 = x2
n−1 + x2

n and denote the integrals on the left- and
right-hand sides by I and J , respectively. Integrating by parts, we obtain

I = −p

∫
Rn

xn�
−1|u|p−1 sgnu

∂u

∂xn
dx +

∫
Rn

x2
n�

−3|u|p dx.

We denote two summands in the right-hand side by I1 and I2. Clearly, by
Hölder’s inequality we have |I1| ≤ (p−1)/pJ 1/p. To obtain a bound for I2

we introduce cylindrical coordinates (z, �, θ) with z ∈ R
n−2, xn−1 + ixn =

� exp(iθ). Then

I2 = −p

∫
Rn−2

dz
∫ π

0

sin2 θ dθ
∫ ∞

0

|u|p−1 sgnu
∂u

∂�
�d� ≤ �I (p−1)/pJ 1/p.

Thus I ≤ 2pI (p−1)/pJ 1/p and (2.7.5) follows. ��

In this section we are concerned with generalizations of the inequality
∫

R
n
+

xn| ∇u|2 dx ≥ Λ

∫
R

n
+

|u|2
(x2

n−1 + x2
n)1/2

dx, u ∈ C∞
0 (Rn

+). (2.7.6)

By substituting u(x) = x
−1/2
n v(x) into (2.7.6), one arrives at the improved

Hardy inequality
∫

R
n
+

| ∇v|2 dx − 1
4

∫
R

n
+

|v|2 dx
x2

n

≥ Λ

∫
R

n
+

|v|2 dx
xn(x2

n−1 + x2
n)1/2

(2.7.7)

for all v ∈ C∞
0 (Rn

+).
More generally, replacing u by x

−1/2
n v(x) in the next theorem, we find a

condition on the function q that is necessary and sufficient for the inequality
∫

R
n
+

| ∇v|2 dx − 1
4

∫
R

n
+

|v|2 dx
x2

n

≥ C

∫
R

n
+

q

(
xn

(x2
n−1 + x2

n)1/2

)
|v|2 dx

xn(x2
n−1 + x2

n)1/2
, (2.7.8)
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where v is an arbitrary function in C∞
0 (Rn

+). This condition implies, in par-
ticular, that the right-hand side of (2.7.7) can be replaced by

C

∫
R

n
+

|v|2 dx
x2

n(1 − log xn

(x2
n−1+x2

n)1/2 )2
.

Theorem 2. (i) Let q denote a locally integrable nonnegative function on
(0, 1). The best constant in the inequality
∫

R
n
+

xn| ∇u|2 dx ≥ C

∫
R

n
+

q

(
xn

(x2
n−1 + x2

n)1/2

)
|u|2

(x2
n−1 + x2

n)1/2
dx, (2.7.9)

for all u ∈ C∞
0 (Rn

+), is given by

λ := inf

∫ π/2

0
(|y′(ϕ)|2 + 1

4 |y(ϕ)|2) sinϕdϕ∫ π/2

0
|y(ϕ)|2q(sinϕ) dϕ

, (2.7.10)

where the infimum is taken over all smooth functions on [0, π/2].
(ii) Inequalities (2.7.9) and (2.7.8) with a positive C hold if and only if

sup
t∈(0,1)

(1 − log t)
∫ t

0

q(τ) dτ < ∞. (2.7.11)

Moreover,

λ ∼
(

sup
t∈(0,1)

(1 − log t)
∫ t

0

q(τ) dτ
)−1

, (2.7.12)

where a ∼ b means that c1a ≤ b ≤ c2a with absolute positive constants c1 and
c2.

Proof. (i) Let U ∈ C∞
0 (R2

+), ζ ∈ C∞
0 (Rn−2), x′ = (x1, . . . , xn−2), and let

N = const > 0. Putting

u(x) = N (2−n)/2ζ
(
N−1x′)U(xn−1, xn)

into (2.7.9) and passing to the limit as N → ∞, we see that (2.7.9) is equivalent
to the inequality

∫
R

2
+

x2

(
|Ux1 |2 + |Ux2 |2

)
dx1 dx2

≥ C

∫
R

2
+

q

(
x2

(x2
1 + x2

2)1/2

)
|U |2 dx1 dx2

(x2
1 + x2

2)1/2
, (2.7.13)

where U ∈ C∞
0 (R2

+). Let (ρ, ϕ) be the polar coordinates of the point (x1, x2) ∈
R

2
+. Then (2.7.13) can be written as
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∫ ∞

0

∫ π

0

(
|Uρ|2 + ρ−2|Uϕ|2

)
sinϕdϕρ2 dρ ≥ C

∫ ∞

0

∫ π

0

|U |2q(sinϕ) dϕdρ.

