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1 Introduction

In glass manufacturing, a hot melt of glass is cooled down to room temperature.
The annealing has to be monitored carefully in order to avoid excessive temperature
differences which may affect the quality of the product or even lead to cracks in the
material. In order to control this process it is, therefore, of interest to have a math-
ematical model that accurately predicts the temperature evolution. The model will
involve the direction-dependent thermal radiation field because a significant part of
the energy is transported by photons. Unfortunately, this fact makes the numerical
solution of the radiative transfer equations much more complex, especially in higher
dimensions, since, besides position and time variables, the directional variables also
have to be accounted for. Therefore, approximations of the full model that are com-
putationally less time consuming but yet sufficiently accurate have to be sought. It
is our purpose to present several recent approaches to this problem that have been
co-developed by the authors.

This manuscript is organized as follows. In Sect. 2, we derive the underlying
kinetic equation model for radiative transfer in glass. This model is supplemented
by initial and boundary conditions. In addition, several versions of this model,
that are later used, are introduced. For later reference and for the reader who
wants to skip the derivation, the basic model is summarized in Sect. 2.6. Section 3
deals with direct numerical methods for the solution of the radiative transfer equa-
tions. These methods will later be used to compute benchmark results. Thus, we
present convergence and robustness results. The rest of the discussion focuses on
two approximation methods that have been co-developed by the authors, namely
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higher-order diffusion (Sect. 4) and moment methods (Sects. 5 and 6). These models
are compared numerically in Sect. 7, where we also present results specifically
related to glass cooling. Parts of this work have been taken from the articles
[18, 23–25, 27, 47, 48, 76, 85].

2 Radiative Heat Transfer Equations for Glass

Radiative transfer has to compete with the two other modes of energy transfer,
namely heat conduction and convection. In everyday life, these three effects can
be seen at a cup of hot coffee. The cup itself gets warmer because of heat conduc-
tion between the coffee and the cup material. The warmth felt near the outside walls
of the cup is due to radiation and the vapor emerging from the top of the cup carries
energy by convection. The distinguishing features of the three modes are given in
Table 1.

Radiation consists of electromagnetic waves, which have the same nature as
visible light. The elementary particle of the radiation field is the photon. Heat is
conducted in solids and fluids by free electrons and phonon–phonon interactions,
whereas convection is energy transport by material transport.

While radiation can also be transported through the vacuum, conduction and
convection need a medium. The conductive and convective heat flux is di-
rectly proportional to temperature differences. On the other hand, the celebrated
Stefan–Boltzmann law states that the radiative heat flux is proportional to the dif-
ference of the fourth powers of the temperature. Because of this, radiation becomes
the dominant effect at large temperatures.

Conduction and convection are local phenomena, which occur at the atomic
length scale of approximately 10−9 m. Radiation on the other hand is a non-local
phenomenon. The average distance a photon travels between two collisions can
vary between the atomic length scale of 10−9 m up to 1010 m (distance earth-sun)
and even more. As a consequence, the commonly used mathematical descriptions
of radiative heat transfer and conduction/convection are different.

Table 1 Modes of energy transfer

Radiation Conduction Convection

Energy transport by photons free electrons, material transport
Phonon interaction

Medium required no yes yes
Temperature dependence q∼ T 4−T 4

∞ q∼ ∇T q∼ T −T∞
Mean free path 10−9 ∼ 1010 m ∼ 10−9 m ∼ 10−9 m
Depends on x, t,Ω ,ν x, t x, t
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Furthermore, the physical quantities describing the radiation field depend on
space, time, direction and frequency, while those used to describe conduction and
convection depend only on space and time.

2.1 Fundamental Quantities

In this section we want to define the fundamental physical quantities describing the
radiation field.

2.1.1 Intensity

The basic variable is the spectral intensity

ψ(t,x,Ω ,ν), (1)

the radiative energy flow per time, per area normal to the rays, per solid angle and
per frequency. This means that ψ dt dA dΩ dν has the dimension of energy flux and
is proportional to the number of photons. The spectral intensity depends on position
x ∈R3, time t ∈R, direction Ω ∈ S2 = {x ∈R3 : ‖x‖= 1}, and frequency ν ∈R+.

The total intensity

ψ(t,x,Ω) =
∫ ∞

0
ψ(t,x,Ω ,ν)dν (2)

is the spectral intensity integrated over the whole spectrum.

2.1.2 Energy Flux

The total energy flux is defined as

E(t,x) = ϕ(t,x) =
∫

S2
ψ(t,x,Ω)dΩ =

∫
S2

∫ ∞

0
ψ(t,x,Ω ,ν)dνdΩ . (3)

In the context of moment models, this quantity is denoted by E , in the context of
diffusion models it is traditionally denoted by ϕ or φ . The radiative energy is the
zeroth order moment of the total intensity with respect to the direction Ω . Several
other moments will play an important role in the following.

