
Chapter 2
Introduction

In this chapter we present the basic elements for the numerical modelling of seismic
wave propagation. Following a summary of notational conventions, we introduce
the elastic wave equation in its different formulations (Sect. 2.2). The acoustic wave
equation is treated as a special case in Sect. 2.3. While numerical methods differ
in the details of the spatio-temporal discretisation, they can still be treated within a
unifying framework. The approximation of the spatial derivatives generally leads to
a system of ordinary differential equations in time that is commonly referred to as
the semi-discrete form of the wave equation. The semi-discrete form can be written
in terms of mass and stiffness matrices (Sect. 2.4). Depending on the specifics of an
application, the remaining time derivatives can then be approximated using either
the Fourier transform or time-stepping algorithms such as the Newmark or leapfrog
methods (Sect. 2.5).

2.1 Notational Conventions

Throughout this book we have tried to stay close to notations commonly found in
the seismological literature. While the meaning of the different symbols is mostly
clear from the context, we start with a small collection of conventions that we shall
use consistently.

The Fourier transform of a function f is defined as

f̃ (ω) := F[ f ](ω) := 1√
2π

∫
R

f (t)e−iωt dt , i := √−1 , (2.1)

where the symbol := means that the expression to the left is defined by the expres-
sion to the right. The boldface i is intended to distinguish the imaginary unit from the
frequently occurring index variable i . The inverse Fourier transform corresponding
to (2.1) is

f (t) = F−1[ f̃ ](t) = 1√
2π

∫
R

f̃ (ω)eiωt dω . (2.2)
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With the exception of i, we use bold-faced symbols for vectors and tensors. The
scalar product of two vectors a,b ∈ R

n is denoted by

a · b =
n∑

i=1

ai bi . (2.3)

We more generally use the dot to signify contraction over adjacent indices. Using
this notation, the i-component of a matrix–vector product is written as

(A · a)i =
n∑

i=1

Ai j a j , A ∈ R
n×n , (2.4)

and the i j-component of a matrix–matrix product is

(A · B)i j =
n∑

k=1

Aik Bk j . (2.5)

Following this scheme, a double dot denotes a contraction over two adjacent indices,
for instance

A : B =
n∑

i, j=1

Ai j Bi j , B ∈ R
n×n (2.6)

and

(B : C)kl =
n∑

i, j=1

Bi j Cijkl , C ∈ R
n×n×n×n . (2.7)

For the real part of a complex-valued variable z = x + iy, we use the fraktur symbol
Re, i.e.

Re z = x = 1

2
(z + z∗) , (2.8)

where z∗ = x − i y denotes the complex conjugate of z. The symbol Im denotes the
imaginary part of z:

Im z = y = 1

2
(z − z∗) . (2.9)

Of outstanding importance in any deterministic inverse problem is the definition of
a misfit functional χ that quantifies the difference between observed and synthetic
data. The misfit functional depends on an Earth model m ∈ M, where M is the
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model space. The functional or the Fréchet derivative of χ with respect to m in a
direction δm ∈ M is defined by

∇mχ(m) δm := lim
ε→0

1

ε

[
χ(m + ε δm)− χ(m)

]
. (2.10)

The derivative ∇mχ(m) is a linear operator acting on the differentiation direction
δm. In the special case where m is a vector, the Fréchet derivative ∇mχ(m) δm coin-
cides with the directional derivative δm · ∇mχ(m). For convenience, we will mostly
use the term ‘derivative’ instead of ‘Fréchet derivative’. The symbol ∇, without
subscript, signifies the regular gradient with respect to the position vector x.

2.2 The Elastic Wave Equation

2.2.1 Governing Equations

Full waveform inversion is founded on the solution of the forward problem, which
consists in the simulation of seismic wave propagation through an Earth model m
and the computation of synthetic seismograms. The propagation of seismic waves
in the Earth can be modelled with the elastic wave equation

ρ(x)ü(x, t)− ∇ · σ (x, t) = f(x, t) , x ∈ G ⊂ R
3 , t ∈ [t0, t1] ⊂ R (2.11)

that relates the displacement field u in the Earth G ⊂ R
3 to its mass density ρ,

the stress tensor σ and an external force density f. A truly marvellous matter of
fact! Equation (2.11) is the linearised version of Newton’s second law that balances
the momentum of particle displacement ρ(x)ü(x, t), forces resulting from internal
stresses ∇ · σ (x, t) and external forces f(x, t) that represent the sources of seismic
wave motion. For detailed derivations of Eq. (2.11) the reader is referred to Dahlen
& Tromp (1998), Kennett (2001) or Aki & Richards (2002). At the surface ∂G of
the Earth, the normal components of the stress tensor σ vanish, i.e.

