
Chapter 10
Conceptual Modelling of Interaction

Nathalie Aquino, Jean Vanderdonckt, José Ignacio Panach, and Óscar Pastor

Abstract The conceptual model of an information system cannot be considered to
be complete after just specifying the structure and behaviour of the system. It is
also necessary to specify how end users will interact with the system. Even though
there are several proposals for modelling interaction, none of them have become
widely known or widely used in academia and industry. After illustrating the state
of the art in this field, this chapter briefly presents a practical approach with the
aim of showing how interaction modelling can be faced. The presented approach
is called OO-Method, a Model-Driven Engineering method that allows full func-
tional systems to be generated from a conceptual model. The chapter explains how
OO-Method supports the interaction modelling by means of its Presentation Model.
Apart from this description, the chapter comments on some limitations of the pre-
sentation model to satisfy end user interaction requirements related to preferences
and different contexts of use. This problem is faced by distinguishing an abstract and
a concrete level for interaction modelling. The abstract perspective focuses on what
must be presented to end users in order to allow their interaction with an information
system, and the concrete perspective focuses on how those elements are presented.

Nathalie Aquino
Centro de Investigación en Métodos de Producción de Software, Universidad Politécnica de
Valencia, Camino de Vera s/n, 46022 Valencia, Spain, e-mail: naquino@pros.upv.es

Jean Vanderdonckt
Université catholique de Louvain, Louvain School of Management (LSM), Place des Doyens,
1-B-1348, Louvain-la-Neuve, Belgium
Centro de Investigación en Métodos de Producción de Software, Universidad Politécnica de
Valencia, Camino de Vera s/n, 46022 Valencia, Spain, e-mail: jean.vanderdonckt@uclouvain.be

José Ignacio Panach
Centro de Investigación en Métodos de Producción de Software, Universidad Politécnica de
Valencia, Camino de Vera s/n, 46022 Valencia, Spain, e-mail: jpanach@dsic.upv.es

Óscar Pastor
Centro de Investigación en Métodos de Producción de Software, Universidad Politécnica de
Valencia, Camino de Vera s/n, 46022 Valencia, Spain, e-mail: opastor@dsic.upv.es

D. W. Embley and B. Thalheim (eds), Handbook of Conceptual Modeling. 335
DOI 10.1007/978-3-642-15865-0, © Springer 2011



336 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

Upon the basis of a whole interaction model, abstract and concrete perspectives are
separated. On the one hand, the OO-Method presentation model is shown to be an
example of abstract interaction modelling. On the other hand, an extension based
on transformation templates is proposed to cover the concrete interaction modelling
perspective. To illustrate how both interaction modelling levels can be used, this
chapter models the interaction of a photography agency system.

10.1 Introduction

The idea that the conceptual model is the code is becoming more and more a re-
ality in software engineering and information systems design. Some explicit state-
ments for this perspective can be found in the conceptual schema-centric develop-
ment (CSCD) challenge [24], the Extreme Non-Programming initiative [21, 25],
and the set of both academic and industrial approaches and tools proposed within
the frame of model-driven engineering (MDE), with the intention of providing op-
erative solutions. Conceptually aligned with these ideas and specifically represented
in this book under the term Conceptual Modelling Programming (see Chap. 1), we
strongly believe that conceptual modelling is programming. As stated in the man-
ifesto of Chap. 1, the conceptual model, with which modellers program, must be
complete and holistic. In practice, this statement requires every necessary aspect of
data (structure), behaviour (function), and interaction (both component interaction
and user interaction) to be adequately included.

User interaction modelling is the issue in this chapter. We are especially con-
cerned with the answer to an apparently simple question: What are the most rele-
vant conceptual primitives or modelling elements that should guide the construction
of a conceptual interaction model? This question arises since the conceptual model
community provides widely accepted and widely used data models with strong stan-
dards such as the entity-relationship model (ERM) [10] or UML Class Diagrams,
as well as widely accepted and widely used behaviour models (from the “old” data
flow diagrams [34] to the more recent collaboration, sequence, or activity UML Di-
agrams). However, it is surprising that clear and concrete conceptual models to rep-
resent interaction have not yet been provided. There are still questions about which
interaction models will allow us to address conceptual modelling of user interfaces
and how these models can be properly embedded into the whole conceptual model,
which includes data, behaviour, and interaction. This is particularly surprising since
the answer to these questions are so evident for the data and behaviour perspec-
tives of conceptual modelling, especially when considering the great importance of
user interface design in the whole process of building an information system. Ev-
eryone accepts that a final software application is much more than a well-defined
database and a set of programs that incorporate the needed functionality. If a con-
ceptual model is to be viewed as the code of the system, every essential aspect
of software must be considered, and, of course, user interface plays a basic role
in this context. Going back to the Conceptual Modelling Programming manifesto



10 Conceptual Modelling of Interaction 337

in Chap. 1, to make the goal of having a conceptual model complete and holis-
tic a reality, the proper specification of user interface conceptual models (not only
user interface sketches of the system) is strictly required. Therefore, the conceptual
modelling elements behind user interface specification must be defined precisely,
and must be based on a corresponding ontological agreement that fixes the concepts
and their associated representation and notation.

To achieve these goals, this chapter explores two aspects. First, a particular ex-
ample of what user interface modelling means in terms of modelling primitives and
model specification is introduced. The selected approach is the presentation model
of OO-Method [27]. This approach constitutes a practical case of how interaction
modelling from the user interface perspective is joined to data and behaviour mod-
elling in a unified way, and how this conceptual model includes all the relevant
information that is needed to face the subsequent conceptual model compilation
process to obtain the corresponding software system. Conceptual primitives are in-
troduced to show how user interface modelling can be specifically put in practice,
bridging the gap between “conventional” (data- and behaviour-oriented) conceptual
modelling and user interface modelling.

Second, this chapter deals with an important feature that is associated with user
interface modelling. An interaction model can fix the presentation style, but this
presentation style normally needs to be adapted to the end user’s tastes and wishes.
Talking about the user interface is not the same as talking about the final data and
program structure. In general, end users want to participate in defining the way in
which the human-software interaction is going to be accomplished, and this can-
not be done if the user interface model does not allow the conceptual model to
be adapted to their particular interaction requirements. Some authors use the term
“beautification” to refer to this situation [31].

