Chapter 9
Chamber Systems and Buildings

Abstract Chamber systems over a type set I were defined by J. Tits as a fam-
ily of partitions of a set of vertices called chambers. An equivalent representation
as certain classes of graphs with edges labeled by non-empty subsets of 7 allows
one to describe morphisms, truncations, and residues graph-theoretically. Residual
connectedness is defined for chamber systems. For a residually connected chamber
system, each edge is labeled by exactly one type, while chamber systems in which
each chamber lies on infinitely many distinct panels are not residually connected
at all. Generalized polygons are presented as both chamber systems and point-line
geometries in order to introduce chamber systems of type M. Buildings are plucked
out of the sea of all chamber systems of type M by any one of six equivalent condi-
tions involving strong-gatedness of residues, or galleries of reduced type.

9.1 Introduction

In the first part of this book, we undertook to understand the projective spaces and
polar spaces as geometries of points and lines. But there are other more complex
spaces in which projective and polar spaces are small constituent entities whose
interaction with the space as a whole utilizes only modest properties of these sub-
spaces. Because of the natural way they are defined, many of these new spaces may
be called “classical.”

We now know that the basic classical geometries of this world can be pretty well
understood from the unifying point of view of a building. Such an assertion is vague,
of course. But there are many favorite objects which occur over and over again under
the guise of classical mathematics.! In a few words, these can be described as groups

! For example, Lie groups arise as a certain class of automorphisms of locally Euclidean manifolds.
These are associated with Lie Algebras over the real or complex numbers. Then there are algebraic
groups which are full automomorphism groups of an affine or projective variety. The definition
is very different, but it is true that a non-degenerate algebraic group possesses a group-structure
called a (B, N)-pair. Until the concept of building, the similarities between simple Lie groups and
indecomposable algebraic groups hung on the frail sign that both were determined by a Dynkin
diagram.
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of Lie type acting on coset spaces of parabolic subgroups. The theory of buildings
arose between 1964 and 1967 as an attempt to unite the objects of such a theory
without assuming the presence of a group, a topology or a Lie Algebra. This great
achievement is entirely due to Professor J. Tits, to whom this book is dedicated.

The projective spaces and polar spaces, together with an appropriate class of
subspaces, are just two examples of buildings. But there are many more, associated
with the exceptional groups of Lie types G2, Fa, Eg, E7, and Eg. All of these are
generic schemes which can be defined over any field, finite or infinite. It is also
important to note that these are geometries of rank equal to the subscript. Thus
G is a rank two geometry — that is, a point-line geometry (which happens to be a
generalized hexagon). On the other hand, Eg is a rank eight geometry — that is, an
incidence geometry with 8 sorts of objects. I do not ask the reader to understand this
all at once. Just let it be said that there is a very nice set of geometries that seems to
come to us from the sky.

So, in order to continue, we must describe buildings. The traditional way of
defining buildings involves axioms insuring that a chamber system C over I pos-
sesses a rather dense system of isometrically embedded Coxeter chamber systems
(each isomorphic to C(M) where M is a fixed Coxeter matrix) called apartments.
Exacting properties of the building then rests heavily upon special properties of the
Coxeter chamber system.

Of course many renditions merely need to introduce the topic in just enough
detail to harvest the results. This is especially true of books on finite group theory
[77, 78, 125, 126] or books and articles on groups of Lie type [27, 44]. Generally,
they can live with the “apartment axioms” alone, or, at worst, with a few extra prop-
erties of Coxeter groups that they may need by presenting an abbreviated auxilliary
section on Coxeter groups.

Then there is another class of books and articles which wish to present a theory
of buildings which analytically displays and motivates the interlocking properties
from a more or less pedagogical point of view. With only one exception (see last
paragraph of this section), these books follow the format of Tits” original book:
a development in the language of simplicial complexes leading to Coxeter com-
plexes and finally the apartment axioms [14, 63, 106]. The idea is that the apartment
axioms have a natural background in the language of simplicial complexes, foldings,
etc., and one’s understanding of concepts can be checked there.? These pedagogical
treatments quoted here are excellent.

The basic paradigm is that algebraic properties concerning the factorizations of
words that represent the same element of the Coxeter group can be used to deduce
properties of the building.

In this book we take a different approach in which the basic properties of build-
ings are deduced directly from the strong-gatedness of their residues and nothing

2 Of course Tits” book was probably intended for experts, but many early sections go to great
lengths to give expositions about geometries, uniqueness of mappings, and pseudoquadratic forms
that anyone can understand.
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more than that. As a result, no special section about properties of Coxeter groups
is required. This would then be a treatment independent of the type M hypothesis,
and would not even once require mention of the unnecessary simplicial complexes
which have nothing to do with any of the key properties.

There are reasons for producing an alternative view:

1. (A pedagogical one.) Some students (such as the author) who don’t understand
simplicial complexes, or think the whole topic a lot of unecessary baggage,
shouldn’t be prevented from being introduced to buildings. Everyone at least
understands graphs (perhaps before they enter University) whether or not they
understand simplicial complexes.

2. (More pedagogy.) The simpler the axioms one begins with, the easier it is to
teach the subject and unfold the tree of implications. We don’t want to start with
something too elaborate.

3. (Pedagogy and boredom.) Why should a new customer always get the same
menu?

4. (Theoretical economy.) Virtually every property of Coxeter groups that one
assembles to prove properties of buildings can in fact be proved directly for all
chamber systems of type M from a simpler hypothesis.

5. (More theoretical economy.) The approach given here entails a number of equiv-
alent conditions never dispayed together in the cited expositions of this subject.
Naturally that invites mathematical connections.

On p. 292 I mentioned that there was an expositional textbook which I thought to
be an exception to the standard. That was the book by Mark Ronan which introduced
buildings as a chamber system with a W (M )-valued measure. Looking back, I think
it would be fair to say that Ronan’s book and Rudolph Scharlau’s historic insights
more or less determined the path that I have taken here.

9.2 Chamber Systems

9.2.1 The Chamber System of a Geometry

Suppose I' = (V, 1, %) is a geometry over the type set /. Recall that this means that
T : V — [ is a mapping assigning a fype from the type-set I to each object of V.
Then the symmetric binary relation * on V occurs only between objects of different
types. Thus (V, x) is a multipartite graph (the incidence graph of the geometry)
whose components are the (coclique) fibers of the type function t.

A flag is simply any clique of (V, *x). One notes that the type function is injective
when restricted to any flag. For any flag F, the subset t(F) = {t(x)|x € F}
is called the type of the flag F. A flag-chamber of T is simply a flag whose type
is I. Let F be the full collection of all flag-chambers of I". We are going to form a
graph C = (F, E, 1) whose vertex set is F and whose edge set E is accompanied
by an edge-labeling function A : E — [ as follows. Two flag-chambers form an
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edge e of C labeled A(e) if and only if they are distinct flags which differ only in
their constituent object of type A(e). In this case we say the flag-chambers are A(e)-
adjacent: that is, flag-chambers F; and F are said to be i-adjacent if and only if they
differ only in their constituent objects of type i. Thus distance in this chambersystem
graph C is nothing more or less than the induced Hamming distance obtained when
one regards C to be a subgraph of the Cartesian product over the type-fibers. Note
that if Fy, F>, and F3 are three chamber flags such that (£, F>) and (F>, F3) are
edges of C bearing the same label, then (F1, F3) is forced to be an edge of C with
the same label. Thus for any X € {P, L}, the relation of being equal or i-adjacent is
an equivalence relation on the vertices of C (the set of flags F ).

9.2.2 Abstract Chamber Systems

Well, that is the starting point of the notion of an abstract chamber system. An
(abstract) chamber system over I is a triple (V, E, A) where (V, E) is a simple
graph, and A is a mapping from the 2-subsets of V' into the collection F (1) of finite
subsets of / with these properties:

(Support axiom.) A(e) is non-empty if and only if e € E.
(Triangle axiom.) For every two edges (a, b) and (b, ¢) of E,

Ma,b) N A(b,c) C A(a, ).

Fix two vertices x and y of V. We say that vertex x is i-adjacent to y if and
only if (x, y) € E and i is one of the labels to be found marking this edge — i.e.,
i € A(x,y). Then the triangle axiom shows us that i-adjacency together with the
identity relation form an equivalence relation on the vertices of V.

The cardinality of the type set [ is called the rank of the chamber system. Note
that A(E) may very well be a proper subset of /.3

We have seen in Chap. 2 that, although geometries are just multipartite graphs, it
is customary to use a special language for these graphs: vertices are called “objects,”
edges are “incident pairs of objects,” and cliques are “flags.” Similarly in chamber
systems it is customary to call the vertices chambers and to refer to a path G =
(vo, v1, ..., vy) as a gallery. The sequence (A(vg, v1), A(v1, V2), ..., A(Vy—1, Vpn))
is then the type of the gallery G.

Let us begin with some simple examples. Our examples are somewhat atypical
in that in each underlying graph, each edge bears only one label chosen from [ =
{1, 2, 3}, while for a general chamber system, an edge could bear any non-empty set

3 Again, note the contrast with geometries. For geometries, the rank was the number of types
of objects |7(V)| in the geometry. But in chamber systems the rank is the number of elements
of I whether or not each type appears as an edge label or not. There is a simple reason for this
distinction. Geometries and chamber systems will soon be seen to be connected by two functors,
and the definitions of rank are geared so that both of these functors are rank-preserving.
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Fig. 9.1 A chamber system of rank three on the graph of the tetrahedron

of labels. Despite this special property, these examples will serve to illustrate many
of the concepts which are to follow.

Example 1 (The edge-labeled tetrahedron.) Here the underlying graph is the graph
of the vertices and edges of a tetrahedron — that is, the complete graph K4. Notice
that for each edge, there is a unique edge sharing no vertex with the former. In this
way, the six edges are partitioned into three pairs, each pair forming a 1-factor of
the graph.* The two edges of one I-factor are all labeled “1,” those of a second
1-factor are labeled “2,” and those of the third are labeled “3.” Thus each vertex of
the tetrahedron lies on three edges bearing (one each) the three labels 1, 2, and 3.
This example is illustrated in Fig. 9.1. We represent the labels attached to each edge
by placing the label adjacent to the relevant edge in the figure.

Example 2 (The thin building of trigon type.) Here the underlying graph is the graph
of the vertices and edges of the cube. In a normal embedding of the cube in the
Euclidean plane, the edges come in three parallel classes, each class forming a 1-
factor of the graph. We now label all the edges of one of these 1-factors by “1,” the
edges of the next 1-factor by “2,” and the edges of the third 1-factor by “3.” The
result is the graph of Fig. 9.2a.

(a) (b)
Fig. 9.2 Two chamber systems based on the graph of the cube

4 This term “1-factor” was defined early in Chap. 8 in discussing an example of a near-polygon.
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Example 3 (Another chamber system based on the cube.) Again we have the graph
of the cube as our underlying graph, but this time the labels are attached differently
as illustrated in Fig. 9.2b.

Example 4 (The shaved cube.) Imagine a perfect cube made of wood. Suppose one
cut along each edge of the cube with a knife in a plane at a 135° angle with the
planes of the two faces bordering the edge being cut. We do not cut deep enough
to meet the plane of the cut in an edge opposite an edge in an original face of the
cube. In other words, the shaving of the edges is rather slim. The result is a faceted
figure with faces which are either squares or hexagons. In fact each edge of the
cube is now a hexagonal face, while each face of the cube is still a square face,
but one slightly smaller than the original. Our new graph has valence 3 and has 32
vertices.

Now there is (up to a permutation of ) just one way to label each edge by an
element of / so that:

1. The three edges on a vertex bear distinct labels.
2. The edges of each external hexagonal or square face carry just two of the labels,
alternating as one tours the face.

This chamber system is presented in Fig. 9.3.

3
1/ \2
1 2 1 2
3 12 3
3 3
3
1 2 T \2
3 2 131 3}/ 3
212 2N\1 121
3 3
3 2 AU
3
2 1 j
2 1
3

Fig. 9.3 The chamber system of the shaved cube
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Fig. 9.4 A tiling of the Euclidean plane viewed as a chamber system

Example 5 (Tiling of the plane by squares and octagons: a thin building of type
C».) This tiling of the Euclidean plane can be acheived as follows. At each integral
point of the Z x Z lattice, one inserts a small diamond centered on the lattice point,
with vertices pointed up and down and left and right. Each diamond should use
(1 — +/2/2) of the line segment joining two lattice points. Now retain the middle
(v/2 — 1) of all the edges connecting adjacent lattice points. These segments are
horizontal or vertical, connect vertices of adjacent diamonds, and are all labeled
by “1.” The diamonds alternate in their labeling. For adjacent diamonds, one has
the label “2” on its northwest and southeast borders and “3” on its northeast and
southwest borders, while it is the other way round for its adjacent partner diamond.
This causes the octagonal faces to have their edges labeled by “1” and just one of the
other labels. A portion of this infinite rank-three chamber system is given in Fig. 9.4.

Chamber Subsystems

Suppose C := (C, E, 1) is a chamber system over /. For every subgraph X :=
(X, E") of C (recall from Chap. 1 that this entails X € C, and E’ C Ey, the
subset of edges of E having both their vertices in X) we can define an edge-labeling
A" . E'" — I which is just the restriction of A to the edges of E’. Suppose, now that
X is triangle-closed relative to (C, E), that is:

(ST) If{a, b, c} is atriangle of (C, E) (i.e., a 3-clique) with at least two of the three
edges (a, b), (b, c), and (a, c) lying in E’, then the third edge also lies in E’'.

Then the subgraph X = (X, E’) is converted into a chamber system X = (X, E’, 1)
over J, where J := A(E’). We call such a triangle-closed X a label-induced cham-
ber subsystem of C. The adjective “label-induced” is there because all labels that
are provided by the edge set E’ are displayed.
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More generally we call a chamber system (X, E’, ") over J a chamber subsys-
tem of the chamber system C = (C, E, 1) over [ if and only if:

. X CCand E' C Ex so (X, E') is a subgraph of (C, E).
2. Foreachedgee € E’, M/ (e) C A(e); in particular J = A'(E") C A(E) C I.

Morphisms of Chamber Systems

Suppose C := (C, E, A) and C’ := (C’, E’, \") are two chamber systems over /. A
morphism of chamber systems over I is a morphism f : C — C’ of the underlying
graphs (C, E) — (C’, E’) such that for every edge ¢ = (ci, ¢3) of E, for which
f(e) is an edge of E’ (rather than a single vertex), we have

re) S A (f ().
Consider a morphism f of chamber systems over 7:
f:C=(C,E,A»)— C':=(C,E)N).

We say that f is chamber surjective (injective, bijective) if and only if the underlying
graph morphism is vertex surjective (injective, bijective, resp.). The morphism is
said to be a full morphism if and only if:

1. Every edge ¢’ € E’ is the image of an edge e of E.
2. For any e € E for which f(e) is an edge ¢’ in E’, one has A(e) = A'(¢').

A bijective full morphism is called an isomorphism of chamber systems. As one
might expect, an isomorphism of a chamber system with itself is called an automor-
phism of the chamber system, and such automorphisms of a chamber system C form
a group which we denote by Aut(C).

Let us consider automorphisms of our examples.

In Example 1, the underlying graph is K4, the graph of the tetrahedron, and the
automorphism group of this graph is the symmetric group on four letters, Sym(4).
But as a chamber system, its automorphism group is seen to be the Klein four-group
acting regularly on the four chambers.

In Example 2, the trigon, the full automorphism group of the graph of the cube
is Sym(4) x Z, of order 48. But the automorphism of the chamber system is easily
seen to be the largest normal 2-subgroup of this group: K x Z, where K is the Klein
four subgroup of the Sym(4)-direct factor. Note that K acts in two regular orbits on
chambers.

In Example 5, each diamond (involving only the labels 2 and 3) is centered on a
lattice point of the integral lattice L = Z x Z. Let o denote the translation of the
Euclidean plane which maps each vector (a, b) to (a,b) + (1, 1) = (a+ 1,0+ 1) -
that is translation by the vector (1, 1). Similarly, let T denote translation by the
vector (2, 0). Then the reader can verify that both ¢ and 7 are automorphisms of L
which induce automorphisms of the chamber system C of this example.
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Now let A = (o, t) < Aut(C). Then it is easy to see that A acts freely (that is
semiregularly) on chambers and that any “fundamental region” contains just eight
chambers. For example, if we take two diamonds, one immediately to the right
of another, their union is a “fundamental region” — that is, a subset F' of C (now
regarded as the set of chambers) such that (1) F N F¢ = @ for each non-identity
element a of A and (2) C = U{F%|a € A}.

Any time we have a subgroup A of the automorphism group of a chamber sys-
tem (C, E, 1) over I, we can define a chamber-surjective morphism from C to a
chamber system C/A := (C/A, E/A, A/A) as follows. First, regarding C as the
set of chambers (the vertex set of (C, E)), let C/A denote the collection of A-orbits
on C. An edge of E/A will be a pair of distinct A-orbits (K, L) for which at least
one member of K and one member of L form an edge of E. Then one sees that the
mapping C — C/A, which maps each chamber to the A-orbit to which it belongs,
is a morphism of graphs (C, E) — (C/A, E/A) given as an example of a graph-
morphism in Chap. 1, p. 16. Finally we define the set of labels (A/A)(K, L) to be
attached to the edge (K, L) as the set

Uk, D|(k, 1) e K x L, (k,I) € E}.

(Note that since K and L are A-orbits, the set above could be written U{A(x, y)|y €
x1 N L} for any fixed element x of K.) It is easy to check that the triangle axiom
holds for A/A and so C/A := (C/A, E/A, L/A) is indeed a chamber system and
that the canonical graph morphism is a morphism of chamber systems.

In Example 2, let A be the subgroup of the automorphism group generated by the
involution o which takes each vertex to its opposite vertex in the cube. This mapping
is easily seen to preserve the labels and so is an automorphism of the chamber
system. The canonical projection morphism C — C/A produces a morphism onto
a chamber system C/A isomorphic to that of Example 1.

In the exercises, the student will be asked to show that if A is the group of auto-
morphisms of the chamber system C of Example 5 generated by the automorphisms
o and t described above, then its canonical image C /A is isomorphic to the chamber
system C’ of Example 3, displayed in Fig. 9.2b.

A morphism f : (C, E,A) — (C’, E’, \") of chamber systems over I is called
a fibering of chamber systems if and only if f is a full morphism for which the
underlying graph morphism is a fibering. Recall from Chap. 1, p. 16, that the latter
entails these two properties: (1) f is chamber surjective and (2) if ¢ is a chamber,
then f bijectively maps the edges of C on c to the edges of C’ on f(c). In particular,
all vertices of a fiber f —L(¢'y are pairwise at distance at least three in (C, E). Notice
that in a fibering, given any gallery g’ = (cy, ..., c;,) of the image, and a chamber
¢ of the fiber f~! (c(’)), there exists a unique lift g = (co, .. ., ¢,) which is a gallery
in C of the same type.

The canonical projection morphisms C — C/A from the chamber system of
Example 2 onto the chamber system of Example 1 (A = («)), and from Example 5
onto the chamber system of Example 3 (A = (o)), are examples of fiberings.
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The Functor C from Geometries to Chamber Systems

It is worth remarking that chamber systems over / (like geometries over /) form a
category with respect to the chamber system morphisms (the label-preserving graph
homomorphisms) that we have just defined. That means we have identity mappings
and we can compose morphisms when the domains and ranges allow it.

LetI" = (V, E, 1) be a geometry over /, where we suppose I = 7(V) is the full
set of types realized by objects of the geometry. Our construction mentioned ealier
produced a chamber system C(I") over I whose chambers are the flag-chambers
of I', the set of flags of type I, two of them being i-adjacent if and only if they
differ only by an object of type i. Note that if no chamber flags exist, there may be
no chambers at all. Nonetheless, this empty set of chambers is considered to be a
chamber system over /. Also, it is clear that if i and j are distinct types, then two
flag-chambers cannot be both i- and j-adjacent at the same time. That means that
in C(T"), the labeling function A assumes only singleton sets of 7. Thus C(I") is not
entirely a typical abstract chamber system.

Now consider a morphism f : I' — I of geometries over I, where I and
[ are as in the preceding paragraph. Then the geometry IV also has an object
of each type in /. In addition, if F is a flag chamber of I', then f(F) is a flag
chamber of T". Moreover, if F; and F, are i-adjacent flag chambers of T, then
either f(F1) = f(F2) (which happens if the objects of type i by which the F;
differ are mapped to a common chamber) or else f(F7) is i-adjacent to f(F2).
Thus we see that the geometry morphism f induces a chamber system morphism
C(f) : C(I') — C(I"). One verifies that if f; o f> is the composition of two
morphisms of geometries over 7, then C(f] o f2) = C(f1) o C(f>). Also, if f is an
identity mapping, then so is C(f).

Thus our construction of C(I') from I' in fact provides a functor C from the
category of geometries over [ into the category of chamber systems over /.

Residues of a Chamber System

Let C = (V, E, A) be a chamber system over /. For each subset J of I, let E
be the set of edges e of E for which A(e) N J is non-empty — that is, those edges
whose non-empty set of labels contains at least one element of J. Each connected
component R := (W, Ew N Ej) of the graph (V, E;) is called a residue of type
J of the chamber system C.> The set I — J is called the cotype of the residue. The
cardinality of J and I — J of a residue of type J is called the rank and corank of
the residue R := (W, Ew N E), respectively. Note that R may be regarded as a
chamber system over J in its own right. Of couse, R is a chamber system over the
possibly smaller set L(Ew N E ), but is nevertheless called a residue of type J and
taken to be a chamber system over J. A residue of rank one is just an i-adjacency

5 The notation here is important. Since W is a subset of the vertex set V, the symbol E refers to
the edges which have both their vertices in W (see Chap. 1). But when J is a subset of the index
set I, E is the set of edges which bear a label in J.
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equivalence class for some type i. Such residues of rank one are often called panels.
Let us consider residues in our examples. In Example 1, for each type i € {1, 2, 3},
there are two residues of type i, namely two edges labeled i forming a 1-factor of
the tetrahedron. In fact, something like this is true for residues of type i in all of our
examples: the residues of type i form a 1-factor of the graph.

In Example 1, for every 2-subset {i, j} of I, the residue of type {i, j} is unique
and is a spanning subgraph which is a square. Note that these subgraphs are not
induced subgraphs.

In Example 2, the subgraph on V obtained by using only edges which bear labels
iorj(i # j)hastwo connected components each of which is an induced subgraph
which is a square; they are opposite faces of the cube.

In Example 3, there are again two residues of type {2, 3} representing opposite
faces of the cube. But here, the residues of type {1, 3} and type {1, 2} are spanning
subgraphs which are octagons. Clearly neither is an induced subgraph. Moreover,
these two residues intersect at the disconnected subgraph consisting of the 1-factor
of all edges labeled ‘1.

In Example 4, the residues of rank two correspond to the faces of the “shaved
cube”: 6 are squares (corresponding to the original faces of the cube) and 12 are
hexagons (corresponding to the 12 edges of the original cube). The residues of type
{i, j}, a 2-subset of I = {1, 2, 3}, consist of exactly two squares (corresponding
to opposite faces of the original cube) and four are hexagons (corresponding to the
parallel class of edges connecting these two faces in the original cube). Thus we see
that the rank two residues of a given type do not belong to a fixed isomorphism type
in this example. However all rank two residues are induced subgraphs and intersect
pairwise at the empty set or a single rank one residue.

In Example 5, all residues of type {2, 3} are squares; these are the “diamonds”
which were centered over each integral lattice point. Otherwise the residues of type
{i, j} are octagons. All are induced graphs with any two meeting at the empty set or
a rank one residue.

The Functor T’

Now one can define a geometry I'(C) over [ as follows. The objects of type i in
I'(C) are exactly the residues of C of cotype i — that is, the connected components of
(V, E;—iy). Two objects (corank one residues) are incident in this geometry if and
only if they contain a common chamber. Note that two distinct objects of the same
type cannot be incident since these are chamber-disjoint connected components of
the same subgraph.

Remark Then T is a functor from the category of chamber systems over [ to the
category of geometries. It isn’t really important, but it does allow us to sling this
word “functor” around, and that is a lot of fun.

Let us examine the geometries I'(C) that are obtained as C ranges over our
five examples. In Example 1, there is exactly one rank two residue of each type.
Since these are the residues of corank one, we obtain a geometry with exactly three
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objects, one of each type. The objects are pairwise incident and so together they
form the unique flag chamber of the geometry. Thus I'(C) is the graph K3 (viewed
as a tripartite graph). Then C(I'(C)) is still a chamber system over I = {1, 2, 3} but
it has only one chamber.

In Example 2 there are exactly two residues of corank one of each type, and such
residues of different types always intersect in a residue of rank one. Thus the geom-
etry I'(C) is the complete tripartite graph K> 22 with each component 2-coclique
being the objects of a specific type.

In Example 3 the geometry I'(C) is the complete tripartite graph K ;1 where
the unique 2-coclique represents the set of objects of type 1, and of the other two
objects, one is type 2 and the other is type 3.

In Example 4 the geometry I' (C) contains six objects of each type. The graph is
clearly not a complete tripartite graph since there is a residue of type {1, 2} meeting
aresidue of type {1, 3} at the empty set. We leave it as an exercise for the student to
work out the complete incidence graph.

In Example 5 the geometry I'(C) has three sorts of objects: the diamonds, and
the two types of suboctagons. If D is a diamond (type 1 object) it is incident in
this geometry with exactly two objects of type 2 and two objects of type 3 and its
residue in this geometry (the subgraph D+ — {D}) is the complete subgraph K 22,4
subgeometry over {2, 3}.

Truncations of a Chamber System

Let C=(V, E, A) be achamber system over /. Fix asubset J of / andset K =1—J.
Let C/J denote the collection of all residues of C of type J (these are components
of a partition of C). For each such pair, (A, B) of residues of type J, let 2K(A, B)
denote the set of all types k € K for which A U B lies in a residue of type J U {k}
(k-adjacency). Let EX be the collection of distinct pairs (A, B) of residues of type
J such that AKX (A, B) # . Then Cx := (C/J, EX, 1K) is a chamber system over
K, which we call the truncation of C of type K .

Remark Note that if C is connected, so is Cg. There is a simple reason for this. The
mapping which takes each chamber ¢ of C to the unique residue of type J which
contains it, say Rjy(c), is a vertex surjective morphism of the underlying graphs of
the two chamber systems.

Lemma 9.2.1 (Functorial properties of truncation.)

1. If f : C'" — C is a morphism of chamber systems over I and K C I, then there
is an induced morphism fx : C — Ck as chamber systems over K in which,
foreach R € C'/(I — K), fx (R) is the unique residue of C of type K containing
the connected set of chambers f(R).

2. Suppose C is a chamber system over I and K C I. Then there is an isomorphism

Tk — I'(Ck).
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Chamber Systems Defined by Cosets

This is a simple construction which will help us describe the spherical buildings
that are soon to arrive on the scene. Let G be a group and let B be a distinguished
subgroup. Let H := {Hi, H», ..., H,} be a collection of subgroups of G indexed
by I, where each subgroup of H contains B. Just from this data, we may define
a chamber system C := C(G, B; H) whose chambers (i.e., vertices) are the right
cosets G/B of the subgroup B. Coset Bg is i-adjacent to vertex Bh if and only
both of these cosets lie in a common coset of H; (this would be H;g = H;h). Thus
i-adjacency (together with the identity relation) forms an equivalence relation, and
so a chamber system over I = {1, ..., n} is the result. Such a chamber system is
called a coset chamber system.® (Note that, in this example, if the groups H; do not
meet pairwise at B, it is possible for an edge of the chamber system to bear multiple
labels.) The notation is important: the first two key groups G and B appear first,
followed by a distinguished semi-colon. Then the rest.

9.2.3 Residually Connected Chamber Systems

At the beginning of Sect. 9.2 we saw that if I' is a geometry over /, then there
is a well-defined chamber system of flag-chambers C(I") without multiply-labeled
edges. Of course, if there are no flag chambers, C(I") could very well be a meagre
landscape.

Conversely, given a chamber system C over [ as given earlier Sect. 9.2, there is a
geometry I'(C') whose objects of type i are the residues of C of cotype i. Two such
residues are incident if and only if they share a common chamber.

We have remarked that these constructions produce (1) a very natural functor
I' between the category of chamber systems and the category of geometries and
(2) another functor C from the category of geometries over / to the category of
chamber systems over /. Now there is a property called residual connectedness
for geometries, and another notion by the same name for chamber systems which
was first graph-theoretically formulated by Arjeh Cohen. When either one of these
properties is present, the functors are inverses of each other. The theorem is this.

Theorem 9.2.2 (Arjeh Cohen, [10].)

1. If geometry G is residually connected of finite rank, then so is C(G), and there
is a geometry isomorphism T' (C(G)) ~ G.

2. If C is a residually connected chamber system, then T'(C) is residually con-
nected, and C(T'(C)) ~ C.

3. There exists an isomorphism between the subcategory of residually connected
geometries over a finite typeset 1, and the subcategory of residually connected
chamber systems over the same finite 1.

6 In analogy with the term “coset geometry.”
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In other words, the residually connected objects on both sides form subcategories
where the restricted functor yields an isomorphism. However, it turns out that the
conditions for residual connectedness can never be realized when the typeset is
infinite and the edges leaving any chamber realize all types. So this is primarily a
concept that will kick in only for chamber systems and geometries of finite rank. It
will turn out that buildings of finite rank in fact possess this property — thus allowing
us to speak of buildings as either geometries or chamber systems in the case of finite
rank.

Residual Connectedness of Geometries, Revisited

LetI' = (V, E, ) be a geomety over / := t(V). In Chap. 2, we said that I" was a
residually connected geometry if and only if:

(RC1) Every flag of corank one has a non-empty residue (that is, it lies in a flag
chamber).

(RC2) For every flag F of corank at least 2 (including the empty flag if appropri-
ate), the residue Resr (F) is a non-empty connected geometry.

In Exercise 3 of Chap. 2, we showed that this condition implies:

e Every residue of T" is residually connected (Lemma 2.5.1 of Chap. 2).
If the rank |/| is finite, I is chamber connected (part 2 of Lemma 2.5.1. Exer-
cise 3 of Chap. 2 is to show that this fails for infinite rank).

e If the rank |/| is finite, then every truncation of rank at least two is residually
connected (Corollary 2.5.3 of Chap. 2).