σ · n|x∈∂G = 0 , (2.12)

where n is the unit normal on ∂G. Equation (2.12) is the free surface boundary
condition. Both the displacement field u and the velocity field v = u̇ are required to
satisfy the initial condition of being equal to zero prior to t = t0 when the external
force f starts to act:

u|t≤t0 = v|t≤t0 = 0 . (2.13)

For convenience we will mostly choose t0 = 0. To obtain a complete set of equa-
tions, the stress tensor σ must be related to the displacement field u. For this we
assume that σ depends linearly on the history of the strain tensor ε := 1

2 (∇u+∇uT):
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σ (x, t) =
∫ ∞

−∞
Ċ(x, t − t ′) : ε(x, t ′) dt ′ . (2.14)

Equation (2.14) defines a linear visco-elastic rheology. The 4th-order tensor C is the
elastic tensor. Since the current stress cannot depend on future strain, we require the
elastic tensor to be causal:

C(t)|t<t0 = 0 . (2.15)

The symmetry of ε, the conservation of angular momentum and the relation of C to
the internal energy (e.g. Aki & Richards, 2002) require that the components of C
satisfy the following symmetry relations:

Cijkl = Cklij = Cjikl . (2.16)

The symmetries of the elastic tensor reduce the number of its independent compo-
nents to 21, and they allow us to write (2.14) directly in terms of the displacement
gradient ∇u:

σ (x, t) =
∫ ∞

−∞
Ċ(x, t − t ′) : ∇u(x, t ′) dt ′ . (2.17)

The number of non-zero independent elastic tensor components – also referred to
as elastic parameters or elastic moduli – determines the anisotropic properties of
the medium. For instance, a triclinic crystal such as plagioclase requires all 21 inde-
pendent parameters for its complete description and 3 elastic parameters are needed
to describe crystals with cubic symmetry such as garnet (Babuska & Cara, 1991).
On a macroscopic scale the Earth can often be described sufficiently well as an
isotropic body where the elastic tensor components are linear combinations of only
two elastic moduli: the Lamé parameters λ and μ:

Cijkl = λ δi jδkl + μδikδ jl + μδilδ jk . (2.18)

The parameter μ relates strain to shear stresses and is therefore called shear modu-
lus. Since λ has no intuitive physical meaning, it is commonly replaced by the bulk
modulus κ = λ+ 2

3 that relates strain to the scalar pressure, defined as p =: −κ ∇·u.
The time dependence of the elastic tensor is responsible for visco-elastic dissi-

pation, that is the process of transforming elastic energy into heat. In the case of a
non-dissipative medium, the time dependence of C takes the form of a unit step or
Heaviside function H(t):

C(x, t) = C(x) H(t) . (2.19)
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The constitutive relation (2.17) then takes the form

σ (x, t) = C(x) : ∇u(x, t) . (2.20)

For simplicity we will assume a non-dissipative medium throughout most of this
book. This is also justified because dissipation can be incorporated easily with the
help of memory variables, as we shall see in Chap. 5. Memory variables allow us to
circumvent the numerically inconvenient convolution in Eq. (2.17).

2.2.2 Formulations of the Elastic Wave Equation

Equations (2.11) and (2.20) constitute the displacement–stress formulation of the
elastic wave equation in the absence of dissipation. Together with the initial and
boundary conditions they uniquely specify the displacement field u(x, t).
Different but fully equivalent formulations are possible and sometimes required by
a specific numerical method. We may, for instance, eliminate the stress tensor σ by
combining Eqs.(2.11) and (2.20). This results in the displacement formulation of
the elastic wave equation:

ρ(x) ü(x, t)− ∇ · [C(x) : ∇u(x, t)] = f(x, t) . (2.21)

Of particular relevance in numerical modelling is the velocity–stress formulation
where the wave equation is written as a first-order system in both time and space.
We find the velocity–stress formulation by simply differentiating Eq. (2.20) with
respect to time and then substituting v for u̇:

ρ(x) v̇(x, t)− ∇ · σ (x, t) = f(x, t) , (2.22a)

σ̇ (x, t)− C(x) : ∇v(x, t) = 0 . (2.22b)