By the substitution
U(ρ, ϕ) = ρ−1/2v(ρ, ϕ)

the left-hand side becomes
∫ ∞

0

∫ π

0

(
|ρvρ|2 + |vϕ|2 +

1
4

|v|2
)

sinϕdϕ
dρ
ρ

− Re
∫ π

0

∫ ∞

0

vvρ dρ sinϕdϕ. (2.7.14)

Since v(0) = 0, the second term in (2.7.14) vanishes. Therefore, (2.7.13) can
be written in the form

∫ ∞

0

∫ π

0

(
|ρvρ|2 + |vϕ|2 +

1
4

|v|2
)

sinϕdϕ
dρ
ρ

≥ C

∫ ∞

0

∫ π

0

|v|2q(sinϕ) dϕ
dρ
ρ
. (2.7.15)

Now, the definition (2.7.10) of λ shows that (2.7.9) holds with C = λ.
To show the optimality of this value of C, put t = log ρ and v(ρ, ϕ) =

w(t, ϕ). Then (2.7.9) is equivalent to
∫

R1

∫ π

0

(
|wt|2 + |wϕ|2 +

1
4

|w|2
)

sinϕdϕdt

≥ C

∫
R1

∫ π

0

|w|2q(sinϕ) dϕdt. (2.7.16)

Applying the Fourier transform w(t, ϕ) → ŵ(s, ϕ), we obtain
∫

R1

∫ π

0

(
|ŵϕ|2 +

(
|s|2 +

1
4

)
|ŵ|2

)
sinϕdϕds

≥ C

∫
R1

∫ π

0

|ŵ|2q(sinϕ) dϕds. (2.7.17)

Putting here
ŵ(s, ϕ) = ε−1/2η(s/ε)y(ϕ),

where η ∈ C∞
0 (R1), ‖η‖L2(R1) = 1, and y is a function on C∞([0, π]), and

passing to the limit as ε → 0, we arrive at the estimate
∫ π

0

(∣∣y′(ϕ)
∣∣2 +

1
4

∣∣y(ϕ)
∣∣2
)

sinϕdϕ ≥ C

∫ π

0

∣∣y(ϕ)
∣∣2q(sinϕ) dϕ, (2.7.18)

where π can be changed for π/2 by symmetry. This together with (2.7.10)
implies Λ ≤ λ. The proof of (i) is complete.
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(ii) Introducing the new variable ξ = log cot ϕ
2 , we write (2.7.10) as

λ = inf
z

∫∞
0

(|z′(ξ)|2 + |z(ξ)|2
4(cosh ξ)2 ) dξ∫∞

0
|z(ξ)|2q( 1

cosh ξ ) dξ
cosh ξ

. (2.7.19)

Since ∣∣z(0)
∣∣2 ≤ 2

∫ 1

0

(∣∣z′(ξ)
∣∣2 +

∣∣z(ξ)∣∣2) dξ

and
∫ ∞

0

∣∣z(ξ)∣∣2 e2ξ

(1 + e2ξ)2
dξ

≤ 2
∫ ∞

0

∣∣z(ξ) − z(0)
∣∣2 dξ
ξ2

+ 2
∣∣z(0)

∣∣2
∫ ∞

0

e2ξ

(1 + e2ξ)2
dξ

≤ 8
∫ ∞

0

∣∣z′(ξ)
∣∣2 dξ +

∣∣z(0)
∣∣2

it follows from (2.7.19) that

λ ∼ inf
z

∫∞
0

|z′(ξ)|2 dξ + |z(0)|2∫∞
0

|z(ξ)|2q( 1
cosh ξ ) dξ

cosh ξ

. (2.7.20)

Setting z(ξ) = 1 and z(ξ) = min{η−1ξ, 1} for all positive ξ and fixed η > 0
into the ratio of quadratic forms in (2.7.20), we deduce that

λ ≤ min
{(∫ ∞

0

q

(
1

cosh ξ

)
dξ

cosh ξ

)−1

,

(
sup
η>0

η

∫ ∞

η

q

(
1

cosh ξ

)
dξ

cosh ξ

)−1}
.

Hence,

λ ≤ c

(
sup

t∈(0,1)

(1 − log t)
∫ t

0

q(τ) dτ
)−1

.

To obtain the converse estimate, note that
∫ ∞

0

∣∣z(ξ)∣∣2 q
(

1
cosh ξ

)
dξ

cosh ξ

≤ 2
∣∣z(0)

∣∣2
∫ ∞

0

q

(
1

cosh ξ

)
dξ

cosh ξ
+ 2
∫ ∞

0

∣∣z(ξ) − z(0)
∣∣2q
(

1
cosh ξ

)
dξ

cosh ξ
.