Residual Connectedness for Chamber Systems

Let C = (C, E; 1) be a chamber system over /. The chamber system C is said to
be residually connected if and only if:

(CRC1) For any family F = {R;} of residues of C which intersect pairwise non-
trivially, the global intersection N{R; € F} is non-empty and connected.

(CRC2) For any chamber c the intersection of all corank one residues of C which
contain c is the set {c} itself.

An immediate consequence of this property is recorded in the following.

Lemma 9.2.3 If C is a residually connected chamber system over I, and J is a
proper subset of I, then any residue of type J is the intersection of all the corank
one residues which contain it.

The proof of this lemma is left as Exercise 9.8 at the end of this chapter.

Theorem 9.2.4 Assume C = (C, E; 1) is a residually connected chamber system
over 1. Suppose e = (x,V) is an edge bearing the label i — that is ¢ € E and
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i € M(e). Suppose G = (x = xq, X1, ..., X, = y) is any gallery connecting to x to
v. Then for some integer j in the interval [1, n], we have

Axjo1,xj) = {i}.

In particular:

1. The type function A never assumes multiple values — that is, for every edge e € E,
A(e) is a single-element subset I.

Each residue of cotype i is an induced subgraph of (C, E).

3. All residues are induced subgraphs.

N

Proof Take C, e, i € A(e), and G as in the hypothesis. Suppose each edge of G
bears a label in / — {i}, and so x and y belong in the same residue of cotype i. On
the other hand, since (x, y) is itself an edge bearing label 7, x, and y lie together
in a common residue of cotype ¢ for each t € I distinct from i. It follows that
every residue of corank one which contains x also contains y, and that contradicts
(CRC2). So for some edge ¢ of the gallery G, we must have A(e) = {i}, as required.

The remaining three statements are immediate consequences of the first. If A(e)
contained two distinct type-labels, say i and j, then the first statement would be
contradicted with G = (x, y). Thus A cannot assume multiple values.

Suppose, for a residue R of cotype i, (R, Eg N E;_y;;) (which by definition is
connected) was not an induced graph. Then there must exist a pair of chambers,
x and y in R, such that e = (x, y) is an edge bearing no label of I — {i} — forcing
A(x,y) = {i}. But since the graph for R is connected, there is a gallery G connecting
x to y, each of whose edges bears a label not equal to i. That contradicts the first
statement of the theorem. One can only conclude that the underlying graph of R is
an induced graph.

Now statement 3 of the theorem follows from Lemma 9.2.3 upon observing than
any arbitrary intersection of induced graphs is an induced graph. O

Residual Connectedness in Infinite Rank

The next theorem reveals that the residual connectedness property does not normally
hold for a chamber system of infinite rank.

We say that a chamber system C over [ is firm if and only if each panel contains
at least two chambers. This could be stated another way: for each chamber ¢ and
each type i, there exists a further chamber ¢’ which is i-adjacent to c.

Theorem 9.2.5 (Kasikova and Shult [84].) No firm chamber system of infinite rank
is residually connected.

Proof Assume by way of contradiction that C is a residually connected firm cham-
ber system of infinite rank |7|. Then each vertex c is i-adjacent to at least one other
vertex, for each i € I, and by Theorem 9.2.4, each edge bears a unique type label.
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Thus any gallery G = (co, ¢y, ...) has a type (t1, 12, . ..) associated with it, where
t; := A(ci—1, ¢;i). (The gallery can be finite or countably infinite.) We are particularly
interested in those galleries in which no type is repeated —i.e.,t; #1;if0 <i < j.
It is an easy consequence of firmness and infinite rank that any such gallery of finite
length can be extended. Thus the following result holds:

Step 1. There exists an infinite gallery G = (co, c1, . ..) of type (11, t2, ...) where
no type is repeated in the sequence {t; := A(ci—1,¢i)|i =1,2,...}.

Now, for each chamber ¢; in the gallery G, let R; := R;_(;;(c;) be the unique
residue of cotype #; containing ¢;. Since the types ¢;, j > i are pairwise distinct, the
residue R; is forced to contain all of the chambers ¢y, for all k > i. But is it possible
for R; to contain any of the earlier chambers in the sequence? The answer appears
in the following step.

Step 2. The residue R; contains no chamber ¢; of G, for j <1i.

Suppose by way of contradiction that ¢; € R; for j < i. Then the chambers
Cjt1,...ci—1 are also in R;. But now (c; 1, ¢;) is an edge connecting two vertices
of R; which is not itself an edge of R;. Thus R; is not an induced graph, contrary to
Theorem 9.2.4. Thus the assertion of Step 2 is established.

[Note that Step 2 implies that the gallery G never crosses itself, that is, the cham-
bers ¢ are pairwise distinct.]

Step 3. The intersection N;cn+ R; is empty.

Suppose ¢ were a chamber in each R;, i = 1,2, .... Clearly c is not one of the
chambers ¢ of the gallery G for Ry does not contain c¢; by Step 2. Since C is
connected (for it is assumed residually connected) there is a gallery of finite length
H = (¢ = ho,hy...hqg = cp) connecting c to the initial vertex co of the gallery
G. Now select any chamber ¢k, k > 1 of the gallery G. Since ¢ and ¢ both belong
to the residue Ry, which by definition is connected, there exists a finite gallery Hj
connecting ¢y to ¢, having no edge of type k. Thus if H had no edge of type #,
we should conclude that cp € Ry against Step 2. It follows that some edge of the
finite gallery H bears the label #;. But this statement must be true for all k greater
than 1 — that is, for infinitely many values of k. On the other hand, since the residual
connectedness of C forces each edge of C to bear exactly one type-label (Theo-
rem 9.2.4), H can only accomodate d types. So we have a contradiction. It follows
that no such c exists, and so the intersection of all the R; is empty. That establishes
Step 3.

Now we can complete the proof of the theorem. Clearly if i < j, R;\R; contains
¢j, so the R; pairwise intersect non-trivially. On the other hand, their global intersec-
tion is empty. This contradicts (CRC1) and so C cannot be residually connected. O
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Residual Connectedness and Functors C and T’

We begin with the following.

Lemma 9.2.6 Suppose C is a chamber system over I having the property (CRCI).
Then T'(C) is a residually connected geometry over 1. If, in addition, C has (CRC2),
then there is an isomorphism

C ~ C(T(C)).

Proof Let F := {Ry|0 € I — {i}} be a flag of cotype i in T'(C); here the R, are
residues of C of cotype 0 € I, o # i, which intersect pairwise non-trivially. By
(CRC1), the intersection N{R, € F} is a (non-empty) panel P of type i. Then for
any chamber ¢ € P, the unique residue R; of cotype i containing c is an object in
the residue of F in the geometry I'(C). That proves (RC1).

Now suppose H := {R,|o0 € J} is a flag of T'(C) of type J, a proper subset
of I. That means each R, can be assumed to be a residue of cotype o, and any
two members of H possess a non-empty intersection. It follows from (CRC1) that
the intersection § := N{R, € H} is a residue of C of type K := [ — J. Select
any chamber ¢ € S, and type k € K. Then the unique residue Ry (c) of cotype k
containing c is an object of type k in I'(C) incident with every member of H. Thus
the residue of H in this geometry contains an object of every type. Conversely, any
object R of type k in the residue of H in I'(C) has the form Ry (c) for a chamber
¢ € § N R since the latter intersection is, by (CRC1), a non-empty intersection of
the family of corank one residues of H U {R} which pairwise have a non-empty
intersection. Since c¢ lies in Ri(c) as k ranges over K we see that any object
R = Rp/(c),c € S of Resr(c)(H) lies in a flag-chamber Fk (¢c) = {Rk(c)lk € K}
of this residue (of type K). Another application of (CRC1) shows that every flag
chamber of Resr(c)(H) has the form Fg(c) for some (not necessarily unique)
chamber ¢ € S.

It is now easy to check that if ¢; and ¢, are £-adjacent chambers of S (¢ € K) then
the corresponding flag-chambers Fx (c1) and Fg (cp) are £-adjacent. It follows that
the residue Resr(c)(H) is chamber connected, and so, by Exercise 2.5 of Chap. 2,
p. 58, Resr(c)(H) is a non-empty connected geometry. Thus (RC2) holds for I'(C),
completing the proof of the first statement of the lemma.

Now suppose C is residually connected. For each type k € I, and chamber c,
we write Ry (c) for the unique residue of cotype k containing c. Thus, for each
chamber ¢ we obtain a unique flag-chamber F(c) := {Ry(c)|k € I} of T'(C) — that
is, an element of C(I'(C)). Note that if ¢ and ¢’ are distinct chambers, condition
(CRC2) forces F(c) # F(c). Conversely, if H := {Ry}xes is a pairwise non-
trivially intersecting family of residues with Ry of cotype k, then by (CRC1) the
intersection Ngey Ry is non-empty and by (CRC2) consists of a single chamber c.
Thus H = F(c)so F : C — C(I'(C)) is surjective. Similarly, if ¢ and ¢’ are distinct
chambers, they cannot both live in the same collection of corank one residues, so
F(c) # F(c’). Thus F is a bijection.
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Finally ¢ and ¢’ are i-adjacent if and only if Ry(c) = Ry(c’) for all k # i and
Ri(c) # R;i(c) (for by (CRC?2) the latter condition forces ¢ and ¢’ to belong to a
common residue of type /). Thus F is an isomorphism of chamber systems. O

Lemma 9.2.7 Let I' = (V, E; t) be a residually connected geometry over I =
©(V), where the rank |I| is finite. Then C(I") is a residually connected chamber
system. Moreover, there is a geometry isomorphism

'~ T(CI)).

Proof Assume I = {1,2,...,n}. By part 2 of Lemma 2.5.1, Chap. 2, p. 55, every
flag of I' lies in a chamber flag. If R is a residue of cotype k in C(I") then all
flag-chambers of R contain a unique common object f (R) of type k. More than that,
since |/| finite implies Resr (f(R)) is chamber-connected (Lemma 2.5.1, Chap. 2,
once more), the flag chambers in R form the full set of flag-chambers of the form
f(R) + F where F ranges over all of the flag-chambers (of type I — {k}) of
Resr (f(R)).

Suppose {Ri|k € J} is any family of residues of C(I") which pairwise possess a
non-trivial intersection and with each Ry of cotype k, k ranging over J, a subset of
I. Let X be the unique object of type k common to all flag-chambers of Rj. Then
for any £ in J distinct from k, the existence of a flag-chamber in R; N R, forces Xy
to be incident with Xy. Thus F := {Xy|k € J}is aflag of type J in I". There exists a
flag chamber F containing F and clearly F is in the intersecion of all the Ry, k € J
since any residue of cotype k containing F contains all flag chambers that contain
F (by the argument at the end of the previous paragraph). Thus (CRC1) holds for
C([).

Now consider any flag chamber ¢ = (X1, X2, ..., X;). Let R¢(c) be the unique
cotype k residue of C(I") containing c. As observed in the first paragraph above,
Ry (c) is the set of all flag chambers which contain Xj. Then the intersection Ny Rk
is the flag chamber containing each X and there is only one — ¢ itself. Thus (CRC2)
holds for C(I").

It remains to exhibit the isomorphism. The function f given at the end of the first
paragraph produces a mapping

rca) —» T,

taking each cotype k residue R of C(I") (itself a collection of flag-chambers agreeing
in their type k object) to the unique object f (R) of type k which they contain. Since
Resr(f(R)) is chamber connected, any flag-chamber containing f(R) belongs to
R. Thus f is injective.

Also, for any object Xy of type k in T, and any flag chamber F’ containing it, we
have Xy = f(R¢(F’)). Thus f is surjective.

If R, and Ry contain a common flag chamber F’, the objects f(R;) and f(Ry)
lie in F’ and so are incident. Conversely, if X and X, are incident objects of ', then
any flag-chamber F’ containing F lies in both Ry = f_l(Xk) and Ry = f_l(Xg),
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the sets of all flag chambers containing X and X, respectively. Thus f is an iso-
morphism of geometries. The proof is complete. O

Remark Now note that Theorem 9.2.2 is just a combined statement of Lemmas 9.2.6
and 9.2.7.

Corollary 9.2.8 (In the presence of residual connectedness, the functors I' and C
commute with the taking of residues.)

1. Suppose T is a residually connected geometry of finite rank and let C = C(I") be
its associated chamber system. Let F be a flag of cotype J # (. Let R(F) be the
set of all chamber flags of T which contain F. Then by residual connectedness
and the finiteness of rank, R(F) is a residue of C(I') of type J. Our assertion is
that there is an isomorphism

R(F) ~ C(Resr(F))

as chamber systems.

2. Suppose C is a residually connected chamber system over I of arbitrary rank
and let T' = T'(C) be its associated (residually connected) geometry. For every
residue R of type J, there corresponds a flag F (R) of cotype J of the associated
geometry I'(C), and there is a geometry isomophism

Resrc)(F(R)) = T (R).

Proof The isomorphisms in question are just the restrictions to residues of the two
isomorphisms of Theorem 9.2.2. The beginning student is encouraged to make a
formal proof of this corollary, noting the places at which the hypotheses of residual
connectedness are used. O

Example 6 Let I' be a geometry with exactly one object X of each type k € I =
{1,...,n}. Then we see that I" is indeed a residually connected geometry of finite
rank n with exactly one flag chamber ¢ = (X1, ... X},). Then C(I") has one chamber
and all residues of corank one coincide as sets of chambers. Nonetheless each such
residue is attached to a unique type and so are distinct as residues. Thus T'(C(T")) is
indeed isomorphic to I'. This example shows why one wants to take the rank of the
chamber system as the cardinality of the relevent I rather than the set of types i for
which i-adjacencies are actually exhibited. This way, the functor I' preserves rank.

Example 7 Now suppose I" is a geometry over I = {0, 1, ...}, the set of natural
numbers with exactly two objects Xy and Y} of each type k. We assume that any
two objects of distinct types are incident. Then it is easy to see that I' is con-
nected, but is not chamber-connected since no gallery connects the flag chambers
X = {Xilk € I} and Y = {Yi|k € I}. (See Exercise 2.3 of Chap. 2, p. 58.)
The arguments in the preceding Lemma 9.2.7 depended heavily on residues of flags
being chamber connected. Thus the hypothesis that I" has finite rank is crucial for
this lemma.
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9.3 Chamber Systems with Strongly Gated Residues

9.3.1 Introduction

In this section, C is a chamber system over /. It is not assumed that C is type M,
or that it is even connected. (In Sect. 9.6 we shall resume the hypothesis that C is
type M.) However, we do assume that C is a chamber system over [ satisfying the
condition (typ). We shall discuss three distinct hypotheses concerning a chamber
system C:

(RG) Every residue is strongly gated in C.
(RG') Every residue of corank one is strongly gated.
(RG2) (Scharlau’s condition.) Every residue of C of rank at most 2 is strongly gated
inC.

On the face of it, condition (RG) implies the other two. It is not difficult to show
that (RG) implies (RG) (Corollary 9.3.6 below), and one would hope for an equally
“metrical” proof that (RG;) implies (RG). This is not quite as easy.” To keep the
argument completely free of the assumption that C is type M, we have to introduce
a new type of homotopy, called “A-homotopy,” which tries to replace the notion
of M-homotopy in arbitrary chamber systems which might not be of type M. The
beauty of A-homotopy is that it always exists for any chamber system C satisfying
(typ). It requires no assumptions whatsoever about rank two residues of C.

9.3.2 Basic Properties Concerning Strongly Gated Residues

To start with, the hypothesis that a subgraph H = (H, E’) of a graph A = (V, E)
is strongly gated asserts that for every vertex ¢ € V there exists a vertex g = g(c)
(to indicate that it depends on ¢) in H such that for every x € H,

dale,x) =dalc, 8) +du(g, x). 9.1

When da (c, x) is finite, both terms on the right side are finite and g(c) is in the
same connected component as ¢ and x. It is then easy to prove that the vertex g(c)
is uniquely determined by c.

7 The author’s original proof in the unpublished Shult Freiburg Notes (1989) involved proving that
the condition (RG,) implies condition (P.) which is an assertion about M-homotopy of galleries,
a condition Tits proved was equivalent to the notion of “Building” for chamber systems of type
M. The author’s proof was hardly original. The arguments had already been outlined by Rudolf
Scharlau except that “strongly gated” must replace “gated” in the arguments. But one sees that
this proof invokes concepts completely dependent upon the hypothesis that the C is type M. One
cannot even say that a gallery is of reduced type without this notion.



9.3 Chamber Systems with Strongly Gated Residues 311

The reader might wonder what all this means when the graph A is not connec-
ted?® Well it makes perfect sense.

If two vertices x and y are in separate connected components of a graph G we
say that they are “at infinite distance” and write dg (x, y) = o0.

If d(c, x) is infinite in Eq. (9.1) then clearly at least one of the two terms on the
right side of Eq. (9.1) is also infinite.

(1) If the first term is infinite then any vertex of H will serve as the gate and ¢
lies in no common connected component with a single vertex of H.

(2) If the first term d(c, g) is finite, then dy (g, x) is infinite. That means that x
is not connected to g in the subgraph H. But it also means that x is not connected
to c.

At first sight this does not seem very significant. But now suppose H is strongly
gated — that is, it is strongly gated with respect to any vertex c. Then we see that
two vertices of H are in the same connected component of A if and only if they are
in the same connected component of H [Hint: Take c to be one of these vertices of
H, deduce that it is its own gate g(c), and apply the fundamental (9.1).]

Lemma 9.3.1 Suppose H = (H, E') is a strongly gated subgraph of a graph A =
(V,E) and let A = Bgex (Vy, Eq) be a decomposition of A into its connected
components. Then (as an induced subgraph of H) each non-empty intersection VN
H is connected, and is strongly gated in the connected component Ay := (Vy, Ey).

Remark So, in a way, the discussion of strongly gated subgraphs of a graph reduces
to the relationship of the connected components of both graphs.

Proof The proof is an easy exercise (Exercise 9.10). O

We now recall from Sect. 1.1.4 the following basic facts about subgraphs of a
(possibly non-connected) graph.

Lemma 9.3.2 1. Every strongly gated subgraph of a graph is a convex induced
subgraph, and hence is an isometrically-embedded subgraph.

2. Every convex induced subgraph of a connected graph is connected.

3. An arbitrary intersection of a family {Ry |0 € F} of connected convex induced
subgraphs is either empty or is connected.

Proof Part 1 was detailed in Chap. 1. Part 2 is immediate from part 1, noting that
the isometric embedding property forces finite distances. Part 3 follows from part 2
and the fact that the family of subgraphs which are convex and induced is closed
under taking arbitrary intersections (Chap. 1). O

We wish to transfer these ideas to residues of a chamber system. For that purpose
we need an analog of the concept of “induced subgraph” for residues. We say that a
residue R of type J C [ in a chamber sytem C over [ is an induced residue of C if

8 The author even encountered one referee who insisted that it made no sense at all if A were not
connected.
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and only if, for any edge e = (x, y) of C whose vertices x and y lie in R, we have
M(e) € J —that is, the only adjacencies between vertices of R are the j-adjacencies
for j e J.

Note that if condition (typ) holds for C, any residue that is embedded as an
induced subgraph C becomes an induced residue.

9.3.3 Intersections of Strongly Gated Residues

Corollary 9.3.3 Let {Ry|o € F} be a family of convex induced residues of a cham-
ber system C. Let J, be the type of the residue Ry. Then the gobal intersection
N{Ry|o € F} is either empty, or is an induced residue of type N{J,|o € F}.

Proof SetT := N{Ry|o € F}, and Jr := N{Jy|o € F}.If T = ¢ there is nothing
to prove.

Suppose e = (¢, s) is an edge of C witht € T.If s € C — T, then A(e) cannot
contain any label of J7. On the other hand, if s € T, then every type label of A(e)
lies in J, since R, is an induced residue for all o. Thus T is a union of induced
residues of type Jr.

It remains only to show that 7 is connected. But since our hypothesis provides
that each R, is connected, this property holds for 7 by part 3 of the preceding
Lemma 9.3.2. O

Corollary 9.3.4 Suppose {R,|oc € F} is a family of strongly gated residues of a
chamber system C satisfying condition (typ). Then the intersection {Ry |0 € F} is
either empty, or is a convex induced residue whose type is the intersection of all the
types of the R.

Proof This is immediate from the preceding Corollary 9.3.3 and the observation
that (typ) makes strongly gated residues induced. O

Theorem 9.3.5 (Shult [114].) Suppose C is a connected chamber system with (typ)
so each edge reflects just one type of adjacency. Suppose further that {Ry|o € F}
is a collection of strongly gated residues with a non-empty intersection R. Then R
is strongly gated.

Proof By Corollary 9.3.3, R is a convex induced residue of C of type Jg =
N{Jy|o € F} where J, is the type of the residue R, .

Suppose by way of contradiction that R is not strongly gated. Then there exists a
vertex y such that R is not gated with respect to y. This failure cannot occur unless y
is in the same connected component of the graph (C, E) as its connected subgraph
R. So, among such y such that R is not gated with respect to R, we choose y so
that the distance d := d(y, R) — the length of a shortest geodesic connecting y to
a vertex of R —is as small as possible. (Since y and R are in the same connected
component, this distance d from y to a nearest vertex of R is finite.)

Let us first show that d is not zero — that is, y is not in R. Since R is a con-
vex induced residue, its graph is isometrically embedded in the graph of C. Thus
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dr(y,r) = d(y, r) where dg is the internal metric of R, and so R is strongly gated
with respect to y using y itself as the gate.

So we may assume that y is notin R and d > 0. Then there is at least one residue
M := R; containing R but not containing y. Since M is strongly gated, there exists
a vertex g € M such that for any vertex r € R,

d(y,r)=d(y,g) +du(g,r). 9.2)

It follows from this statement (universally quantified on r), and the fact that
d(y, g) > 0, that

d(g,R) <d(y,R) =d.

By the minimal choice of d, R is strongly gated with respect to g. So, again, there
is a gate 1 € R such that for any vertex s of R,

d(g,s)=d(g,h) +dg(h,s), foralls € R. (9.3)
But as a special case of (9.2):

d(y,h) =d(y.g) +du(g, h). 9.4)

Now, as M is isometrically embedded, d(g, s) = dy (g, s), for all s € R. By the
substitution of bound variables we may replace s by r to get

d(y,r) =d(y,8) +dum(g,r)
=d(y,g) +d(g,r)
=d(y,8) +d(g, h)+dgr(h,r)
= (d(y, 8 +du(g, h) +dr(h,r)
=d(y,h) +dgr(h,r)

for all € R. Thus R is gated with respect to y after all. This contradiction to the
choice of y completes the proof. O

Corollary 9.3.6 In any chamber system satisfying condition (typ), all residues are
strongly gated if and only if all residues of corank one are strongly gated.

Proof Immediate from Theorem 9.3.5. O

Theorem 9.3.7 Suppose C satisfies (typ). Suppose {Ry|o € X} is a finite family of
strongly-gated residues of C. Suppose the R, pairwise intersect non-trivially — that
is, for any o, T € ¥ we have Ry N Ry # (.

Then the global intersection is non-empty — that is

N{R, |0 € T} # 0.
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Proof Since X is finite, we may represent the family as
{Ri, Ra, ..., Ry},

where each R; is strongly gated in C and R; N R; is non-empty forall 1 <i, j < n.
We may assume n > 3 and proceed by induction on 7.

If n > 4 then by induction R} := R3N---N R, is non-empty. By Corollary 9.3.4
R/, is a strongly gated residue and by a second application of induction on n, R1 N R}
and R, N R are non-empty. Then, by a third application of induction on 7, we have

P#R NRyNRy=R N---NR,

and we are done. Thus we may assume n = 3 exactly.

By hypothesis, there is a chamber y € R» N R3. Also by hypothesis R; is strongly
gated with respect to y. So there is a gate g1 € R and by the convexity and isometric
embedding of R in C, for every x € R; one can find a geodesic gallery from y to
x that passes through g1. Thus if we take x € R; N Ry, there is a geodesic gallery
from y to x passing through g;. Then convexity of R, forces g1 € R». Similarly, if
we take x € R3 N Ry, convexity of R3 forces g1 € R3. Now g1 is a chamber in the
global intersection Ry N Ry N R3. The proof is complete. O

Corollary 9.3.8 Suppose (RG) and (typ) hold. If C has finite rank, then C is a resid-
ually connected chamber system.

Proof We must show three things. (1) The intersection over any family of pairwise
non-trivially intersecting residues is non-empty. (2) Any non-empty intersection of
residues is a residue — that is, it is connected. (3) The intersection of all residues
containing a chamber c is the set {c}.

For (1) we can assume that the residues taking part in the intersection are pairwise
distinct residues. Since the intersections are non-empty we also see that their types
are pairwise distinct subsets of /. Since [ is finite, there can only be a finite number
of residues participating in the intersection. Then by (RG) and Theorem 9.3.7, the
intersection of these residues is non-empty.

Assertion (2) follows from Corollary 9.3.4. Finally, conclusion (3) follows from
(2) and the condition (typ) which says that for every pair of adjacent chambers there
is a corank one residue containing one but not the other. O

9.3.4 2-Simply Connectedness is a Consequence of Strong
Gatedness at Low Rank

In the next few sections, we shall be concerned with this property:

(RG2) Every residue of rank at most 2 is strongly gated.
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With a slight adjustment, this is essentially a notion introduced by R. Scharlau in
[105].7

Theorem 9.3.9 Suppose C is a chamber system satisfying (typ) and the hypothesis
(RG3) that all residues of rank at least 2 are strongly gated. Let Cy be the collection
of all pointed circuits each of which is a circuit in some residue of rank two. Then
every circuit of C is Ca-contractible. Put another way, every connected component
of C is 2-simply connected.

Remark Of course (bowing to common usage) “2-simply connected” just means
“C,-simply-connected” as defined in Chap. 1.

Proof Suppose, by way of contradiction, that G is a circular gallery which is not C-
contractible, chosen among such galleries to have minimal length m = 2d or 2d +1.
Then m > 4, and any subsegment of G (that is, a subgallery of G) of length at most
d is a geodesic path.

Select a chamber c( in G whose two edges in G bear labels i and j, and let R be
the residue of type {i, j} containing co. Let k and 4 be maximal so that the

(C—ky C—ktly o1 €O Cly v vy C)

of maximal length containing c¢), and complete the notation so that
GZ(007~--’Cm ZCO)

with the convention that subscripts can be read modulo m. Then by the minimality
of G, dc(co,cq) =dand dc(c—1, cq) = d — 1 or d according as m is even or odd.
If ¢4 were in the residue R, then the two geodesic paths

(co,...,cq)and (c—1,C2,...,¢q)

would both connect vertices of R, and so would lie in R by convexity of the strongly
gated R. That would force G C R against G not being C,-contractible. Thus we may
assume that ¢4 is not in R.

Now since R is strongly gated by hypothesis, there is a “gate” g in R so that

d(cq,y) =dc(cq, 8) +dr(g,y) 9.5)

for every chamber y of R.
Let A be a geodesic path from c; to g and let H' and H~ be geodesic paths
from g to ¢, and c_yg, respectively. Also set

9 In fact Scharlau’s work was the starting point that inspired this entire section on strongly gated
residues — most of it introduced in the Shult Freiburg Notes (1989) as early as 1988.
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G" = (ch, Chyt, ..., cq) (length d — h) and
G™ = (c—k,C—f=1,...,Cq) (lengthm —d — k).

We now have the arrangement of galleries given in Fig. 9.5.
Then by (9.5),

UG )=m—d—k=L0A)+LH)

and
LGCH =d—t=0A)+LHT)

where, as usual, £(X) denotes the length of the gallery X.

Then Ao H' o GT is a circuit of length 2(d — h) =2d —2hand Ao H™ 0 G~
is a circuit of length 2(m — d — k).

If m = 2d, these lengths are m — 2h and m — 2k, respectively. If m = 2d +
1, the first length is clearly less than m and the second length is 2(d + 1 — k).
Since min(k, k) > 1, in all cases the circuits have length less than m and so are
Cy-contractible by the minimality of G. It follows that G decomposes into three
Cp-contractible circuits (the two just mentioned and one circuit entirely in R), all
visible in Fig. 9.5, so G is Cy-contractible against the choice of G. The proof is

complete. O
Fig. 9.5 The decomposition o Ch
of a minimal circuit by Tte-l_ ¢
condition (RG») N\
H+
A
Cd #é * CO
- H
G +
-7 C4
Ctk

9.3.5 A-Homotopy

One might well imagine that there should be a corresponding “bottom up” theorem
that should read something like this:

(Conjecture.) Suppose C is a chamber system satisfying the condition (typ) as well
as the condition.

(RG3) Every residue of rank at most two is strongly gated in C.

Then every residue of C is strongly gated. Stated another way, in the presence of
(typ), the condition (RG7) implies (RG).
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Unfortunately the author knows of no way to do this without invoking a more
sensitive homotopy — one introduced by Tits in [139] in the context of chamber
systems of type M — but one which works for arbitrary chamber systems satisfying
the modest hypothesis (typ) (that distinct chambers are i-adjacent for at most one
type-label i). We call it “A-homotopy,” where the “A” stands for its key property:
it is length-preserving on galleries.

Suppose R is a residue of rank two in a chamber system C with the property
(typ). A A(R)-homotopy is a transformation of minimal galleries of R (viewed as a
chamber system) G — H which connect the same two chambers of R. (Note that
it is necessary to keep the residue “R” in view throughout this defintion. A minimal
gallery is one of shortest length connecting two chambers of an assumed ambient
chamber system. If we say that G is a minimal gallery of a residue R, we mean that
all vertices and edges of G are vertices and edges of the residue R, and that one
can discover no shorter gallery whose vertices and edges belong to the subgraph R
connecting the initial and terminal vertices of G. But bear in mind that a minimal
gallery of a residue R may not at all be a minimal gallery of C (what we have called
a geodesic).

One should note the following simple consequences of the definition of a A(R)-
homotopy.

Lemma 9.3.10 We have:

1. Two A(R)-homotopic galleries of R have the same length. (Remember they are
minimal galleries of R connecting the same two chambers.)
2. If R is type {i, j}, then two A(R)-homotopic galleries either:

(a) they have length one — that is, £(G) = £(H) = 1, and G = H is just record-
ing an i-adjacency, or is recording a j-adjacency (condition (typ) prevents
both from occurring), or

(b) £(G) = €(H) > 1 and both i and j-adjacencies occur in each of the gal-
leries.

So much for R. Now let us say that a transformation G — H of two galleries of
C form an elementary A-homotopy if and only if it has the form

AoUoB— AoWoB,

where there exists a rank two residue R with respect to which the transformation
U — W is a A(R)-homotopy.