A common solution for solving this problem consists in explicitly distinguishing
between two levels in the interaction conceptual model: an abstract level and a con-
crete level. This approach has been presented in several works ([9, 16, 18, 22, 30,
39], among others), and it is currently being applied in the context of user interface
development according to MDE. While the abstract level focuses on the high-level
perspective of the interaction, the concrete level identifies several possible represen-
tations of the abstract modelling primitives and gives modelers the chance to adapt
them according to the target platform and the end user’s preferences.

This distinction between abstract and concrete provides a two-level approach
that makes it possible to differentiate concerns that are very important within the
scope of interaction modelling. On the one hand, there are higher-level abstractions
that fix the main relevant user interface properties (e.g., the set of interaction units
that should make up the main menu of an application). These abstractions represent
which elements are going to be shown in each interface. On the other hand, there
is a more concrete level where interfaces are specified for particular software en-
vironments. This concrete model represents how the elements of the interface will
be presented (e.g., the particular, concrete presentation style chosen for presenting
those main menu options to the end users).



338 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

In accordance with these ideas, this chapter is structured in the following way:
in Sect. 10.2, a related work analysis is presented to understand what other authors
have proposed and how the interaction modelling issue is confronted from a concep-
tual model perspective in current MDE approaches. In Sect. 10.3, the presentation
model of OO-Method is introduced as an example of how interaction modelling
is properly embedded in an MDE-based software production process where con-
ceptual models are the only key software artefacts. In Sect. 10.4, we propose an
extension to explicitly distinguish between the abstract level and the concrete level,
indicating how to accomplish this distinction in practice. The chapter ends with
concluding remarks and the list of references used.

10.2 Related Work

Since its inception in the 1980s, the domain of human-computer interaction (HCI)
has experienced a dramatic increase in research and development, to the point where
it is recognized that interaction should also be modeled just like any other aspect of
an interactive system. For more than a decade, several model-based approaches have
evolved in parallel in order to cope with the different challenges raised by the design
and development of user interfaces in continuously evolving technological settings.
We can identify various generations of works in this area [36].

The first generation of model-based approaches focused basically on deriving ab-
stractions for graphical user interfaces (for example, UIDE [13]). At that time, user
interface designers focused mainly on identifying relevant aspects for this kind of
interaction modality. A second generation of approaches focused on expressing the
high-level semantics of the interaction. This was mainly supported through the use
of task models and associated tools, which were aimed at expressing the activities
that users intend to accomplish while interacting with the application (for example,
Adept [15], GTA [42], ConcurTaskTrees (CTT) [29], Trident [5], Humanoid [35]).
Since then, a consensus has been reached in the community to structure interaction
modelling according to different levels of abstraction in almost the same way as in
other areas (i.e. database engineering and information systems).

In this context, one of the most recent works is the Cameleon Reference Frame-
work [9]. Cameleon structures the development life cycle into four levels of abstrac-
tion, starting from task specification to a running interface (see Fig. 10.1):

• Task and concepts: This level considers (a) the logical activities (tasks) that need
to be performed in order to reach the end users’ goals; and (b) the domain objects
manipulated by these tasks.

• Abstract User Interface (AUI): This level represents the user interface in terms of
interaction spaces (or presentation units), independently of which interactors are
available and even independently of the modality of interaction (e.g., graphical,
vocal, haptic).

• Concrete User Interface (CUI): This level represents the user interface in terms of
“concrete interactors”, which depend on the type of platform and media available



10 Conceptual Modelling of Interaction 339

Fig. 10.1 Relationships between components in the Cameleon reference framework

and which have a number of attributes that more concretely define how the user
interface should be perceived by the end user.

• Final User Interface (FUI): This level consists of source code, in any program-
ming or markup language (e.g., Java, HTML5, VoiceXML, X+V). It can then be
interpreted or compiled.

These levels are structured with both a relationship of reification, going from
a more abstract level to a more concrete one, and a relationship of abstraction, going
from a more concrete level to a more abstract one. There can also be a relationship
of translation between models at the same level of abstraction, but conceived for
different contexts of use. These relationships are depicted in Fig. 10.1.

There are other approaches for representing the interaction based on UML
models (http://www.uml.org/). Wisdom [23] is a UML-based software engineering
method that proposes an evolving use-case-based method in which the software sys-
tem is iteratively developed by incremental prototypes until the final product is ob-
tained. The UML notation has been enriched with the necessary stereotypes, labeled
values, and icons to allow user-centered development and a detailed user interface
design. Three of its models are concerned with interaction modelling at different
stages: the interaction model, at the analysis stage, and the dialog and presentation
models during the design stage, as refinements of the interaction model.

Another important proposal is UMLi [12], which is a set of user interface models
that extends UML to provide greater support for user interface design. UMLi intro-
duces a new diagram: the user interface diagram, which can be considered to be the
first reliable proposal of UML to formally capture the user interface. However, the
models are so detailed that the modelling turns out to be very difficult. Middle-sized
models are very hard to specify, which may be the reason why UMLi has not been
adopted in industrial environments.



340 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

In addition, there are several proposals that model the interaction abstractly by
means of the ConcurTaskTrees (CTT) notation [29]. Examples of these types of pro-
posals are TERESA [22] and SUIDT [4]. TERESA (Transformation Environment
for inteRactivE Systems representAtions) is a tool that supports transformations in
a top-down manner, providing the possibility of obtaining interfaces for different
types of devices from logical descriptions. This tool starts with an overall envi-
sioned task model and then derives concrete and effective user interfaces for mul-
tiple devices. SUIDT (Safe User Interface Design Tool) is a tool that automatically
generates interfaces using several models that are related to each other: a formal
functional core, an abstract task model, and a concrete task model. CTT notation is
used in the abstract task model and in the concrete task model.

We have mentioned different types of approaches for representing the interaction
in an abstract manner. However, a suitable language that enables integration within
the development environment is still needed. For this purpose, the notion of User In-
terface Description Language (UIDL) has emerged to express any of the aforemen-
tioned models. A UIDL is a formal language used in HCI to describe a particular
user interface independently of any implementation technology. As such, the user
interface might involve different interaction modalities (e.g., graphical, vocal, tac-
tile, haptic, multimodal), interaction techniques (e.g., drag and drop), or interaction
styles (e.g., direct manipulation, form fillings, virtual reality). A common funda-
mental assumption of most UIDLs is that user interfaces are modeled as algebraic
or model-theoretic structures that include a collection of sets of interaction objects
together with behaviours over those sets.

The design process for a UIDL encompasses the definition of the following arte-
facts:

• Semantics: This expresses the context, meaning, and intention of each abstraction
captured by the underlying meta-models on which the UIDL is based.