The second term in the right-hand side is dominated by

8 sup
η>0

(
η

∫ ∞

η

q

(
1

cosh ξ

)
dξ

cosh ξ

)∫ ∞

0

∣∣z′(ξ)
∣∣2 dξ

(see Sect. 1.3.2). Therefore,
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∫ ∞

0

∣∣z(ξ)∣∣2q
(

1
cosh ξ

)
dξ

cosh ξ

≤ 8 max
{∫ ∞

0

q

(
1

cosh ξ

)
dξ

cosh ξ
, sup

η>0
η

∫ ∞

η

q

(
1

coshσ

)
dσ

coshσ

}

×
(∫ ∞

0

∣∣z′(ξ)
∣∣2 dξ +

∣∣z(0)
∣∣2
)
,

which together with (2.7.20) leads to the lower estimate

λ ≥ min
{(∫ ∞

0

q

(
1

cosh ξ

)
dξ

cosh ξ

)−1

,

(
sup
η>0

η

∫ ∞

η

q

(
1

cosh ξ

)
dξ

cosh ξ

)−1}
.

Hence,

λ ≥ c

(
sup

t∈(0,1)

(1 − log t)
∫ t

0

q(τ) dτ
)−1

.

The proof of (ii) is complete. ��

Since (2.7.11) holds for q(t) = t−1(1 − log t)−2, Theorem 2(ii) leads to the
following assertion.

Corollary 1. There exists an absolute constant C > 0 such that the in-
equality

∫
R

n
+

| ∇v|2 dx − 1
4

∫
R

n
+

|v|2 dx
x2

n

≥ C

∫
R

n
+

|v|2 dx
x2

n(1 − log xn

(x2
n−1+x2

n)1/2 )2
(2.7.21)

holds for all v ∈ C∞
0 (Rn

+). The best value of C is equal to

λ := inf

∫ π

0
[|y′(ϕ)|2 + 1

4 |y(ϕ)|2] sinϕdϕ∫ π

0
|y(ϕ)|2(sinϕ)−1(1 − log sinϕ)−2 dϕ

, (2.7.22)

where the infimum is taken over all smooth functions on [0, π/2]. By numerical
approximation, λ = 0.16, . . . .

A particular case of Theorem 2 corresponding to q = 1 is the following
assertion.

Corollary 2. The sharp value of Λ in (2.7.6) and (2.7.7) is equal to

λ := inf

∫ π

0
[|y′(ϕ)|2 + 1

4 |y(ϕ)|2] sinϕdϕ∫ π

0
|y(ϕ)|2 dϕ

, (2.7.23)

where the infimum is taken over all smooth functions on [0, π]. By numerical
approximation, λ = 0.1564, . . ..
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Remark 1. Let us consider the Friedrichs extension L̃ of the operator

L : z → −
(
(sinϕ)z′)′ +

sinϕ

4
z, (2.7.24)

defined on smooth functions on [0, π]. It is a simple exercise to show that the
energy space of L̃ is compactly embedded into L2(0, π). Hence, the spectrum
of L̃ is discrete and λ defined by (2.7.23) is the smallest eigenvalue of L̃.

Remark 2. The argument used in the proof of Theorem 2(i) with obvious
changes enables one to obtain the following more general fact. Let P and Q
be measurable nonnegative functions in R

n, positive homogeneous of degrees
2μ and 2μ − 2, respectively. The sharp value of C in

∫
Rn

P (x)| ∇u|2 dx ≥ C

∫
Rn

Q(x)|u|2 dx, u ∈ C∞
0

(
R

n
)
, (2.7.25)

is equal to

λ := inf

∫
Sn−1 P (ω)(| ∇ωY |2 + (μ − 1 + n

2 )2|Y |2) dsω∫
Sn−1 Q(ω)|Y |2 dsω

,

where the infimum is taken over all smooth functions on the unit sphere Sn−1.

2.7.3 Comments to Sect. 2.7

The material of this subsection is borrowed from Maz’ya and Shaposhnikova
[587]. In Sect. 2.7.1 we are concerned with the inequality (2.7.1) which is a
special case of (2.1.36). Another inequality of a similar nature, whose general-
izations are dealt with in Sect. 2.7.2, is (2.7.7). It is equivalent to (2.7.6) and
was obtained in 1972 by the author, proving to be useful in the study of the
generic case of degeneration in the oblique derivative problem for second-order
elliptic differential operators [541].

Without the second term on the right-hand sides of (2.7.1) and (2.7.7),
these inequalities reduce to the classical Hardy inequality with the sharp
constant 1/4. An interesting feature of (2.7.1) and (2.7.7) is their dilation
invariance. The value Λ = 1/16 in (2.7.7) obtained in Maz’ya [541] is not
the best possible. Tidblom replaced it by 1/8 in [752]. As a corollary of The-
orem 2.7.2/2, we find an expression for the optimal value of Λ (see Corol-
lary 2.7.2/2).