Of course we then say that galleries G and H are A-homotopic if and only if H
is obtained from G by a sequence of elementary A-homotopies.

Remark It is time to take note. Two galleries are A (R)-homotopic if and only if
they are both minimal galleries in R connecting the same two chambers. But in
the wider world of chamber system C, two A-homotopic galleries might not be
geodesics of C.

Now it is only a matter of sorting through the definitions to deduce the following
tautology.
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Theorem 9.3.11 (Properties of A-homotopy.) Suppose G and H are A-homotopic
galleries. Then:

1. G and H begin and end at the same vertices.

2. G and H have exactly the same length.

3. The total collection of edge-labels exhibited in G are exactly the total collection
of edge labels exhibited in H : we symbolically render this property as Typ(G) =
Typ(H).

Corollary 9.3.12 Suppose R is any sort of residue of a chamber system C satisfying
(typ). Suppose G and H are two A-homotopic galleries connecting two chambers
of R. If one of the galleries is in R so is the other.

Proof If G is a gallery of R, then Typ(G) =Typ(H ) which implies the conclusion. O

Remark 1t is important to note that in defining A-homotopy we have not imposed
any extra condition upon a chamber system C with (typ) — that is, we have not
restricted the range of the definition in any way.

9.3.6 Further Consequences of the Hypothesis (RG3)

We begin by proving that (RG») implies a property that would have been impossible
to state, had we not had the diversion of the previous section.

Theorem 9.3.13 Suppose C is a chamber system with the property (typ). Assume
the following:

(RGy) All residues of C of rank at most two are strongly gated.
Then C has this property:

(A-min) Any two minimal galleries of C which connect the same two chambers
are A-homotopic.

Proof Suppose by way of contradiction that C contains pairs (G, H), where G and
H are two minimal galleries of C with the same initial and terminal vertices which
are not A-homotopic. Then of course G and H have the same length, namely the
distance in C from their common initial chamber to their common terminal chamber.
We imagine the pair (G, H) chosen so that d = ¢£(G) = £(H) is minimal. We know
that d > 2, otherwise G and H would belong to the same strongly-gated rank two
residue and so would be A-homotopic by definition.

We may write G = (s = g0, 81,--., 8¢ =t)and H = (s = hg, ..., hg =1). If
gd—1 = hy_1 = s', we would obtain factorizations

G=Gio(s, t)and H| o (s, 1).
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Observing that G| and H; are minimal galleries of length d — 1, one would conclude
that G| and H; are A-homotopic, and then the definition would at once yield the
A-homotopy of G and H, a contradiction.

Thus we may assume the “next-to-last” chambers of the galleries G and H are
distinct. By condition (typ) we may leti = A(gg—1,t) and j = A(hg—1, t), the types
attached to the last edge of each gallery.

Next we claim that i # j. If i = j then g4—1, hg—1, and ¢t would belong to a
common panel P containing two distinct vertices at distance d — 1 from s and one
at distance d. But that is impossible since (RG») forces panel P to be strongly gated
with respect to s.

Let R be the residue of type {i, j} containing g4s—1, h4y—1, and ¢, and let g be the
gate of R with respect to the initial chamber s. As before we write

G =G10(gg—1,t)and Hy o (hg—1,1).

Let G, and H, be minimal galleries in R from g to g4—; and hy_; respectively.
Finally, fix a minimal gallery A of C from s to g. Then from the hypothesis of
strong gatedness,

UG = L(A) + U(G),

L(Hy) = L(A) + t(Hy),
d =1¥(A)+(Gr0(ga-1,1)
=L(A) 4+ L(Hyo (hg_1,1).

It follows that Ao G, Ao Hy, G20 (g4—1,1), and Hp o (hg—_1, t) are all minimal
galleries of length less than d. We thus have a series of A-homotopies (indicated by

13 ’7),
~

G =Gio(ga-1,1)
~ (AoGy)o(gd-1,1)
~ Ao (Hyo (hg-1,1))
~ Hyo(hg-1,1)
= H.

(We have freely applied the “associativity” of gallery concatenation without explicit
intermediate equations.) The proof is complete at this point. O

Theorem 9.3.14 Assume C is a chamber system with property (typ). If (RG> ) holds,
then every residue of C is a convex induced residue. So it is isometrically embed-
ded — that is, any geodesic in R is already a geodesic in C.

Proof Suppose, among all residues R of C and all geodesics of these residues (their
length is the distance between their extremities as measured by the internal metric
of R) we chose a pair (R, G) so that G was not a geodesic of C and did this so G has
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minimal length d. Since (RG;) makes all rank two residues isometrically embedded,
we must have d > 2.
LetG = (s = go, &1, -- -, &d—1, &¢)- By assumption

des, gi) =i, fori <d —1and (9.6)
d(s,gq) <d—1. 9.7)

Then the panel P (of type i, say) on the edge (gg—1) contains a chamber ¢
at distance d — 2 from the initial chamber s, and + may or may not be g;. One
thing is certain: (¢, gg—1) is labelled i. Let A be a geodesic of C from s to ¢. Then
Ao (t,gq—1) and (s = go,...84—1) are geodesics of C from s to g4 — 1. By
Theorem 9.3.13, these two galleries are A-homotopic. By Corollary 9.3.12, A is a
gallery in the residue R. Now if t = g4, we have s and g4 connected by A; if t # g4,
then s and g, are connected by A o (¢, g4). In either case, s and g, are connected by
a gallery of the residue R having length at most d — 1. This contradicts our choice
of G as a minimal gallery of R.

Thus no such pairs (R, G) exist, and the theorem is proved. O

Theorem 9.3.15 Suppose C is a chamber system with property (typ). If (RG2) holds,
then every residue of C is strongly gated.

Remark This theorem has been proved for chamber systems of type M using the
fact that all residues of a Coxeter chamber system are strongly gated. Since we
have not bothered to prove that property of a Coxeter chamber system and since we
intend to prove it here without the type M hypothesis, the proof is essentially new.
The induction used here is subtle and some care must be taken.

Proof Suppose the theorem is false. Then there exists a chamber system C satisfying
(RGy) and (typ), with a non-empty collection ) of triples (c, g, R) such that:

1. R is aresidue and ¢ is a chamber with d(c, g) = d(c, R).
2. The subset

X(Cv 8, R) = {x € Rld(ca -x) < d(C7 g) +dR(gﬂx)}

is non-empty.

Suppose (c, g, R) € ), so that the set X(c, g, R) is non-empty. Clearly g ¢
X (c, g, R) by definition. We next consider geodesic paths from g to a member of
X(c, g, R) which encounters a member of X (c, r, R) only at its terminus. (Clearly
in our convex R, such a path is a path of R.) We then sort through such geodesic
paths to find one such that the length of the path plus the distance of its terminus
from c is as small as possible. Thus if

G=(8=280,81s---,81-1,84 =1)

is such a path, then for i < d, no vertex g; lies in X := X (c, g, R) and this is done
so that d 4 d(c, t) is as small as possible.
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Then we have

d(c,gi) =d(c,g)+ifor0<i<d—1, and (9.8)
dc,t) =d(c,g)+(d—1)ord —2. (9.9)

(Note that, by the preceding Theorem 9.3.14, every residue is isometrically embed-
ded, so we can replace the dr(g, y)s that would normally occur in the equations
for the strongly-gated property, by d(g, y)s.) Let us write d; := d(c, g), since this
quantity makes a large number of appearances in this play.

Now suppose

d(c,t) =d(c,g4-1) =dy +d — 1.
Then by (RG») the panel P on g;_; and ¢ contains an element ¢’ with d(c, ') =
di+d—2,andd(g,t') <d =d(g,t). Thenast # t', the sumd(c,t") + d(g(t)
is smaller than the similar sum d(c, t) + d(g,t) and d(g,t) = d — 1 shows that
(g = go,...8g4—2,1") is a geodesic with all members except the last not in the set

X. Thus by the minimality of the choice of the gallery G we get a contradiction.
Thus we must suppose that ¢ = ¢/, so we have

d(c,t) =di+d —2=d(c, ga-2).

Moreover, U := {t, g4—1, g4—2} cannot lie in a common panel (that would con-
tradict d(g,t) = d), and so the edges (gqs—1,¢) and (g4—1, gg—2) bear distinct
labels i and j, respectively. Now let S be the unique residue of type {i, j} con-
taining the subgallery (gs—2, ga—1,1)- By (RG2) § is strongly gated with respect

to c. Let p be its gate with respect to chamber c. Then (noting the isometric
embeddings)

d(c,t) =d(c,p)+d(p,t) =di +d - 2. (9.10)
Now suppose p is not in X. Then
d(c,p) =d(c,g) +d(g, p). .11
Substitution of the right side of (9.11) for d(c, p) in Eq. (9.10) yields

di+d—2=d(c,t) = (d(c,g) +d(g, p) +d(p,1) 9.12)

=d;+d(g, p)+d(p,1). (9.13)
So

d(g, p) +d(p,t) =d — 2. 9.14)
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But the latter is impossible since the “triangle inequality” forces
d=d(g,1) =d(g,p)+d(p,1). (9.15)

So we must assume p € X. Now from the gatedness of S, in addition to
Eq. (9.10) we have

d(c,ga—2) =d(c,p) +d(p.ga—2) =di +d =2, (9.16)
o)
d(p,1) =d(p, ga-2)- 9.17)
Now let
H :=(dj— :=to,t1,...,Ly := Pp)

be a geodesic in S. Since p is in X but g;_» is not, there is a first index j such that
tj € X. Thusfor0 <i < j,

d(c,t;) = d(c, g) +d(g, 1) (9.18)
=d(c, p) +d(p, t). 9.19)

So as i increases, by Eq. (9.19), d(c, t;) decreases, and so by (9.18) d(g, t;) also
decreases. But as #; € X, we have

d(g,tj) =d(g,tj—1) + € wheree =0or 1. (9.20)
Thus
d(c,tj)+d(g,tj) <d(c,tj—1)+d(g,tj—1) (by (9.20)) 9.21)
<d(c, ga—2) +d(g, 8a-2) (9.22)
<d(c,t)+d(g,1). (9.23)

Now since ;1 is not in X, one has
d(c,tj—1) =d(c,8)+d(g, tj-1), (9.24)

so any geodesic from g to #; 1 concatenates with any geodesic from c to g to form
a gallery which is a geodesic. This means that all chambers of a geodesic gallery
E from g to t;_; cannot belong to X. If d(g,t;) = d(c,tj—1) +1(soe = 1in
(9.20)), then E o (tj_1, t;) is a minimal gallery from g to ¢; with all chambers but
its terminus not in X. On the other hand, if d(g,?;) = d(g,tj—1) (s0 € = 0), then
the geodesic gallery E can be made to factor through a gate g; of the unique panel
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Pj onthe edge (¢; 1, t;) —thatis E = Ejo(gj,t;—1). Butin that case, E1 o (g}, t;)
is a geodesic from g to 7; with only its terminal chamber in X.

In short, t; € X(c, g, R), like ¢, is approachable from g by a geodesic gallery
all of whose other chambers are not in X, except that now (by (9.23)) the sum of
the distances of #; from ¢ and g is now less than the sum of the distances of # from
c and g. But r was supposed to be minimal in that respect. Thus the assumption
p € X(g,c, R) also leads to a contradiction.

The proof is complete. O

9.3.7 Equivalence of Various Gatedness Conditions

The following theorem summarizes the results of this section.
Theorem 9.3.16 We suppose C to be a chamber system over I with condition (typ).

1. The three strong-gatedness conditions (RG»), (RG), and (RG") are equivalent to
one another. They all imply the condition ( A-min).

2. If C satisfies any one of these three conditions, it is 2-simply connected.

3. If C is firm and satisfies one of the equivalent gated conditions, then it is residu-
ally connected if and only if its rank |1| is finite.

Proof Clearly (RG) implies both (RG!) and (RG>) since the latter properties are par-
ticularizations of the former property. But (RGhH implies (RG) by Corollary 9.3.6.
Also, Theorem 9.3.15 asserts that (RG;) implies (RG). So the three conditions are
now equivalent. Finally, Theorem 9.3.13 shows that (RG») implies (A-min), so all
parts of the first conclusion hold.

The second conclusion follows from the first upon noting that by Theorem 9.3.9,
condition (RG») implies C>-simple-connectedness.

If (RG) holds, and C has finite rank, then C is residually connected. But by
Theorem 9.2.5, if C has infinite rank and is firm, it cannot be residually connected.

9.4 Generalized Polygons

9.4.1 Panel Homotopy

Introduction

In Chap. 1, we saw that in any graph, a collection C of circuits defines a C-homotopy.
There are various homotopy theories that are useful for chamber systems, depending
on the choice of C. We have met one of these: C2-homotopy where C; is the collec-
tion of all circuits of the chamber system each of which lies within some residue of
rank two. In this section we shall meet another such theory: panel homotopy. The
latter is very special, and concerns only the class C of circuits which are confined
to panels (rank-one residues). We must introduce this notion in order to avoid some
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awkward terminology that has appeared in some of the literature. There one finds
chamber systems that are generalized co-gons referred to as “trees.” In fact they are
not trees in the graph-theoretic sense if any of their panels are thick. The circuits that
are important for generalized polygons are actually “panel-reduced” circuits. (One
author calls them “proper circuits” without explanation.) The panel homotopy also
has some relation to types of galleries that are useful in showing the equivalence of
several definitions of “generalized polygon,” so it is just something we have to go
through. Actually, it is a very simple notion.

Basic Terms

Any gallery is a walk G = (co, ...cn) where (cj_1, ¢;) is an edge. Its length, the
natural number n, is denoted £(G). We usually keep track of the rype of the gallery,
the sequence

MG) == {Aci,ciy1), i =0,1,...n—1}.

A segment of length k of gallery G is just a subsequence (¢;, Ci+1 ..., Ci+k), k <n,
itself regarded as a gallery from ¢; to c¢; 1, with an inherited type.

A circuit gallery (or just plain “circuit”) in a chamber system C = (C, E; A)
over / is just a circuit in the underlying graph (C, E). The type of a pointed circuit
(co, c1, - - ., cp) is the circular sequence of types

)"(G) = ()‘(C()s Cl)v ] )\(Cn—lv Cn = C()), )"(601 Cl))-

We say that a gallery G = (co, c1, - - ., ¢y) is p-reduced (short for “panel-reduced”)
if and only if A(ci—1,¢;) N A(ci, civ1) = D fori = 1,...n — 1, and we include
the extra requirement that if ¢, = cp, so that G is a circuit gallery, then also

A(cn—1, cn) N A(co, c1) = @. Thus, in p-reduced galleries and circuits, no two con-
secutive edges can lie in a common panel.

Panel Homotopy and Reduced Paths

Consider now the collection C; of all circuit galleries of a chamber system C =
(C, E; &), each of which lies in some residue of rank one (depending on the par-
ticular circuit). We call the homotopy with respect to this system of circuits Cy,
panel homotopy since it is defined by the assertion that all panels are contractible.
An example of a panel homotopy of a gallery G = (xg, X1, ..., X,—1, X,) is the
replacement of G by a gallery

/
G =(-XO’x]5""xl‘7]9yl.7xi7"'xl‘lflvxn)v

where the two edges (x;_1, y;) and (y;, x;) share a common type. Such a transfor-
mation G — G’ or its reverse G’ — G is called an elementary panel homotopy.
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Like any C-homotopy, it does not change the initial and terminal vertices of the path
or gallery.

In the case that C is a chamber system with a single-valued type function (that is,
exactly one type is assigned to each edge) the discussion is simpler. Every gallery
G = (x0,X1,...,Xn—1,%,) now has a type consisting of a sequence of types
(A(x0, x1), - ..y A(Xn—1, X)) Which we render as a word A(g) := f;---t, where
t; = A(xj_1, x;), with the understanding that A(G) = ¢ if G has length zero. [We
let £(G) = £(A(G)) so that “£” may record the length of a word, as well as a
gallery.] Then the type of a concatenation of galleries is just the concatenation of
the sequences of types. We now see that if the types of two consecutive edges in a
gallery are the same, we can shorten the length-two segment they comprise to one
of length one by an elementary panel homotopy. The two consecutive edge types
are then coalesced to give the types of the result of the homotopy. This process of
coalescing consecutive types in a sequence eventually leads to a shorter sequence
in which consecutive edges share no common type. When this is done to the type
A(G) of a gallery G, we call the unique result A(G) the p-reduced type of the gallery
G. Thus a gallery of type (11454465776) has unique p-reduced type (14546576).
Clearly a gallery G is panel-homotopic to a gallery g of p-reduced type (that is, ¢ is
p-reduced in the basic terminology of the previous section).

When A is not single-valued, the coalescing process which converts a type to a
p-reduced type exists but the p-reduced types obtained may no longer be unique.
The lemma below states what we know.

Lemma 9.4.1 In general, the following hold:

1. Every gallery (circuit) is panel-homotopic to a p-reduced gallery (circuit) (as
defined in the previous section).

2. In the case that the type function A is single-valued, every gallery is panel homo-
topic to a gallery of reduced type. Moreover; if gallery G is panel homotopic to
gallery H then X(G) = )A\(H).

Proof 1. We prove this part in the case of circuits, but the proof is virtually the same
for galleries that are not circuits — just one less edge to consider.

Suppose G = (x0,X1,...,Xn—1,X, = Xp) is a circuit with edges e; =
(x0, X1), ..., ey = (x,—1, x,) of minimal length with respect to not being panel-
homotopic to a p-reduced circuit. Then n > 2 and G cannot be panel-homotopic to a
circuit of shorter length. Then there is a smallest index k such that A(e1)NA(ex) = .
Then ¢ := (xo, xx—1) is an edge bearing a non-empty set of labels and G is panel-
homotopic to the circuit G’ defined by the edges (e/l, Cky Chtlys---s6n). fk > 2,
then G’ is shorter than G which is impossible. Thus k = 2, and so A(e1) N A(ey) is
empty. By a similar argument, A(e;) N A(ej+1) = @, and so G itself is a p-reduced
circuit.

2. The statements concerning chamber systems whose type function is single-
valued are immediate from the first part and the discussion in the paragraph preced-
ing the statement of the lemma. O
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Corollary 9.4.2 Suppose (C, E; ) is a chamber system satisfying these
hypotheses:

(typ) The type function A assumes only single values on edges.
(Cir(n)) Except for the circuits of length zero, C has no circuits of p-reduced type
of positive length less than 2n.

Then every gallery of p-reduced type of length at most n is a geodesic.

Proof We first observe that any geodesic path or gallery must have its successive
edges labeled by distinct types. Otherwise, it would be panel-homotopic to a shorter
gallery connecting the same initial and terminal vertices, and so could not be a
geodesic.

Suppose G = (xo, . .., xg) is a gallery of p-reduced type. Without loss of gener-
ality, one may suppose its type to be A(g) = t1f2 - - - 4, a word of length £(g) = d
with letters t; € I with#; # tj4+1,i = 0,...,d — 1. Now if G is not a geodesic,
there is a geodesic gallery H = (xq, y1, ..., Ye = Xg) of length £(H) = e strictly
less than d. Then as d < n, the circuit F := G o H~! has length less than 2n.
By Lemma 9.4.1, this circuit is panel-homotopic to a p-reduced circuit F of length
A(F) = £(.(G o H™1)), where

O(GoH Y <t(GoH YY=d+e<n.

(Note that the first term is the length of a word, while the second is the length of a
gallery.) Then, by (Cir(n)), Fis length zero, so Go H ~1 must be panel-contractible.
It follows from Theorem 1.3.3, p. 1.3.3, Chap. 1, that G is panel-homotopic to H,
whence by Lemma 9.4.1, part 2,

AMG) = A(H). (9.25)

But the left and right sides are respectively A(G) and A(H) since G and H are
both of reduced type. Yet these words have lengths d and e¢ < d respectively, a
contradiction. Thus x, has distance d from x( so G is a geodesic gallery. O

Example 8 Consider the following simple chamber system over the typeset {1, 2}.
The graph is a four circuit (a, b, ¢, d, a) with a diagonal edge (a, c) adjoined. The
edges are assigned type sets as follows; edges (a, b) and (b, ¢) are type {1}, edges
(c,d) and (d, a) are assigned type set {2}, and edge (a, c) is assigned type set {1, 2}.
Then the panels of type 1 are {a, b, ¢} and {d}, those of type 2 are {a, c, d} and {b}.
Note that there are no non-trivial circuits of p-reduced type of length greater than
zero whatsoever.

9.4.2 The Chamber System of a Generalized Polygon

The First Definition of Generalized n-gon

Let C = (C, E; A) be a chamber system over {1, 2}. Then C is a generalized n-gon
(n is an integer greater than one or the symbol co) if and only if:
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(typ) The type function A assumes only single values on edges.

(Dia(n)) The graph (C, E) has diameter at least n and is firm if n = oco.

(Cir(n)) Except for the circuits of length zero, C has no circuits of p-reduced type
of length less than 2n.

(Ch(n)) For any geodesic gallery G of type (1,2, 1,2, ...) connecting two cham-
bers x and y at distance n, there is a second geodesic gallery of type
(2,1,2,1,...) connecting x to y. A similar statement with the types ‘1’
and ‘2’ transposed is also assumed.

We extend this definition to the case that n = oo by viewing (1) axiom (Dia(c0))
to mean that C is connected, (2) axiom (Ch(co)) to be vacuous, and (3) axiom
(Cir(o0)) to assert that there are no p-reduced circuits of positive length whatsoever.

If we wish to assert that chamber system C is a generalized n-gon but do not
wish to specify n, we say that C is a generalized polygon.

Lemma 9.4.3 Let C = (C, E; L) be a generalized n-gon over type set {1, 2}. Then
the following statements hold:

1. C is residually connected.

2. Any gallery of length d < n is of reduced type if and only if it is a geodesic
path of length at most n. When n = 00, all galleries of panel-reduced type are
geodesics.

3. If n # oo, circuits of reduced type and length 2n exist. All such circuits are
isometrically embedded in the underlying graph (C, E). Every vertex lies in such
a circuit. The chamber system is firm.

4. Every geodesic path of length d less than n can be extended to one of length
d+ 1. As a consequence, every edge is in a circuit of reduced type and length 2n.

5. Suppose n is finite. Then, for any two chambers c and d, there exists a p-reduced
circuit of length 2n containing them.

6. The graph C = (C, E) has diameter n.

7. Every panel is strongly gated in (C, E).

Proof 1. A panel of type 1 cannot intersect a panel of type 2 in two distinct chambers
x and y, for otherwise (x, y) would become an edge of type {1, 2} against A being
single-valued. Thus every chamber is the intersection of the panels that contain it.
Since (Dia(n)) implies C is connected (even when n = 00), we see that C satisfies
all the requirements of being residually connected.

2. As commented at the beginning of the proof of Corollary 9.4.2, every geodesic
gallery has p-reduced type. Conversely, in view of (typ) and (Cir(n)), Corollary 9.4.2
also tells that any gallery of length at most n is a geodesic if it has p-reduced type.
When n = oo, (Cir(n)) holds for every positive integer n, so in that case, the same
corollary implies that every path of p-reduced type is a geodesic.

3. Now by (Dia(n)) there exists somewhere a geodesic of length n, and so by
(Cir(n)) there is a circuit G of length 2n and p-reduced type 1212 --- = (12)". Any
two antipodal vertices of this circuit — say x; and x;4, — are connected by a gallery
of length n (a segment of G) of p-reduced type. By part 2 just proved, this gallery is
a geodesic. It follows that G is isometrically embedded in (C, E).
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Let y be any further vertex. We claim that y is distance n from some vertex and
so by (Cir(n)) lies in a circuit of p-reduced type (12)". Now the circuit G of the
previous paragraph was itself such a circuit and if y were one of its vertices our
claim would be fulfilled. So assume H = (y = yo,...,Ysa = Xo) is a gallery of
shortest length connecting y to a vertex x¢ of the circuit G. Then d > 1 and H
has p-reduced type. By transposing the name of the types, if necessary, we assume
the edge (y4—1, ya = xo) has type “2.” Then we name the vertices of G so that
G = (x0,X1,...,X2n—1,Xp = Xpo) in the orientation that produces the p-reduced
type 1212 - - -. Then we may extend H by concatenting it with an initial segment of
G to produce a gallery

H' = (Y0, Y1, -+ Yd = X0: X1, - -, Xn—qd)

of p-reduced type and length n. By part 2, this gallery is a geodesic, and our claim
is proved.

Since each vertex lies in a circuit of type (12)", the panels which contain it have
at least two chambers. Thus C is firm.

4. Suppose G = (xp, ..., xq) were a geodesic path of length d, 0 < d < n.
Then G has p-reduced type. Let i € {1, 2} be the type of its last edge (xg—_1, x4).
Since C is firm, x4 lies on an edge e = (xg4, x4+1) of type j where {7, j} = {1, 2}.
The concatenation G o e now has p-reduced type and length at most n and so is a
geodesic extending G by part 2.

5. By the diameter assumption, the two chambers ¢ and d are connected by a
geodesic path of length d < n. By iterating part 4, if necessary, this geodesic can be
extended so that it is an initial segment P4 of a geodesic path Py of length n. This
extended path P,y has type 12121 - - - (n factors), and so by (Ch(n)) there is another
path Q. of type 21212 - - - (n factors) connecting ¢ to f, and clearly P.r o (ch)_l
is a circuit of panel-reduced type containing the two chambers ¢ and d.

6. Suppose G = (X, . .. Xp, X,41) Were a geodesic path of length n 4- 1. Without
loss of generality, we may suppose it has type 1212---ij where {7, j} = {1, 2}.
Now, by (Ch(n)), there is also a gallery H = (xo0 = Y0, y1,...Yn = Xp) of type
2121 ---ij and length n connecting xo and x,. Since x, is i-adjacent to both y,_1
and x,1, the latter two are either equal or i-adjacent. But either possibility is pro-
hibited by the fact that x¢ and x4+ are at distance n + 1. Thus no such geodesic of
length n + 1 can exist. So the diameter is at most n which, with (Dia(n)), proves the
assertion 6.

7. Suppose P is a panel, say of type 1. Let y be any chamber. We must show
that P is strongly gated with repect to y. Since P is a clique it is already isomet-
rically embedded so it is enough to show that P is gated with respect to y when
y is not in P. Suppose x; and x, are two distinct chambers of P achieving the
minimal distance d from y to any element of P. Then there is geodesic gallery
G=,Y1,---»Yd—1, Y4 = x1) from y to x. Since y;_1 is not in P, the last edge
(¥4—1, x1) must be type 2. Then the gallery G o (x1, x2) is of p-reduced type and
length d + 1. If d < n, then by part 2, G o (x1, x2) is a geodesic, against x, being
distance d from y. Thus 7 is finite and by part 5, d = n exactly. In this case (Cir(n))
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shows that there is a second gallery G" = (y, y{,....,y,_. ¥» = x1) of reduced
type with the last edge (y x1) being type 1. But in that case, y; |, € P, against
the minimality of d.

Thus P contains a unique chamber nearest y, for any y, and we are done.

All parts of the lemma have been proved. O

/
n—1°

When one encounters an omnibus lemma following a definition, one can usually
extract other equivalent definitions from various subsets of the listed properties. This
case is no exception.

Equivalent Definitions of Generalized Polygon

We first record the following observation.

Lemma 9.4.4 Letr C = (V, E; A) be any chamber system of rank |I| = 2. The
following statements are equivalent:

1. C is residually connected.

2. C is connected and each edge of C bears a single label — that is, two adjacent
vertices are j-adjacent for a unique j € I.

3. C is connected and any two distinct panels intersect in at most one chamber.

The proof is an easy exercise (part of Exercise 9.10).
In [105] R. Scharlau considers the following axioms for a chamber system C
over the type set I = {i, j}:

(CS0) The chamber system C is residually connected.
(CS1) For any vertex ¢ € V and k € I, there exists a chamber ¢’ which is k-
adjacent to c.
(CS,2) C contains no p-reduced circuit of positive length less than 2n.
(CS,;3) If a gallery from c to d has type type ijij - - - (n-factors, ), then there is also
a gallery of type jiji - - - (n factors) from c to d.

For the purpose of distinguishing axiom systems, we shall refer to the four
axioms above as the “Scharlau presentation.” Let us compare these axioms with
the axioms for a chamber system of the previous section:

® The first axiom (CSO0) asserts two things: (1) that C is connected and (2) that any
two panels meet in at most one chamber. As a result, an edge connecting two
chambers cannot bear both labels i and j. Thus

(CS0) = (typ).
® Axiom (CS1) is just the assertion that C is firm — that is, all panels contain at

least two chambers.
® (CS,2) is exactly the assertion (Cir(n)).
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e (Clearly (CS,3) implies (Ch(n)). But the latter is conceivably weaker than the
former — at least if it is possible to have a gallery of type ijij--- of length n
which is not a geodesic.

For any chamber system C define the p-reduced girth to be the smallest length
of a p-reduced circuit of positive length. Then axiom (CS,,2) just says that C either
has no p-reduced circuits, or has p-reduced girth at least 2n.

Now consider the following condition:

(CS,4) For any two chambers ¢ and d, there exists a p-reduced circuit of length 2n
containing ¢ and d.

When 7 is infinite, we interpret axiom (CSso4) to assert (CS0O) and (CS1)
together.

Note that if two chambers x and y of a chamber system over {i, j} formed an
edge e with A(e) = {i, j} — that is, x and y are both i- and j-adjacent — then
the edge e could never participate in a p-reduced gallery of length two or more. It
follows that (CS,4) implies (typ) as well as the fact that (C, E) is connected. Thus
the following arises.

Lemma 9.4.5 For a rank two chamber system C, condition (CS,4) implies condition
(CS0) — that C is residually connected and (CS1) that C is firm. (Of course, if n is
finite, it also implies that 2n is an upper bound for the p-reduced girth.)

We now have the following.

Lemma 9.4.6 For a chamber system C of type {i, j}, the following conditions are
equivalent:

1. The Scharlau presentation: (CS0), (CS1), (CS,2) and (CS,3).
2. (CS,2) and (CS,4).
3. Ifn < oo, C has p-reduced girth 2n, and (CS,4) holds for all n.

Proof The equivalences are trivial if n = oo. In that case they all assert that C is
residually connected and firm and that there are no p-reduced circuits of positive
finite length.

So we assume n < 00.

Note that (CS,2) asserts that the p-reduced girth is at least 2n, while (CS,4)
implies it is at most 2n. Thus 2 and 3 are equivalent statements.