• Abstract syntax: This is a syntax that makes it possible to define user interface
models (in accordance with the UIDL semantics) independently of any represen-
tation formalism.

• Concrete syntax/es: These are (one or more) concrete representation formalisms
intended to syntactically express user interface models.

• Stylistics: These are graphical and textual representations of the UIDL abstrac-
tions that maximize their representativity and meaningfulness in order to facili-
tate understanding and communication among different people.

As we have seen in this section, there are a lot of proposals to represent the inter-
action. Each proposal is based on a specific notation, like UML or CTT. However,
as far as we know, these proposals support interaction modelling but do not support
the modelling of the persistence and functionality of a system. Moreover, the works
mentioned in this section have seldom been used in industrial environments.

In the next section, we present an approach that has solved both of these lim-
itations: the modelling of interaction in a holistic conceptual modelling approach
and the practical applicability of interaction modelling in an industrial context. Fur-



10 Conceptual Modelling of Interaction 341

thermore, we show how the interaction can be represented by means of conceptual
primitives.

10.3 The Presentation Model of OO-Method

OO-Method [27] is an object-oriented method that allows the automatic genera-
tion of software applications from conceptual models. These conceptual models are
structured in four system views. (1) The Object Model specifies the static prop-
erties of the interactive application by defining the classes and their relationships.
(2) The Dynamic Model controls the application objects by defining their life cycle
and interactions. (3) The Functional Model describes the semantics of object state
changes. (4) The Presentation Model specifies the user interface.

OO-Method is supported by a commercial software suite named OlivaNOVA
that was developed by CARE Technologies (http://www.care-t.com). OlivaNOVA
edits the various models involved and applies subsequent transformations until the
final code of a fully functional application (persistence, logic, and presentation) is
generated for different computing platforms: C# or ASP running on .NET or .NET
2.0; and EJB, JSP, or JavaServer Faces running on Java. Thus, OO-Method defines
a holistic conceptual model that includes the interaction perspective as well as the
structural and behavioural ones. Furthermore, it is currently being used successfully
in an industrial environment.

This section presents the conceptual primitives of the OO-Method presentation
model. These primitives allow a user interface to be modeled in a convenient way,
and offer enough expressiveness to represent any management information system
interface. In this section and the following, we present an illustrative example re-
lated to a photography agency system. The agency manages illustrated reports for
distribution to newspaper editorials, and operates with photographers who work as
independent professionals.

The OO-Method presentation model is structured with a set of interaction pat-
terns that were defined in [20]. These interaction patterns are ordered in three levels
(see Fig. 10.2):

• Level 1 – Hierarchical Action Tree (HAT) organizes the access to the system
functionality through a tree-shaped abstraction.

• Level 2 – Interaction Units (IUs) represent the main interactive operations that
can be performed on the domain objects (executing a service, querying the pop-
ulation of a class, and visualizing the details of a specific object).

• Level 3 – Elementary Patterns (EPs) constitute the building blocks from which
IUs are constructed.

In the next three subsections, we provide more details about the interaction pat-
terns from these three levels, going from the most specific to the most general ones.



342 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

10.3.1 Elementary Patterns

Elementary patterns (EPs) constitute the primitive building blocks to build IUs.
They represent specific aspects of the interaction between a human and a system
and cannot be combined in an arbitrary way. On the contrary, each of them is appli-
cable in specific IUs.

In the current OO-Method presentation model, there are 11 EPs that can be re-
lated to their corresponding relevant IUs (see Fig. 10.2):

• Introduction captures the relevant aspects of data to be entered by the end user. In-
teraction aspects that can be specified include edit masks and valid value ranges.

• Defined selection enables the definition (by enumeration) of a set of valid values
for an associated model element.

• Argument grouping defines the way in which input arguments for a given service
are presented to the end user allowing these input arguments to be arranged in
groups and subgroups.

Fig. 10.2 OO-Method pre-
sentation model

HIERARCHICAL
ACTION TREE

SERVICE
INTERACTION UNIT

INSTANCE
INTERACTION UNIT

POPULATION
INTERACTION UNIT

MASTER/DETAIL
INTERACTION UNIT

INTRODUCTION

DEFINED
SELECTION

ARGUMENT
GROUPING

POPULATION
PRELOAD

DEPENDENCY

CONDITIONAL 
NAVIGATION

FILTER

ORDER CRITERION

DISPLAY SET

ACTIONS

NAVIGATIONS

MASTER
INTERACTION UNIT

DETAILS
INTERACTION 

UNITS

A uses B

A B
Legend

3 leveL2 leveL1 leveL



10 Conceptual Modelling of Interaction 343

• Dependency enables dependency relationships to be defined between the value
or state of an input argument of a service and the value or state of other input
argument of the same service. The definition is based on ECA-type rules (event,
condition, action).

• Population preload allows the designer to specify that the selection of an object
as an input argument of a service will be carried out with or without changing
the interaction context.

• Conditional navigation allows navigation to different IUs after the successful or
failed execution of a service. In order to specify which IU to navigate to, it is
also necessary to establish a condition that must hold after the execution of the
service.

• Filter defines a selection condition over the population of a class, which can
be used to restrict the object population of the class, thereby facilitating further
object search and selection operations.

• Order criterion defines how the population of a class is to be ordered. Ordering is
done on the values of one or more properties of the objects, taking into account
ascending/descending options.

• Display set determines which properties of a class are to be presented to the user
and in what order.

• Actions define the set of available services that can be performed on the objects
of a given class.

• Navigations determine the information set that can be accessed via navigation of
the structural relationships found in an initial class.

10.3.2 Interaction Units

An Interaction Unit (IU) describes a particular scenario of the user interface through
which users are able to carry out specific tasks. In the OO-Method approach, there
are three different basic kinds of interaction scenarios: execution of a service, ma-
nipulation of one object, and manipulation of a collection of objects. For each of
these basic interaction scenarios, the OO-Method approach proposes a specific IU
that is appropriate for handling it. A fourth IU is proposed to combine the other IUs.
As shown in Fig. 10.2, the OO-Method presentation model defines these four IUs:

• Service IU: enables a scenario to be defined in which the user interacts with the
system in order to execute a service. The user must provide the arguments and
launch the service.
As shown in Fig. 10.2, six of the EPs can be used to complete the specification
of a Service IU: introduction, defined selection, argument grouping, dependency,
population preload, and conditional navigation. Figure 10.3 shows the final user
interface generated from a Service IU.
The user interface for this Service IU allows a photographer to fill in an applica-
tion form for working in a photography agency. The photographer must provide
personal and contact data as well as data related to its professional equipment.