Sharp constants in Hardy-type inequalities as well as variants, extensions,
and refinements of (2.7.1) and (2.7.7), usually called Hardy’s inequalities with
remainder term, became a theme of many subsequent studies (Davies [225,
226]; Brezis and Marcus [142]; Brezis and Vázquez [145]; Matskewich and
Sobolevskii [526]; Sobolevskii [715]; Davies and Hinz [227]; Marcus, Mizel,
and Pinchover [516]; Laptev and Weidl [481]; Weidl [792]; Yafaev [801];
Brezis, Marcus, and Shafrir [143]; Vázquez and Zuazua [773]; Eilertsen [256];
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Adimurthi [26]; Adimurthi, Chaudhuri, and Ramaswamy [27]; Filippas and
Tertikas [278]; M. Hoffman-Ostenhof, T. Hoffman-Ostenhof, and Laptev [380];
Barbatis, Filippas, and Tertikas [73, 74]; Balinsky [67]; Barbatis, Filippas,
and Tertikas [72]; Chaudhuri [178]; Z.-Q. Wang and Meijun [791]; Balinsky,
Laptev, and A. Sobolev [68]; Dávila and Dupaigne [228]; Dolbeault, Este-
ban, Loss, and Vega [237]; Filippas, Maz’ya, and Tertikas [275–277]; Gazzola,
Grunau, and Mitidieri [303]; Tidblom [751, 752]; Colin [211]; Edmunds and
Hurri-Syrjänen [252]; Galaktionov [301, 302]; Samko [689]; Yaotian and Zhi-
hui [804]; Adimurthi, Grossi, and Santra [28]; Alvino, Ferone, and Trombetti
[42]; Barbatis [70, 71]; Brandolini, Chiacchio, and Trombetti [140]; Dou, Niu,
and Yuan [241]; Evans and Lewis [264]; Tertikas and Tintarev [749]; Tertikas
and Zographopoulos [750]; Benguria, Frank, and Loss [83]; Bosi, Dolbeault,
and Esteban [127]; Frank and Seiringer [289, 290]; Frank, Lieb, and Seiringer
[288]; A. Laptev and A. Sobolev [480]; Cianchi and Ferone [203]; Kombe and
Özaydin [446]; Filippas, Tertikas, and Tidblom [279]; Pinchover and Tintarev
[661]; Avkhadiev and Laptev [58] et al.).

2.8 Sharp Hardy–Leray Inequality for Axisymmetric
Divergence-Free Fields

2.8.1 Statement of Results

Let u denote a C∞
0 (Rn) vector field in R

n. The following n-dimensional gen-
eralization of the one-dimensional Hardy inequality,

∫
Rn

|u|2
|x|2 dx ≤ 4

(n − 2)2

∫
Rn

| ∇u|2 dx (2.8.1)

appears for n = 3 in the pioneering paper by Leray on the Navier–Stokes
equations [487]. The constant factor on the right-hand side is sharp. Since one
frequently deals with divergence-free fields in hydrodynamics, it is natural to
ask whether this restriction can improve the constant in (2.8.1).

We show in the present section that this is the case indeed if n > 2 and the
vector field u is axisymmetric by proving that the aforementioned constant
can be replaced by the (smaller) optimal value

4
(n − 2)2

(
1 − 8

(n + 2)2

)
, (2.8.2)

which, in particular, evaluates to 68/25 in three dimensions. This result is a
special case of a more general one concerning a divergence-free improvement
of the multidimensional sharp Hardy inequality

∫
Rn

|x|2γ−2|u|2 dx ≤ 4
(2γ + n − 2)2

∫
Rn

|x|2γ | ∇u|2 dx. (2.8.3)
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Let φ be a point on the (n−2)-dimensional unit sphere Sn−2 with spherical
coordinates {θj }j=1,...,n−3 and φ, where θj ∈ (0, π) and ϕ ∈ [0, 2π). A point
x ∈ R

n is represented as a triple (ρ, θ,φ), where ρ > 0 and θ ∈ [0, π]. Corre-
spondingly, we write u = (uρ, uθ,uφ) with uφ = (uθn−3 , . . . , uθ1 , uφ).

The condition of axial symmetry means that u depends only on ρ and θ.
For higher dimensions, our result is as follows.

Theorem 1. Let γ �= 1 − n/2, n > 2, and let u be an axisymmetric
divergence-free vector field in C∞

0 (Rn). We assume that u(0) = 0 for γ <
1 − n/2. Then

∫
Rn

|x|2γ−2|u|2 dx ≤ Cn,γ

∫
Rn

|x|2γ | ∇u|2 dx (2.8.4)

with the best value of Cn,γ given by

Cn,γ =
4

(2γ + n − 2)2

(
1 − 2

n + 1 + (γ − n/2)2

)
, (2.8.5)

for γ ≤ 1, and by

C−1
n,γ =

(
n

2
+ γ − 1

)2

+ min
{
n − 1, 2 + min

x≥0

(
x +

4(n − 1)(γ − 1)
x + n − 1 + (γ − n/2)2

)}
(2.8.6)

for γ > 1.