First we show that 1 implies 3. Since (CS,,2) implies the p-reduced girth is at least
2n, and (CS,4) implies that it is no more than 2n, it suffices to prove (CS,4). Now
choose two chambers ¢ and d (possibly the same chamber). Then as C is residually
connected (condition (CSO0)) there is a geodesic G from c to d which is of p-reduced
type. Since C is firm it can be extended to a gallery G o H of length n of p-reduced
type — say ijij- - - (n factors), transposing i and j, if necessary. Then by (CS,3)
there is a gallery F from c to the terminus of G o H of type jiji - - - (n factors) and
G o H o F~! is the desired circuit of length 2n of p-reduced type on ¢ and d. So
(CS,4) holds.



9.4 Generalized Polygons 331

Last, we show that 3 implies 1. Assume 3. By Lemma 9.4.5, (CS,4) implies
(CS0) and (CS1) Also the statement on p-reduced circuits in 3 implies (CS,2). It
remains only to show (CS,,3). Suppose ¢ and d are chambers joined by a gallery of
type ijij - - - (to exactly n factors). Applying (C S, 4) to ¢ and d yields the conclusion
of (CS,3). The proof is complete. O

Now we have the following.

Corollary 9.4.7 Any chamber system over I = {i, j} satisfying any of the three
equivalent conditions of Lemma 9.4.6 is a generalized n-gon.

Proof Assume the Scharlau axioms. If n is infinite, C is connected and firm and
(typ) holds. Then C is a generalized polygon. So we assume 7 is an integer larger
than 2.

First, (CS0) implies (typ) and the fact that C is connected. (CS,,2) is the same as
(Cir(n)) and (CS,3) implies (Ch(n)). It only remains to be shown Dia(n). Since C
is connected, it suffices to show that there exists a geodesic of length n and that no
geodesic has length n 4 1.

From firmness, any chamber x is the initial term of a gallery G of length exactly
n and p-reduced type ijij - - -. Since (typ) and (Circ(n)) hold, G is a geodesic of
length n by Corollary 9.4.2.

Now suppose H = (xo, X1, - . ., Xn, Xp41) Were a geodesic gallery of length n+1.
Then we can write H = G o (x,, x,+1), Where G is a geodesic of length n and
p-reduced type — say, #jij - - - (n factors) and ending with type k = A(x,—1, x,) €
{i, j}. By (CS,3) xo is also connected to x, by a gallery F := (X0, Y1, ..., Yn = Xn)
of type jiji - - - (n factors) ending in k', where {k, k'} = {i, j}. Now A(x,, Xpt1) is
either k or k. Thus x,+ is distance one from either x,_; or y,—1. In either case, it
cannot be distance n + 1 from xo, contradicting the fact that H was a geodesic of
length n + 1. Thus no such H exists and (C, E) has diameter n exactly. The proof
is complete. O

A Metrical Definition of Generalized r-gon
Here is a very important variation due to R. Scharlau.

Lemma 9.4.8 (R. Scharlau [105].) Suppose C = (C, E; X) is a rank two chamber
system over I = {i, j}. Then C is a generalized n-gon, n > 1 if and only if the
following hold:

(typ) The type function is single-valued.
(F) C is firm.
(PG) C is connected and each panel is gated.

Remark When n = oo we interpret Diam(n) to assert that C is connected and that
arbitrarily large distances between points occur.

Proof If C is a generalized n-gon, then (typ) holds a fortiori and the remaining
properties hold by Lemma 9.4.1.
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Suppose C is a rank-two chamber system with all of the properties, (typ), (F),
(PG). If there are no p-reduced circuits of positive length, C is a generalized co-gon.

So we may assume there exists a p-reduced circuit of minimal possible length —
say E = (co,C1,...Cn1,Cp €y, - - -, €}, o) (the notation is chosen so that ¢; and
c),_; occupy antipodal positions in the circuit, i =0, ...,n — 1. (Note that in rank
two, any p-reduced circuit must have even length; so 2n is the p-reduced girth.) By
the minimality of n, we have the condition Cir(n) = CS,2. Since (typ) is assumed,

Lemma 9.4.1 implies
Step 1. Every p-reduced gallery of length at most n is a geodesic gallery.

Next we shall show the following.

Step 2. For any chamber d at distance at most n from cy, the two chambers cy and
d lie together in a circuit of p-reduced type and length 2n.

This result is trivial if d is on the circuit E. Suppose G = (co, d1, da, . .., dy) is
a geodesic gallery from cp to d where we assume that s = d¢(co, d) < n. Now the
type of (cp, d1) must agree either with that of (co, c1) (say, type i), or with that of
(co, c}) (say, type j). Without loss of generality we assume d is i-adjacent to both
co and ¢y, while (c’l, cp) and (c1, c2) are j-adjacencies. In particular, d; # c’l. In
Fig. 9.6 we have tried to represent the “general position” of this configuration. Note,
however, that it is possible that d; = ¢, and after that d» = ¢3, — and that in fact
the geodesic G from cg to ds may wrap nearly around the bottom half of the circuit
E in Fig. 9.6.

Now, for each ¢t with 1 <t <s, the gallery

. / / /
Gl = (dhdlflv ’dl’ €0, Cp, Cp, "'Cnft)

is p-reduced of length n and hence by Step 1 is a geodesic. We make the following
statement:

(Claim) Given G,;, 1 <t <'s, there exists a gallery G from d; to c|,_, whose type
is “opposite” G, (that is i and j have been transposed).

_____ Co

Fig. 9.6 The configuration for Step 2. Here the minimally chosen circuit for this step is £ =
(co, €1y Cne1,Cpys c;hl, e c’l, co) (the notation is chosen so that ¢; and c;l_l- occupy antipodal

positions in the circuit,i =0,...,n — 1)
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We prove the claim by induction on ¢. To prove it at the induction step 7 to t + 1,
we replace E by the circuit E' := G, o (G;‘)’l, and apply induction. So it suffices
to prove this assertion when ¢ = 1.

Now if dj is in e there is nothing to prove. So we see that d; is distance one from
both ¢o and c; by the same i-panel. Thus by Step 1, d; is distance n from both ¢,
and c],_,, which are distinct elements of some k-panel P. Thus by (GP) there is a
chamber p in P at distance n — 1 from d. Let H be a geodesic of this length from
ptody. Then G := (di, co, ¢}, ...c,_)and H ' o (p, c,—1) is the desired G7.

Thus the claim is proved. But now the claim implies the assertion of Step 2.

Step 3. Any two chambers at distance at most n from one another lie in a common
p-reduced circuit of length 2n.

Suppose x and y are chambers at distance s < n. Since C is connected andn > 1,
there is a finite sequence of chambers (co = xo, X1, ..., Xn—1 = X, X, = y) such
that x; has distance at most n from x;+1. Now by Step 1 there is a p-reduced circuit
of length 2n on both ¢ and x1, and by iterating Step 1 with x; in the role of ¢, there
is such a circuit on x,,—; = x and x,,, = y.

Step 4. Axiom (CS,4) holds. That is, any two chambers lie in a p-reduced circuit of
length 2n.

In view of Step 3, it suffices to show that there are no pairs of chambers at dis-
tance greater than n — equivalently (since C is connected), that no geodesic paths of
length n + 1 exist.

Suppose by way of contradiction that there are two chambers x and y at distance
dc(x,y) = n + 1. By interposing the penultimate chamber z of a geodesic from x
to y, we have dc(x, z) = n and z is i-adjacent (say) to y. Now by Step 3, there is a
p-reduced circuit on x and z, say

E =X =Xx0,X1,..., %0 =2, Xpt1s ..., X2n—1, X2p = X).

Now of the two edges of the circuit on z, one is labelled i and carries a chamber 7’ =
Xn—1 OF x,41 at distance n — 1 from x. But 7’ is i-adjacent to y by the fundamental
property of a chamber system. That conclusion contradicts d¢(x, y) = n + 1. Thus
no geodesics of that length exist, and the proof of Step 4 is complete.

We conclude at this stage that property 2 of Lemma 9.4.6 holds. It follows that
C is a generalized polygon by Corollary 9.4.7. O

Remark The minimal p-reduced circuits of length 2n which appear throughout the
proof of Scharlau’s metrical characterization theorem are called apartments of the
generalized polygon. Basically, that proof establishes that any two chambers lie in
a common apartment. Later we shall meet this notion of “apartment” in the gen-
eral context of buildings. Again we will be interested in the property that any two
chambers lie in an apartment.
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9.4.3 Generalized n-Gons as Geometries

Having noted that a generalized n-gon is a residually connected chamber system
C, one may ask what special properties characterize the geometry I'(C). Here the
definition is especially simple.

In an arbitrary graph, the girth is the minimal length of a circular walk of positive
length having no repeated edges.'”

A geometry over {1, 2} is called a generalized n-gon geometry if and only if:

(GP1) Itis a bipartite graph of girth 2n.
(GP2) It has diameter n.
(GP3) If n is infinite, then every vertex is on at least two edges.

When 7 is infinite we interpret the first two axioms in the following way: (1)
the girth assumption (GP1) becomes the assertion that there are no circuits (circu-
lar tours) of positive length, and (2) the diameter assumption (GP2) is read as the
assertion that the graph is connected. Thus if n = oo, I' is simply a tree with no
degree-one vertices (“leaves”).

Note that if I' = (P, £) is a generalized n-gon geometry, then I' is connected
because it has diameter n (as understood allowing n to be infinite). The second
observation is that the properties listed make no reference to any particular compo-
nent of the bipartite graph. That is, if we choose to view this bipartite graph as a rank
two incidence geometry of points and lines, then any consequence of the axioms
stated in this language would also be true if lines and points were transposed, while
preserving incidence. In a few words: if (P, L) is a generalized polygon, then so is
its dual geometry, (L, P).

From now on, we view this graph as the incidence graph of a point-line geometry
I' = (P, £). If we wish to say that T is a generalized n-gon for some n € N U {oc},
but otherwise do not wish to specify n, we say that I" is a generalized polygon
geometry.

We begin with an observation. Suppose I" is any (simple) bipartite graph viewed
as arank two geometry. Then the chamber system C(I") is simply the edge graph of
I with the edge-labelling recording in which component a vertex of two intersecting
edges lies. Then, of course, axiom (typ) holds for C(T").

Conversely, suppose C is a chamber system of rank two. Then, of course, I' (C) is
the bipartite graph recording when panels of distinct type may intersect non-trivially.
We now notice the following very elementary facts.

Lemma 9.4.9 Suppose I" and C are respectively a rank two geometry and a rank
two chamber system over the same index set [ = {i, j}. Assume either (i) C = C(I"),
or (ii) I' = T'(C). Then the following statements hold:

10'Some books call such walks a circular tour. Note that the “backtracks” of Chap. 1 are excluded
by this requirement. Otherwise all graphs would seem to have girth two!
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1. T is connected if and only if C is.

2. Assume that C has (typ). Then T has no vertices of degree one if and only if C is
firm.

3. Assume C is residually connected and firm. Then there is a bijection between the
p-reduced circuits of C and the circular walks of I whose succesive edges are
distinct.

Proof The first statement is trivial.

Consider the second statement. Suppose C = C(I'). Then each panel of C is
the collection of all edges on a vertex of I' so the stated equivalence follows. Now
suppose I' = I'(C). If P were a vertex of I on only one edge then it would be a
panel of type i, say, intersecting only one panel R of type j. If C were firm each
of its chambers would be j-adjacent to another distinct chamber forcing P C R.
Since | P| > 1, the assumption (typ) (here artificially imposed) must fail. Thus (typ)
and firmness of C imply that each vertex of I' is on at least two edges. Conversely,
suppose each vertex of I" has degree at least two. Then each panel of one type meets
at least two other panels of the other type, and so contains at least two chambers
(even without assuming (typ)). Thus C is firm.

For the third statement, I and C are both derived from each other by the functors
(see Lemmas 9.2.6 and 9.2.7). Now any circular walk with successive edges distinct
becomes a sequence of edges with any two successive members of the sequence —
but never three successive members — sharing a common vertex. This becomes a
circuit in the edge graph which is a p-reduced circular gallery. Conversely, any cir-
cular p-reduced gallery of C has its edges corresponding to panels of types i and j
successively alternating. These panels are thus vertices in I" forming a circular walk
with successive edges distinct. O

Theorem 9.4.10 The following statements hold:

1. A generalized polygon geometry U = (P, L) is always residually connected, and
its associated chamber system C(I") is a generalized polygon.

2. If the chamber system C = (C, E; 1) is a generalized polygon, then its associ-
ated geometry T (C) is a generalized polygon geometry.

Proof First we prove the result when the parameter n in each definition is infinite.
In this case, a generalized polygon geometry I' is a tree with no vertices of degree
one. So it is connected and each vertex is in a flag-chamber (that is, an edge). Thus it
is residually connected. Then by Lemma 9.4.9, C = C(T") is residually connected,
firm, and has no p-reduced circuits of finite positive length.

Similarly, when n = oo, a generalized polygon C = (C, E; A) is residually
connected, firm, and possesses no p-reduced circuits of finite positive length. Then
I' = T'(C) is residually connected and by Lemma 9.4.9 has no circular walks with
successive edges distinct except for the trivial walk (and so is a tree) and has no
vertices of degree one.

From now on we assume the parameter 7 is finite in both statements.

The proof of the first statement proceeds through a series of five steps.
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Assume I' is a generalized polygon geometry with parts P and L. Let
e = (a1,az) and f = (b1, by) be two distinct edges of the bipartite graph I.
Of the four possible distances dr(a;, b;), choose notation for these vertices so that
dr(ai, by) is the smallest distance d. Since I" is bipartite, dr(ay, b2) = dr(az, b1) =
d + 1. Then there are two cases: (1) dr(az, b)) = d + 2 and (2) dr(az, bp) = d. In
case (1), for any geodesic path G from a; to by, the path (a2, a;) o G o (b1, b>) isa
geodesic path of length d + 2, and so d < n — 2. In case (2), there are geodesic
paths G and H of length d connecting a; to by and ay to by, respectively and
W = (a2,a;) o G o (by,b2) o H™! is a circular walk with at least two distinct
edges. It follows that some subset of the edges forms a walk with consecutive edges
distinct, which necessarily has length at least 2n by the girth assumption. Thus the
length of W, which is 2d + 2, is bounded below by 2n. On the other hand d < n —1,
since the graph diameter 7 is at least dr(ay, by). Thus d = n — 1 exactly. Then the
girth assumption reveals that the circular walk W is itself a minimal circuit of length
2n. Thus we conclude the following.

Step 1. Given any two distinct edges e and e> of a generalized polygon geometry T’
of diameter n < oo, either (1) they are the first and last edges of a geodesic path,
or (2) they are antipodal edges of a minimal circuit of length 2n.

Next, observe the following.
Step 2. In a generalized n-gon geometry every vertex is on at least two edges.

We had assumed this when # is infinite, but must now prove it in the finite diameter
case. Because we then have finite girth, the collection T of vertices on at least two
edges is non-empty. Suppose by way of contradiction that x is a vertex on a unique
edge e = (x, y) (there is at least one edge on x since I' is connected and n > 1).
Choose ¢t € T so that the distance d = dr(x, t) is maximal. Now ¢ is on two distinct
edges, e; := (t,s;), i = 1,2, and each s; is at distance d — 1 from x and distance
d — 2 from y from the minimality of d and the uniqueness of y. That means there is
a circular walk of length 2(d — 2) + 2 = 2d — 2 incorporating the distinct edges e;
each exactly once and so there is some circular walk with consecutive edges distinct
of length smaller than this, but length at least four. The girth assumption forces
2d —2 > 2n sod > n, contrary to the assumption on diameter.

Step 3. In a generalized n-gon geometry any geodesic path of length d < n can be
extended to one of length d + 1.

This is an easy step. Consider a geodesic path G from u to v of length d < n. By
Step 2, there are at least two edges on v. If G cannot be extended, v is adjacent to
two vertices, each of distance d — 1 from u. Their geodesics to u, together with the
path of length 2 from one to another through v, can be assembled into a circular
walk of length 2(d — 1) 4+ 2 = 2d having two edges used just once. Thus the girth
assumption yields 2d > 2n, againstd < n.
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Now let us return to Step 1. Suppose e; and e, are two edges of I" which are the
first and last edges of a geodesic path G. If this path G has length less than d, then
by Step 3, it can be extended to a geodesic path P := G o H of length n. Otherwise
it already has length n and we write G = P. In either case P is a geodesic path
with terminal vertex ¢ and initial vertex s incident with edge e;. By Step 2, ¢ is on
an edge f = (¢,r) not in path P, and it is easy to see that edges e¢; and f are in
Case (2) of Step 1. This means there is a minimal circuit of length 2n incorporating
the path P. We have just proved the following.

Step 4. If T is a generalized n-gon geometry with n finite, then the rank two cham-
ber system C(I') satisfies axiom (CS,4) — any two chambers are on a p-reduced
circuit of length 2n.

We can now conclude with the following.

Step 5. If T is a generalized n-gon geometry with n finite, then the rank two chamber
system C(I") is a generalized n-gon.

Since I" has girth 2n the bijection in Lemma 9.4.9, part 3, shows that a minimal p-
reduced circuit of C(I") has length 2n. Thus C(I") now satisfies (CS,2) and (CS,4).
By Lemma 9.4.6, C(I) is a generalized n-gon.

The second statement of the theorem is easier to prove. Assume the chamber
system C over I = {1, 2} is a generalized n-gon, for finite n. Then C is residually
connected and the geometry I' := I'(C) is also residually connected. Since C con-
tains panel-reduced girth 2n, the bipartite graph I" also has girth 2n by Lemma 9.4.6.
It follows that I" has diameter at least n, and it remains to be shown that it is no larger.
By way of contradiction, suppose g = (xg, X1, ..., Xn, Xn4+1) Were a geodesic path
of length n + 1 in the graph I'. Letting ¢; denote the edge (x;, x;+1), we obtain
a gallery G = (eg, €1, ..., e,) of length n and alternating type — say 1212---i.
Then by (CS,,3) there is a second gallery G' := (eq, f1, f2, ..., fu_1,€n) Of type
2121 --- j where {i, j} = {1, 2}. Now the f; are edges of I" and, because ¢ and f}
are 2-adjacent, f contains point xq rather than x;. Similarly, the edge f,,—1 cannot
contain x,, and so must contain x,1. Thus putting f1 = (x0, y1), fi = (Vi—1, i),
i=2,...n—2and f—1 := (Yp—2, Xn+1), we have a walk (xg, y1, ... Yn—2, Xn+1)
of length n — 1, a contradiction to the assumption that xo and x,; were at distance
n + 1. Thus I" has diameter exactly n and I' is a generalized n-gon geometry.

The proof is complete. O

Generalized Polygons as Point-Line Geometries

As previously noted, a generalized polygon geometry can be regarded as the bipar-
tite incidence graph I' of a geometry I' = (P, £) of points and lines. The use of
the symbol I" in both cases is not an abuse of notation, for the expressions attached
to the symbol in both cases really represent the same thing. The difference in the
two views is just a matter of metaphysical constructions. Normally, we think of G
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as a bipartite graph. But if there are no repeated lines, we can also view it as a set of
points, together with a distinguished collection of subsets of the point set, namely
the lines. This change in viewpoint introduces a change in the way we describe
things. For example, one now has notions such as partial linear space, subspace, and
more importantly, the metrical features of a new graph — the point-collinearity graph
A = (P, ~). In this section we wish to reconsider generalized n-gon geometries for
n > 2 from the point-line point of view.

If the parameter r is infinite, a generalized n-gon geometry I is a tree with no
leaves. In that case each point is on at least two lines, and each line has at least two
points, but otherwise these local incidence numbers may vary wildly from point to
point and from line to line.

If n = 2, the graph I" is a complete bipartite graph, so every point of I is incident
with every line and vice versa. Then we say that I" is a generalized digon.

If n = 3, any two distinct lines of I" are vertices of I" at distance 2 — the same is
true of two points of I'. Thus any two lines are incident with at least one common
point and any two points are incident with at least one line. But since there are
no 4-circuits in I" (that is, no circular walks of length 4 which are not backtracks)
the adjective phrases “at least one” of the previous sentence can be replaced by “a
unique.” Thus I' is a partial linear space in which any two distinct points are on a
unique line (i.e., it is a linear space) and any two distinct lines are together incident
with a unique point. By now you will recognize that I' is a “generalized projective
plane” as defined in Chap. 5.

Similarly, if » = 4, I is a generalized quadrangle as defined in Chap. 7.

For general finite n, a point p and a line L are vertices of the bipartite graph I" at
odd distance from one another. If 7 is even this distance dr(p, L) is less than n so
there is a unique geodesic path of I' connecting them. Thus we have the following.

Theorem 9.4.11 If n is an even number 2k, and T' = (P U L, %) is a gener-
alized polygon geometry, then, as a point-line geometry, I' = (P, L) has these
properties:

(GPLO) Every point is on at least two lines and each line has at least two points
(the latter is required of any point-line geometry).

(GPLI) The point-collinearity graph A = (P, ~) of I has diameter k.

(GPL2) If p is a point, and L is a line, then there is a unique point q of L nearest
p in the metric of A and the geodesic path in A from p to q is unique.

These properties should remind the reader of the form of the axioms for a (non-
degenerate) generalized quadrangle. Similarly we also have the following.

Theorem 9.4.12 Any point-line geometry I' = (P, L) satisfying the axioms
(GPLO), (GPLI), and (GPL2) is a generalized 2n-gon geometry.

The proofs of both of these theorems are left as exercises.
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A Characterization of Generalized Polygons

P. Abramenko and H. Van Maldegham [1] proved the following theorem character-
izing generalized polygons among the classes of rank-two geometries.

Theorem 9.4.13 Let I' = (P U L, %) be (the incidence graph of) a connected firm
rank two geometry of finite diameter n, n > 3. Suppose:

(AV) For each pair of vertices x and y at distance n — 1 in T, there is a unique
vertex adjacent to y which is at distance n — 2 from x.

Then T is a generalized n-gon.

Corollary 9.4.14 Suppose a point-line geometry (P, L) and its dual (L, P) are both
(connected) near n-gons. Then both are in fact generalized n-gons.

Remarks (a) At first sight, the condition (AV) seems to do little to prevent the bipar-
tite graph I" from possessing circuits of length 2d smaller than 2n. But, as we shall
see, it is actually a powerful hypothesis.

(b) The proof in the Abramenko-Van Maldeghem paper [1] involves 1-twinning!'!
(a special “opposite” relationship among flags) in the “flag graph for I'”” — that is,
the chamber system graph C(I") with the edge-labels ignored. In order to avoid the
introduction of concepts which would be used in this book in only one instance, we
venture to present below an alternative proof of the Abramenko—Van Maldeghem
theorem, using only the incidence graph I' = (P U L, %).

Proof of Theorem 9.4.13 Throughout, I' = (P U L, %) is a connected bipartite graph
(with parts P and £) of diameter n, satisfying the axiom (AV), and having each
vertex on at least two edges (firmness). The term “geodesic path” will refer to a
path whose length is the graph-theoretic distance between its initial and terminal
vertices.

In order to indicate exactly how the axiom (AV) is being used in each instance,
for a pair of vertices x and y with dr(x, y) = n — 1, we consider the following
assertion:

[AV](x, y): There is exactly one vertex at distance n — 2 from x that is adjacent
to y.

The proof proceeds by a series of steps.

Step 1. Suppose p = (xo, X1, - . ., X,) is a geodesic path of length n. Suppose y| €
xot — {x1}. Then d(y1, x—1) = n.

11 The important notion of 1-twinning, due to Miihlherr [90], is studied in a wider context in the
beautiful paper of Abremenko and Van Maldeghem. This rich paper contains much more than
Theorem 9.4.13 and its Corollary 9.4.14.
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Proof Since T is bipartite, we know d(y1, x,) = n—1so0d(y1, x,—1) =norn—2.
Ifd(y, x,—1) = n — 2, then, noting that d(x¢, x,—1) = n — 1 and that x| # yi, the

axiom [AV](x,_1, xo) is violated. O

Step 2. Every vertex is distance n from some other vertex.

Proof Immediate from Step 1 and the connectedness of T". O

Step 3. Let p = (x0,X1,...,%,) and y; be as in Step 1. Then there exists an
isometrically embedded circuit C of length 2n containing (y1, X0, ..., Xp) as a
segment.

Proof In general, a (pointed) circuit Z = (zo, . .., 22, = 2z0) of length 2n is isomet-

rically embedded in T if and only if, for each vertex x;,i = 0,...,n — 1, one has

dr (x;, Xi4n) = n.

Now we repeatedly apply Step 1. We presently have, d(y, x,—1) = n. Next
choose y; € yll so that d(y2, x,) = n — 2 (this is possible because there is a
geodesic path of length n — 1 proceeding from y; to x,,). Then y» # x¢ and by Step
1 (with yy, y1, and (y1, X0, .. ., Xn—1) respectively replacing yi, xo and path p) we
have d(y»2, x,—2) = n.

That was only a model for the following inductive step. Suppose, for some integer
d,with 2 < d < n — 1, we have obtained a path (y1, y2, ..., yq) with d(y;, x,) =
n—i,andd(y;i, x,—;) =n,fori =1,2,...d. Since d(yq, x,) = n —d, there exists
a vertex y,+1 adjacent to y, and at distance n — d — 1 from x,,. Now apply Step 1
with ys41, yq and (y4, ..., Y1, X0, - .., Xn—gq) in the respective roles of yi, xo, and
p, to conclude that d(yg+1, Xp—a—1) = n.

In this way one forms a circuit,

C := (X0, X15 -+ +» Xn, Ya—1> Yn=25 - - - Y2, Y1, Y0 = X0),

in which antipodal pairs of points (y;, x,—;),i = 0, 1,...x,—_; are all at distance
n. Thus C is isometrically embedded and contains (yi, xo, . .., X,) as a continuous
segment. O

Step 4. Every geodesic path of length k, 1 < k < n, is a segment of an isometrically
embedded 2n-circuit.

Proof First consider the case k = 1. Suppose (xp, x1) is an edge. By Step 2,
there is a geodesic path of length n, having xo as an initial vertex, say r =

(x0, 21,22, ---52n)- If X1 = z2, then p is an initial segment of r. Otherwise by
Step 1, d(x1,z,—1) = n, and p’l = (x1,x0) is an initial segment of r’ :=
(x1, X0, 21, ---,2n—1). Thus either p or p_1 is a segment of a geodesic path of

length n, which by Step 3 is a segment of an isometrically embedded circuit of
length 2n.
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Now suppose, by way of contradiction, that the set ) of geodesic paths that
are not segments of any isometrically embedded 2n-circuit is not empty. Among
such geodesic paths, choose one, say p = (y, xp, ..., Xx4—1), of minimal length
d. From the previous paragraph, we know that d > 1. By the minimality of 4,
the segment s = (xq, x2,...Xx4—1) lies in an isometrically embedded 2n-circuit
C = (x0,...,X2, = x0). If y is a vertex of C, then y = x»,_1, and p is a segment
of C contrary to our choice. Thus y € xo — C and we may apply Step 1 (with y, xo,
and (xp, ..., x,) in the the respective roles of yi, xo, and p of Step 1) to conclude
that (y, xo, ..., Xxp—1) is a geodesic of length n, which by Step 3, is a segment of
an isometrically embedded 2n-circuit, C’. Thus p is a segment of C’, contrary to
the choice p as a member of ). One must conclude that ) is empty, and Step 4 is
proved. O

Step 5. The graph T has girth 2n.

Proof From Step 3, I' contains circular tours (that is, pointed circuits with all ver-
tices distinct) of length 2n. Suppose, by way of contradiction that I had girth less
than 2n. Then there exist circular tours with lengths between 2 and 2n. Among these,
select a circular tour D := (zg, ..., zod) of minimal possible length 2d (the length
is even since I is bipartite), where 2 < d < n.

We claim that d(z;,z; + d) = d (where the indices are to be read modulo
2d) so that D is isometrically embedded. Without loss of generality, we may take
i = 0. Suppose, by way of contradiction, that d(xo, x4) = e < d. Then there
is a geodesic path, ¢ := (x0,11,...,% = X4), as well as the “half-cycle” path
Dy = (xg, x2,...xq). Clearly the paths from xo to x4 are different, and so, as
we proceed out from xg, there is a first instance in which the path ¢ departs from
Dy —say t; = x; fori < k, but fx41 # xk41. Then, after that divergence of
paths, there is a next instance at which the two paths join up — say when 1; = x,,,
min(j, m) > k + 1. Then

T = (s k1 -+ o5 B = Xy Xmn—1s Xip—2, + - » Xk = Ig)
is a circular tour of length
(j—k)+(m—k) <2d. (9.26)

(Note that, since e < d, this equation holds even in the extreme case when k = 0
and m = d (or equivalently, j = e).) But this contradicts the minimality of d. Thus
we have d(xg, x4) = d as well as a similar result for all antipodal pairs of vertices
of D. Thus D is isometrically embedded.

Now, using Step 4, we can extend Dj to a geodesic path (xo, ..., X4, Yi+
1,..., yu). Then d(xo, yu—1) = n — 1, while, d(x24—1, yo—1) = d(x1, yu—1) =
n — 2, against [AV](y,—1, xo). Step 4 is proved. O

Now it follows that I" satisfies axioms (GP1)—(GP3) of p. 334 with n finite, and
so is a generalized n-gon geometry. O
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9.4.4 Existence of Generalized Polygons

As we have seen, the class of generalized co-gons is bijective with the class of trees
with no degree-one vertices. So existence is assured here.

Similarly, when n = 2, we are just dealing with the class of complete bipartite
graphs with at least two vertices in each component part, so existence is assured
here also.

Generalized n-Gons Having Both Thick and Thin Lines

Recall that any vertex of the incidence graph I' = (PUL, %) of a rank two geometry
is said to be thick if it is on at least three edges. The object (point or line) is said to be
thin if it is on exactly two edges. Of course, if I is firm, as in the case of generalized
n-gons, there are no vertices on just one edge, so all vertices are either thick or thin.

In a beautiful paper by Arthur Yanushka [147], it is shown that all generalized
polygons of finite diameter having both thin and thick objects are obtained from a
thick generalized polygon by a certain construction. We describe this theory next.

For any finite integer n > 1, we have defined a generalized n-gon as a bipartite
graph of diameter n and girth 2n. The girth, one may recall, is the minimal length of
a circular tour — that is, a circular path with no edge repeated. With that understand-
ing there is no need to exclude bipartite graphs with multiple edges, for a graph has
multiple edges if and only if it has girth 2.