344 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

Fig. 10.3 User interface generated from a Service IU with argument groupings (a) and defined
selection (b)

• Instance IU: represents a scenario in which information about a single object is
displayed, including the list of services that can be executed on it, as well as the
scenarios of related information to which the user can navigate. All this infor-
mation is structured by means of three EPs: display set, actions, and navigations
(see Fig. 10.2).
Figure 10.4 shows the final user interface generated from an Instance IU. The
user interface for this Instance IU shows data related to a photographer of the
agency.

Fig. 10.4 User interface generated from an Instance IU with display set (a), actions (b), and navi-
gations (c)



10 Conceptual Modelling of Interaction 345

Fig. 10.5 User interface generated from a Population IU with filter (a), order criterion (b), display
set (c), actions (d), and navigations (e)

• Population IU: represents an interaction scenario where multiple objects are pre-
sented. This scenario includes the appropriate mechanisms to do the follow-
ing: select and sort objects, choose the information and available services to
be shown, and list other scenarios that can be reached. All this information is
structured by means of five EPs: filter, order criteria, display set, actions, and
navigations (see Fig. 10.2).
Figure 10.5 shows the final user interface generated from a Population IU. The
user interface for this Population IU shows data related to multiple photographers
of the agency at the same time.

• Master/Detail IU: presents the user with a scenario for the interaction with multi-
ple collections of objects that belong to different interrelated classes. This forms
a composite scenario in which two kinds of roles can be defined: a master role,
which represents the main interaction scenario, and detail roles, which represent
secondary, subordinated interaction scenarios that are kept synchronized with the
master role (see Fig. 10.2).
Figure 10.6 shows the final user interface generated from a Master/Detail IU in
which the master role corresponds to an Instance IU, which shows data related
to a photographer of the agency, and the detail role corresponds to a Population
IU, which shows the list of reports related to the photographer.

The user interfaces depicted in Figs. 10.3–10.6 have been generated by Oli-
vaNOVA for the desktop .NET platform.



346 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

Fig. 10.6 User interface generated from an Master/Detail IU with master role (a) and detail role (b)

10.3.3 Hierarchical Action Tree

Once the interaction scenarios have been described through the corresponding IUs,
it is necessary to determine how these IUs are to be structured, organized, and pre-
sented to the user. This structure will characterize the top level of the user interface,
establishing what could be described as the main menu of the application. The Hi-
erarchical Action Tree (HAT) serves this purpose.

The HAT defines an access tree that follows the principle of gradual approxi-
mation to specify the manner in which the interactive user can access system func-
tionality. This is achieved by arranging actions into groups and subgroups by using
a tree abstraction, from the most general to the most detailed. Intermediate (i.e.,
non-leaf) nodes in the tree are simply grouping labels, whereas tree leaves reference
pre-existing IUs (see Fig. 10.2).



10 Conceptual Modelling of Interaction 347

10.4 Explicitly Distinguishing Abstract
and Concrete Interaction Modeling in OO-Method

The OO-Method presentation model constitutes a unified interaction model in which
there is no explicit distinction between an abstract level and a concrete level. This
model can be considered a good starting point for adequately modelling interaction,
since it provides a good basis to include user interface generation in the conceptual
model compilation process. However, it still presents an important problem: the in-
teraction style of the resultant software application is fixed by the model compiler,
and there is no way to adapt the presentation style to the particular needs and in-
dividual tastes of end users. In this section, we show how to make this distinction
feasible. We also extend the above approach in this direction, and add a concrete
level that incorporates decisions related to platforms and users. In particular, the
transformation templates approach is presented as a means for concrete interaction
modelling.

10.4.1 Abstract Interaction Modeling

As explained in Sect. 10.3, the OO-Method presentation model provides primitives
that allow the designer to define user interfaces in a homogeneous and platform-
independent way. All of its interaction patterns, from the three levels, capture the
necessary aspects of the user interface without delving into implementation issues.
In other words, the OO-Method presentation model focuses on what type of user
interaction is desired, and not on how this interaction will be implemented in the
resulting software product. Therefore, the OO-Method presentation model can be
considered an abstract model from which the model compiler can automatically
generate a user interface for different interaction modalities and platforms.

10.4.2 Concrete Interaction Modeling: Transformation Templates

At the abstract level, the OO-Method presentation model does not provide primitives
that allow the structure, layout, and style of user interfaces to be expressed. These
decisions are delegated to the model compiler and are hard-coded in it. Thus, design
knowledge and presentation guidelines are implicit and fixed in the tool that per-
forms the model-to-code transformation and cannot be edited or customized. Thus,
even though different final user interface implementations are potentially valid when
moving from the abstract to the final user interface, it is not possible to adapt the
user interface generation according to end user requirements and preferences. This
results in the generation of predetermined user interfaces, all of which look alike,
and which may not always satisfy the end user.



348 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

Fig. 10.7 An OO-Method
presentation model and
a transformation template
are inputs for the model com-
piler

MODEL 
COMPILER

TRANSFORMATION
TEMPLATE

parameter1: value1, selector1
parameter2: value2, selector2
parameter3: value3, selector3

…
...

OO-METHOD 
PRESENTATION

MODEL

USER INTERFACE 
CODE

Because of these issues, it has been necessary to extend the OO-Method presen-
tation model with a new concrete level that provides the required expressiveness
in order to enable the customization of user interfaces before their generation. An
approach based on transformation templates has been defined for this purpose.

A transformation template [2, 3] aims to specify the structure, layout and style of
a user interface according to preferences and requirements of end users, as well as
according to the different hardware and software computing platforms and environ-
ments in which the user interface will be used.

A transformation template is composed of parameters with associated values that
parameterize the transformations from the OO-Method presentation model to code.
Figure 10.7 illustrates the use of a transformation template with OO-Method. The
model compiler takes a presentation model and a transformation template as input.
The transformation template provides specifications that determine how to trans-
form the presentation model to code. The specifications are expressed by means
of parameters with values and selectors. Selectors define the set of elements of the
OO-Method presentation model that are affected by the value of the parameter. The
transformation engine follows the specifications to generate the code.

In this way, transformation templates externalize the design knowledge and pre-
sentation guidelines and make them customizable according to the characteristics of
the project that is being carried out. Transformation templates can then be reused in
other projects with similar characteristics.