The two minima in (2.8.6) can be calculated in closed form, but their
expressions for arbitrary dimensions turn out to be unwieldy and we omit
them.

However, the formula for C3,γ is simple.

Corollary. For n = 3 inequality (2.8.4) holds with the best constant

C3,γ =

{
4

(2γ+1)2 · 2+(γ−3/2)2

4+(γ−3/2)2 for γ ≤ 1,
4

8+(1+2γ)2 for γ > 1.
(2.8.7)

For n = 2, we obtain the sharp constant in (2.8.4) without axial symmetry
of the vector field.

Theorem 2. Let γ �= 0, n = 2, and let u be a divergence-free vector field
in C∞

0 (R2). We assume that u(0) = 0 for γ < 0. Then inequality (2.8.4) holds
with the best constant

C2,γ =

{
γ−2 1+(1−γ)2

3+(1−γ)2 for γ ∈ [−
√

3 − 1,
√

3 − 1],

(γ2 + 1)−1 otherwise.
(2.8.8)
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2.8.2 Proof of Theorem 1

In the spherical coordinates introduced previously, we have

div u = ρ1−n ∂

∂ρ

(
ρn−1uρ

)
+ ρ−1(sin θ)2−n ∂

∂θ

(
(sin θ)n−2uθ

)

+
n−3∑
k=1

(ρ sin θ sin θn−3 · · · sin θk+1)−1(sin θk)−k ∂

∂θk

(
(sin θk)kuθk

)

+ (ρ sin θ sin θn−3 · · · sin θ1)−1 ∂uϕ

∂ϕ
. (2.8.9)

Since the components uϕ and uθk
, k = 1, . . . , n − 3, depend only on ρ and θ,

(2.8.9) becomes

div u = ρ1−n ∂

∂ρ

(
ρn−1uρ(ρ, θ)

)
+ ρ−1(sin θ)2−n ∂

∂θ

(
(sin θ)n−2uθ(ρ, θ)

)

+
n−3∑
k=1

k(sin θn−3 · · · sin θk+1)−1 cot θk
uθk

(ρ, θ)
ρ sin θ

. (2.8.10)

By the linear independence of the functions

1, (sin θn−3 · · · sin θk+1)−1 cot θk, k = 1, . . . , n − 3,

the divergence-free condition is equivalent to the collection of n − 2 identities

ρ
∂uρ

∂ρ
+ (n − 1)uρ +

(
∂

∂θ
+ (n − 2) cot θ

)
uθ = 0, (2.8.11)

uθk
= 0, k = 1, . . . , n − 3. (2.8.12)

If the right-hand side of (2.8.4) diverges, there is nothing to prove. Oth-
erwise, the matrix ∇u is O(|x|m), with m > −γ − n/2, as x → 0. Since
u(0) = 0, we have u(x) = O(|x|m+1) ensuring the convergence of the integral
on the left-hand side of (2.8.4). We introduce the vector field

v(x) = u(x)|x|γ−1+n/2. (2.8.13)

The inequality (2.8.4) becomes

(
1

Cn,γ
−
(
n

2
+ γ − 1

)2)∫
R

n

|v|2
|x|n dx ≤

∫
R

n

| ∇v|2
|x|n−2

dx. (2.8.14)

The condition div u = 0 is equivalent to

ρdivv =
(
n − 2

2
+ γ

)
vρ. (2.8.15)



2.8 Sharp Hardy–Leray Inequality for Axisymmetric Divergence-Free Fields 223

To simplify the exposition, we assume first that vϕ = 0. Now, (2.8.15) can
be written as

ρ
∂vρ

∂ρ
+
(
n

2
− γ

)
vρ + Dvθ = 0, (2.8.16)

where
D :=

∂

∂θ
+ (n − 2) cot θ. (2.8.17)

Note that D is the adjoint of −∂/∂θ with respect to the scalar product
∫ π

0

f(θ)g(θ)(sin θ)n−2 dθ.

A straightforward, though lengthy calculation yields

ρ2| ∇v|2 = ρ2

(
∂vρ

∂ρ

)2

+ ρ2

(
∂vθ

∂ρ

)2

+
(
∂vρ

∂θ

)2

+
(
∂vθ

∂θ

)2

+ v2
θ + (n − 1)v2

ρ + (n − 2)(cot θ)2v2
θ + 2

(
vρDvθ − vθ

∂vρ

∂θ

)
.

(2.8.18)

Hence

ρ2

∫
Sn−1

| ∇v|2 ds =
∫

Sn−1

{
ρ2

(
∂vρ

∂ρ

)2

+
(
∂vθ

∂θ

)2

+ ρ2

(
∂vθ

∂ρ

)2

+
(
∂vρ

∂θ

)2

+ v2
θ + (n − 1)v2

ρ + (n − 2)(cot θ)2v2
θ + 4vρDvθ

}
ds.