The elastic wave equation in its different formulations has been studied extensively.
Analytical solutions exist for numerous classes of models including, for instance,
the isotropic and homogeneous half space (e.g. Lamb, 1904; de Hoop, 1958; Aki
& Richards, 2002), stratified media (e.g. Kennett, 1979, 1980, 1981) and spheri-
cally symmetric globes with radial anisotropy (e.g. Takeuchi & Saito, 1978; Wood-
house, 1988; Friederich & Dalkolmo, 1995). Ray theory (e.g. Červený, 2001) and
perturbation methods (e.g. Woodhouse & Dahlen, 1978; Maupin, 2001) can be used
to approximate solutions to the elastic wave equation for mildly heterogeneous
media. In full waveform inversion, the focus is on strongly heterogeneous regions
of the Earth where analytical or perturbation methods are not applicable. This is the
domain of numerical methods that are the subject of the first part of this book.
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2.3 The Acoustic Wave Equation

The equations of motion simplify significantly in the fluid regions of the Earth (e.g.
the outer core, oceans, and melt bodies), where the shear modulus μ is effectively
zero. Inserting μ = 0 into the isotropic constitutive relation (2.18), yields

σi j = κ δi j ∇ · u = −p δi j , (2.23)

where we introduced the scalar pressure p := −κ ∇ · u. With the help of Eq. (2.23)
the momentum balance law (2.11) reduces to

ρ ü + ∇ p = f . (2.24)

Dividing (2.24) by the density ρ and taking the divergence gives

∇ · ü + ∇ · (ρ−1∇ p) = ∇ · (ρ−1 f) . (2.25)

Using the definition of the pressure p, we can eliminate the displacement field u
from Eq. (2.25):

κ−1 p̈ − ∇ · (ρ−1 ∇ p) = −∇ · (ρ−1 f) . (2.26)

When density varies much more slowly than the pressure field p and the source f,
we can simplify (2.26) to a scalar partial differential equation, known as the acoustic
wave equation:

p̈ − v2
a �p = −v2

a ∇ · f , (2.27)

with the acoustic wave speed va :=
√
κ
ρ

. It follows from (2.27) that wave motion

in fluid media can be fully described with a single scalar field (the pressure, p), the
properties of which depend only on the source term and the spatial distribution of
the acoustic wave speed.

While being strictly valid only in fluid and gaseous media, the acoustic wave
equation is frequently used in active-source full waveform inversion (see for exam-
ple Chap. 14), because its numerical solution is computationally inexpensive com-
pared to the solution of the elastic wave equation. The consequences of this acoustic
approximation include the restriction to isotropic source radiation patterns and the
absence of Rayleigh waves and P-to-S conversions. The acoustic approximation is,
nevertheless, justifiable when the data analysis is restricted to the first-arriving P
waves and when the seismic sources radiate little S wave energy (e.g. explosions).

With the exception of Chap. 14, the focus of this book will be on elastic wave
propagation. The transition to the acoustic case is mostly straightforward.
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2.4 Discretisation in Space

Analytical solutions to the elastic wave equation exist only for comparatively sim-
ple models that often do not reflect the structural complexities of the Earth. This
deficiency motivates the development of numerical methods for the simulation of
seismic wave propagation through almost arbitrarily heterogeneous Earth models.
While being different in the technical details, all numerical methods have one
point in common: the discrete spatial approximation of the continuously defined
wave field u(x, t). This means that u(x, t) is approximated by a finite number
of time-dependent coefficients ū1(t), . . . , ūN (t) that can be summarised in an
N -dimensional vector ū(t). Depending on the specifics of the numerical method
used, the coefficients ūi (t) (i = 1, . . . , N ) may represent, for instance, discrete
values of u(x, t) sampled at a finite number of points, or polynomial coefficients
when u(x, t) is approximated by a polynomial.

Following spatial discretisation, the displacement formulation of the elastic wave
equation, given in (2.21), turns into an algebro-differential equation that can always
be written in the following canonical form:

M · ¨̄u(t)+ K · ū(t) = f̄(t) . (2.28)

The matrices M and K are referred to as the mass matrix and the stiffness matrix,
respectively. The vector f̄ represents a discrete version of the force density f. Both
M and K tend to be sparse. In practice, the mass and the stiffness matrices are rarely
computed explicitly because only the vector–matrix products are needed in actual
computations. They are, nevertheless, useful tools in theoretical developments, as
we will soon discover.