With this insight, one may define a generalized 1-gon to be a bipartite graph
of diameter 1 and girth 2 — that is, exactly two vertices connected by at least two
(possibly infinitely many) edges. (Note the 1-gon is thick, if the two vertices are
connected by at least three edges.)

Now we construct a generalized polygon with possible thin objects from a thick
polygon. Suppose I' = (PUL, %) is a thick generalized n-gon. Fix a positive integer
k. We construct a generalized kn-gon from the following recipe:

1. Each edge e of the bipartite graph I' is replaced by a path p(e) of length k whose
extremal vertices are those of the original edge e.

2. If e1 and e, are distinct edges of I, the two paths p(e1) and p(e2) shall share no
vertices except possibly the extremal vertices — that is, the original thick vertices
of eq or e.

The result of this replacement is a new bipartite graph kI" whose vertices are the
old (thick) vertices of I" and the new (thin) vertices that are non-extremal vertices
of one of the paths p(e), as e ranges over all edges of I'. Each tour of length £ in
I" is then converted to a tour of length k¢ in kI", and any pointed circular tour of I
becomes a circular tour of length 2k¢, pointed at a thick vertex. It follows that the
graph kT is bipartite of girth 2kn and diameter kn, and so is a generalized kn-gon.

Of course, if k = 1, the edges of I' remain unadulterated, and the graphs kI" and
I' coincide.

Let us examine 31" when I' is the generalized 1-gon consisting of two vertices
connected by three edges. The result is a generalized 3-gon with two thick objects
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and six thin ones. Now (unlike the original 1-gon) 3I" possesses an interpretation

as a point-line geometry: namely the (self-dual ) projective plane consisting of one

thick point incident with three thin points, and one thick point not on that thick line.
This brings us to the remarkable theorem of A. Yanushka [147].12

Theorem 9.4.15 (A. Yanushka.) Suppose I' = (P U L, %) is a generalized n-gon
with n finite, having both thin and thick vertices. Then the thick vertices form a
generalized m-gon T'g where n = km and T is isomorphic to kT'.

The argument is that if two thick vertices of I" are connected by a path of lenth
k, all of whose non-extremal vertices are thin, then all such paths connecting two
thick vertices have this length. The geometry 'y is then recovered by replacing each
such path (whose extremal vertices are thick, and whose non-extremal vertices are
thin) by a simple edge uniquely defined by the path. In this way all thin vertices are
erased.

Theorem 9.4.15 reduces the existence question to thick polygons.

Thick Generalized Polygons

For 2 < n < oo we divide the existence question into two parts: (1) the case that
|'P| is finite and (2) the case of infinitely many points. We consider the finite case
first.

We say that a finite generalized n-gon geometry (2 < n) has order (s, t) if and
only if each point is incident with # 4+ 1 lines and each line is incident with s + 1
points. The order is forced when all points and lines are thick (that is, they are inci-
dent with at least three other objects). When thin objects are allowed, as discussed
in the previous section, there may be no order. For example:

1. A generalized 3-gon is a generalized projective plane which may have both thick
and thin lines. If both types of lines occur, the 3-gon has no order.

2. We have seen that there are cases where a finite generalized quadrangle does not
possess an order. For example, if every point is on just two lines, the quadrangle
may be a grid with two distinct line sizes.

3. A similar absence of an order may occur in hexagons and octagons which have
thin lines or thin points.

Generalized Polygon Geometries of Finite Order (s, ¢)

This much is known: if all lines are thick and all points are thick (that is, they lie on
at least three distinct lines) then the finite generalized polygon does possess an order
(s, t). Of course, the converse fails: there are polygons of order (s, ) with s = 1 or

12 Although the context of the paper seems to be finite polygons, the proof of Theorem 9.4.15,
which is confined to the structural relation between thick and thin vertices, seems to proceed
without using finiteness.
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witht = 1. If s = 1 = ¢, the generalized polygon is just the vertices and edges of a
regular n-gon (or any n-circuit that is a circular path for that matter).

It is easy to show that in a generalized n-gon geometry (P, £) of order (s, )
(n > 2), the number of points and lines are exactly determined. Either

1. nis odd, one must have s = ¢, and

Pl=IL=14s+s>+--+s"7

or
2. niseven and

1Pl = (1+s)1+ (st) 4+ -+ ()" 1),
1Ll = A4+ (st)+ -+ (s)" ).

A key result is the Feit-Higman theorem.

Theorem 9.4.16 (Feit and Higman [62].) Suppose I' = (P, L) is a generalized
n-gon geometry of finite order (s, t). Then exactly one of the following occurs:

1. s =t =1 (the ordinary n-gon).

2. n =2 (the generalized digon).

3. n=3ands =t > 1 (the projective plane).

4. n = 4 (a generalized quadrangle with more than four points).

5. n = 6 and at most one of s and t is 1 or min(s,t) > 1 and st is a square
(generalized hexagons with an order).

6. n = 8 and at most one of s and t is 1 or min(s,t) > 1 and 2st is a square
(generalized octagon of order (s, t)).

7. n = 12 and exactly one of s and t is equal to 1.

For the cases with n = 8 or 12 in which exactly one of the parameters is equal
to 1, the generalized n-gon geometry I" or its dual must arise by the construction of
Theorem 9.4.15 given for 2I'*.

We have discussed the existence of projective planes of order s at some length
in the Appendix to Chap. 5. No planes are known when n is not a prime power, but
otherwise they seem to be so plentiful as to discourage any idea of classification.

Finite generalized quadrangles appear in six classical varieties: Sp(4, g),
U4, ¢%), U(5, g%), and their duals O(5, g), O~ (6, ¢), and the dual of U (5, ¢?),
which seems not to have a special name. In addition, there are non-classical quad-
rangles of various sorts:

1. T2(0), of order (¢, q), g even. O is an oval of PG (2, ¢) which is not a conic.

2. Generalized quadrangles of order (s, s +2), with these constructions: (a) 7, (O)
where O is a hyperoval of PG (2, q), g even, and (b) the Payne derivative about
a regular point of quadrangle of order (s, s).

3. Generalized quadrangles of order (g, ¢%): These are (a) the quadrangles arising
from Tits’ construction 73(0), where O is an ovoid of PG (3, ¢) which is not an
elliptic quadric (so ¢ is even) and (b) more than a dozen families of quadrangles
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of order (s, 1) = (g, qz) derived from ovoids of PG (3, ¢) using flocks, Kantor
families and g-clans.

These were discussed in the Appendix to Chap. 7. A great many characterizations
of the classical quadrangles are surveyed in the excellent article of J. Thas [130] in
the Handbook for Incidence Geometry. But much more is known and the reader is
encouraged peruse the masterful book Translation Generalized Quadrangles by J.
Thas, K. Thas, and H. Van Maldeghem.

There are only two known infinite families of generalized hexagons with an order
(s, t), each parameterized by a finite field. There are the split Cayley hexagons of
order (g, g) which are related to the group G2(q) and the twisted triality hexagons
of order (g, ¢*) which are related to the group *D4(g), and the duals of each type.
They are rank two coset geometries defined by the two classes of maximal parabolic
subgroups of the indicated group of Lie type.

Finally, the only known octagons of order (s, t), min(s, #) > 1 occur as a coset
geometry for the groups % F4(q) of Ree type. Here ¢ is an odd power of 2. These
octagons are called the Ree—Tits octagons and have order (¢, %) (or (g%, ¢) in the
case of their duals). No other thick octagons are known.

9.5 Diagrams

9.5.1 Introduction

A rank-two diagram is no more or no less than an isomorphism-closed class of rank-
two geometries. The word “diagram” comes from our habit of representing nice
classes of firm rank two geometries by a labeled edge connecting an ordered pair of
vertices, each vertex representing one of the two classes of objects of the geometry.
These edges are then incorporated into a larger graph whose vertices (called nodes)
are labelled by a set / which we call a “diagram.” Geometries over a typeset / are
said o belong to a diagram D if each of their rank two residues of type {7, j} is a
member of the class of geometries designated by the label of the edge connecting
vertex i and vertex j. Note that a geometry over / cannot belong to a diagram D
unless its rank two residues are non-empty and firm.

There is another approach to diagrams. One can also consider diagrams with
the labelled edges denoting isomorphism-closed classes of firm rank two chamber
systems rather than firm rank two geometries. Then, given a diagram D with vertex
set I, we are able to say that a chamber system C over I belongs to the diagram D
if and only if every rank two residue of type {i, j} (i, j € I) is a chamber system
belonging to the class of chamber systems determined by the edge-label of the edge
connecting node i to node j.

If M = (m;;) is a Coxeter matrix, with rows and columns indexed by /, one
can define a diagram D(M) by labeling the edge connecting node i with node j
by the class of generalized m;;-gons. Thus in a geometry I" over I belonging to
diagram D(M) (called a geometry of type M), the residue Resr (F) of any flag of
cotype {i, j} is a generalized m;;-gon geometry. Similarly, a chamber system of



346 9 Chamber Systems and Buildings

type M is a chamber system over I belonging to the diagram D (M) — which means
that every residue of type {7, j} is a generalized m;-gon (as originally defined as a
chamber system). Chamber systems of type M will be the context of our definition
of Building.

So we have to cover a number of concepts.

9.5.2 Rank Two Diagrams

We begin our glossary of rank two diagrams:

1. (Digons.) These are the rank two geometries whose incidence graph is complete
bipartite — that is, every object of type 1 is incident with every object of type 2.

2. (Generalized trigons = projective planes.) The incidence graph is that of the

points and lines of a projective plane.

(Generalized quadrangles.) By now the reader should know what these are.

4. (Generalized 2n-gons.) A class of near polygons (P, £) with the property that
for every line L and point p, there is a unique path from p to its gate (unique
nearest point in L).

et

These cases are indicated by the respective two-vertex diagrams in Fig. 9.7a.

Why are these diagrams left-right symmetric? It is because ultimately a general-
ized polygon is defined by a hypothesis that reads the same after the words “points”
and “lines” are transposed, but “incidence” is left the same. Thus the dual point-line
geometry of a digon, projective plane, generalized quadrangle, generalized hexagon,
etc., is also one of the same species.

There are other rank two diagrams which are not symmetric. For example, the
class of linear spaces (P, L) are those rank two geometries with the property that
any two points are incident with a unique line. We denote the class of such geome-
tries by the simple diagram presented in Fig. 9.7b.

As a special case, one might consider the affine planes encountered in Chap. 4.
This diagram is depicted in Fig. 9.7 after the label “(c)”.

In a dual linear space, any pair of lines meet at a unique point depending on that
pair. Since affine planes are missing this property, the class L is not self dual. So it
is good that the edge label “L” is not left-right symmetric.

o O
o—=0

—0O

(2n)

L Af
Fig. 9.7 Basic rank two O O O O O O

diagrams (a) (b) (c)
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9.5.3 Diagram Geometries of Higher Rank

We fix once and for all a type set I, the (global type set). A diagram (of geometries)

over I is an assignment
D : (;) — G

which assigns to each 2-subset of elements of / an isomorphism-closed class of
rank two geometries D (i, j) over {i, j}. For every subset J of [ let D;_; := D(J)
denote the restriction of this function to the collection of ordered pairs chosen from
J. (We shall always write D(i, j) for D({i, j}).) The symbolism above gives us a
method of associating with D a graph (also called D) whose nodes are indexed by
the elements of 7, and for every 2-subset {i, j} of I the edge directed from i to j
should bear the appropriate rank-two symbol D(i, j) or its graphic representative.
The same edge directed from j to i should bear the graphic representative of the
class D(j,i). (It is necessary only to assign one of these symbols in the proper ori-
entation since D(j, i) is the class D (i, j)*, the dual point line geometry of D(i, j).)
Thus if D(i, j) is the class of linear spaces, any two distinct objects of type i are
incident with a unique object of type j and the undirected edge (i, j) is affixed with
the symbol “L” written with i to the left and j to the right — or, if it is convenient in
drawing the diagram, one can write L* with j to the left of the symbol.!3

Next, suppose J is a proper subset of the index set /. Then D(J) is the graph
that is obtained when the nodes of I — J and all edges involving at least one of these
nodes is removed — that is, it is the labeled graph induced on nodes indexed by J.
(Notation is simplified by writing D (k) for D({k}). Note that notation has already
been arranged so that D({i, j}) = D(, j).)

In this way we can always describe a graph with |7| nodes associated with the
function D : ordered pairs from I — rank two diagrams.

Conversely, given an edge-labelled graph D = K/, the complete graph over
vertex set I, whose edge-labels are prescribed by a function D, directly describes a
diagram D.

One says that a geometry I over I belongs to a diagram D (of geometries) if
and only if:

1. For any pair of distinct types {7, j}, the residue of every flag F of cotype {i, j} is
a member of the class of rank two geometries D (i, j) over {i, j}.

2. Every flag F of corank at least three lies in a flag of cotype {7, j} for each 2-
subset {7, j} of the cotype of F.

13 Of course it is not always possible to represent graphically the diagram so that edges are hor-
izontal, but we still expect the assignment of the asymmetric symbols such as “L” to be oriented
with respect to the two vertices so as to reflect the diagram D.
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Since the diagram assigns a rank-two geometry for each pair of indices {7, j} we
see that condition 2 of the definition just given is equivalent to:

2’ Every flag of corank at least three lies in a chamber flag.

A diagram geometry is simply a geometry which belongs to some diagram.'*

Are Diagram Geometries Residually Connected?

Of course this question must be answered in the negative if some D(i, j) is a class
of disconnected geometries or if I" itself is not connected.

So let us assume that I" is a connected geometry belonging to a diagram D with
all the D(i, j) being classes of connected geometries. One easily sees that if I" has
rank just three, then I' is residually connected.

However it is possible to produce a connected geometry of rank four which
belongs to a diagram D for which all rank two residues are connected — yet there
are rank three residues which are not connected. This is developed in Exercise 9.19
(see p. 397).

So far we have been discussing full geometries belonging to a diagram. In the
later chapters we shall discuss how point-line geometries are derived from diagram
geometries with special emphasis on classical geometries belonging to diagrams
(some of infinite rank).

9.5.4 Chamber Systems Belonging to a Diagram

We may also attach diagrams to chamber systems of higher rank. Here we define a
diagram of chamber systems as a function

1
D: (2) — CH»

which assigns to each 2-subset {i, j} of I a collection D(i, j) of isomorphism
classes of chamber systems over {i, j}.

We say that a chamber system C over I belongs to the diagram of chamber
systems D if and only if every rank two residue of type {i, j}, is a rank two chamber
system whose isomorphism type is in the class D(i, j).

We allow ourselves to depict the diagram D in the same graphic way as we did

[75312)

for geometries with the understanding that if nodes “i” and “;j” are connected by an

14 Normally, many authors intend only condition 1 for the definition of a geometry I" belonging
to a diagram D. But since a diagram merely expresses the nature of the rank two residues of a
geometry or chamber system, this datum may miss anomalies about what is going on at flags of
higher corank. Could some of these flags be maximal — that is, have empty residues?

Flags that do not even lie in a flag of corank two are beyond any proscription that a diagram
could impose. So it makes sense to propose a more intimate relation between a geometry I" and a
diagram D. That is the reason for condition 2 or 2’.
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edge labelled “(n),” then any residue of type {i, j} in a chamber system C belonging
to diagram D is a generalized n-gon (recall this was defined as a chamber system in
the previous section).

Of course edges labelled “L” would now have to denote chamber systems of
linear spaces — that is the system of point-line flags with adjacencies determined by
their sharing of a common point or line. This may seem a little akward, but we shall
not really encounter it. Virtually all chamber systems in this book are “type M~ —
which means each rank two residue of type {7, j}, is an m;;-gon, where m;; is an
integer greater than 2 or is the symbol co. These are studied more deeply in the next
major section of this chapter.

9.5.5 Diagrams and the Functors Connecting Chamber
Systems and Geometries

Suppose I' is a residually connected geometry belonging to the diagram D. Then,
of course, the associated chamber system C(I") is residually connected. But does
it belong to the same diagram D? Of course we are now viewing D as a diagram
of chamber systems — strictly speaking a C(D) with the rank two edges being the
chamber systems of the geometries D (i, j) — precisely, for each ordered pair (i, j)
chosen from 7, we have

(C(D)) (G, j) = C(DG, J)),

as classes of chamber systems.
Now we have the following.

Theorem 9.5.1 Suppose I' and C are, respectively, a geometry and a chamber sys-
tem over the same type set 1. Assume both are residually connected and either (1)
I' =T(C) or(2) that I is finite and C = C(I").

1. If the geometry I' belongs to the diagram D then so does C.
2. If the chamber system C belongs to the diagram D, then so does T'.

Proof This is a direct consequence of Corollary 9.2.8. O

9.5.6 Some Examples Concerning Diagram Geomelries
and Chamber Systems

Example 9 Let us take a simple example. The symbol D = As is the name of the
following diagram (Fig. 9.8).

Here the type set [ is the set {1, 2, 3}. The diagram tells us that Dy := D({I —k})
is a projective plane when k = 1 or 3, and that it is a digon D, when k = 2.

1 2 3
Fig. 9.8 The A3 diagram O O O
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If a geometry I' belongs to a diagram D, then, according to the definition, for
any flag F of cotype {i, j} (i # j), the residue Resr(F) is a rank two geometry
belonging to the class D(i, j). Now consider the geometry PG (3, K) of one-, two-,
and three-dimensional vector subspaces of a four-dimensional right vector space V
over the division ring K. These are respectively the objects of types 1, 2, and 3 of a
geometry in which incidence is vector subspace containment in some order. We have
defined and characterized these in Chaps. 3 and 6. The point here is that PG (3, K)
belongs to the diagram As3.

Taking the i-dimensional vector subspaces of V to be the objects of type i, saying
that PG (3, K) belongs to the diagram A3, simply means verifying the following
three statements:

1. The full collection of objects of types 1 and 2 which are incident with a fixed
object of type 3 form a projective plane.

2. Let x, y, and z be objects of types 1, 2, and 3 respectively. If x and z are both
incident with y, then they are incident with each other.

3. The collection of all objects of types 2 and 3 which are incident with a given
object x of type 1 themselves possess the incidence structure of a projective
plane.

This is almost trivial. The last statement holds since the proper subspaces of
a three-dimensional vector space over K is a classical projective plane. The first
statement it true, since the two- and three-dimensional vector subspaces of V con-
taining a given one-dimensional subspace U are bijective with the one- and two-
dimensional subspaces of the three-dimensional factor space V /U (the bijection
preserves the incidence relation). The second statement is true simply because inci-
dence is containment.

One might ask whether any geometry belonging to the diagram A3 is in fact a
PG (3, K) for some division ring K ? The answer is “yes.” One need only show that
the truncation to J = {1, 2} is a projective space (P, £) and then use the the Veblen
Young theorem. We leave this as an exercise.

9.6 Chamber Systems with a Coxeter Diagram

9.6.1 Coxeter Groups and Coxeter Systems

Coxeter Matrices

Fix an index set I. A Coxeter matrix over I is a matrix M whose rows and columns
are indexed by /1, and whose (i, j)-th entry, m;;, satisfies these properties:

1. m;; is always a positive integer or a formal symbol “co”.
2. mjj = 1foralli € I.
3. mijj=mj; foralli, j el.
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For the moment, the matrix M has no particular linear algebra interpretation. It
should simply be regarded as a bank of uncommitted organized data.

The Coxeter Groups W (M)

One use of the datum contained in a Coxeter matrix M is that of defining a Coxeter
group W (M). Given Coxeter matrix M, the Coxeter group W (M) is the factor group

F/(RF),

where

1. F is the free group generated by a set {x;};c; of generators indexed by /.
2. (R{Z ) is the normal closure of the subset of words

Ry = {wij = (xixj)mifli,j el, mi; < OO}.15

Thus, when m;; = 00, x;x; is just an element of infinite order in W (M). In effect,
W(M) is generated by a collection of elements with trivial square R = {r; =
X (Rg )}, with the property that (;, 7;) is a dihedral group of order 2m;; when m;; is
finite, and is the infinite dihedral group when m;; = co. Moreover, it is the universal
group with this property: that is, any other group generated by a class of elements
{r;}; indexed by I/ with the relations that the product r;r; has order m;;, for all
i, j € 1,1s a homomorphic image of the Coxeter group W (M).
Let

p:F — F/(R])=W(M)

be the natural homomorphism which sends x; to the element x; (Rg ) =x; ! (RS )y =
ri in W(M). Since each r; is either an involution or the identity element, and since
each element of F is a product of the x; or their inverses, we can always write an
element r of W (M) as a finite product of elements of {r;}.

Suppose M is a Coxeter matrix over / and, as above, let W := W (M) be the
Coxeter group, and let R := {r;|i € I}, the canonical set of generating elements
introduced in the previous two paragraphs.'® The triple (W, R, M) is called a Cox-
eter system. 17

15 Recall that the normal closure (X @) of a subset X of a group G is the intersection of all normal
subgroups of G which contain X.

16 Not to be confused with R, a collection of words in F.

17 Usually, in the literature the Coxeter matrix M is suppressed, and one simply writes (W, R) for
a Coxeter system. I do not understand the reason for this, but the reader should be forewarned of
any differences in notation with the standard literature.
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Let Z, denote the multiplicative group of integers {£1}. By the fundamental
property of a free group, there is a surjection ¢ from the free group on a set of
generators X indexed by / onto Z, which takes each element of X to the integer
—1.Ifx,y € X, ¢(xy) = 1, whether or not x is distinct from y. In particular, if
M = (m;;) is a Coxeter matrix over [, then

1=1" = ¢ (xixj)" = (@(x;) - p(x;)™V.
This means the homomorphism ¢ factors through a surjective homomorphism
sgn: W(M) — Z».

Clearly if an element r of W (M) is expressible as a product of an odd number
of the generators in R, then sgn(r) = —1 and so r cannot be the identity element of
W (M). Thus the following applies.

Theorem 9.6.1 In the Coxeter system (W, R, M), the following assertions are
valid:

1. There exists a surjective morphism W (M) — Z» taking each element of R to —1.

2. The elements of the generating set R are involutions.

3. Moreover no product of an odd number of elements of R in W(R) can be the
identity.

The Free Monoid Covering the Coxeter Group

We shall need a mechanism to keep track of the ways to express an element of the
Coxeter group W (M) as a product of the r;.

The free monoid on the alphabet I is a monoid I* whose elements are the
“words” w = i; ---iy that can be “spelled” with the alphabet 7. (Of course each
“word” is nothing more than a sequence of elements written as a “string” (the
sequence with the intervening commas removed).) The non-negative integer ¢ is
call the length of the word, and it is intended that ¢, the empty word (the unique
word of length zero), is to be included in 7*. The binary operation on /* is the
concatenation of words. The concatenation of word w; with word w, is the word
w1 o wy — the word obtained by first writing the word w; (from left to right) and
then writing wy (from left to right) juxtaposed to the right of the first word wy. Thus
if w; = 123 and wy = 313 then wy o wy = 123313 and w; o wy = 313123.18
One notes that concatenation is an associative binary operation on the set of words,
and that the empty word is a two-sided identity with respect to this operation, so the
monoid structure is manifest.

18 The author apologizes for adopting the western-European bias in reading from left to right in
defining words and in defining concatenation. Of course there is an opposite monoid more suited
to semitic writing (Phonecian, Hebrew, Arabic) and Arabic-script renderings of some non-semitic
languages (Parsi and Urdu). How could cultures like the Hittites who wrote Bostrophedron ever
invent a free monoid? There is an answer.
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Now there is a morphism p : I* — W(M) which substitutes r; for the letter i
in each word of the free monoid to form a finite product of involutions in the group
W(M). For example, if I D {1, 2,3}, then p takes the word w = 123123321 to
the product of involutions ryror3rirarararary in G(R). Note that since the r; are
involutions p(w) = p(123), p is far from injective.

Clearly this mapping is a morphism in the categroy of monoids since

p(w; owz) = p(wi)p(ws),

where the juxtaposition of elements on the right hand side indicates multiplication
in the group W(M). The morphism p is surjective by the earlier observation that
every element of W (M) is expressible as a product of finitely many r;.

Now, given an element r of the Coxeter group W (M), the fiber p~! () lists for
us all the possible ways of writing the element r as a product of the ;. Exactly the
library of possibilities we want to keep track of. This way we get to live in two
worlds: (1) the world of elements of the group W (M) and (2) the world in the sky
of ways to express these elements as a product.

9.6.2 The Cayley Graph of the Coxeter System (W, R, M),
and the Coxeter Chamber Systems

We are going to begin this discussion with a simple assumption, which is easily
proved in Lemma 9.6.4 at the beginning of the next section.

(*) The elements of R are pairwise distinct, so there is a bijection
R ={ri}ier > 1.

As a consequence, for every element s € W(M) and generators r; and r; in R,
the equation

Sri = 8r;

implies i = j.

In the previous section we produced a surjective monoid morphism p : I* —
W (M), remarking that the set of all preimages of the group element s (that is, the
fiber p~!(5)) is a library of all possible ways to write the element s as a finite product
of the generating involutions {r;}.

Actually the beginning student has probably met a structure like this in the guise
of Cayley graphs.'® The Caley graph for the Coxeter group W (M) with respect to a

19 Indeed the whole idea of representing elements of a group by vertices and words in a set of
generators by walks became the basis of both combinatorial topology and combinatorial group
theory.
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set of generators R = {r;};cy is a graph C (M) whose vertex set is the set W (M) of
elements of the Coxeter group W(M). We say that (s, ¢) is an edge e carrying the
label j € I if and only if ¢ = s7; (or equivalently, s = tr;). The result is a graph
C(M) (the Cayley graph of the Coxeter group W (M)), which has edges e = (s, t)
which are undirected and which carry with them a set of labels A(e) defined to be
the set of indices j in / such that sr; = ¢.

Since the elements of R are involutions, the Cayley graph C (M) of the Coxeter
system (W, R, M) is undirected and has no loops. By the assumption (*) presented
at the beginning of this section, the Cayley graph C (M) has no multiple edges. Thus
every visible edge defined above carries a unique label, and for every vertex s and
label i there is exactly one edge leaving s bearing the label “i.”

If 1 denotes the identity element of the Coxeter group W (M), then any walk
p = (1,s1,82,...5, = t) from 1 to ¢ in the Cayley graph C(M) reproduces a
unique word typ(p) = iyiz---i, (i = 1,...n) of the free monoid 7'*, where i;
is an element of A(s;j_1, s;). In that case the element s, of the Coxeter group is
expressible as the product [T/ ri;.

‘We now have a very nice paradigm:

1. Words in I** correspond one-to-one to walks from 1 to any other vertex in the
Cayley graph.

2. Any relation in W(M) among words in its generators corresponds to a circular
walk in the Cayley graph C(M).

3. Since W(M) = F/(Rf;) is a quotient of a free group by the relation group (RII;),
any visible relation (that is, some product over a sequence of the r; is equal
to 1) must be a logical consequence of basic relations (rir;)™ = 1 — that is,
every circuit of the Cayley graph is Ca-contractible where C; is the collection of
2m;j-gons defined by taking the orbits of (r;, rj) when m;; is finite.

So it is basically all graphical.

Now it is time to thrust this elementary discussion into a different context. We
still retain the assumption (*) maintained at the beginning of this section. Then, as
defined, the Cayley graph C (M) of a Coxeter system is a undirected simple graph
each of whose edges are labeled by a single element of /.

Lemma 9.6.2 Under the non-degeneracy condition (*), the Cayley graph C(M),
with its natural edge-labeling, X, is a connected chamber system over I. This cham-
ber system C (M) is fully thin (that is, all panels have size exactly two) and satisfies
condition (typ) (that the edge labeling assumes a single value on each undirected
edge of this simple graph).

Proof This doesn’t really require a bothersome proof. The graph is simple, undi-
rected, and (typ) holds for the edge-labeling. Moreover the “full thinness” condition
introduced just above holds. The basic condition defining a chamber system holds
automatically — that is, for each i € I, the edges of type i form a “matching” (some-
times called a “1-factor”) of the Cayley graph C(M).
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We denote the chamber system exhibited by the Cayley graph C (M) by the same
symbol C(M).20
One observes the following.

Corollary 9.6.3 1. The Cayley graph C(M) is bipartite. It follows that all its panels
(that is its edges) are strongly gated.

2. The Coxeter group W (M) acts as a group of automorphisms which regularly
permutes the chambers.

Proof This is a completely elementary result.

1. According to our paradigm, a circuit in the chamber system C (M) can have
type w (a word in the monoid 7*) if and only if p(w) is the identity element of
W(M). As a consequence, Theorem 9.6.1 implies that C (M) has no circuits of odd
length, and so is bipartite.

2. For each element r € W(M), let r act as a permutation of the chambers by
taking chamber ¢ to chamber rc — that is, it acts by /eft multiplication of the cham-
bers. A typical i-adjacency in the chamber system C (M) is an edge e = (s, sr;) for
some s € W(M). Then r takes e to re := (rs, rsr;), another i-adjacent pair. This is
clearly a group action, and for a chamber ¢, one has r¢ = c if and only if r = 1, so
the action is regular on chambers.

Non-degeneracy of the Coxeter Chamber Systems

The entire subject of groups G defined by a set X of generators and relations R
(that is, R € F(X), the free group on generators X, and G = F(X)/(XF X)) is (in
the words of J. Humphreys) “notorious” for unexpected results. It could well be that
a group G defined in this way by generators and relations is actually trivial. Then
of course, the Cayley graph for (G, R) has only one vertex, and all edges would be
loops. Even if G # 1, it is possible that a general Cayley graph has multiple edges.

Because of the sgn-epimorphism we know that the first of these pathologies does
not occur for the Cayley graph C(M) of a Coxeter system (W, R, M). We know
that C (M) has no loops and is bipartite. But what about the second? Can there be
multiple edges — or if one prefers, can edges of the chamber system C(M) bear
multiple labels? Condition (*) of the previous section asserted that this does not
happen. Here we demonstrate (*) by exhibiting a homomorphic image of W (M) in
which the elements of R are represented by pairwise distinct elements.

A linear transformation 7 of a vector space V is finitary if and only if the
subspace Cy(T) : {v € V|vT = v}, has finite codimension in V. Working with
finitary transformations has the advantage that such transformations are invertible if

20 This is not an abuse of notation. Rather it is a use of definitions. By some extraordinary serendip-
ity which sometimes blesses fumbling authors like myself, the phrases “Cayley” and “Chamber
system” begin with the same letter “C.” So the mnemonics are preserved when we denote (1)
the Cayley graph defined by Coxeter matrix M and (2) the Chamber system defined by the same
Coxeter matrix M, by the very same symbol C(M).
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and only if they are injective. We let GL (V) denote the full group of all invertible
finitary transformations of V.