(2.8.19)

Changing the variable ρ to t = log ρ and applying the Fourier transform with
respect to t,

v(t, θ) �→ w(λ, θ),

we derive
∫

Rn

| ∇v|2
|x|n−2

dx =
∫

R

∫
Sn−1

{(
l2 + n − 1

)
|wρ|2 +

(
l2 − n + 3

)
|wθ |2

+
∣∣∣∣∂wρ

∂θ

∣∣∣∣
2

+
∣∣∣∣∂wθ

∂θ

∣∣∣∣
2

+ (n − 2)(sin θ)−2|wθ |2

+ 4�(wρDwθ)
}

dsdλ (2.8.20)

and ∫
Rn

|v|2
|x|n dx =

∫
R

∫
Sn−1

|w|2 dsdλ. (2.8.21)

From (2.8.15), we obtain
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wρ = − Dwθ

iλ + n/2 − γ
, (2.8.22)

which implies

|wρ|2 =
| Dwθ |2

λ2 + (n/2 − γ)2
(2.8.23)

and

�(wρDwθ) = − (n/2 − γ)| Dwθ |2
λ2 + (n/2 − γ)2

. (2.8.24)

Introducing this into (2.8.20), we arrive at the identity
∫

Rn

| ∇v|2
|x|n−2

dx =
∫ ∞

0

∫
Sn−1

{(
λ2 + n − 1

) | Dwθ |2
λ2 + (n/2 − γ)2

+
(
λ2 − n + 3

)
|wθ |2 +

∣∣∣∣∂wθ

∂θ

∣∣∣∣
2

+ (n − 2)(sin θ)−2|wθ |2

+
1

λ2 + (n/2 − γ)2

∣∣∣∣ ∂∂θ Dwθ

∣∣∣∣
2

− 4
(
n

2
− γ

)
| Dwθ |2

λ2 + (n/2 − γ)2

}
dsdλ.

We simplify the right-hand side to obtain
∫

Rn

| ∇v|2
|x|n−2

dx =
∫ ∞

0

∫
Sn−1

{(
−n − 1 + λ2 + 4γ
λ2 + (n/2 − γ)2

+ 1
)

| Dwθ |2

+
(
λ2 − n + 3

)
|wθ |2 +

1
λ2 + (n/2 − γ)2

∣∣∣∣ ∂∂θ Dwθ

∣∣∣∣
2}

dsdλ.

(2.8.25)

On the other hand, by (2.8.21) and (2.8.22)
∫

Rn

|v|2
|x|n−2

dx =
∫ ∞

0

∫
Sn−1

(
| Dwθ |2

λ2 + (n/2 − γ)2
+ |wθ |2

)
dsdλ. (2.8.26)

Defining the self-adjoint operator

T := − ∂

∂θ
D, (2.8.27)

or equivalently,

T = −δθ +
n − 2

(sin θ)2
, (2.8.28)

where δθ is the θ part of the Laplace–Beltrami operator on Sn−1, we write
(2.8.25) and (2.8.26) as

∫
Rn

| ∇v|2
|x|n−2

dx =
∫

R

∫
Sn−1

Q(λ,wθ) dsdλ (2.8.29)
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and ∫
Rn

|v|2
|x|n dx =

∫
R

∫
Sn−1

q(λ,wθ) dsdλ, (2.8.30)

respectively, where Q and q are sesquilinear forms in wθ, defined by

Q(λ,wθ) =
(

−n − 1 + λ2 + 4γ
λ2 + (n/2 − γ)2

+ 1
)
Twθ · wθ

+
(
λ2 − n + 3

)
|wθ |2 +

1
λ2 + (n/2 − γ)2

|Twθ |2

and
q(λ,wθ) =

Twθ · wθ

λ2 + (n/2 − γ)2
+ |wθ |2. (2.8.31)

The eigenvalues of T are αν = ν(ν + n − 2), ν ∈ Z
+. Representing wθ as

an expansion in eigenfunctions of T , we find

inf
wθ

∫
R

∫
Sn−1 Q(λ,wθ) dsdλ∫

R

∫
Sn−1 q(λ,wθ) dsdλ

= inf
λ∈R

inf
ν∈N

( −n−1+λ2+4γ
λ2+(n/2−γ)2 + 1)αν + λ2 − n + 3 + α2

ν

λ2+(n/2−γ)2

αν

λ2+(n/2−γ)2+1

. (2.8.32)

Thus our minimization problem reduces to finding

inf
x≥0

inf
ν∈N

f(x, αν , γ), (2.8.33)

where

f(x, αν , γ) = x − n + 3 + αν

(
1 − 16(1 − γ)

4x + 4αν + (n − 2γ)2

)
. (2.8.34)