Depending on the numerical method, it may be more advantageous to discretise
the displacement–stress formulation Eqs. (2.11) and (2.20) or the velocity-stress for-
mulation (Eq. 2.22) of the elastic wave equation. The corresponding space-discrete
systems are then

M · ¨̄u(t)+ K1 · s̄(t) = f̄(t) , (2.29a)

s̄(t) = K2 · ū(t) (2.29b)

for the displacement–stress formulation and

M · ˙̄v(t)+ K1 · s̄(t) = f̄(t) , (2.30a)

˙̄s(t)− K2 · v̄(t) = 0 (2.30b)

for the velocity–stress formulation. The matrices K1 and K2 are stiffness matrices
in a broader sense and s̄ represents a discrete approximation to the stress tensor σ .
The transition from the continuous wave equation in its various formulations to one
of the space-discrete systems (2.28), (2.29) or (2.30) reduces the forward problem to
the solution of a large algebraic system and an ordinary differential equation in time.
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2.5 Discretisation in Time or Frequency

The ordinary differential equations in time that arise from the spatial discretisation
of the equations of motion can be solved either in the time domain or in the fre-
quency domain. Both approaches have advantages and disadvantages that must be
weighted depending on the particular application and the available computational
resources.

2.5.1 Time-Domain Modelling

The time-domain modelling of wave propagation is mostly based on the replacement
of the time derivatives in the space-discrete equations of motion by suitable finite-
difference approximations. These allow us to advance the wave field in discrete
time steps �t . The choice of a particular finite-difference scheme depends on the
formulation of the wave equation.

Throughout the following paragraphs we assume that the mass matrix M can be
inverted, noting, however, that the inversion of M may present a formidable numer-
ical challenge.

2.5.1.1 Displacement and Displacement–Stress Formulation

The space-discrete version of the displacement formulation (2.28) involves the sec-
ond time derivative of the discrete displacement field ¨̄u, which is explicitly given by

¨̄u(t) = M−1 ·
[
f̄(t)− K · ū(t)

]
. (2.31)

Approximating ¨̄u(t) by the second-order finite difference

¨̄u(t) ≈ 1

�t2

[
ū(t +�t)− 2ū(t)+ ū(t −�t)

]
(2.32)

leads to an explicit time-stepping scheme that allows us to compute the displacement
at time t +�t from the displacement at times t and t −�:

ū(t +�t) = 2ū(t)− ū(t −�t)+�t2 M−1 ·
[
f̄(t)− K · ū(t)

]
. (2.33)

For notational clarity we replaced ≈ by = in Eq. (2.33), keeping in mind that this is
an approximation.

A frequently used alternative to (2.33) is the Newmark scheme (Newmark, 1959;
Chaljub et al., 2007), defined by

ū(t +�t) = ū(t)+�t v̄(t)+�t2
[(

1

2
− β

)
¨̄u(t)+ β ¨̄u(t +�t)

]
, (2.34a)

v̄(t +�t) = v̄(t)+�t [(1 − γ ) ¨̄u(t)+ γ ¨̄u(t +�t)] , (2.34b)
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with the parameters γ ∈ [0, 1] and β ∈ [0, 1
2 ]. Second-order accuracy instead of

first-order accuracy is achieved if and only if γ = 1
2 . In the special case γ = 1

2 and
β = 0, we obtain an explicit central-difference scheme:

ū(t +�t) = ū(t)+�t v̄(t)+ 1

2
�t2 ¨̄u(t) , (2.35a)

v̄(t +�t) = v̄(t)+ 1

2
�t
[ ¨̄u(t)+ ¨̄u(t +�t)

]
. (2.35b)

The order of operations in the iterative advancement of ū is then as follows. (1)
Compute ū at time t+�t from the discrete field variables at time t , using Eq. (2.35a).
(2) With the help of Eq. (2.31), compute the acceleration ¨̄u(t +�t) from ū(t +�t).
(3) Advance the velocity v̄ from time t to t + �t , using Eq. (2.35b). (4) Go back
to (1) and repeat as often as needed. While being more complicated than (2.33), the
Newmark scheme has the advantageous property of conserving linear and angular
momentum (e.g. Kane et al., 2003).

We note that the time discretisation schemes for the displacement formulation
are immediately applicable to the displacement–stress formulation from Eq. (2.29).