Even though the idea behind transformation templates is based on cascading style
sheets [6], there are significant differences between the two approaches, with the
main one being that transformation templates are applied to user interface models
and not directly to the code. Another difference is that transformation templates are
supposed to be used in an MDE process for user interface generation for different
contexts of use, not only for web environments.

Figure 10.8 depicts the main concepts or primitives that characterize the trans-
formation templates approach. The concepts in this figure are related to context, to
user interface models, and to the transformation templates themselves. These con-
cepts are explained in the following paragraphs.



10 Conceptual Modelling of Interaction 349

10.4.2.1 Context

• Context (see Fig. 10.8): refers to the context of use of an interactive system. We
have defined context according to the Cameleon reference framework [9], which
is widely accepted in the HCI community. According to this framework, a context
of use is composed of the stereotype of a user who carries out an interactive task
with a specific computing platform in a given surrounding environment.
The purpose of conceptualizing context is that we want it to be possible to define
different transformation templates for different contexts of use.

10.4.2.2 User Interface Models

The transformation templates approach makes use of two concepts related to user
interface models (see Fig. 10.8):

• User interface meta-element: represents, in a generic way, any of the OO-Method
interaction patterns presented in Sect. 10.3.

• User interface element: represents an element of the OO-Method presentation
model, that is, a specific instance of any of the above mentioned interaction pat-
terns.

Note that even though in this chapter we are presenting the transformation tem-
plates approach as an extension of OO-Method, it can also be used with other MDE
approaches related to user interface development. In fact, the user interface meta-
element is a generic representation of any meta-element of a user interface meta-
model. Similarly, the user interface element is a generic representation of any ele-
ment of a user interface model.

TRANSFORMATION
TEMPLATE PARAMETER

VALUE

SELECTOR

CONTEXT USER INTERFACE 
ELEMENT

PARAMETER 
TYPE VALUE TYPE USER INTERFACE 

META-ELEMENT

Context sledoM ecafretnI resUsetalpmeT noitamrofsnarT

Parameter type definition level
Parameter definition level

Fig. 10.8 Main concepts of the transformation templates approach



350 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

10.4.2.3 Transformation Templates

With regard to concepts specifically related to the transformation templates ap-
proach, we distinguish between two levels: one in which parameter types are de-
fined, and another one in which the previously defined parameter types are instanti-
ated as parameters in a transformation template.

In the parameter type definition level, there are two concepts (see Fig. 10.8):

• Value type: refers to a specific data type (e.g., integer, URI, colour, etc.) or to an
enumeration of the possible values that a parameter type can assume.

• Parameter type: represents a design or presentation option related to the struc-
ture, layout, or style of the user interface. We can distinguish between low-level
and high-level parameter types. Low-level ones operate at the attribute level of
user interfaces; for instance, colour or font type are low-level parameter types
related to style. High-level parameter types operate at the concept level of user
interfaces and can be used to specify the structure of the user interface, the type
of components (containers, widgets) that will be used, or the alignment of the
components.
Defining a parameter type subsumes specifying the list of user interface meta-
elements that are affected by it, as well as its value type. A parameter type, with
all or a set of its possible values, can be implemented in different contexts of use.
In order to decide about these implementations, we propose that each possible
value receive an estimation of its importance level and its development cost for
different relevant contexts of use. In this way, possible values with a high level of
importance and a low development cost can be implemented first in a given con-
text, followed by those with a high level of importance and a high development
cost, and so on. Possible values with a low level of importance and a high devel-
opment cost would not have to be implemented in the corresponding context. For
each relevant context of use, usability guidelines can be assigned to each possible
value of a parameter type. These guidelines will help user interface designers in
choosing one of the possible values by explaining the conditions under which the
values should be used.

Table 10.1 shows an example of the definition of a parameter type named group-
ing layout for input arguments. This parameter type is useful for deciding how to
present the input arguments of a service that have been grouped using the argument
grouping interaction pattern presented in Sect. 10.3.1.

Table 10.1 (a) shows that this parameter type affects two interaction patterns of
the OO-Method presentation model. It also shows that four different possible values
have been defined.

Table 10.1 (b) shows that the parameter type has been associated to two contexts
of use: a desktop platform and a mobile one. For each context of use and each
possible value, the importance level and development cost have been estimated.

Table 10.1 (c) presents a list of usability guidelines for the desktop context and
each possible value of the parameter type. These usability guidelines have been
proposed from an extraction from [14].



10 Conceptual Modelling of Interaction 351

Table 10.1 Parameter type: grouping layout for input arguments

Parameter Type
Name Affects Possible values enumeration

Value Graphical description

Grouping layout
for input
arguments

Two patterns of
the OO-Method
presentation
model: Service IU
and argument
grouping

Group box Personal Data Contact Data

Tabbed dialog box Personal Data Contact Data

Wizard Personal DataPersonal Data

CancelNext

Contact DataContact Data

CancelOk

Accordion Personal Data

Contact Data

(a)

Contexts
SW: C# on .NET - HW: laptop or PC SW: iPhone OS - HW: iPhone

Possible value Importance level Development cost Importance level Development cost

Group box High Low High Low
Tabbed dialog box High Low Medium Medium
Wizard Medium Medium Low High
Accordion Low Medium Medium Medium

(b)

Possible value Usability guidelines (for desktop context)

Group box Visual distinctiveness is important. The total number of groups will be small
Tabbed dialog
box

Visual distinctiveness is important. The total number of groups is not greater
than 10

Wizard The total number of groups is between 3 and 10. The complexity of the task
is significant. The task implies several critical decisions. The cost of errors is
high. The task must be done infrequently. The user lacks the experience it takes
to complete the task efficiently

Accordion Visual distinctiveness is important. The total number of groups is not greater
than 10

(c)

In the parameter definition level, there are four concepts (see Fig. 10.8):

• Transformation template gathers a set of parameters for a specific context of use.
• Parameter: each parameter of a transformation template corresponds to a param-

eter type and has both a value and a selector.
• Value is an instance of a value type. The value of a parameter corresponds to

a possible value of the corresponding parameter type.



352 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

• Selector delimits the set of user interface elements that are affected by the value
of a parameter. We have defined different types of selectors that allow the de-
signer to choose a specific user interface element; all the user interface elements
of a certain type; the first or last element contained in a specific type of user
interface element; or other options.

Figure 10.9 represents the user interface that could be obtained for the Service IU
that was presented in Fig. 10.3, if the parameter grouping layout for input arguments
is applied with value wizard (see Table 10.1) and if the following two parameters
are also applied: a parameter for specifying the widget to be used to display defined
selections with value radio button; and a parameter for specifying the alignment of
labels with value vertical.