Since γ ≤ 1, it is clear that f is increasing in x, so the value (2.8.33) is equal
to

inf
ν∈N

f(0, αν , γ) = inf
ν∈N

(
3 − n + αν

(
1 − 16(1 − γ)

4αν + (n − 2γ)2

))
. (2.8.35)

We have
∂

∂αν
f(0, αν , γ) = 1 − 16(1 − γ)(n − 2γ)

(4αν + (n − 2γ)2)2
. (2.8.36)

Noting that

4αν + (n − 2γ)2 ≥ 4(n − 1) + (n − 2γ)2 ≥ 4
√
n − 1(n − 2γ), (2.8.37)

we see that
∂

∂αν
f(0, αν , γ) ≥ 1 − 1 − γ

(n − 1)(n − 2γ)
> 0. (2.8.38)
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Thus the minimum of f(0, αν , γ) is attained at α1 = n − 1 and equals

3 − n + (n − 1)
(

1 − 16(1 − γ)
4(n − 1) + (n − 2γ)2

)
=

2(γ − 1 + n/2)2

n − 1 + (γ − n/2)2
. (2.8.39)

This completes the proof for the case vϕ = 0.
If we drop the assumption vϕ = 0, then, to the integrand on the right-hand

side of (2.8.19), we should add the terms

ρ2

(
∂vϕ

∂ρ

)2

+
(
∂vϕ

∂θ

)2

+ (sin θ sin θn−3 · · · sin θ1)−2v2
ϕ. (2.8.40)

The expression in (2.8.40) equals

ρ2
∣∣∇
(
vϕeiϕ

)∣∣2. (2.8.41)

As a result, the right-hand side of (2.8.29) is augmented by
∫

R

∫
Sn−1

R(λ,wϕ) dsdλ, (2.8.42)

where
R(λ,wϕ) = λ2|wϕ|2 +

∣∣∇ω

(
wϕeiϕ

)∣∣2 (2.8.43)

with ω = (θ, θn−3, . . . , ϕ). Hence,

inf
v

∫
Rn

|∇v|2
|x|n−2 dx∫

Rn

|v|2
|x|n dx

= inf
wθ,wϕ

∫
R

∫
Sn−1(Q(λ,wθ) + R(λ,wϕ)) dsdλ∫

R

∫
Sn−1(q(λ,wθ) + |wϕ|2) dsdλ

. (2.8.44)

Using the fact that wθ and wϕ are independent, the right-hand side is the
minimum of (2.8.32) and

inf
wϕ

∫
R

∫
Sn−1 R(λ,wϕ) dsdλ∫

R

∫
Sn−1 |wϕ|2 dsdλ

. (2.8.45)

Since wϕeiϕ is orthogonal to one on Sn−1, we have
∫

Sn−1

∣∣∇ω

(
wϕeiϕ

)∣∣2 ds ≥ (n − 1)
∫

Sn−1
|wϕ|2 ds. (2.8.46)

Hence the infimum in (2.8.45) is at most n − 1, which exceeds the value in
(2.8.39). The result follows for γ ≤ 1.

For γ > 1 the proof is similar. Differentiation of f in αν gives

1 +
16(γ − 1)((n − 2γ)2 + 4x)
(4x + 4αν + (n − 2γ)2)2

, (2.8.47)

which is positive. Hence the role of the value (2.8.39) is played by the smallest
value of f(·, n − 1, γ) on R

+. Therefore,
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inf
v

∫
Rn

|∇v|2
|x|n−2 dx∫

Rn

|v|2
|x|n dx

= 2 + min
x≥0

(
x +

4(n − 1)(γ − 1)
x + n − 1 + (γ − n/2)2

)
. (2.8.48)

The proof is complete. ��

Proof of Corollary 1. We need to consider only γ > 1. It follows directly
from (2.8.6) that

C−1
3,γ =

(
3
2

+ γ − 1
)2

+ 2,

which gives the result.

Remark. Using (2.8.22), we see that a minimizing sequence {vk }k≥1,
which shows the sharpness of inequality (2.8.4) with the constant (2.8.5),
can be obtained by taking vk = (vρ,k, vθ,k,0) with the Fourier transform
wk = (wρ,k, wθ,k,0) chosen as follows:

wθ,k(λ, θ) = hk(λ) sin θ, wρ,k(λ, θ) =
1 − n

iλ + n/2 − γ
hk(λ) cos θ. (2.8.49)

The sequence {|hk |2}k≥1 converges in distributions to the delta function at
λ = 0. The minimizing sequence that gives the value (2.8.7) of C3,γ is

wθ,k(λ, 0) = 0, wρ,k(λ, θ) = 0, and wφ,k(λ, θ) = hk(λ) sin θ,

where {|hk |2}k≥1 is as previously.