2.5.1.2 Velocity–Stress Formulation

The most commonly used time discretisation scheme for the velocity–stress for-
mulation (2.30) is the leapfrog method. This is based on alternating updates of the
discrete velocity and stress fields. Starting from s̄(t − �t/2) and v̄(t), we obtain
s̄(t +�t/2) via a second-order finite-difference approximation of Eq. (2.30b):

s̄(t +�t/2) = s̄(t −�t/2)+�t K2 · v̄(t) . (2.36a)

With the help of the discrete stress field s̄(t+�t/2)we can then advance the velocity
field from time t to time t +�t , using the same second-order approximation applied
to Eq. (2.30a):

v̄(t +�t) = v̄(t)+�t M−1 · [f̄(t +�t/2)− K1 · s̄(t +�t/2)] . (2.36b)

Again, for notational convenience, we replaced ≈ by = in Eq. (2.36a) and (2.36b).

2.5.1.3 Stability

All of the above time-stepping algorithms are explicit in the sense that the dynamic
fields at time t + �t depend only on the dynamic fields at times prior to t + �t .
This implies that the algorithms are only conditionally stable. The stability crite-
rion, named CFL condition in honour of R. Courant, K. Friedrichs and H. Lewy
(R. Courant, K. Friedrichs and H. Lewy, Courant et al. 1928), typically takes the
form
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�t ≤ const.
min h

max v
, (2.37)

where h is the width of the numerical grid and v is the propagation speed of the
fastest wave, that is the P wave. The constant on the right-hand side of Eq. (2.37)
depends on the methods used for the space and time discretisation. Its order of
magnitude is 1. The CFL condition limits the maximum possible time increment
and therefore the efficiency of any explicit time stepping. In Sect. 3.1 we derive the
CFL condition for a finite-difference approximation of the 1D scalar wave equation.

2.5.1.4 Alternative Methods

The Newmark and the leapfrog schemes are by far the most frequently used meth-
ods for the time discretisation of the space-discrete equations of motion. This may
appear surprising given the availability of numerous alternatives such as predictor–
corrector variants of implicit multi-step methods or higher order Runge–Kutta meth-
ods (e.g. Quarteroni et al., 2000).

The restriction to conditionally stable methods of comparatively low order can
be explained not only by the larger computational requirements of implicit and
higher order methods but also by the good performance of the explicit second-order
schemes. Empirical studies show that the numerical error is often dominated by
the inaccuracies of the spatial discretisation. This is true even when the number of
time steps is large, that is on the order of several thousands. Whether the conven-
tional Newmark and leapfrog schemes are sufficient for future applications, such as
global-scale wave propagation at periods around 2 s, is still an open question.

2.5.2 Frequency-Domain Modelling

Frequency-domain modelling is based on the Fourier-transformed version of the
space-discrete displacement formulation (2.28):

−ω2 M · ū(ω)+ K · ū(ω) = f̄(ω) . (2.38)

Upon defining the impedance matrix L

L(ω) := −ω2 M + K , (2.39)

Eq. (2.38) simplifies to the linear system

L(ω) · ū(ω) = f̄(ω) . (2.40)

The solution of (2.40) is the discrete wave field ū at one frequency ω.
It is particularly attractive to solve the system (2.40) using direct matrix fac-

torisation methods, such as LU decomposition (e.g. Press et al., 2007). Once the
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matrix factors are known, they can be reused to solve the forward problem for any
new source f̄ at very low computational cost (e.g. Pratt et al., 1998; Pratt, 1999).
However, in realistic 3D applications, the memory requirements of direct meth-
ods can become prohibitive so that iterative solvers must be used (e.g. Quarteroni
et al., 2000).

Frequency-domain modelling is the method of choice when solutions for a few
dominant or well-chosen frequencies are needed or when the problem is 2D thus
permitting the application of direct linear system solvers.

One of the outstanding advantages of this approach is the easy implementation
of visco-elastic dissipation. This is because the convolution in Eq. (2.14) translates
to a simple product in the frequency domain. Additional memory variables as in
time-domain modelling are therefore not needed (see Chap. 5). In Chap. 14 we
present an application of frequency-domain modelling in the context of full wave-
form tomography with active-source data.

2.6 Summary of Numerical Methods

In the course of the past decades a large number of numerical methods for the solu-
tion of the seismic wave equation have been developed – often for the purposes of
ground motion prediction or waveform inversion. Each method comes with advan-
tages and disadvantages that need to be weighted carefully in the light of a specific
application.