Suppose a group G acts as a group of finitary linear transformations on a vector
space V. (One normally calls this a finitary representation of the group G.) In effect,
a finitary representation is simply a group morphism

¢:G— GL(V).

It is said to be a faithful representation if and only if ker¢ = {15}, the identity
subgroup of G. Of course that means there is an embedding G — GL(V).

Let V = @;.; Ru; be the vector space over the field of real numbers R whose
basis is the set X := {v;};cs. Let M = (m;;) be a Coxeter matrix over /.

Then there exists a symmetric inner product, By : V x V — R, uniquely defined
by the equations

By (vi,v;) =1, foralli € I, 9.27)

By (v;.v;) = By (v;, v;) = — cos (l) ijeli#j, (928
m,'j

By (vi,v;) = —1, whenm;; = oo. (9.29)

This form By is called the Coxeter form and is completely determined by the Cox-
eter matrix M.
As an example, for the diagram of type A3 considered above,

1 3 2
M=|31 3],
2 31
while the Gramm matrix is
1 —-1/2 0
—-1/2 1 -1/2
0 —-1/2 1

Foreachi € I, (v;) is a non-degenerate subspace of V, and so we have a decom-

position
V= ()@,
where Ul-J‘ :={v e V|By(v,v;) = 0}.

Let o; be the reflection on the space V which “inverts” each vector y € (v;) and
which pointwise stabilizes the complementing “perp-space” vl.l. Since we are over
the field of real numbers R of characteristic not 2, this construction makes sense.
Clearly each such reflection o; is an involution.

But the form By is defined so that the product of the two reflections o;0; has
order m;; when the latter is a positive integer, or has infinite order when m;; = oo.
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Applying the fundamental property of a free group, we see that there is a surjec-
tive homomorphism

FiWM) = S:= (o, iel)

taking the generator r; of W (M) to the reflection o; of (V, B).

Note that the Coxeter form (V, By ), the collection X := {0;|i € I} of reflections,
and the finitary representation f : W(M) — S = (X) are all uniquely determined
(up to isomorphisms) by the Coxeter matrix M alone.

Now we have condition (*) alluded to above.

Lemma 9.6.4 Let (W, R, M) be a Coxeter system. Then the generators r; of R are
a collection of pairwise distinct involutions.

Actually, there is quite a bit more.

Theorem 9.6.5 (Bourbaki, Chap V, n° 4.3) [9].) The homomorphism f : W(M)— S
defined by the Coxeter form is an isomorphism .

A very nice proof of this theorem appears in the excellent book of Garret [63,
pp- 7-91.

It has a very important consequence.
Corollary 9.6.6 (The Parabolic Subgroup theorem.) Suppose (W(M), R, M) is a
Coxeter system. We suppose I indexes the set of generators R, so that C(M) is a
chamber system over I. Let J be any subset of I. Let Ry = {r; € R|i € J} and let
M be the minor of the Coxeter matrix M obtained by restriction to the rows and
columns indexed by the elements of J. Let (W(My), S, M) be the Coxeter system
defined by the submatrix M j, where S := {s;|j € J} denotes the fundamental set
of involutatory generators of the Coxeter group W (M ).

Then there is an isomorphism

W(My) — (Ry)

which sends sj torj, forall j € J.

In particular, ifr;, - - - r;, = lisan identical relation in the Coxeter group W (M),
and if all indices i in this expression belong to J, then this relation is entirely the
consequence of the relations

(rlr.,')m"f =1, fori, j restricted to J alone.

Put another way, ((Ry), Ry, M) is itself a Coxeter system.

Proof As before, let V be the real vector space with basis X = {v;}ies, let B be
the symmetric bilinear Coxeter form on V defined by Eqs. (9.27), (9.28) and (9.29),
and let ¥ := {0;]i € I} be the system of reflections which invert the v;.

For a subset J of I, let

Vii=(vjlj €J),
Xy = {ojlj € J},
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let B be the restriction of the form B to V;, and let the glossary for My, Ry, and
the Coxeter system (W (My), S, M) be as in the statement of the corollary.

Clearly the reflections in ¥ ; induce reflections on the space V;, each pointwise
fixing a subspace of V which complements V;. Forall j € J,leto; = 0|y, be the
restriction of reflection o; to the subspace V,, and let £; be the collection of these
restricted reflections 5, j € J. Then there is an isomorphism

§:(Xy) = (Bg),

the right side being a subgroup of GL(Vy).
The finitary representation W(M) — GL(V) restricts to its subgroup (R;) to
give a surjection of groups

B (Ry) — (Xy),

taking rj to o, for j € J.

Also, since the R; and X; satisfy the relations prescribed for R (simply a con-
sequence of the fact that M is a submatrix of M), the fundamental property of the
free group produces group surjections

o:W(My;) — (Ry), and
y WMy — (Z)).

Now B o a = y since both sides take the generator s; to the reflection o;, j € J.
Now W (M) acts on (Vy, By) via

Soy: WMy — ()

exactly as in the discussion of the preceding Theorem 9.6.5. An application of that
theorem (with M; and (V;, By) replacing M and (V, B) throughout) implies that
8 o y is a group isomorphism. It follows that y = B o « is a group isomorphism,
and so each of the surjective factors & and B are isomorphisms. Now « is an isomor-
phism sending s; to 7}, so no relations exist among the elements of R; other than
those dictated by W (M ). The proof is complete. O

Length Functions in 7* and W (M)

We have already discussed the length of a word w in the free monoid 7* over the
alphabet 7. The length of w is just the number of letters used to “spell” the word
w — the empty word being length zero. Given a Coxeter system (W, R, M) defined
by a Coxeter matrix M, we have produced a surjective morphism of monoids

p:I* — W(M)
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in which letter i € I is mapped to generator r; € R. We have also seen that p induces
a bijection p between I'* and the set of all walks (galleries) in the chamber system
C (M) beginning at 1, the identity element of W (M). The inverse of the bijection
is simply the type function that records the type, typ(G), of a gallery G of C(M)
beginning at 1. Note that the terminal chamber of the gallery G is then p(typ(G))
and that the length of the gallery £(G) is in fact the length €(typ(G)) of the word
typ(G).

Now there is another notion of length, this time on elements of the Coxeter group
W(M). Actually it is a distance function: we define the length £(r) of an element r
of the Coxeter group W (M) to be the distance d(1, r) in the Cayley graph C (M) of
the element r from the element 1. That means £(r) is the shortest length of a word
w € I'* such that p(w) =r.

We say that a word w € I* is a reduced word if and only if £(w) = £(p(w)).
Note that when we use the term “reduced word,” there is a Coxeter matrix in the
background. It depends on nothing more than that.

Recall from Chap. 1 that a geodesic path in a graph is just a walk of shortest
possible length connecting its extremeties. In our case, if w is a reduced word in I*
(with respect to M) there actually is a geodesic from 1 to p(w) whose type is w.

One now notes the following.

Lemma 9.6.7 If r is any element of W (M), and r; is one of the generators in R,
then £(rr;) is either £(r) — 1 or £(r) + 1.

Proof Since C (M) is bipartite, each edge (r, rr;) of C(M) is gated with respect to
the vertex 1. So the two distances d(1, r) and d(1, rr;) differ by one. The proof is
complete. O

Homotopy in the Coxeter Chamber System

Remark We have noted that C>-homotopy in the Cayley graph C (M) of the Coxeter
system (W, R, M) provides a way of asserting (rather than “determining”) that, for
two words w; and wy in I*, one has p(w;) = p(w2). In other words, it provides a
“playing board” on which one can graphically restate the fact that two products of
elements of R represent the same element of the Coxeter group.?!

At least Co-homotopy is the relevent concept.

Two walks (or galleries) in C(M) beginning at 1 have the same terminus if and
only if they are Ca-homotopic.

21 By scrambling the language of the logicians and the topologists, one might say that Cs-
homotopy encompasses the “word problem” for the generators and relations. One might say this
at a cocktail party, but it would be a bit crude to assert it seriously. Two walks in C (M) might be
C2-homotopic, (that is, they are connected by a finite string of elementary homotopies, each giving
a “deduction” of the p-equivalence of two words), but it could conceivably be true that there is
no general recipe to discover this string of elementary homotopies, as would be required by the
logician studying word problems in groups.
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Referring to our discussion of homotopy in Chap. 1, we may take C, to be the
collection of all circular walks in the Coxeter chamber system C (M) whose type
has the form (i /)™ for some pair of indices i, j for which m;; < oo.

An elementary contraction of a word in I'* is the deletion of a subword of the
form ii — thus the concatenation f = w;j o ii o wy is changed to f' = wjwy by
an elementary contraction. Similarly, an elementary expansion is the insertion of
any expression ii (any i in /) at any position in a word w — that is, an elementary
contraction performed with the movie film running backwards. These operations do
change the length of a word by £2 — so they do not disturb the parity of the length
(its value mod 2).

As with homotopies, we can use the bijection between words of I* and galleries
beginning at chamber ¢ to apply this notion to galleries of C having ¢ as an initial
chamber. Thus an elementary contraction of a gallery simply “snips off”” a segment
a-b-a from the gallery. A sequence of such deletions can be used to trim off all
“spurs,” as in Fig. 9.9. Given the Coxeter matrix M, an elementary M-homotopy of
words replaces a subword of type

by
p(j,i;mj;) :=jiji--- of length m;;,

when m;; is finite.
More generally, an elementary Cp-homotopy of words replaces a subword

p(i, j; k) :=iji--- of length k

p(j,i;mij — k) :=jiji--- of length m;; — k.
An important observation is as follows.
An elementary M-homotopy does not change the length of the word. Although

an elementary Cy-homotopy of words may change the length of a word, it
does not change the parity of that length.

+t +
— %
Cc a

C a

Fig. 9.9 Trimming of spurs
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We say two words are equivalent if one can be obtained from the other by a finite
sequence of expansions, contractions, and elementary C;-homotopies. The student
may easily verify that “equivalent” as just defined is indeed an equivalence relation
(the empty sequence of elementary operations is allowed). We write [w] for the
equivalence class of all words equivalent to word w.

Clearly if w; is equivalent to wl’. ,i = 1,2, then the concatenation w; o wy
is equivalent to wj o w) (just carry out the elementary operations of contraction,
expansion, and Cp-homotopy separately in each factor w; of wi o wy). Thus there
is a well-defined class containing the concatenations of all words in [w] with all
words in [wy] and we may write

[wi] o [wa] = [wy o wy]

as a well-defined operation on the class of equivalent words. Thus the collection of
all word-equivalence classes forms a semigroup /*/[ ] and there is an epimorphism
e:I*— I*/[]

Lemma 9.6.8 Two words w and wy are equivalent if and only if they have the
same image in W(M) under the homomorphism p : I* — W(M). Thus I*/[ ] is
isomorphic to the Coxeter group W(M).

Proof Note that p is the restriction to the monoid /* of the canonical surjection
o : F(S) — W(M) by which W(M), as a presented group, is represented as a
homomorphic image of the free group F(S). But p factors as f o[ ] where f([w]) is
the constant value of p on the class [w]. We have a surjection f : I*/[ ] - W(M).

It is now clear that /*/[ ] is a group. But since all of the relators R, =
{(sis )™, (si)? i, j € I} lie in [#], the group I*/[ ] has its subset S’ := {s;[#] € I}
satisfying the same set of relations. Thus f(s;[#]) = s; and the universality of the
presented group W (M) shows that f is an isomorphism taking cosets s;[#)] (which
are elements of 1*/[ ]) to s;,i € I. Thus for any w, w’ in I*(I), f[w] = e(w’) if
and only if [w] = [w'].

9.6.3 Other Properties of Coxeter Chamber Systems
The first property of C (M) that concerns us is the following.

(G¢) If G is a gallery of C(M), then its type typ(G) is a reduced word of I* if and
only if G is a geodesic path.

To show that C (M) possesses this property, we may apply an automorphism of
the chamber system to assure that the initial vertex of G is the identity element 1. In
this case G is a gallery of type w = typ(G) beginning at 1 and ending at 7 := p(w).
In fact, by our paradigm, G is the only gallery of that type starting at 1. But now, by
our definition, w is a reduced word if and only if £(w) = €(¢) — that is, if and only
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if £(G) = d(1,t). The latter equation holds if and only if G is a geodesic path in
C(M).

Remark If we seemed to be “proving” that “every Coxeter chamber system pos-
sesses property (G.)” — one will surely notice that the “proof™ is really just a tautol-
ogy resulting from the way we defined “length” on W (M), and the way we defined
“reduced”. It should then seem odd if I told you that this property (G.), applied
to arbitrary chamber systems C of type M (of course “C” replaces C(M) in the
definition of condition (G.) given above), becomes one of the equivalent conditions
for a building. How can possession of a property be a tautology in the context of
Coxeter chamber systems, yet be an important concept in the more general con-
text of chamber systems of type M ? Being tautological, it can point to no special
property of Coxeter chamber systems to bring to the larger context! But it does,
for it suggests that Coxter chamber system-like structures are involved in chamber
systems of type M. One can almost “smell” apartments in this property (G.). But
perhaps we are getting ahead of ourselves.

M-Homotopy in a Coxeter Chamber System

Our aim in the next sections is to show that in a Coxeter chamber system C (M) one
has condition (RG) — the assertion that all residues are strongly gated. This is proved
in Theorem 9.6.14 below.

Remark Most accounts of Coxeter groups in the literature focus on quite different
defining properties, such as the “Strong Exchange condition,” and “the Deletion
condition,” which, though they characterize Coxeter groups, do not produce effi-
cient proofs of the (RG)-result just quoted. In fact (excepting Tits” “local approach
paper” [139], pp 588-621) it is difficult to find in the literature any mention of
Theorem 9.6.14 as a direct consequence that one is dealing with a Coxeter group.

Note that Co-homotopy of galleries of C (M) can drastically change the length of
a gallery in C(M). For example, if m;; = 3, a gallery G starting at 1 and type ij can
be replaced by one of type jiji — a longer gallery.

So this raises a question.

If G and G are two galleries from 1 to ¢ in C(M) of types w; and wy, respec-
tively, then, of course, the gallery Gy o G, lis a circuit pointed at 1, and by the
universality of W (M), this circuit is Cp-contractible. By Chap. 1, this means G is
C»-homotopic to G.

Now suppose the two words w; and wy are (Ca-homotopic) reduced words —i.e.,
the two galleries G and G, are geodesic paths from 1 to ¢. Is it really necessary to
lengthen the galleries — going from a shortest gallery, to longer galleries, and finally
back to a final shortest gallery — in order to achieve the C-homotopy?

Put another way, is it possible to pass directly from geodesic gallery G| to G,
without ever passing to a longer gallery? One must ask what the elementary homo-
topies would be in this case? At best, one is replacing some subsegment of type
p(ij) = iji--- (of length m;;) by one of type p(ji) := jiji--- (also of length m;)
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and then only in the case that m;; is finite. We call this an elementary M-homotopy
of C(M). We say two galleries G| and G, of C(M) are M-homotopic if and only if
one can be transformed into the other by a chain of elementary M-homotopies. The
property we desire is as follows.

(P.) Suppose G and G, are two Ca-homotopic galleries of C (M) which have the
same initial and terminal vertices. If both are geodesics, then they are in fact
M -homotopic.

Now we assert that this property is true of Coxeter chamber systems C(M).?? In
the next section we shall see that this property (P.) makes sense in the context of all
chamber systems C of type M (of course with C replacing C (M) in the description
above) and that in fact this property is equivalent to (G.), though that is hardly
obvious at this stage. We prove that in the next section. It will follow that C(M)
possesses the property (P.), but it is better to wait for a general proof, rather than
one geared specifically to Coxeter chamber systems.

9.6.4 Walls, Roots, and Distance in a Coxeter Chamber System

Let (W, R, M) be a Coxeter system. Now the group W, of course, acts from the
left on the coset chamber system C = C(W, 1; R) and any element r € RV =
(g riglg € W,r; € R} is called a reflection.

Given a reflection r, the collection E, of all edges (rank one residues) of C which
are stabilized by r is called a wall. Note that because of the free action of W on the
chambers of C, any edge e in E, necessarily has its two vertices transposed by the
involution r. (This means, of course, that r transposes the two opposite roots D~ (e)
and D™ (e) defined by the edge e. See Exercise 9.22, part 3.)

Suppose, next, that an edge e belonging to the wall E,, lies in a rank two residue
S. Then as S is a connected {i, j}-component of C, r stabilizes S. If m;; is finite, §
is just a 2m;;-gon (as a graph), r must stabilize the unique edge ¢’ opposite e in this
polygon. This means the following.

(9.6.1) If e is in the wall E, and €’ is the edge opposite e in some finite rank two
residue S containing e, then e’ is also in the wall E,.

We say that a gallery G = (co, c1, 2, . .., ) crosses awall E, k times if exactly
k of the edges e; = (co, c1), €2 = (c1,¢2), ..., en = (cn—1, cp) belong to the wall
E,.. We say G crosses the wall E, if and only if it crosses E, at least once — more
precisely: it crosses E, k times, where k > 1. We observe the following elementary
but far-reaching result.

22 The beginning reader is invited to try it out on the Coxeter chamber system of type As3.
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Lemma 9.6.9 Let E = E, be any wall.

1. Any minimal gallery crosses the wall E at most once.
2. Given any two chambers x and y, either (a) all galleries from x to y cross E an
even number of times, or (b) all such galleries cross E an odd number of times.

Proof 1. Let G = (co, c1, - . ., ¢y) be a minimal gallery. Then any interior interval
(¢i,...,cj) must also be a minimal gallery. Now suppose G crossed the wall E
k times, where k > 2. Then there is at least a first time — i.e., a smallest i with
(ci—1,¢;) = e; in the wall E — and also a second instance e¢; = (cj_1,c;) € E,
with j the second smallest index with this property. Then A := (¢;—1,...,¢j)isa
minimal gallery, as observed, so d(c;—1, ¢;) = j—i+ 1. But the reflection r takes A
to a gallery A" from ¢; to ¢; 1. But the distance of ¢; to ¢c; 1 is only j —i — 1, since
(¢i, Cig1,-..,cj—1) is a minimal gallery of this length. Thus » maps a minimal
gallery A to a gallery A” which is not minimal. But this is impossible as r is an
automorphism of the chamber system C and so must preserve distances in its graph.

2. Let A and B be two galleries from chamber x to chamber y. Then, regarding
x and y as elements of W(M) we see that since A and B have the same terminal
chamber y and initial chamber x, p(ryp(A)) = p(typ(B)) = x~'y where typ(A)
and ryp(B) are the types (as words in 1*) of the galleries A and B respectively. Thus
gallery A can be deformed into gallery B by a sequence of cutting off or adding on
spurs (segments that are backtracks) and elementary C»-homotopies. It thus suffices
to show that neither of these elementary processes disturbs the parity of the number
of times that the gallery crosses the wall E.

Consider first the cutting off of a spur (b;, bi+1, ..., bits, bivi—1, ..., bit1, b).
For each edge ((bj, bj4+1) in the first part of the spur which belongs to E there
is a second occurrence of it (b;41, b;) encountered on the return trip to b;. Thus
snipping off a spur costs one an even number of edges of E.

Since adjoining a spur is the above process with the direction of time reversed,
an even number of edges of £ would be acquired by this process.

Finally we consider an elementary C>-homotopy G1 o Ao Gy — G| o Bo Gy
where A has type p(i, j: k), and B has type p(j,i;m;; — k) when m;; is finite.
Clearly the transformation A — B is occurring inside a residue R of type {i, j}
which is a 2m;;-circuit, and A and B comprise complementary segments of that
circuit. By our observation (5.1), for each edge e of E in the segment A, there is a
corresponging opposite edge ¢’ in the circuit R, which may or may not be in A. If
itis in A, both edges e and ¢’ are lost by the exchange of B for A. But if ¢’ is not
in A, the homotopy transformation just exchanges ¢’ for e. The same remarks hold
with the terms “A” and “B” transposed.

Thus in all cases a C-homotopy of galleries only alters the number of edges in
E by an even number. The proof is complete.

Part 2 of the above lemma can be used to define, from a wall E,, a partition of
the chambers into two parts DV (E,) and D~ (E,) which we call — for the moment —
half-apartments. We describe this.
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Once given a wall E, = E, galleries are of two types: those crossing £ an odd
number of times and those crossing E an even number of times. Call them odd and
even galleries, respectively. Then from this definition the following arises.

(9.6.2) The concatenation o o B of two galleries is even if and only if @ and B are
both even or both odd.

Now Lemma 9.6.9, part 2 says that two chambers are either connected only
by odd galleries or only by even galleries — yielding in this way two symmetric
relations on the set of chambers. But now (5.2) shows that the relation of being
connected only by even galleries is not only reflexive, it is transitive as well, and
that there are exactly two equivalence classes DT (E) and D™ (E) partitioning C.
Two chambers x and y are in opposite classes if and only if they are connected only
by odd galleries.

We have seen (from part 2 of Exercise 1.1 of Chap. 1 and elsewhere) that as C
is a connected bipartite graph, any edge e determines two sets D (e) and D~ (e),
which we have called “roots” (the sets closest to one of the vertices of ¢) and that
these sets also partition the vertices of C. Now the wall E is a collection of edges. If
e is an edge of the wall E, what is the relationship of the roots D*(e) and the half-
apartments D*(E)? In the next theorem it will be shown that these two partitions
of C are in fact the same. From this it will follow that if e, f € E then {D*(e)} =
{Di(f)} — and more.

Theorem 9.6.10 Let E be a wall and let C = DT (E) + D~ (E) be the partition of
chambers into half-apartments determined by E.

1. The sets DT(E) and D~ (E) are convex.
2. Foreachedge e = (x, y) bridging D™ (E) and D™ (E) (thatis, x € DT (E), y €
D™ (E) ), then

(a) DT(E) and D= (E) are the opposite roots

Dy(e) : = {z € Cldc(z,x) <dc(z,y)} and
Dy(e) : = {z € Cldc(z, y) < dc(z, x)},

respectively, and
(b) e belongs to E.

Proof 1. Let (x, y) be an “even” pair of chambers with respect to the wall E. This
means x # y,and {x, y} € DV(E) or{x, y} € D™ (E).Let G be a minimal gallery
from x to y. On the one hand G must cross E an even number of times while on
the other hand, by Lemma 9.6.9 it crosses E at most once. Thus each chamber ¢ of
the gallery G also forms an even pair with x and lives in the same half-apartment
DT(E) or D™(E) as x and y. So half-apartments are convex.
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2. Let e be a bridging edge as in part 2. Then e itself is a minimal gallery (x, y)
connecting x and y. Since, by definition, (x, y) is an odd pair, this gallery crosses
the wall E = E, an odd number of times. Thus the edge e is r-invariant, proving (b).

Now suppose z is any chamber in DF(E) . We must show that d(z, x) < d(z, ).
Let us suppose, on the contrary, that z is closer to y than to x, so that by Exer-
cise 9.22, part 3, d(z, x) = d(z,y) + 1. Then if G is a minimal gallery from z to
v, the augmented gallery G’ := G o (x, y) is minimal. Then G’ crosses E an even
number of times. But as it contains the edge ¢ = (x, y) it crosses E at least once,
and so must cross E at least twice. But by Lemma 9.6.9, that is impossible for a
minimal gallery G’. Thus we must have d(z, x) < d(z, y) after all.

‘We have shown, then, that

DY (E) C Dy(e) :={zld(z, x) < d(z,y)}.

Similarly, D™ (E) < Dy(e) and since Dy(e) N Dy(e) = ¥, all containments here
are equalities. Thus (a) holds, and the proof is complete. O

Corollary 9.6.11 For every pair of distinct chambers x and y, there exist exactly
d(x, y) roots containing x but not y. In particular if x is adjacent to y, there is
exactly one such root.

Proof First assume x is i-adjacent to y in C. This means C can be coordinatized
so that x = 1 and y = s;. Then left multiplication by s; transposes x and y. Since
this was just one of many possible coordinatizations, it is correct to say that some
conjugate r of s; transposes x and y. Thus e := (x, y) belongs to the wall E,, and
by the theorem D, (e) and Dy (e) are the two roots of E;, with Dy (e) containing x
but not y. Suppose now that D was a root containing x but not y. Then D and its
opposite root —D := C — D are formed by a wall E; containing ¢ = (x, y). But
then ¢ and r both transpose x and y to 7r fixes x. Since G acts regularly on C, tr = 1
so r = t. Thus each edge (x, y) belongs to a unique wall — and there is a unique
root containing x but not y.

Now let y = (x = ¢p, ¢y, ...,cn = y) be a minimal gallery from x to y. Let
D; be the unique root containing c;_1 but not ¢;. Then as x is closer to ¢;_; than
¢i, x belongs to D; since D; is a root. But similarly D; contains y but not x, so y is
not in D;. Clearly, then, the D;,i = 1, ..., m comprise a collection of distinct roots
which contain x but not y. We claim they comprise all such roots. For suppose D’
were any root containing x but not y. Then the gallery y must pass at some point
from the set D’ to its opposite root (C — D), at some bridging edge —say (c;_1, ¢;).
Then D’ contains c¢j_; but not ¢;. From the uniqueness of roots separating adjacent
chambers, we see D' = D;. O

Corollary 9.6.11 also makes it easy to identify those chambers one might
encounter along a minimal gallery stretched between two given chambers.

Lemma 9.6.12 Fix two chambers x and y. The following conditions on chamber z
are equivalent:
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(1) z lies on a minimal gallery from x to y.
(2) d(x,2) +d(z,y) =d(x, y).
(3) z lies in every root containing both x and y.

Proof (2) implies (1). If g and & are minimal galleries from x to z, and from z to y,
respectively, then (2) shows that the concatenation go# of these galleries is minimal.
Since it contains z, (1) holds.

(1) implies (3). If D is a root containing x and y, it must, because of its convexity,
contain any minimal gallery between them and in particular must contain z.

(3) implies (2). Suppose z lies in every root containing both x and y. Now if D
is a root containing z but not y, it must contain x. For if not, x, like y, must belong
to the opposite root — D, contrary to our hypothesis on z. Thus we have

d(z,y) = no. of roots on z but not y
= no. of roots on x but not y which contain z.

Also if D is a root on x but not z, then by hypothesis D does not contain y. Thus

d(x, z) = no. of roots on x but not z

= no. of roots on x but not y which do not contain z.
But now

d(x, y) = no. of roots on x but not y
= no. of roots on x but not y which contain z
4+ no. of roots on x but not y which do not contain z
=d(z,y) +d(x,y)

by the preceding two equations. Thus (2) holds and the proof is complete. O

9.6.5 Gatedness and Convexity of Residues

There are nice consequences of Corollary 9.6.11 and Lemma 9.6.12, of the previous
section.

Lemma 9.6.13 All residues of the Coxeter chamber system C (M) are isometrically
embedded.

Proof Let (W, R, M) be the Coxeter system giving rise to the chamber system
C(M). Let x and y be two distinct chambers of a residue S of C(M) of type J.
Let ds denote the internal metric of S. It follows from Corollary 9.6.6 that S is
isomorphic to C(M ), the Cayley graph of the Coxeter system (W;, Ry, M ;). Then



368 9 Chamber Systems and Buildings

by Corollary 9.6.11, dr (x, y) is the number of roots of (W, Ry, M) which contain
x but not y. Now suppose Ej(r) := (D}r(r), D7 (r)) is a wall of § = C(My)
defined by involution r € Rj (here expressed as a pair of opposite roots). Since
R; € R, we have DI (r) = DT(r) NS and D;(r) = D~ (r) N S where
(DT (r), D™ (r)) is the partition of C (M) into opposite roots defined by the invo-
lution r. The correspondence (Dj'(r), Dy (r)) — (DT (r), D—(r)) is therefore
an injection. A second application of Corollary 9.6.11 shows that the global dis-
tance d(x,y) is at least as large as dr(x,y). But since distance measures the
lengths of minimal galleries the inquality also goes the other way. Thus we have
d(x,y) =dgr(x,y). Thus S is isometrically embedded. O

Theorem 9.6.14 In the chamber system C of the Coxeter system (W, R, M), all
residues are strongly gated and hence convex.

Proof Suppose (c, g, x, S) is a quartet where S is a residue of C(M), and c, g, and
x are chambers such that

1. x € S, g € Ssuchthatd(c, S) =d(c, g), and
2. d(c,x) <d(c, g) +ds(g, x).

Clearly c is not in S. Lemma 9.6.13 now tells us that we may drop the subscript
S in the right-most term of 2. Then 2 informs us that g lies in no geodesic gallery
from ¢ to x. But in that case, Lemma 9.6.12 asserts that there exists a root DT (r)
containing ¢ and x but not g. Thus g is in the opposite root D~ (r).

Now a minimal gallery G = (¢ = ¢g,...,c, = g) from ¢ to g connects a
chamber of DT (r) to a chamber g of D™ (r), and so there is a first edge e :=
(ci_1, ¢;) which bridges the partition C(M) = DV (r) + D~ (r). Similarly, in a
minimal gallery H of S from g to x, there is a first edge f connecting a chamber of
D~ (r) to one in DF(r) (see Fig. 9.10). By part 2 of Theorem 9.6.10, these bridging

Fig. 9.10 The configuration of a root and a residue in proving strong-gatedness of the residue. The
root marked D(r) is DV (r)
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edges belong to the wall E(r) and so are r-invariant. Since S is the unique residue
of its type containing the edge f, we must have S” = S. In particular g" € S. But
now

r r r
(COs v v s Cim15Cl 12 Ciygsever Cpy =8)

is a gallery from ¢ to g whose length is one less than the length of gallery G which
isd(c, S) by 1. Thus g" € S and yetd(c, g") < d(c, S), an absurdity.

Thus no such quartets (c, g, x, S) satisfying 1 and 2 above can exist. This means
that for fixed choice of ¢ and residue S, and then for any g for which d(c, g) =
d(c, S), we have

d(c,x)=d(c,g) +dgr(g,x)forallx € S.

Thus S is strongly gated in C(M). O
Corollary 9.6.15 Let (W, R, M) be a Coxeter system.

1. (P) Any two minimal galleries connecting the same two chambers of C(M) are
M -homotopic.

2. In the monoid I*, any two reduced words w| and wy with p(wy) = p(wy) € W
are M -homotopic words.

Proof 1. We have just proved that every residue of the Coxeter chamber sys-
tem C(M) is strongly gated — i.e., (RG) holds. Hence (RG;) holds, and so by
Theorem 9.3.13 condition (A-min) holds, that is, any two minimal galleries con-
necting the same two chambers are A-homotopic. But in C(M) an elementary
A-homotopy is an elementary M-homotopy. Thus (A-min) becomes condition (P).