2.8.3 Proof of Theorem 2

The calculations are similar but simpler than those in the previous section.
We start with the substitution v(x) = u(x)|x|2γ and write (2.8.14) in the form

1
C2,γ

= γ2 + inf
v

∫
R2 | ∇v|2 dx∫

R2 |v|2|x| −2 dx
. (2.8.50)

In polar coordinates ρ and ϕ, with ϕ ∈ [0, 2π), we have
∫

R2
| ∇v|2 dx =

∫
R2

{
| ∇vρ|2+| ∇vϕ|2+ρ−2

(
v2

ρ + v2
ϕ −4vρ(∂ϕvϕ)

)}
dx. (2.8.51)

Changing the variable ρ to t = log ρ and applying the Fourier transform
v(ρ, ϕ) → w(λ, ϕ), we obtain that the right-hand side is

∫
R

∫ 2π

0

{(
λ2 + 1

)(
|wρ|2 + |wϕ|2

)
+ |∂ϕwϕ|2

+ |∂ϕwρ|2 − 4(∂ϕwϕ)wρ

}
dϕdλ. (2.8.52)

The divergence-free condition for u becomes
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wρ = − ∂ϕwϕ

iλ + 1 − γ
, (2.8.53)

which yields
∫

R2
| ∇v|2 dx =

∫
R

∫ 2π

0

{(
λ2 + 4γ − 3
λ2 + (1 − γ)2

+ 1
)

|∂ϕwϕ|2

+
|∂2

ϕwϕ|2

λ2 + (1 − γ)2
+
(
λ2 + 1

)
|wϕ|2

}
dϕdλ. (2.8.54)

Analogously,
∫

R2
|v|2|x| −2 dx =

∫
R

∫ 2π

0

(
|wρ|2 + |wϕ|2

)
dϕdλ

=
∫

R

∫ 2π

0

(
|∂ϕwϕ|2

λ2 + (1 − γ)2
+ |wϕ|2

)
dϕdλ. (2.8.55)

Therefore, by (2.8.50)

1
C2,γ

= γ2 + inf
x≥0

inf
ν∈N∪0

f(x, ν, γ), (2.8.56)

where

f(x, ν, γ) = x + 1 + ν

(
1 − 4(1 − γ)

x + ν + (1 − γ)2

)
. (2.8.57)

Let first γ ≤ 1. Then f is increasing in x, which implies f(x, ν, γ) ≥
f(0, ν, γ). Since the derivative

∂

∂ν
f(0, ν, γ) = 1 − 4(1 − γ)3

(ν + (1 − γ)2)2
, (2.8.58)

is positive for ν ≥ 2, we need to compare only the values f(0, 0, γ), f(0, 1, γ),
and f(0, 2, γ). An elementary calculation shows that both f(0, 0, γ) and
f(0, 2, γ) exceed f(0, 1, γ) for γ �∈ (−1 −

√
3, −1 +

√
3).

Let now γ > 1. We have

∂

∂ν
f(x, ν, γ) = 1 +

4(γ − 1)(x + (1 − γ)2)
(x + ν + (1 − γ2))2

> 0 (2.8.59)

and therefore f(x, ν, γ) ≥ f(x, 0, γ) = x + 1 ≥ 1. The proof of Theorem 2 is
complete. ��

Remark. Minimizing sequences that give C2,γ in (2.8.8) can be chosen as
follows:

wρ,k(λ, ϕ) = 0, wϕ,k(λ, ϕ) = hk(λ),

for γ �∈ (−1 −
√

3, −1 +
√

3), and
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wρ,k =
hk(λ) sin(ϕ − ϕ0)

iλ + 1 − γ
, wϕ,k = hk(λ) cos(ϕ − ϕ0),

when γ ∈ (−1 −
√

3, −1+
√

3), for any constant ϕ0. Here {|hk |2}k≥1 converges
in distributions to the delta function at 0.

Corollary. Let γ �= 0. Denote by ψ a real-valued scalar function in
C∞

0 (R2) and assume, in addition, that ∇ψ(0) = 0 if γ < 0. Then the sharp
inequality
∫

R2
| ∇ψ|2|x|2(γ−1) dx ≤ C2,γ

∫
R2

(
ψ2

x1x1
+ 2ψ2

x1x2
+ ψ2

x2x2

)
|x|2γ dx (2.8.60)

holds with C2,γ given in (2.8.8).

Indeed, for n = 2, inequality (2.8.4) becomes (2.8.60) if ψ is interpreted as
a stream function of the vector field u, i.e., u = ∇ × ψ.

2.8.4 Comments to Sect. 2.8

The results of this section are borrowed from the paper by Costin and Maz’ya
[214]. In [715], Sobolevskii stated that the sharp constant in Hardy’s inequality
for arbitrary solenoidal vector functions in a convex domain coincides with the
same constant in the classical one-dimensional case.
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