The most significant distinction between different approaches concerns the spa-
tial discretisation, that is, the transformation of the exact spatial derivatives in the
wave equation into an algebraic system. The following is a list of some methods that
try to highlight their major similarities and differences.

Finite-difference methods: Numerical modelling in nearly all physical sciences
started with the finite-difference method, and seismology is no exception. Early
applications can be found in Alterman & Karal (1968), Boore (1970, 1972), Alford
et al. (1974) and Kelly et al. (1976). To illustrate the finite-difference concept, we
consider a generic function f (x) that represents the dynamic fields that appear in
the wave equation (e.g. stress, strain, and displacement). The fundamental idea is to
consider only a finite number of evenly spaced grid points xi (i=1, . . . , N ) and to
replace the derivative ∂x f (xi ) at grid point xi by a finite-difference approximation
that involves f evaluated at neighbouring grid points. The best-known example is
the second-order central finite-difference approximation

∂x f (xi ) = 1

2�x
[ f (xi +�x)− f (xi −�x)] + O(�x2) , (2.41)

where �x is the grid spacing. The feasibility of finite-difference modelling in three
dimensions rests on the definition of a staggered grid where the dynamic fields are
defined at different grid positions (e.g. Madariaga, 1976; Virieux, 1984, 1986, Igel
et al., 1995). This is in contrast to the conventional grid where all field variables
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are defined at coincident grid positions. The staggered grid results in a reduced
average grid spacing that greatly reduces the numerical dispersion, i.e. the artificial
dispersion introduced by the discretisation of the original equations of motion.

The popularity of finite-difference modelling is largely due to the comparatively
low computational costs and the accuracy especially in the modelling of body wave
propagation. In Chap. 3 we treat the finite-difference method in detail.

Optimal operators: The discretisation of the equations of motion introduces
numerical errors that are particularly prominent near the eigenfrequencies of the
elastic medium. This observation led Geller & Takeuchi (1995) to the construction
of optimal operators that are designed to minimise the discretisation error first of all
in the vicinity of the eigenfrequencies.

The very general criterion for an operator to be optimal is that the inner product
of an exact eigenfunction with the net error of the discrete equations of motion at
the corresponding eigenfrequency is approximately 0. This criterion is independent
of the actual space discretisation scheme. In the particular framework of finite-
difference methods, optimality means that the lowest order errors of the time and
the space discretisations cancel, thus leading to highly accurate numerical schemes
(Geller & Takeuchi, 1998; Takeuchi & Geller, 2000).

Since time-domain optimal operators are inherently implicit, predictor–corrector
algorithms must be used to avoid the solution of large algebraic systems in the time
stepping. The increased solution accuracy clearly compensates the additional com-
putational costs of the predictor–corrector scheme (Mizutani et al., 2000; Kristek &
Moczo, 2006).

Pseudospectral methods: Like finite-difference methods, pseudospectral meth-
ods directly discretise the spatial derivatives in the equations of motion (e.g. Kosloff
& Baysal, 1982; Furumura et al., 1998). The discretisation proceeds in three steps.
Firstly, the wave field sampled at a finite number of grid points is transformed to the
wave number domain using the fast Fourier transform. The transformed wave field is
then multiplied by ik, where k is the wave number. This multiplication corresponds
to a space derivative. Finally, using the inverse fast Fourier transform, the wave field
is transformed back to the space domain. Since the derivative is exact up to the
Nyquist wave number, as few as two grid points per wavelength are theoretically
sufficient for the spatial sampling of the wave field.

Kosloff et al. (1990) proposed a variant of the Fourier pseudospectral method
where a Chebyshev transform is used in the vertical direction in order to account
more accurately for the free surface condition. An extension to the 3D case with
surface topography can be found in Tessmer & Kosloff (1994). The application
of the Chebyshev pseudospectral method to wave propagation on the scale of the
mantle is presented in Igel (1999).

Pseudospectral methods outperform finite-difference methods regarding the very
small amount of numerical dispersion. However, due to the global nature of the
derivative approximation, they are restricted to comparatively smooth media (Mizu-
tani et al., 2000). Furthermore, pseudospectral methods face issues of parallelisation
because global memory access is required for the computation of the Fourier and
Chebyshev transforms.
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Finite-element methods: Finite-element methods are based on the weak or the
variational form of the wave equation that we describe in Sect. 4.1.1. The computa-
tional domain is decomposed into disjoint subdomains, called the elements. Within
each element the dynamic fields are approximated by polynomials of low order (e.g.
piecewise linear functions Bao et al., 1998), and continuity between the elements
is imposed explicitly. The elastic wave equation then reduces to a space-discrete
system for the polynomial coefficients.