10.5 Conclusion

This chapter emphasizes the importance of interaction modelling on the same level
of expressiveness as any other model involved in the development life cycle of an in-
teractive application. In the same way that a conceptual model of the domain could
be used to derive a database for a future application, a conceptual model of the
interaction could be used to derive a user interface for this same application [37].
A system with a suitable functionality and persistence may be rejected by end users
if the interface does not satisfy their expectations. Therefore, the designer must be
provided with the suitable conceptual primitives to represent every relevant charac-
teristic of the final interface; otherwise, a complete code generation from a concep-
tual model cannot become a reality.

Today, the community has reached a level of progress in which this has now
become a reality that goes beyond mere prototypes. In the past, model-based ap-
proaches were exploited to capture the essence of a user interface into a conceptual
model of the user interface to be subsequently used for design, specification, genera-
tion, and verification. More recently, model-driven engineering (MDE) approaches
have been introduced in order to make the user interface development life cycle
more precise, rigorous, and systematic.

The main difference between model-based approaches and model-driven engi-
neering approaches [40, 41] is that in the former, only models are used, while in
the latter all models comply with a meta-model that is itself defined according to
a meta-meta-model. Similarly, all operations are captured through transformations
that are themselves compliant with the same meta-model, as opposed to earlier ap-
proaches in which no meta-model was present. Not all model-based approaches for
user interface development could be considered as compliant with Model-Driven
Architecture (MDA) [40].

Indeed, the following MDE/MDA definition was approved unanimously by 17
participants of the ORMSC – Object and Reference Model Subcommittee of the
Architecture Board of the Object Management Group (OMG) – plenary session



10 Conceptual Modelling of Interaction 353

Fig. 10.9 User interface that could be generated from a Service IU after applying different param-
eters



354 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

meeting in Montreal on 23–26 August 2004. The stated purpose of the paragraph
was to provide principles to be followed in the revision of the MDA guide:

“MDA is an OMG initiative that proposes to define a set of non-proprietary standards that
will specify interoperable technologies with which to realize model-driven development with
automated transformations. Not all of these technologies will directly concern the transfor-
mation involved in MDA. MDA does not necessarily rely on the UML, but, as a specialized
kind of MDD (Model-Driven Development), MDA necessarily involves the use of model(s)
in development, which entails that at least one modelling language must be used. Any mod-
elling language used in MDA must be described in terms of the MOF (MetaObject Facility)
language to enable the metadata to be understood in a standard manner, which is a precon-
dition for any activity to perform automated transformation”.

This definition is now completely applicable to some MDE approaches for in-
teraction modelling, such as OO-Method and its presentation model presented in
this chapter. Taking this presentation model as input, we state that the interaction
modelling must be divided into two views: abstract [27, 38, 39] and concrete [2, 3].
The abstract view represents what will be shown in each interface. This view cor-
responds to the presentation model of OO-Method, which represents the interface
independently of the platform and the design. The concrete view represents how the
elements will be shown in each interface. This model is built by means of transfor-
mation templates.

At first glance, designers might be concerned that more effort on their part is
required for modelling the concrete level. However, this problem can be resolved
thanks to the use of default transformation templates for a specific context of use.
Once the abstract interaction model has been specified, the concrete interaction
model can be determined by just choosing the default transformation template for
the context of use in which the information system is going to be used. These de-
fault transformation templates must be designed only once, and can then be reused.
Designers might only have to change the value and/or scope of some parameters in
order to adequate the concrete modelling to end user requirements.

Future avenues of this work include:

• Integration with requirements engineering. We plan to develop a method to cap-
ture interaction requirements that is compliant with holistic development based
on conceptual models. These requirements would help the designer to determine
the user’s needs and preferences in order to guide the interaction modelling. The
capture of requirements would be based on tasks, which is the notation that is
most commonly used in the HCI community.

• Inclusion of a usability model in the transformation process. We will include us-
ability characteristics in both the abstract and concrete interaction models. These
characteristics will help the designer to build quality systems according to usabil-
ity guidelines and heuristics. This will be helpful not only for evaluating usability
during the transformation process, but also to guarantee to some extent that user
interfaces issued by this approach are somewhat usable by construction [1] so as
to provide a general computational framework for user interfaces [32].

• Building various transformation sets for various development paths. We will
build new transformation sets that would support other development paths [17]



10 Conceptual Modelling of Interaction 355

than merely forward engineering. For instance, ReversiXML [7, 8] performs re-
verse engineering of web pages into a concrete interface model expressed in
UsiXML [18] by using derivation rules, but not transformation rules. Similarly,
MultimodaliXML [33] generates multimodal user interfaces based on the same
conceptual models, but involves other sets of transformation rules.

• Building multi-fidelity editors for each model. We plan to develop model ed-
itors that enable modelers to rely on different levels of fidelity, not just high
fidelity [19], for instance by sketching the model [11], ranging from low fidelity
to high fidelity.

As for any MDA approach, it is crucial to develop any work that contributes to
obtain a low threshold, a high ceiling, and wide walls as much as possible to expand
the capabilities of expressiveness and their transformation into a larger gamma of
user interfaces. This is reflected in Fig. 10.10: the first generation of MDA software
usually suffered from a high threshold (they required a high amount of resources
to get some results), a low ceiling (the capabilities of the user interface generated
were limited), and narrow walls (there was only one user interface generated for one
computing platform). The second generation improved this situation by lowering the
threshold, increasing the ceiling, and enlarging the walls. Right now, we are in the
third generation, where user interface capabilities have been expanded for multiple
computing platforms and contexts of use.

This race is to be continued.

Capabilities

Resources
(time, experience, …)

10
0%

50
%

Ceiling

Threshold

Fi
rs

t g
en

er
at

io
n

Se
co

nd
 g

en
er

at
io

n

Th
ird

ge
ne

ra
tio

n

In
te

gr
at

ed
D

ev
el

op
m

en
tE

nv
iro

nm
en

ts

UI types

Walls

Fig. 10.10 Low threshold, high ceiling, and wide walls as determinants of a MDA approach



356 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

Acknowledgements We gratefully acknowledge the support of the ITEA2 Call 3 UsiXML project
under reference 20080026; the MITYC under the project MyMobileWeb, TSI-020301-2009-014;
the MICINN under the project SESAMO, TIN2007-62894, co-financed with ERDF; the Gener-
alitat Valenciana under the project ORCA, PROMETEO/2009/015, and the grant BFPI/2008/209.
Jean Vanderdonckt also thanks the FP7 Serenoa project supported by the European Commission.