2. This M-homotopy among minimal galleries with the same initial and terminal
chambers of C (M) induces (via the type-mapping typ) the M-homotopy of words
described in part 2. O

Theorem 9.6.16 Suppose (W, R, M) is a Coxeter system over I. Suppose w is a
reduced word of I* and that for some letteri € I,

L(wi) < L(w).

Then w is M-homotopic to a word w' ending in i.

Proof This argument can be played out in the Cayley graph C(M). Suppose G is a
minimal gallery of C (M) of type w, beginning at 1 (the identity element of W (M)).
(Tt then necessarily terminates at ¢ := p(w).) Now on ¢ there is a unique edge (7, t')
of type i, and the hypothesis £(wi) < £(w) tells us that ¢’ is one unit closer to
1 than is ¢. Thus there is a minimal gallery H of length £(w) — 1 = £(wi) from
1 to ¢t and now G and H o (¢, t) are two minimal galleries running from 1 to ¢.



370 9 Chamber Systems and Buildings

By Corollary 9.6.15, part 1, these two galleries are M-homotopic, and so, taking
types of the galleries, there is an M-homotopy of words:

p(G) =w — w =nyp(H o (1, 1)),

where w’ ends in i. O

9.6.6 When Is a Coxeter Group Finite?

The title of this section can be recast in this way: For which matrices M is W (M)
a finite group? This question was completely answered by H.S.M. Coxeter in 1934
[43]. First, it is immediate that if W (M) is to be a finite group, the matrix M can
have no entry equal to “co.” Second, M itself can have only finitely many rows and
columns, for otherwise, using the Tits” form of Theorem 9.6.5, there would be a
chain of subgroups of unbounded orders. Third, if there is a partition / = A 4 B for
which every generating involution in R4 commutes with every generating involution
in Rp (so thatm;; = 2 forall (i, j) € A x B), then the Coxeter group W (M) is just
the direct product

W(M) = W4 x Wg,

and so is finite if and only if each direct factor is finite. Thus one need only consider
Coxeter systems in which there is no such partition. This is equivalent to saying
that in the Dynkin notation, the diagram D (M) is connected. We call such Coxeter
groups W (M), irreducible Coxeter systems.

Theorem 9.6.17 (Coxeter) The Coxeter group W (M) is finite if and only if the con-
nected components of its diagram D (M) are among those listed in Fig. 9.11.

The diagrams listed in Fig. 9.11 are called the Dynkin diagrams.

In the next major section of this chapter we are going to define buildings as a class
of chamber systems of type M with certain properties which we would like to keep
as simple as possible. Our intention is to derive everything from (the seemingly
tautological condition) (G.) without ever once mentioning a simplicial complex.
Everything is in terms of graphs.

But our ultimate objective in this book is to characterize point-line geometries.
Merely to show that the most interesting geometries of this type are truncations
of homomorphic images of geometries whose chamber systems are of type M and
satisfy conditions like (G.) would have no point if one could not classify the latter.

That is why Tits’ theorem classifying all buildings of rank at least three and
type M, where W (M) happens to be a finite group (the buildings of “spherical
type”) is such a beacon. Obviously one cannot mention the latter without mention-
ing Coxeter’s classification of finite Coxeter groups mentioned just above. In the
eyes of the author, Tits’ classification (not to mention his classification of buildings
of affine type of rank at least four) is the “theorem of the century” (to borrow an
appellation of Shreeram Abhyankar). We can now prove that point-line geometries
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Fig. 9.11 The Dynkin diagrams. These are the diagrams of the irreducible Coxeter systems for
which the Coxeter group is finite. (The node labeling is not altogether standardized in the literature.
Following Cohen’s article in the Handbook [35], we have used the numbering adopted by Bourbaki

[9]
have real classifiable conclusions because of Tits’ theorem. Otherwise one would

be condemned to proving that certain axioms imply miscellaneous properties. One
could really classify nothing.

9.7 Chamber Systems of Type M

9.7.1 Introduction

Let M be a Coxeter matrix M = (m;;), that is, a symmetric matrix M with all
diagonal entries equal to 1, and every other entry equal to either a positive integer
greater than one, or the symbol “co”.
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Recall that a chamber system C = (V, E, A) over [ is said to be a chamber
system of type M if and only if M is a Coxeter matrix with rows and columns
indexed by I, and for every 2-subset {i, j} of I, every residue of type {i, j} is a
generalized m;;-gon.

Note that in a chamber system C = (V, E, A) of type M, each edge of the
chamber system must bear a unique label— that is condition (typ) holds. For suppose
some edge e = (c, ¢’) carried two or more labels A(e) = {i, j....}. Then setting
J = {i, j} we see that e and its vertices ¢ and ¢’ belong to a connected component
R of the graph (V, E ), which is a residue of type {i, j}. But since C is type M, R
is the chamber system of a generalized m;;-gon, and so cannot have repeated labels.

The rank of a chamber system of type M is the cardinality of the set / indexing
the rows and columns of the matrix M.

Along with every chamber system of type M we inherit an entire Coxeter system
(W = W(M), R, M) and its associated chamber system C (M) — and in fact, all of
the paraphenalia of the previous section on Coxeter groups and their Cayley graphs.
This means we have the following:

1. A monoid epimorphism p : I* — W from the free monoid /* over I onto the
Coxeter group W (M) defined by sending letter i to the involution r; € R.

2. A “coordinatization" p. of the chambers of C (M) by the elements of W which
assigns the identity element 1 € W (M) to chamber c.

3. A bijection ¢,:

words in I* —> walks in C(M) beginning at chamber c.

4. The notion of a reduced word in W, that is, a word w in the monoid /* whose
length is the distance from 1 to p(w) in the Cayley graph C(M).

All these things are in place once a chamber system C of type M is even mentioned.
One immediately notices that not one of the concepts listed just above involves the
Earthly chamber system C. This is all going on in some sort of Chinese Celestial
Heaven above C involving the free monoid and the “Coxeter world”!

However, because of condition (typ), there is associated with each gallery G =
(co, €1, --.,ck) (that is, a walk in C) a unique word typ(G) = ipi1---ix—1 in
the monoid I*, called the type of the gallery G, where i; := typ((c;, cj+1)) for
Jj =0,...,k — 1. (We defined this before for the Coxeter chamber systems; here
we are simply observing that the definition makes sense for any chamber system of
type M.)

Noting that each chamber of C lies on an edge with each possible label, we see
that for any chamber ¢ of C, restriction of the type function produces a surjection

typ, : {walks of C beginning at ¢} — I*.

Unlike the case for C (M), this is normally not an injection. Many galleries of C of
the same type can begin at chamber c.
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9.7.2 The Three Levels of Homotopy

Homotopy theories for a chamber system of type M simply amount to citing a set of
rules (called “elementary homotopies™) for replacing a gallery by another without
disturbing the initial and terminal chambers of the gallery. The reverse replacement
“undoing” an elementary homotopy is also required to be an “elementary homo-
topy.” Then two galleries become “homotopic” (so the theory runs) if and only
if they are connected by a chain of elementary homotopies. (The chain may have
length zero, so the identity relation is a homotopy.) Then the relation of being
“homotopic” is an equivalence relation on galleries and so “homotopy classes of
galleries” are naturally defined. (Since we did not even specify the particular defini-
tion of homotopy, one can see that this is a rather general concept.)

In Chap. 1, we studied homotopies in arbitrary graphs which were defined by a
family of circuits. We proved that for any graph G = (V, E), and any family C of its
circuits, there exists a universal C-cover of G. In this sort of homotopy, backtracks
P o P~! are always C-contractible so we cannot expect this sort of homotopy to
preserve the length of a gallery. We shall be interested in this for C,-homotopy.

A second homotopy theory, M-homotopy, is a special case of the first — that is
M -homotopic strings or galleries will already be C>-homotopic. So the former is
a finer theory. Both theories have already been discussed for the Coxeter chamber
systems C(M). We want to establish how they work for general chamber systems
of type M, as well as the free monoids.

So our homotopies will be discussed at three levels:

Homotopy of words in the free monoid 7*.
Homotopy of walks beginning at the identity element 1 in the Cayley graph of
the Coxeter groups W (M) (in other words, the homotopy of galleries beginning
at 1 in the Coxeter chamber system C(M)).

e Homotopy of galleries of C.

The relation between the first two levels is basically a bijection, as has been
discussed in the guise of an earlier paradigm. The relation between the third and the
first two is not so tight.

For our two relevent homotopy theories, we shall show two versions of our earlier
paradigm:

1. (Going up in levels.) Any homotopy of galleries at the level of the chamber
system C of type M determines a corresponding unique homotopy of words in
I* and of galleries beginning at 1 in C(M).

2. (Going down in levels.) A partial converse in the form of an existence theorem
will assert that if w; — w> is a suitable homotopy of words, and G is a gallery
of C of type wy, then there exists a corresponding homotopy of galleries of C
taking G to a gallery H of type wy with the same initial and terminal vertices
as G.23

23 Of course now the H is not necessarily unique, as it was in C(M), but this enough to prove
equivalence of several properties of C.
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Some Notation for Words of I'*

We require a little notation concerning words in the monoid 7*. If w = a; - - - a, is
a word in the free monoid 7* spelled out by the letters a; € I, then w* will always
denote the reverse word aya,—1 - - - aray. This is a useful notation, for if the gallery
G of a chamber system C of type M has type w = typ(G), then the reverse gallery
G~! must have type w*.

If the coefficient m;; of the Coxeter matrix M is finite, and 0 < k < m;;, define
the following words in the monoid 7*:

p(i. j) : = ijij - - (length m; ), (9.30)
p(, ji k) : = ijij- - - (length k). (9.31)

Note that if m;; or k is even, then p(i, j) and p(i, j; k) are respectively words
beginning in i and ending in j. Similarly, if m;; or k is odd, these respective words
begin and end in i. Thus we have these factorizations in 7*:

(ij)"i = p(ij)?, if m;; is even, (9.32)
(ij)"i = p(i, j : k)p(i, j; mij — k) if k is even, (9.33)
(ij)"i = p(i, j)p(j, i) if mj is odd, (9.34)
™M = p(, jik)p(j, i;mij — k) if k is odd. (9.35)

In order to avoid constant case divisions according to the parity of m;; or k, it will
be convenient to have a common notation for the right-most factors of the equations
above. This factor is written p(i, j)T in the first and third equations, and written
p,j: k)T in the second and fourth. Then, whenever m;; is finite, we always have

)" = pppGp" = pl, jskpl, j; k)"

C>-Homotopy of C

For any chamber system C of type M, C, will denote the collection of all circuits
in C that lie within some rank two residue of C. Then along the lines of Chap. 1,
Cy-homotopy is defined, and universal C-covers always exist.

Now in a chamber system C of type M, any circular gallery G expressible as a
concatenation Py o P», where Pj has type p(i, j : k) and Pz_l is a gallery of type
p, j; k)T —thatis p(i, j; m;; — k) or p(j,i;m;; — k) according to whether k is
even or odd — is a circuit of (panel-reduced) type (ij)™/ residing within some rank
two residue of C of type {i, j} — a residue which is a generalized m; j-gon.24

Then an elementary C>-homotopy of a gallery of C is a transformation

AoPioB— Ao PyoB,

24 Note that the assumption that G is circular is necessary. Unlike the Coxeter chamber system
C(M), for a general chamber system of type M a gallery of type (ij)™/ need not be circular.
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where either:

1. one of {Py, P»}is aspur (x, y, x) and the other is the gallery of length O at x, or,

2. for some i, j € I and appropriate integer k, Pj is a gallery of type p(i, j : k)
and Pz_1 is a gallery of type p(i, j; k)T — that is Pj o P2_1 is a circuit of type
(ij)™ii. (Note that Py and P, have lengths k and 2m;; — k, respectively.)

But these two transformations determine similar transformations of words of I*:
uoiiow— uow
for some i or its reverse, or
uop(i, jikyow— uo(p(, j: k) ow

either of which we call an elementary C>-homotopy of words.

But now, applying the monoid morphism p : I* — C(M), this same elementary
homotopy of words induces a Co-homotopy of galleries of the Coxeter chamber sys-
tem C (M), as explained in an earlier section. So we have C>-homotopies occurring
at three levels: (1) in words of I, (2) in galleries of the Coxeter chamber system
C (M) which begin at the identity element 1 € W (M), and (3) in galleries of C. The
latter determines the two former.

Before leaving C-homotopy theory, there is an important fact to observe.

Lemma 9.7.1 (Existence of Co-homotopies in C.) Suppose C is a chamber system
of type M. Suppose w1 — wy is a Co-homotopy of words. Then, for any gallery G
of C of type wy, there exists a gallery G of type wy Ca-homotopic to G .

Proof One merely verifies the assertion at an elementary homotopy. O

M -Homotopy in C

We have already met special M-homotopy in the context of Coxeter chamber sys-
tems.
An elementary M-homotopy of words of I* is a replacement of words of the form

wo pi, j)ov— wo (p@i, HH*ov

where p(i, j) is the word of type of type #jij - - - of length m;;, p(i, T = paG, )
or p(j,i) according to whether m;; is even or odd, and the “star” operator denotes
reversal of a word.>> Then two words of 7* are M-homotopic if and only if they are
connected by a series of elementary M-homotopies. Clearly M-homotopic words
have the same length.

25 A memnonic device is this: p(i, j)T must always end in “j.” Thus (p(i, j)7)* = p(j, i) since
itis spelled in {i, j} without “double letters,” has the right length, and begins with letter j.
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Applying the monoid morphism p, any M-homotopy of words is converted into
an M-homotopy of galleries of the Coxeter chamber system C(M).

Meanwhile back on Earth we have the ‘mundane’ chamber system C of type M.
Even here, Heaven can be “mirrored” by replacing a gallery G of C from chamber
s to t expressible as a concatenation A o Pj o B by another gallery G, := Ao P,o B
from s to t where typ(P;) = p(i, j) and typ(P,) = (p(i, j)T)*). This distortion
defines an elementary M-homotopy of galleries in C which does not change the
length of the gallery. As usual this extends to a definition of (special) M-homotopy
among the walks of graph C — that is, among the galleries of the chamber system C.

With these notions in place, we may easily deduce the second basic property of
chamber systems of type M.

Lemma 9.7.2 Suppose C is a chamber system of type M.

(1) (Existence of M-homotopies in C.) Suppose G is a gallery in C of type w € I*
connecting chamber x to chamber y. If the word w is M -homotopic to the word
v in I*, then gallery G is M-homotopic in C to a gallery H having type v.

(2) Conversely, if two galleries of C are M-homotopic, then there is a correspond-
ing M-homotopy of words in M (I) connecting their types.

In other words, any special M-homotopy that can be formed in Heaven can
be modeled on Earth (though not necessarily in a unique way). Similarly, any
M-homotopy down in C is forever inscribed in Heaven as an M-homotopy of words
in I*.

Proof For any elementary M-homotopy in C, the segment P; is a gallery of type
p(i, j) = ijij- - - in a residue which is a generalized m;;-gon. By the standard gen-
eralized polygon conditions, there exists a gallery P> of type p(J, i) beginning and
ending at the same chambers.

The second part is just a consequence of our definitions. O

Geodesics in C have Reduced Type

We are now ready for one more basic property of chamber systems of type M. Recall
that a gallery G is a geodesic in the chamber system C if and only if it is a shortest
possible path connecting its extremeties.

Lemma 9.7.3 Suppose C is a chamber system of type M. If G is a geodesic in C,
then the type of G is a reduced word.

Proof If the type of G were a word which was not reduced then there would be a
series of elementary Cp-homotopies of words in /* which changed w to a shorter
word v. Now by the second part of Lemma 9.7.1 there must exist a gallery H of
type v which is C-homotopic to G. But in that case the length of v, which is the
length of H, is shorter than the length of G, but still connects the initial and terminal
chambers of G. This contradicts the fact that G was a geodesic. O
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9.8 Buildings

9.8.1 Introduction

Buildings are a species of connected chamber systems of type M — possibly of
infinite rank. There are many properties which become equivalent in the context of
connected chamber systems of type M. We have already shown the equivalence of
the three strong-gatedness properties (RG!), (RG), and (RG») for arbitrary chamber
systems with condition (typ). In the context of chamber systems of type M any of
these conditions are equivalent to the following:

1. Condition (G.). Any gallery of reduced type beginning at chamber c is a geodesic
(or minimal) gallery.

2. Condition (P,.) (Tits). Any two galleries of reduced type connecting chamber ¢

to another chamber are M-homotopic.

Condition (Gy). By this we intend to assert condition (G, ) for every chamber x.

4. Condition (P, ). Similarly, the assertion that (P, ) holds for every chamber x.

et

In the next section we shall demonstrate the equivalence of these conditions for
connected chamber systems of type M by means of the following chain of proved
results:

. (Theorem 9.8.1) The conditions (P.) and (G.) are equivalent.

. (Theorem 9.8.2) The conditions (G.) and (G, ) are equivalent.

. (Theorem 9.8.4) The condition (G,) implies (RG).

. (Theorem 9.8.5) The condition (P.-min) together with (RG) implies (G,).

SN =

How does this imply the equivalence? We are missing only (RG) implies (G,).
But from the section on chamber systems with strongly gated residues, we proved
that (RG) trivially implies (RG2) which in turn implies condition (A-min) (Theo-
rem 9.3.13) . In the context of chamber systems C of type M, the condition (A-min)
is manifestly as follows.

(P.-min) Any two minimal galleries connecting the same two chambers of the
chamber system C are M-homotopic.

So the assumption (RG) gives us (P.-min) as well, and then by the fourth result
enumerated above, one has (G¢).

We consider a connected chamber system of type M satisfying any one of the
properties listed above, as well as any one of the three strongly gated conditions (all
seven of which conditions are equivalent) to be a building.

In a subsequent section, we show that these conditions are also equivalent to the
formulation of Ronan and Tits in which there is a Coxeter-group-valued metric with
relatively simple properties*® and then show (as in Ronan’s book) that all of this is

26 See Ronan [103], Chap. 3.
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equivalent to the traditional formulation of the definition of “building” involving a
Tits” system of apartments.

Of course this means that now there are very simple ways to define a building in
the context of connected chamber systems of type M. What could be simpler than
saying that all corank one residues are gated (RG")? Or to assert condition (G, ) that
all galleries of reduced type are minimal galleries? To this author, simple definitions
have an appeal well beyond the fact that such definitions are easier to teach: rather,
it is that the more simple a concept, the more one acquires the esthetic feeling that
it is forced on us by the nature of the universe — or at least our mental universe. But
there is a down side: simple definitions can give a false illusion of understanding,
making invisible all the structural complexity underneath. That is in fact the way it
is with buildings. We have merely caressed the upper surface.

9.8.2 The Conditions (G.) and (P.)

In the previous section we noted that in any chamber system of type M, the type of
any geodesic gallery is a word of reduced type (Lemma 9.7.3). The relevant property
here is in fact the converse of this assertion. Suppose C is a chamber system of type
M and fix a chamber ¢ in C. Then we define this property.

(G.) Every gallery of reduced type beginning at chamber c is a geodesic.
Tits introduced the following (equivalent) condition in [139].

(P.) If two galleries G and H have reduced type, and have the same extremities,
then these two galleries are M-homotopic.

The Equivalence of (G.) and ( P,)

Theorem 9.8.1 The properties (P.) and (G.) are equivalent.

Proof (G.) implies (P.). Let G and H be galleries of reduced types w = typ(G)
and u := typ(H) beginning at chamber ¢ and terminating at chamber 7. Let s be the
next-to-last chamber of gallery H, so s is i-adjacent to t. Now by (G.), d = d(c, t)
is the length of words typ(H) and typ(G); but as d(c,s) = d — 1, by (G.) the
gallery G o (¢, s) cannot be of reduced type. Thus the concatenation typ(G) oi is not
reduced and so its length is less than typ(G). Then by Theorem 9.6.16, typ(G) is
M -homotopic in I* to a word w’ oi which is reduced. Then by Lemma 9.7.2 above,
G is homotopic to a gallery G’ o (r, t) where r is i-adjacent to  and G is of reduced
type w’ = typ(G").

If r = s, then by induction on the length, G’ is homotopic to H’, the subgallery
of H from c to s. Thus

G~Go(s,t)~H o(s,t)=H

and we are done.
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If r # 5, G' o (r, 5) is the same reduced type as G’ o (r, r). But the former is not
a geodesic as d(c, s) = d — 1, contradicting (G).

(P.) implies (G.). Now let G = G’ o (y, 1) be a gallery of reduced type w' o i
(that is, G’ has type w’ and the final edge (y, t) is labelled i) chosen of minimal
length so w’ o i is reduced, but the distance of its terminus ¢ from c is less than its
length. Then, as w’ is reduced, G’ is a geodesic from ¢ to y of length d = d(c, y),
and d(c,t) = d ord — 1. Let H be any geodesic from c to ¢. Then H has reduced
type typ(H) by Lemma 9.7.3. By (P.), H and G are M-homotopic galleries. But
that is impossible as g has length d 4 1 while H has length d or d — 1. Thus no such
gallery G can exist —i.e., (G.) holds. O

Transporting (G.) to Other Chambers

Theorem 9.8.2 A chamber system C of type M satisfies condition (G.) if and only
if it satisfies condition (Gy) for all its chambers x.

Proof We need only prove the forward implication, and, as the chamber system C
is connected, we need only show that (G.) implies (G./) where ¢’ is any chamber
Jj-adjacent to c. Let G be a gallery of reduced type w beginning at ¢’. We must prove
that G is a geodesic, and as the result is obvious if G has length 1, we may assume
all shorter galleries of reduced type starting at ¢” are geodesics.

Case 1: £(jw) > £(w) —i.e., jw is areduced word. Then the augmented gallery
(¢, ¢’) o G has reduced type jw and so is a geodesic by (G.). Then its long “tail,”
G, is also a geodesic.

Case 2: £(jw) < €(w). Then jw is not a reduced word. It then follows from
Theorem 9.6.16 that the word w is homotopic to a word beginning with j, and so
by Lemma 9.7.2 (2), G is M-homotopic to a gallery beginning with a j-adjacency.
Since the latter gallery is a geodesic if and only if the former gallery is a geodesic,
we may, without loss, assume G is this latter gallery. Thus we write

G=('=coc1,....cq)

of reduced type jw’, so (co, 1) is a j-adjacency.

Subcase 2.1. ¢; # c. Then letting G’ be the subgallery of G running from ¢; to
cq, we see that (c, ¢j) o G’ is also of reduced type jw’ and so is a geodesic. Thus
d(c,cq) = d. If then d(¢/, ¢y) = d we are done as G is then a geodesic. Thus we
must assume d(c’, ¢g) = d — 1. There is thus a geodesic gallery H’ of length d — 1
running from ¢’ to ¢4, say of reduced type w”. Then as d(c, cg) = d, (c,c’)oH'isa
minimal gallery, so its type jw” is reduced. Now (¢, ¢’) o H' and (c, ¢1) o G’ are two
galleries of reduced types jw” and jw’ terminating at ¢, and so by condition (P.),
the galleries are M-homotopic. By Lemma 9.7.2 (2), their respective types jw” and
Jjw’ are homotopic words. It follows that w” and w’ are also homotopic words. Thus
by Lemma 9.7.2 (1), there exists a gallery H from ¢’ to ¢y of reduced type w’. We
have now the configuration of Fig. 9.12.

Now let H be the gallery (¢’ = hy,...,hy = c4) of length d — 1. Then hy_4
and c4_1 are both k-adjacent to ¢y, since h and g’ are both type w’.
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Lyp(H')=w"

¢ H ¢, DPH)=W

G)=w'
- G yp(G)

Fig. 9.12 The configuration of Subcase 2.1

Assume now cg—1 # hg—1. Then the gallery
(c,c' hay .. ha—1, ca—1)

(marked by the dotted path in Fig. 9.13a) is reduced type jw’ but travels only a
distance d(c, c4—1) = d — 1. This contradicts (G.).
On the other hand, if hy_1 = c4—1, the gallery

(c,cryennycam)

(marked by the dotted path in Fig. 9.13b) has reduced type (a factor of jw’) and
lengthd — 1 >d —2 =d(c’, cy_1) against the minimality of G.

Subcase 2.2. ¢ = ¢;. We have d(c’, ¢g) < d(c, cq) = d — 1 despite the fact that
G = (/, ¢) o G’ has reduced type jw’. We may then supply a minimal gallery K
of reduced type v from ¢’ to ¢; so |[K| < d — 1. We then have the configuration of
Fig. 9.14.

Suppose first that jv is a reduced word. Then by (P.), jv is a word homotopic to
w’. But in that case jw’ would be a word M-homotopic to jjv and so could not be a
reduced word.

Thus we may assume that jv is not reduced. Then, as v is reduced and jv is not,
Theorem 9.6.16 tells us that v is M-homotopic to a word jv’, and so by Lemma 9.7.2
(1), K is M-homotopic to another minimal gallery (¢, a) o K’ of type jv’. The
picture is now that of Fig. 9.15, since d(c, cq) =d — 1 # d(a, cq) forced a # c.

hgp=cqq

(a) (b)
Fig. 9.13 Two impossible galleries
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Fig. 9.15 Refinement of Subcase 2.2

Then (¢, a) o K’ is a gallery of reduced type jv’ and so by (P.) is M-homotopic
to G’, whence by Lemma 9.7.2 (2), w’ is homotopic to jv’. Then jw’ is homotopic
to jjv’ and this contradicts the case assumption that jw’ is a reduced word. The
proof is complete. O

The Condition (G.) Implies Condition (RG)
We begin with a lemma.
Lemma 9.8.3 The following statements hold:

1. Let C satisfy condition (G.). Then all residues of C are isometrically embedded
induced subgraphs of C. Moreover, they are convex.
2. As a chamber system, any residue R also satisfies (G¢).

Remark One may note that if our definition of building was (G.) then part 2 asserts
that every residue of a building is also a building. This can be seen as an extension of
the so-called “parabolic subgroup theorem” to chamber systems of type M. Part 1 of
this theorem is the most important. It is in fact the perfect analog of Lemma 9.6.13
for Coxeter chamber systems moved into the more general realm of chamber sys-
tems of type M. But now we cannot talk about walls and roots and methods of
measuring distance by the number of roots contining one chamber but not the other.
We need an entirely new proof.

Proof 1. Suppose x and y are two chambers in a residue R of type J in C. Then at
least R is a chamber system of type M, the Coxeter matrix restricted to the rows
and columns indexed by J. Let G be a shortest gallery of the chamber system R
connecting x and y. By Lemma 9.7.3 applied to R, the type w of gallery G is a
reduced word in M (J).
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By a well-known property of Coxeter systems (Lemma 9.6.13, for example), w
is a reduced word of 7*. Similarly, if H is any geodesic of C connecting x to y,
H also has reduced type. By condition (P,), H is M-homotopic to G, since these
two galleries have the same extremeties and are of reduced type. Thus we see two
things:

1. G is a geodesic of C.
2. H is already a geodesic of the residue R.

Statement 1 shows that R is isometrically embedded. Statement 2 shows that R is
an induced convex subgraph.

2. From 2 it is clear that (G.) holds relative to the chamber system R.

The proof is complete. O

Theorem 9.8.4 For a chamber system C of type M, condition (G.) implies condition
(RG).

Proof In view of Lemma 9.8.3 all residues are convex induced subgraphs of C, and
so ordinary gatedness (in the sense of Scharlau and Dress) implies strong gatedness.
Thus it suffices to show that any residue is gated in the ordinary sense.

Choose a residue R of type J and a chamber ¢ and let p; be a chamber of R
nearest c. If we show d(c, p1) +d(p1,r) = d(c,r) for all r € R, the uniqueness of
p1 and the gatedness of R will be shown in one stroke. For this purpose, it is clear
that ¢ can be assumed not to lie in R (for then the distance equation follows with
¢ = pi).

We prove the distance equation by induction on d(p1, r) = d, it being true when
d = 0. So, if the equation is false for some r, it is false for some ¢ of minimal
distance from pj. Thus we have a minimal gallery G’ o (s, 1) of length d and reduced
type wj, from pj to ¢ and a minimal gallery G| of reduced type u from c to pg.
Minimality of d(c, p1) (which follows from the choice of p;) implies that the word
u is not M-homotopic to a word ending in a letter of J, the type of the residue R.

Now uw is reduced as d(c, s) = d(c, p1) + d(p1, s) holds by the minimality of
d. But uwj is not reduced, since otherwise, by (G.), G1 o G’ o (s, 1) would be a
geodesic against the choice of z. Thus in the Coxeter system W, £(uwj) < £(uw).
Thus by Theorem 9.6.16 uw is M-homotopic (in the monoid 7*) to a word v;j ending
in j.

Let p denote the canonical monoid homomorphism p : I* — W which evaluates
words in 7* as products of generating involutions of W. As we have seen in the pre-
vious section, the Coxeter chamber system C (W) has its residues gated. This means
that if J is the type of the residue R of C and C(W) is coordinatized by W, then
p(u) is the gate of the residue p(u)W; with respect to the chamber coordinatized
by the identity element (that is, since u is not M-homotopic to a word ending in a
letter from J, u is the word of shortest length representing an element in the coset
p(w)Wy). But v is a word representing an element in this coset e(u) W;. Thus v is
M -homotopic to a word uv’. We now have these M-homotopies:

uw ~vj ~uv'jsow ~vj.
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But this contradicts the fact that as G’ o (s, t) was a geodesic, the word wj must be
reduced. Thus no such chamber 7 exists. O

Theorem 9.8.5 If condition (P, min ) holds for all chambers c of C, and the gated
hypothesis (RG) holds, then (Gy) holds for all chambers x € C.

Proof We assume (G.) false, and select a chamber ¢ and gallery G = (¢ =
o, - - -, cq) of reduced type wij of minimal length so that G is not a geodesic. Then
d(c,cq—2)=d—2=d(c,cq—1)—landd(c, cqg) < d(c,cq—1) =d— 1. Since wij
isreduced, i # j.If d(c, cq) = d(c,cq—1) = d — 1, there exists, via the gatedness
of rank one residues, a vertex s which is j-adjacent to ¢y but distance d — 2 from
c. On the other hand, if d(c, c¢y) = d — 2, set s = cq, so s has the same property in
either case. Then for any minimal gallery H' from c to s, we see that H' o (s, c4—1)
is a minimal gallery, of type ending in j, stretching from ¢ to cy—;. But G’ :=
(co, ..., ,Cq—1) is also a minimal gallery from c to c4_1. By (P, min), H o(s, c4_1)
is M-homotopic with G’. Thus wi, the type of G, is M-homotopic to a word ending
in j and this contradicts the hypothesis that wij, the type of G, is reduced.