Despite its capability to correctly account for irregular geometries and the free
surface, applications of the pure finite-element method to elastic wave propagation
are comparatively rare (e.g. Lysmer & Drake, 1972; Toshinawa & Ohmachi, 1992;
Bao et al., 1998). This is mostly due to the comparatively large numerical disper-
sion that results from the low-order polynomial approximations. Moreover, the mass
matrix in finite-element methods is not diagonal, which renders its inversion com-
putationally expensive.

While the pure finite-element method does not appear to be well suited for wave
propagation, hybrid schemes have been used very successfully. Moczo et al. (1997,
2007), for instance, combined the finite-element and finite-difference methods for
the simulation of wave propagation along irregular surface topography. They dis-
cretised the equations of motion in the interior of the computational domain using
finite differences. A rim of finite elements was then used to mesh the topography.

Spectral-element methods: Spectral-element methods are half way between
finite-element and pseudospectral methods, combining the advantages of both
approaches while avoiding many of their drawbacks. Like in finite-element methods,
the computational domain is subdivided into non-overlapping elements that can be
adapted to irregular geometries. Inside the elements a high-order spectral approx-
imation is used for the dynamic fields. The spectral-element method as originally
developed for fluid mechanics (Patera, 1984) and seismic wave modelling (Priolo
et al., 1994; Seriani et al., 1995; Seriani, 1998) indeed uses Chebyshev polynomials
as basis functions, thus establishing a direct link to the Chebyshev pseudospectral
methods.

In a widely used spectral-element variant the Chebyshev polynomials are
replaced by Lagrange polynomials collocated at the Gauss–Lobatto–Legendre
(GLL) points. The combination with GLL quadrature leads to a diagonal mass
matrix that can be trivially inverted. In Chap. 4 and Appendix A we provide a
detailed introduction to the spectral-element method. Applications on a variety
of scales can be found in Faccioli et al. (1997), Komatitsch (1997), Komatitsch
& Vilotte (1998), Komatitsch & Tromp (2002), Chaljub et al. (2003), Chaljub &
Valette (2004) and Nissen-Meyer et al. (2007, 2008)

Direct solution method: The direct solution method was introduced in a series
of papers by Geller & Ohminato (1994) and Cummins et al. (1994a,b). As finite-
element and spectral-element methods, it is founded on the weak form of the equa-
tions of motion. What distinguishes the direct solution method is the choice of basis
functions: linear splines in the radial direction and spherical harmonics in the hor-
izontal directions. The space-discrete equations are then solved in the frequency
domain.
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Takeuchi (2000) applied the optimal operator formalism of Geller &
Takeuchi (1995) to the direct solution method and investigated its applicability to
waveform inversion. The method was extended to radially anisotropic media by
Kawai et al. (2006) and then applied to waveform inversion for localised hetero-
geneities by Konishi et al. (2009) and Kawai & Geller (2010).

Discontinuous Galerkin methods: Discontinuous Galerkin methods for seismic
wave propagation have been developed only recently (e.g. Dumbser & Käser, 2006;
Käser et al., 2007; de la Puente et al., 2007, 2008). They represent a class of finite-
element methods where neighbouring elements are linked by numerical fluxes and
not by continuity constraints. This allows for solutions that are discontinuous across
element boundaries. Discontinuous Galerkin methods are therefore particularly well
suited for the modelling of earthquake rupture processes (de la Puente et al., 2009).
An application of a discontinuous Galerkin method in the context of full waveform
inversion can be found in Brossier et al. (2009).

In Chaps. 3 and 4 two of the above-mentioned discretisation approaches are
described in more detail: the finite-element and the spectral-element method.

Choosing two out of many possible methods was a difficult but inevitable deci-
sion. Since this book is intended to cover both the forward and the inverse problems,
I gave preference to the methods that are currently employed most frequently in the
context of waveform tomography. The finite-difference and spectral-element meth-
ods also offer the opportunity to introduce a large number of concepts that are of
general importance in numerical seismology.

A comprehensive treatise on all the different approaches to the numerical solu-
tion of the seismic wave equation is still to be written, and I offer my apologies to
colleagues whose work I was not able to present here.
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