References

1. Abrahão S, Iborra E, Vanderdonckt J (2008) Usability evaluation of user interfaces generated
with a model-driven architecture tool. In: Law E, Hvannberg E, Cockton G (eds) Maturing
usability: quality in software, interaction and value, HCI Series, vol. 10. Springer, London, pp
3–32

2. Aquino N, Vanderdonckt J, Pastor O (2010) Transformation templates: adding flexibility to
model-driven engineering of user interfaces. In: Shin SY, Ossowski S, Schumacher M, Palakal
MJ, Hung CC (eds) Proceedings of the 25th ACM symposium on applied computing, SAC
2010, Sierre, March 2010. ACM Press, New York, pp 1195–1202

3. Aquino N, Vanderdonckt J, Valverde F, Pastor O (2009) Using profiles to support model trans-
formations in the model-driven development of user interfaces. In: López Jaquero V, Montero
Simarro F, Molina Masso JP, Vanderdonckt J (eds) Computer-aided design of user interfaces
VI, Proceedings of 7th international conference on computer-aided design of user interfaces,
CADUI 2008, Albacete, June 2008. Springer, Berlin, pp 35–46

4. Baron M, Girard P (2002) SUIDT A task model based GUI-builder. In: Pribeanu C, Vander-
donckt J (eds) Task models and diagrams for user interface design: Proceedings of the first
international workshop on task models and diagrams for user interface design, TAMODIA
2002, Bucharest, July 2002. INFOREC Publishing House, Bucharest, pp 64–71

5. Bodart F, Hennebert AM, Provot I, Leheureux JM, Vanderdonckt J (1994) A model-based
approach to presentation: a continuum from task analysis to prototype. In: Paternò F design,
specification and verification of interactives systems’94, Proceedings of the first international
Eurographics workshop, Bocca di Magra, June 1994. Springer, Berlin, pp 77–94

6. Bos B, Çelik T, Lie HW, Hickson I (2007) Cascading style sheets level 2 revision 1 (CSS
2.1) specification. Technical report. World Wide Web Consortium (W3C), http://www.w3.org.
Accessed 6 December 2010

7. Bouillon L, Limbourg Q, Vanderdonckt J, Michotte B (2005) Reverse engineering of web
pages based on derivations and transformations. In: Proceedings of 3rd Latin American Web
congress LA-Web 2005 Aires, 31 October 2005. IEEE Computer Society Press, Los Alamitos,
pp 3–13

8. Bouillon L, Vanderdonckt J, Chow KC (2004) Flexible re-engineering of Web sites. In: Pro-
ceedings of 8th ACM international conference on intelligent user interfaces IUI 2004, Funchal,
13–16 January 2004. ACM Press, New York, pp 132–139

9. Calvary G, Coutaz J, Thevenin D, Limbourg Q, Bouillon L, Vanderdonckt J (2003) A unifying
reference framework for multi-target user interfaces. Interact Comput 15(3):289–308

10. Chen PP (1976) The entity-relationship model – toward a unified view of data. ACM Trans
Database Syst 1(1):9–36

11. Coyette A, Vanderdonckt J (2005) A sketching tool for designing anyuser, anyplatform, any-
where user interfaces. In: Costabile MF, Paternò F (eds) Proceedings of 10th IFIP TC 13
international conference on human–computer interaction, INTERACT 2005, Rome, 12–16
September 2005, Lecture Notes in Computer Science, vol 3585. Springer, Berlin, pp 550–564

12. da Silva PP, Paton NW (2003) User interface modeling in UMLi. IEEE Softw 20(4):62–69
13. Foley JD, Sukaviriya PN (1994) History, results, and bibliography of the user interface design

environment (UIDE), an early model-based system for user interface design and implementa-
tion. In: Paternò F design, specification and verification of interactives systems’94. Proceed-



10 Conceptual Modelling of Interaction 357

ings of the first international Eurographics workshop, Bocca di Magra, June 1994. Springer,
Berlin, pp 3–14.

14. Galitz, WO (2002) The essential guide to user interface design: an introduction to GUI design
principles and techniques. Wiley, New York

15. Johnson P, Wilson S, Markopoulos P, Pycock J (1993) ADEPT: advanced design environ-
ment for prototyping with task models. In: Ashlund S, Mullet K, Henderson A, Hollnagel E,
White TN (eds) Human–computer interaction. Proceedings of INTERACT ’93, IFIP TC13 in-
ternational conference on human–computer interaction, Amsterdam, 24–29 April 1993. ACM
Press, New York, p 56

16. Limbourg Q, Vanderdonckt J (2004) USIXML: a user interface description language support-
ing multiple levels of independence. In: Matera M, Comai C (eds) Engineering advanced web
applications: Proceedings of workshops in connection with the 4th international conference on
web engineering, ICWE 2004, Munich, 28–30 July 2004. Rinton Press, Paramus, pp 325–338

17. Limbourg Q, Vanderdonckt J (2009) Multi-path transformational development of user inter-
faces with graph transformations. In: Seffah, A, Vanderdonckt J, Desmarais M (eds) Human-
centered software engineering, HCI Series. Springer, London, pp 109–140

18. Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, López-Jaquero V (2005) USIXML:
A language supporting multi-path development of user interfaces. In: Bastide R, Palanque
PA, Roth J (eds) Proceedings of 9th IFIP working conference on engineering for human-
computer interaction jointly with 11th international workshop on design, specification, and
verification of interactive systems, EHCI-DSVIS 2004, Hamburg, 11–13 July 2004. Lecture
Notes in Computer Science, vol 3425. Springer, Berlin, pp 200–220

19. Michotte B, Vanderdonckt J (2008) GrafiXML, a multi-target user interface builder based on
UsiXML. In: Greenwood D, Grottke M, Lutfiyya H, Popescu M (eds) Proceedings of 4th
international conference on autonomic and autonomous systems, ICAS 2008 Gosier, 16–21
March 2008. IEEE Computer Society Press, Los Alamitos, pp 15–22

20. Molina PJ, Meliá S, Pastor O (2002) Just-UI: a user interface specification model. In: Kolski
C, Vanderdonckt J (eds) Computer-aided design of user interfaces III, Proceedings of the 4th
international conference on computer-aided design of user interfaces, CADUI 2002, Valenci-
ennes, 15–17 May 2002. Kluwer, Alphen aan den Rijn, pp 63–74