This completes the proof. O

9.9 Apartments

Our aim is to show that in any building C of type M, there exists a family A of
isometric embeddings C(M) — C of the Coxeter chamber system defined by M
whose images are convex, and which for every pair of chambers, possesses an image
covering them.

9.9.1 The Tits Metric of a Building

Let C be a building of type M. Then (P.) holds for each chamber c. Thus given
two chambers x and y, there is just one M-homotopy class of minimal galleries
stretched from x to y, and hence just one M-homotopy class w(x, y) of reduced
words representing the types of these minimal galleries. Then w(x, y), being an
M -homotopy class of reduced words, can be regarded as an element of the Coxeter
group, W = W (M). Thus there is a well-defined function

w:CxC—W

satisfying
(i) wix,x) = ly (9.36)
(i) wx,y) = (w(y, x)"" (9.37)

which we call the Tits metric on C.
‘We next observe:

® The mapping p, : x — w(a, x) is a morphism of C onto W as chamber systems.
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This is clear, for if x is j-adjacent to y, then w(a, y) = w(a, x) or w(a, x)j accord-
ing to whether d(a, y) < d(a, x) or not.

Since the morphism cannot increase distances (as with any morphism of chamber
systems) we see

(i) £(w(x, y)) <d(x,y) (9.38)

Let X be any subset of W. A strong isometry o : X — C is a mapping such that
forallx,y € X,

w(ax), a(y) =x"y.

We have the following.

Theorem 9.9.1 Any strong isometry @ : X — C can be extended to an isometry of
W into C.

Proof (The proof we give here is essentially that appearing in Ronan’s book [103],
pp- 31-32.) By Zorn’s lemma it is sufficient to show that for any proper subset X of
W, a strong isometry can be extended to a larger set. We may assume X # ¢, and
recoordinatizing W by pre-left-multiplication if necessary, that 1y = x¢ € X. Since
X is proper in W, X # Xr for some involution r in S, and the coordinatization can
be chosen so xor = r ¢ X. We therefore need only extend the isometry o : X — C
to X U{r}.

Case 1: Suppose £(rx) > £(x) for all x € X. Then we may choose y = a(r)
to be any chamber r-adjacent to «(1y) in C. This is a strong isometry on X U {r}
since rx reduced implies w(«(r), x) = rx.

Case 2: £(rx1) < £(x1) for some x; € X. Then x; is homotopic to a word r f
in W and we have the configuration in the Coxeter chamber system W given in
Fig. 9.16

Then in C there is a unique gallery of reduced type rf from o(lwy) to a(xy)
by the fact that condition (P (1)) holds in C (Theorem 9.8.1). Let y be the second

+ IX;

,,,,,,,,

Fig. 9.16 The relation of x; to the wall E, in W
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member of this gallery, so w(e(lw),y) = r and w(y, @(x1)) = f. Now for any
x € X, we have

Pa(x)(@) = w(a(x), y) (9.39)
= w(a(x),a(ly)) = x or (9.40)
= w(ax),a(lw))r = xr (9.41)

since y is r-adjacent to (1) and py(x) is @ morphism.
Thus, using Egs. (9.39) and (9.40) or (9.41) above,

w(y, a(x)) = x or xr for each x € X.

Now for each x € X define
B(x) :=row(y, a(x)).

Then g : X — W is the composition of a strong isometry @ : X — C, a morphism
py : C — W, and left multiplication by » on W which is an automorphism of
W. Thus B cannot increase distances as none of the factors «, py, x — rx, do so.
Moreover, from the above,

B(x) =rw(y, a(x)) =r(x orrx) = rx or x
and one calculates that
Bw) =row(y,a(ly)) =ror = lyin D

and

B(x1) =row(y,a(x)) =rf =x1in D, .

At this point one can show that 8 is the inclusion mapping. Suppose otherwise.
Then for some x € X, we have B(x) = rx. Now, if x € D;L (that is, its distance
to 1y in C(M) is shorter than its distance to r) then B(x) = rx is further from
B(lw) = 1w than was x — i.e., 8 has increased distance, a contradiction. On the
other hand, if x € D, (that is, it, like xy, is closer to r than it is to 1) then
B(x) = rx is further from B(x;) = x; than is x, and so x has again increased
distance. Since f cannot do this, we conclude that no such x exists. Thus for all
x e X,

B(x) =x =row(y, ax))

SO
w(y, a(x)) = rx for each x.
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But since y = «/(r), this shows that « satisfies
w(a(u), a(v)) = u~ ' for u,veXUlir}

—1i.e., the “new” « is a strong isometry X U {r} — C.
This completes the proof. O

9.9.2 Strong Isometries and the Standard Apartment Axioms
Jor a Building

We now let A’ be the class of all strong isometries W — C obtained by extending
possible strong isometries X — C. Next let .4 denote the set of images of W in C
under the various morphisms of A’.27 We have the following.

(9.9.1) Any two chambers x and y of C lie in a common member of A.

Let G be a minimal gallery of type w from x to y. Then let X be the unique
gallery of the Coxeter chamber system W = C(S, M) of type w beginning at 1,,.
Then there is a clear strong isometry X — G which extends to a member of A’
whose image in C is an element of A contained in C . This step is finished. O

(9.9.2) Any sub-chamber system A € A is convex.

Let x and y be chambers in A and let G be a minimal gallery of reduced type w
connecting x and y. By Theorem 9.9.1 there is a morphism « : W — C such that
A = a(W) contains x and y. Since « is a strong isometry,

w(x,y) = [wl= @@ ') e o),

so ' (x) is connected to &~ !(y) in W by a unique gallery H of reduced type w.
Then «(H) is a gallery of type w connecting x and y. By (Qy), «(H) = G so
G C A. This proves that A is convex. O

(9.9.3) If A| and Ay are two members of A containing chambers x and y, then
there is a chamber system isomorphism u : A1 — Aj fixing x and y and
every vertex on any minimal gallery connecting them.

First we observe that if H; and H> are two galleries of reduced type in the Coxeter
chamber system W, then there is a unique automorphism of W taking H; to H>.

27 Note that distinct members of A’ can lead to the same member of A by composing an isometry
with an automorphism of its image.
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This is because: (1) (G.) for all c € W implies H| and H, are minimal, (2) on each
chamber c there is a unique gallery of type w, and (3) Aut(W) >~ W is regular on W.

Now let A} and A, be two members of A containing chambers x and y and
let G be a minimal gallery of reduced type w connecting x and y and let «; :
W — A;,i = 1,2 be the strong isometries. Then by (9.9.3) G € A; N A;. Then
Hi == o; 1G),i =1,2aretwo galleries of reduced type w in W. By the preceding
paragraph, there is a unique automorphism g : W — W so that B(H;) = H, (with
the orientation preserved if w is a palindrome). Then the composition of mappings
arofo afl is an isomorphism A; — Aj fixing gallery G chamberwise.

If G’ is a second minimal gallery from x to y of type w’, then e(w™'w’) = ly
and so, fori = 1, 2, the two lifts H/ := a;l (G’) are such that Hlf1 o H/ are circuits
in W. It follows that 8(H/) = H, and so the the composition azoﬂoal_l A = Ay
fixes the vertices and edges of G’ as well as G. O

In general, if A is a collection of thin chamber systems of type M isometrically
embedded in chamber system C of type M so that (9.9.1), (9.9.2), and (9.9.3) hold,
we say that A is a system of apartments for C.

Theorem 9.9.2 Any building possesses a system of apartments.

9.10 Appendix to Chapter 9: Spherical Buildings
and (B, N)-Pairs

9.10.1 Tits Systems

It had been recognized that many classical groups are generated by two subgroups.
The first is the stabilizer of a chamber of C: this is traditionally called the Borel
subgroup and is denoted B for that reason. The other group is the stabilizer of
an apartment A; this group is traditionally denoted N.?® Of course at the very
beginning one didn’t have a clear notion of chamber system or what an apartment
was. One knew from examples in finite rank that B was a maximal group of upper
triangular matrices and that N acted on some sort of spanning frame to be real-
ized as a monimial group. It took a while to recognize the axioms these groups
obeyed.?
What are they?

28 N seems not to have been named after any person, however obscure. Perhaps it was for “nor-
malizer,” for in practice N is the normalizer of B N N.

29 Of course Tits did it all. But others were thinking about it. The infrequently-quoted paper “Geo-
metric ABA groups” by Jack McCaughlin and Don Higman probably anticipated this development
to a certain extent, even if only by a few months [75].
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9.10.2 (B, N)-Pairs and Tits Systems
A Tits system is a quadruple (G, B, N, S) subject to these axioms:

(T1) G is a group generated by two subgroups B and N. Moreover, B N N is a
normal subgroup of N.

(T2) The factor group W = N /(BN N) has a distinguished system S of generating
involutions such that:

(@) (W,S) is a Coxeter system, that is § is a generating set of involutions,
subject only to the relations given by the Coxeter matrix M = (m;;).
(b) Moreover, for every involution s € S and element w € W,

sBw € BwB U BswB.
(c) Finally,
sBs # B forany s € S.

Note that if n and n’ are two elements of N which are congruent mod N N B, so
w= (BN N)n=(BNN)n' € W, then Bn = Bn’ which can unambiguously be
written as Bw. This slight abuse of notation is convenient for expressing the above
axiom (T2)(b).

What is the significance of the axiom (T2)(b)? Suppose W is the subgroup of
the Coxeter group generated by the involutions {r;|/ € J}. Let N; be the preimage
of this group in N — that is W; = N;/B N N. The significance is manifest in the
following.

Lemma 9.10.1 BN B is a subgroup of G. In particular G = BN B. Conversely, if
H is any subgroup containing B, and B # 1, then H = BN ;B for some subset J
of the set I indexing the involutions S of W.

The first statement is an elementary consequence of the relation given in the sec-
ond part of axiom (T2). A simple proof of the second statement is given in Ronan’s
book [103], pp 59-60.

These subgroups containing B are called parabolic subgroups. Note that when
|S| = |I| = k is finite, there are exactly 2% parabolic subgroups.

Since each parabolic subgroup is determined by a subset J of I, we write P; :=
BN, B and write P for Pj;j, when i indexes involution s € S. The poset of parabolic
subgroups is easy to describe, for the following reason.

Lemma 9.10.2 P; N Px = P(jnk) for any subsets J and K of I.

Of course B is at the bottom on this poset, and the subgroups Py = B U BsB,
where s € S, are the minimal parabolic subgroups (actually minimal among those
properly containing B).

Theorem 9.10.3 The chamber system C (G, B; {Ps|s € S}) is a building.
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Proof This is a direct consequence of the fact that the N-orbit BN is an apartment
whose conjugates under G form a system of apartments. (There are other proofs.
For example, the W-valued metric d can be directly defined from the (B, N)-pair
axioms.) |

Theorem 9.10.4 Suppose C is a building of type M and let W := W (M). Assume
the following:

(B1) The automorphism group of C transitively permutes chambers, and the stabi-
lizer B of a chamber c is transitive on all chambers d for which 5(c, d) has a
fixed valuer € W.

(B2) The stabilizer N of an apartment A induces the full Coxeter group W (M) on
that apartment.

Then G := Aut(C) forms a Tits system (G, B, N, §). (S, of course is the canonical
set of generating involutions for W (M).)

9.10.3 Sphericity

Recall that a spherical building is simply a chamber system of type M with these
properties:

1. All corank one residues are strongly gated (among other equivalent conditions).
2. The matrix M produces a finite Coxeter group W (M).

We have also seen that when W (M) is finite, the connected diagrams are as
given in Fig. 9.11. Let us suppose from here on in that we have a building whose
type matrix M defines a spherical irreducible Coxeter system.

What happens next is a quite remarkable discovery of J. Tits — a transformation
of a purely geometric property into a group-theoretic one.

Let C be the chamber system of a spherical building of type M. Clearly the Weyl
group is finitely generated and so apartments exist. So the covering properties of
apartments show us that the diameter of this chamber system (as a graph) is bounded
by the diameter of an apartment. (Apartments cover all distance-paired vertices, and
are isometrically embedded.) That means that for every chamber c, there exists a
chamber ¢’ which lives as far as possible from ¢ — that is, as opposite chambers of
a finite apartment. The opposite relation is quite strong. If ¢ is opposite ¢’ and d is
adjacent to c, then there is a unique vertex d’ adjacent to ¢ which is opposite d. If
the rank is at least three, it even works for triangles. So that means that there is a
bijection from the neighbors of ¢ to the neighbors of ¢’ and it is not difficult to see
that this mapping preserves the edge labels.

So one has an isomorphism N(c¢) — N(c’) of the neighborhood of ¢ to that of
its opposite vertex ¢’. But of course ¢’ possesses many neighbors ¢” which are also
opposite ¢ (in fact, except for a small rank pathology, all but one of its neighbors
has this property). That means we can locally map a neighborhood N (¢) to N(c”)
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when ¢’ is adjacent to ¢”. It is easy to see that this consistent neighborhood mapping
extends to triangles, and so the thing extends globally to automorphisms of C.3°

I hope I have led the reader to believe that any spherical building of rank at least
three automatically possesses a rich group of automorphisms. In fact it is so rich
that the two conditions of Theorem 9.10.4 hold, and a (B, N)-pair ensues. Thus the
following arises.

Theorem 9.10.5 Suppose C is a chamber system of spherical type M with thick
panels. Call its automorphism group G.

1. The stabilizer B of a chamber ¢ and the stabilizer N of an apartment, form a Tits
system (G, B, N, S).

2. If B # 1, the diagram D (M) belongs to one of the diagrams listed in Fig. 9.11,
excluding Hy and Hy and I (k) fork = 5,7, or k > 8.

3. Let n = |S| be the finite rank of the Coxeter matrix M. Then there are exactly 2"
parabolic subgroups P containing B. In particular there is a system of maximal
parabolic subgroups Py, ..., P, where each P; = Pj_;.

4. In the chamber system C = C(G, B; My, ..., M,), where the M; are the mini-
mal parabolic subgroups, the double cosets BgM; and Bg P; are the residues of
type i (and rank one), and cotype i (and corank one), respectively.

5. The chamber system C is residually connected and so is derived as C(I'(C))
from the geometry I' := I'(C).

6. The building geometry I is the coset geometry: I' = I'(G; Py, ..., P,), where
the P; are the maximal parabolic subgroups, as above.

A Final Comment

It is always good to understand what a theory does. As we shall see in the next
chapters of this book, the theory of buildings allows point-line characterizations on
a level far beyond projective spaces and polar spaces. But local characterizations
suffer the occupational hazard that any global universal object can be folded up
a little bit by a homomorphism that does not distort things locally. That means one
must be prepared to accept the conclusion “X is a homomorphic image of a universal
object.” If the universal objects have been classified, at least that is the best one can
expect for a classification.

But Tits’ theory of buildings actually introduced far more. If we start over again,
one sees that Coxeter’s classification of the finite “Coxeter groups” was really a

30 Some authors (for example Ziechang [150]) call this the “reduction theorem” because a geo-
metric problem is reduced to a group-theoretic one. One might see it in the other direction: a
rare priveledge to “go upstairs” to group theory. In fact Professor Ziechang has shown that this
phenomenon of producing groups from opposite local isomorphisms has a general life in associ-
ation schemes from which viewpoint the building arguments are “ad hoc” — that is, they depend
on enough special properties of buildings that they are not directly transportable to the world of
association schemes. More general arguments must be supplied — and these are described in his
great book.
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way of saying that certain generators and relations actually determinine the group.
Another way of viewing Tits” accomplishment is that it provided an extension of
the generator-relations of Coxeter to many classical groups — after all, the (B,N)-
pair axioms are nothing less than generator-relation specifications. This discovery
received its codification for finite group theorists in the famous Curtis-Tits theo-
rem — a key part of the classification of finite simple groups (see the review of Ron
Solomon in a recent issue of the Bulletin of the American Math Soc [120]). And
then, finally, there is the still unexplored logical reason why these axioms work, and
here we enter the realm of mathematical logic.

Aside from Tits’ classification of the spherical buildings, few theorems of the
twentieth century gave so much focus to so many different fields of mathematics.

9.11 Exercises for Chapter 9

9.11.1 Exercises on Chamber Systems

9.1 Prove both parts of Lemma 9.2.1. (The second part utilizes the fact that any
corank one residue of Cg, when viewed as collection of chambers of C, is a
corank one residue of C with cotype in K.)

9.2 Suppose C is a set. Let {m;|i € I} be a collection of partitions of C indexed
by I. The reader is asked to note the slight ambiguity involved in the previous
sentence. It could simply mean (1) that there is a mapping ¢ : I — TI(C),
where IT1(C) denotes the lattice of all partitions of C. (2) On the other hand,
we may view the collection P C TI(C) of partitions as already existing, so that
the indexing is a bijection ¢ : P — I. Under this view the mapping (1)~! :=
t : I — TI(C) given in (1) is injective. So, when we say “let {m;|i € I} be a
collection of partitions of C indexed by /” this may allow 7; and 7; to be the
same partition even if i # j (interpretation (1)) or it might means that rr; and
mj are assumed distinct when i and j are distinct (interpretation (2)).

Under either interpretation, given {r;|i € I}, say that two chambers c¢; and
¢y of C form an edge if and only if there exists at least one partition 7; in the
collection for which ¢ and ¢ belong to the same component of ; — that is 7;
does not separate the chambers. In that case let A(c1, ¢2) be the set of all indices
i for which 7r; does not separate c; and c;. Let E be the set of all edges, so that
2 is now a mapping E — 2¢ — {4, taking the edges to non-empty subsets of /.

1. Under interpetation (1), show that (C, E, A) is an abstract chamber system
over / as defined on p. 294. [Check the triangle axiom.]

2. Given an abstract chamber system over / as defined on p. 294, the relation of
being equal or i-adjacent is an equivalence relation ~;, as already remarked.
Let m; be the partition of all chambers C into the ~;-equivalence classes
(or panels of type i). Then {m;|i € I} is a collection of partitions of C.
Show by example that it is possible for two relations ~; and ~; to be the
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same equivalence relation, so that 7; = ;. Conclude that an equivalent
definition of an abstract chamber system is the hypothesis of a collection of
partitions of a set C indexed by 1, under interpretation (1).

3. Conclude that a collection of partitions indexed by I under interpretation
(2) is an abstract chamber system with this property: (sep) Given any two
distinct types i and j there exists a pair of distinct chambers (x, y) such that
either (a) x is i-adjacent but not j-adjacent to y or (b) x is j-adjacent but
not i-adjacent to y.

Let A = (o, 1), a subgroup of the automorphism group of the chamber system
C of Example 5. Show that the canonical homomorphic image C/A is isomor-
phic to the chamber system of Example 3.

Display the tripartite 18-vertex graph of I'(C) where C is the “shaved cube” of
Example 4.

Let C = (G, B; H) be a coset chamber system. As usual, H is a collection
of subgroups of G containing B whose (not necessarily distinct) members are
indexed by /. In practice, one often assumes for coset chamber systems that
‘H is an antichain in the poset of subgroups of G containing B. This condition
is not really necessary. It is only there to avoid having i-adjacency imply j-
adjacency, for distinct i and j — that is, having partition 7r; refine partition 7 ;
in the formulation of Exercise 1. The condition implies (sep). One still gets an
abstract chamber system without this condition on H.

1. Now choose any subset J of the set I indexing the subgroups in H and let
H; be the subgroup of G generated by the subgroups {H;|j € J}. Show
that any residue of C of type J is a coset H; g (regarded as a collection of
right cosets of B so that it is a subset of C = G/B, the cosets of B). [One
must show that this chamber subsystem is connected.]

2. Show that in the coset chamber system C, it is possible for two chambers to
be both i- and j-adjacent for distinct i and j. What does this imply about H;
and H;?

3. Show right multiplication of all cosets by an element g € G induces an
automorphism of C. Thus we have a morphism G — Aut(C). Show that
this morphism is injective if and only if B contains no non-identity normal
subgroups of G.

4. Let f : G — K be a surjective homomorphism of groups. Show that f
induces a morphism of chamber systems

c(f):(G,B;{H e H}) — (K, f(B): {f(H)|H € H}).

[Hint: The mapping c(f) takes coset Bg to f(Bg) = f(B)f(g). Show
that if Bg U Bh € H;h € H then f(gh™') e f(B) (equivalently,
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FB)f(g) = f(B)f(h))or f(B)f(g)U f(B)f(h) S f(H;)f(h)—thatis,
c(f) preserves i-adjacency on edges whose image is an edge.]

5. Suppose M is a subgroup of G. Show that there is a chamber-injective cham-
ber system morphism

oy (M, MNB;{H;NM|H; € H}) — (G, B; 'H).

[Let ops send (M N B)m to Bm for each m € M. Show that i-adjacency is
preserved by o) on edges whose images are edges. ]

6. As in part 1 of this exercise, let H; = (H;|j € J). Suppose K is a proper
subset of 7 and set / = I — K. We can form a chamber system over K
whose chambers are the cosets G/H;. Two distinct cosets H;g and Hjh
are k-adjacent, for k € K, if and only if H;g U H;h C Hjyk)g. Show that
this chamber system is the coset chamber system (G, H;; {Hjuylk € K}).
Show that it is the truncation Ck of type K of the chamber system C =
(G, B; {H;li € I}).

9.11.2 Exercises on Residual Connectedness

9.6 Show that the chamber system C of Example 1 is not residually connected,
while its associated geometry I'(C) is residually connected.

9.7 Show that the chamber systems of Examples 2, 4, and 5 are residually con-
nected, while the chamber system of Example 3 is not residually connected.

9.8 Prove Lemma 9.2.3.

9.9 Formalize the argument for Corollary 9.2.8.

9.11.3 A Few Exercises on Gatedness
9.10 Prove Lemma 9.3.1. Also prove Lemma 9.4.4.

9.11 A subgraph (X, E’) of a graph (V, E) is said to be gated in (V, E) if, for every
vertex v € V, there is a vertex g(v) € X such that for every vertex x € X,

d(v,x) =d(v, g(v)) +d(g), x).
(Note that, unlike strong gatedness, the second summand on the right involved

global distance, not the distance in the subgraph (X, E’). This concept was
first studied by A. Dress and R. Scharlau [59].) Show that every residue of
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the rank three chamber system of the following example is gated in the full
chamber system.

Example 10 Let m be an odd integer greater than two. Consider this vertex
set V := {xo, ..., Xom—1}. Writing x,, = x¢ and reading subscripts modulo
2m where necessary, we define (x2;, x2;41) to be an edge labelled “17; we
define (x2;_1, x2;) to be an edge labelled “2”; and we define (x;, x;,, to be an
edge labelled “3” — for all i. Then clearly (xo, x1, ..., X2m—1, X2, = Xp) 1S a
(pointed) circular gallery of type 1212 - - -2 of length 2m. The antipodal pairs
of vertices of this circuit form the panels of type “3.” Since m is odd, all rank
two residues involve all of the chambers.

9.11.4 Exercises on Generalized Polygons
9.12 Prove Theorem 9.4.12.
9.13 Consider the geometry (P, £) where
P:={p,q,ai,bili=1,...,t+ 1},
and

L=A{(p,a), (q,b), (@i, b)li=1,... 1+1}
a collection of thin lines. Show that (P, £) is a generalized hexagon.

9.14 Suppose P = {p;,a;i,bi,qili = 1,...,s + 1}. Set P := {p1,... ps+1} and
0 :=1{q1, ..., qs+1}.- Let L be the two thick lines P and Q together with the
collection of thin lines

{(pi,ai), (gi, bi), (@i, b)li=1,...,5 + 1}

1. Show that (P, £) is a generalized octagon with each point on just two lines.
2. Show that ((P, £)) is 2I'* where I'* is the 2-by-3 grid.

9.15 The Feit-Higman theorem shows that the only generalized 5-gon of order
(s, t) is the ordinary pentagon where s =t = 1.

1. If, hypothetically, there were a generalized 5-gon of order (s, s), s > 1,
show that there are three relations between a point and a line and describe
these relations.

2. The student might speculate upon whether there could be a generalized
5-gon with infinitely many points on each line and infinitely many lines on
each point.
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9.11.5 An Interplay of Examples and Exercises
on Diagram Geometries

9.16 Show that any geometry I' belonging to the finite rank diagram below
(Fig. 9.17) is a linear space when truncated to (P, £) (the first two nodes
from the left), and that each remaining node is a subspace with respect this
linear space. [Hint: One could first do this for rank three in order to truncate
an L — L-diagram to a single L and use induction. On the other hand it can
also be done directly.]

9.17 Using the previous exercise, show that any geometry belonging to the dia-
gram below (Fig. 9.18) is a projective space when truncated to types (P, L)
represented by the first and second nodes from the left.

This a good time to introduce a few warnings. The main one is not to expect
too much from a diagram. The tendency is to use a nice simple diagram, such as
A, (Fig. 9.19) as a means of getting the concept across. But actually this example
is quite atypical. For example, if we designate the leftmost two nodes as points
and lines, respectively, we obtain the standard projective space (P, £). It is then a
fact that all objects of other types are subspaces when realized by their point-line
shadows (i.e., their residues truncated to points and lines). The same occurs when we
assign some internal node (say the one labeled k) to be the points, and let the flags
whose type is represented by adjacent nodes (in this case those of type (k—1, k+1))
be the lines. This separation of the point-node from the rest of the diagram by the
type of the flags destined to be lines gives us the desirable axiom as follows.

(A) Any object not a point or line, which is incident with a line L, is in fact incident
with every point that is incident with that line L.

We can hardly hope objects to be subspaces without such an axiom. Indeed,
something like that works for diagrams A,, D,, E¢, E7, and Eg. But these are not
typical. Consider the following highly pathological example.

L_ L L L

Fig. 9.19 The A, diagram
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Example 11 (The flat Neumaier geometry) Consider first the collection £ of all 35
3-subsets of a 7-set P = {0, ..., 6}. This is acted on by the group G = Sym(7).
Now consider the Fano plane F = (P, Lr) whose seven lines are the set Lz of
additive translates mod 7 of the line {1, 2, 4}. As we know, its stabilizer in G is
the simple group H of order 168 and index 30 in G. G acts imprimitively on the
cosets G/ H in two blocks which are orbits of length 15 under the alternating group
A := Alt(7). Let mp and 7| be these two orbits. If F and F’ are planes in differ-
ent orbits, then these two planes share three lines or no lines at all. On the other
hand, if F and F’ are planes within a common A-orbit, they always share exactly
one line.

Now form the geometry N := (P, L, mg), of 7 points, 35 lines, and 15 planes
from one class. Incidence has been defined by the definition of my. Let us examine
the residue of a point — say, the point p = 0. The remaining points form a 6-set
Q = {1,...,6}. The lines incident with p are thus identified with the 15 2-subsets
of Q2. Any plane of o produces three lines on p which induce a partition of €2 into
three 2-sets. There are 15 such partitions. On, the other hand, any two distinct planes
of Lo share just 1 line, and so these 15 planes each induce a different partition of &
into 2-subsets. So there is a bijection between 2 — 2 — 2-partitions of 2 and planes
on p.

This is enough information to see that the residue of a point in N is faithfully
modelled by the rank-two geometry of 2-subsets and 2 — 2 — 2-partitions of a 6-set
€2 which, as we know, is the generalized quadrangle of order (2, 2). Thus N belongs
to the diagram below (Fig. 9.20) which we call the C3 diagram.

The message here is that the 15 planes of this geometry are not subspaces of the
truncation to points and lines.

9.18 The reader might consider what happens with the truncation (P’, L)) =
(7o, £) to planes and lines. Here we have 15 “points”, 35 “lines,” and 7 “quad-
rangles.” Are the quadrangles subspaces of (P, £')?

9.19 Show that the rank three chamber system of Example 10 (p. 394) belongs to a
diagram consisting of three nodes with the edge connecting any two of them
labelled by “(mm)”, indicating a generalized m-gon.

Example 12 Let K;,i = 1,2, 3, be three disjoint copies of the complete tripar-
tite graph K> 72, each regarded as a geometry over the typeset {2, 3, 4}. The
geometry I' of this example is over the type-set {1, 2, 3, 4}. Its truncation to
{2, 3, 4} is the union K| U K, U K3 — a disconnected graph. The set of objects
of type 1 is {x1, x2, x3}. If {i, j, k} = {1, 2, 3}, the object x; is incident with
every object of K; U K. There are no further incidences.

(O——0O——~0O

Fig. 9.20 The C3 diagram
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9.20 In the geometry I of Example 12, show the following:

1.

Every flag of T lies in a chamber flag.

2. Every residue of rank two of I" is connected.
3. T is not residually connected.

9.11.6 Exercises Concerning Chamber Systems of Type M

9.21 Show that in the chamber system C = C(G, 1 : (s1), ..., (sy)) — which we
have been writing as C(G, 1; S) — a gallery is of reduced type if and only if
it is a minimal gallery — i.e., a shortest gallery (geodesic path) connecting its
initial and terminal chambers. [This is not true of general chamber systems,
and occurs here because G is a presented group.]

9.22

1.

Show that in C, any circuit has even length. [Hint: Any circuit can be
deformed to the trivial circuit by some chain of expansions, contractions,
and elementary C;-homotopies, which do not disturb the length parity.]
Conclude that C is a bipartite graph.

Show that for any bipartite graph and edge e = (x, y), for any vertex v,
d(w,x) = d(v,y) £ 1. In particular this must hold for C. So the edge
e determines a partition of the vertices of C into two sets: D™ (e) =
{vld(v,x) < d(v,y)} and DV (e) = {v|d(v,x) > d(v,y)}. These two
sets are called opposite roots and exist for any bipartite graph.

Observe that the partition C = D~ (e) + DT (e) does not in general match
the partition C = C; + C3 into two cocliques which defines the bipartness
of C.

. Suppose e = (x,y) is an edge in a bipartite graph C as in the previ-

ous two parts of this exercise. Give an example of a bipartite graph C
and a“bridging edge” f = (u,v) where (u,v) € D™ (e) x DT (e) for
which the partition D~ (e) + D™ (e) does not coincide with the partition
D™ (f)+ DT (f). [Compare this with Theorem 9.6.10 which is for bipartite
graphs arising from Coxeter chamber systems. In your example, make sure
all circuits have even length. This can be done with five vertices.]
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