21. Morgan T (2004) Doing IT better. Keynote address at the 3rd conference on information sys-
tems technology and its applications, ISTA 2004. Salt Lake City, 15–17 July 2004

22. Mori G, Paternò F, Santoro C (2004) Design and sevelopment of multidevice user interfaces
through multiple logical descriptions. IEEE Trans Softw Eng 30(8):507–520

23. Nunes NJ, e Cunha JF (2000) Wisdom: A software engineering method for small software
development companies. IEEE Software 17(5):113–119

24. Olivé A (2005) Conceptual schema-centric development: a grand challenge for information
systems research. In: Pastor O, e Cunha JF (eds) Advanced information systems engineering,
Proceedings of 17th international conference, CAiSE 2005, Porto, 13–17 June 2005, Lecture
Notes in Computer Science, vol 3520. Springer, Berlin, pp 1–15

25. Pastor O (2006) From extreme programming to extreme non-programming: is it the right time
for model transformation technologies? In: Bressan S, Küng J, Wagner R (eds) Proceedings
of 17th international conference on database and expert systems applications, DEXA 2006,
Krakow 4–8 September 2006, Lecture Notes in Computer Science, vol 4080. Springer, Berlin,
pp 64–72

26. Pastor O, e Cunha JF (eds) Advanced information systems engineering, Proceedings of 17th
international conference, CAiSE 2005, Porto, 13–17 June 2005, Lecture Notes in Computer
Science, vol 3520. Springer, Berlin

27. Pastor O, Molina JC (2007) Model-driven architecture in practice: a software production en-
vironment based on conceptual modeling. Springer, Secaucus

28. Paternò F (ed) (1994) Design, specification and verification of interactive systems’94, Pro-
ceedings of the first international Eurographics workshop, 8–10 June 1994, Bocca di Magra.
Springer, Berlin

29. Paternò F. (1999) Model-based design and evaluation of interactive applications. Springer,
London



358 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

30. Paternò F, Santoro C, Spano LD (2009) MARIA: a universal, declarative, multiple abstraction-
level language for service-oriented applications in ubiquitous environments. ACM Trans
Comput-Hum Interact, 16(4)

31. Pederiva I, Vanderdonckt J, España S, Panach JI, and Pastor O (2007) The beautification
process model-driven engineering of user interfaces. In: Baranauskas MCC, Palanque PA,
Abascal J, Barbosa SDJ (eds) Proceedings of 11th IFIP TC 13th international conference on
human–computer interaction, INTERACT 2007, Río de Janeiro, 10–14 September 2007, Lec-
ture Notes in Computer Science, vol 4662. Springer, Berlin, pp 411–425

32. Puerta AR, Eisenstein J (1999) Towards a general computational framework for model-based
interface development systems, Knowl-Based Syst 12(8):433–442

33. Stanciulescu A, Limbourg Q, Vanderdonckt J, Michotte B, Montero F (2005) A transforma-
tional approach for multimodal web user interfaces based on UsiXML. In: Lazzari G, Pia-
nesi F, Crowley JL, Mase K, Oviatt SL (eds) Proceedings of the 7th international conference
on multimodal interfaces, ICMI 2005, Trento, 4–6 October 2005. ACM Press, New York,
pp 259–266

34. Stevens WP, Myers GJ, Constantine LL (1974) Structured Design. IBM Syst J 13(2):115–139
35. Szekely PA (1990) Template-based mapping of application data interactive displays. In: Hud-

son SE (ed) Proceedings of the 3rd annual ACM symposium on user interface software and
technology, UIST 1990, Snowbird, 3–5 October 1990. ACM Press, New York, pp 1–9

36. Szekely PA (1996) Retrospective and challenges for model-based interface development In:
Bodart F, Vanderdonckt J (eds) Design, specification and verification of interactive sys-
tems’96, Proceedings of the 3rd International Eurographics workshop, Namur, 5–7 June 1996.
Springer, Berlin, pp 1–27

37. Torres I, Pastor O, Limbourg Q, Vanderdonckt J (2005) Una experiencia práctica de gen-
eración de interfaces de usuario a partir de esquemas conceptuales. In: Puerta AR and Gea
M (eds) Proceedings of VI congreso interacción persona ordenador, Interacción 2005 – CEDI
2005, Granada, 13–16 September 2005. Thomson Paraninfo, Madrid, pp 401–404

38. Valverde F, Panach JI, Aquino N, Pastor O (2009) New trends on human–computer interaction.
Research, development, new tools and methods. Dealing with abstract interaction modelling
in an MDE development process: a pattern-based approach. Springer, London, pp 119–128

39. Valverde F, Panach JI, Pastor O (2007) An abstract interaction model for a MDA software
production method. In: Grundy JC, Hartmann S, Laender AHF, Maciaszek LA, Roddick. JF
(eds) Challenges in conceptual modelling. Proceedings of tutorials, posters, panels and in-
dustrial contributions at the 26th international conference on conceptual modeling, ER 2007,
Auckland, 5–9 November 2007, CRPIT, vol 83. Australian Computer Society, pp 109–114

40. Vanderdonckt J (2005) A MDA-compliant environment for developing user interfaces of in-
formation systems. In: Pastor O, e Cunha JF (eds) Advanced information systems engineering,
Proceedings of 17th international conference, CAiSE 2005, Porto, 13–17 June 2005, Lecture
Notes in Computer Science, vol 3520. Springer, Berlin, pp 16–31

41. Vanderdonckt J (2008) Model-driven engineering of user interfaces: promises, successes, and
failures. In: Buraga S, Juvina I (eds) Proceedings of 5th annual Romanian conference on
human–computer interaction ROCHI’2008, Iasi, 18–19 September 2008. Matrix ROM, Bu-
carest, pp 1–10

42. Van Der Veer GC, Lenting BF, Bergevoet BAJ (1996) GTA: groupware task analysis – mod-
eling complexity. Acta Psychol 1:297–322



http://www.springer.com/978-3-642-15864-3


	10 Conceptual Modelling of Interaction
	Nathalie Aquino, Jean Vanderdonckt, José Ignacio Panach, and Óscar Pastor
	10.1 Introduction
	10.2 Related Work
	10.3 The Presentation Model of OO-Method
	10.3.1 Elementary Patterns
	10.3.2 Interaction Units
	10.3.3 Hierarchical Action Tree

	10.4 Explicitly Distinguishing Abstract and Concrete Interaction Modeling in OO-Method
	10.4.1 Abstract Interaction Modeling
	10.4.2 Concrete Interaction Modeling: Transformation Templates

	10.5 Conclusion
	References