2.1.3 Heat Flux

Consider an infinitesimal surface element with outward normal n. The ingoing and
outgoing spectral heat fluxes are
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|F | =
∣∣∣−|F in|+ |Fb|

∣∣∣
=

∫
n·Ω<0

(n ·Ω)ψdΩ +
∫

n·Ω>0
(n ·Ω)ψdΩ

=
∫

S2
(n ·Ω)ψdΩ . (4)

Thus the spectral heat flux is

F(t,x,ν) =
∫

S2
Ωψ(t,x,Ω ,ν)dΩ . (5)

To obtain the total heat flux, we integrate over the spectrum,

F(t,x) =
∫

S2

∫ ∞

0
Ωψ(t,x,Ω ,ν)dνdΩ . (6)

2.1.4 Radiation Pressure

The heat flux into a surface element dA is, as above,

(n ·Ω)ψdAdΩ . (7)

Thus the beam carries momentum at a rate

1
c
(n ·Ω)ψndAdΩ . (8)

The fraction of momentum falling onto dA is |n ·Ω |. Therefore, the flow of momen-
tum into dA in the normal direction is

1
c

ψ |n ·Ω |2dAdΩ . (9)

This must be counteracted by a pressure force pdA leading to the spectral radiation
pressure

p =
1
c

∫
S2

ψ |n ·Ω |2dΩ . (10)

The spectral radiative pressure tensor Pν is defined by

nT Pn = p, (11)

thus

P(t,x,ν) =
1
c

∫
S2

(Ω ⊗Ω)ψ(t,x,Ω ,ν)dΩ . (12)
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Here, Ω ⊗Ω is the outer product (tensor product). The total radiative pressure
tensor is

P(t,x) =
1
c

∫ ∞

0

∫
S2

(Ω ⊗Ω)ψ(t,x,Ω ,ν)dΩdν. (13)

Not quite correctly, we will also call the second order moment of ψ , without the
factor 1

c , radiative pressure.

2.2 Blackbody Radiation

In this section we want to define a perfect absorber, also called blackbody, and
derive the Planck equilibrium distribution. The Planckian plays a crucial role in the
following.

Consider an electromagnetic wave that hits the surface of a medium. The wave
can either be reflected at the surface or penetrate the medium. If the wave passes
through the medium without attenuation, the medium is called transparent. If no
radiation reemerges it is called opaque. Otherwise, in the case of partial attenuation,
it is called semitransparent.

A blackbody or perfect absorber is defined to have an opaque surface that does
not reflect any radiation. A blackbody is thus a maximal absorber. A simple thermo-
dynamical argument [66] shows that it is also a perfect emitter at every frequency
and into any direction.

The blackbody emissive power spectrum has first been derived by Max Planck
in his famous work on Quantum Statistics [65]. In standard textbooks on Quantum
Mechanics nowadays it is usually derived in the context of second quantization of
the electromagnetic field. Here, we want to give a different derivation by entropy
minimization/maximization which fits into the context of this work.

If N(x, p) is the average number of photons with position x and momentum p in
a phase space element of volume h3, where h is Planck’s constant, then

∫ ∫
N(x, p)

dxd p
h3 (14)

is the number of photons in the phase space volume under consideration. Photons
are integer-spin particles and obey Bose–Einstein statistics. According to a standard
result [32] from statistical physics, the entropy of an ensemble of bosons is

S =−2k
∫ ∫

(N logN− (N + 1) log(N + 1))
dxd p

h3 . (15)

Another standard result [32] relates the spectral intensity ψ and the number
density N,

N =
c2

2hν3 ψ . (16)
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The momentum can be written in terms of frequency and direction (“spherical
coordinates”) as

p =
hν
c

Ω , (17)

thus

d p =
(

h
c

)3

ν2dνdΩ . (18)

Consequently, the entropy density of the radiation field is

H =−
∫ ∫

2kν2

c3 (N logN− (N + 1) log(N + 1))dνdΩ . (19)

We want to define the mathematical entropy as

HR =−S. (20)

According to the Second Law of Thermodynamics, the entropy is a non-decreasing
function of time. Thus, the equilibrium distribution for a given temperature has to
maximize S, or equivalently minimize HR. This principle yields the Planck equilib-
rium distribution

B(ν,T ) =
2hν3

c2

1

exp( hν
kT )−1

, (21)

which describes the emissive spectrum of a blackbody. Blackbody emissive power
spectrum in nondimensional coordinates. In this derivation we made use of the
Stefan–Boltzmann law,

B(T ) =
∫ ∞

0
B(ν,T )dν = σSBT 4, (22)

with the Stefan–Boltzmann constant σSB = 5.670 ·10−8 W
m2K4 , which gives the cele-

brated dependence of the total emissive power of a blackbody on the fourth power
of its temperature.

2.3 The Transfer Equation

If the medium through which radiative energy travels is participating, then any inci-
dent beam will be affected by absorption and scattering while it travels through the
medium. In the following, we want to consider a medium at rest (compared to the
speed of light) and with constant refractive index. Furthermore, it is assumed that
the medium is nonpolarizing and that it is in local thermodynamical equilibrium.
For a very thorough discussion of these limitations see [88].
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First we want to derive a discrete transfer equation and then, by passing to the
limit, obtain the integro-differential equation describing radiative transfer.

Let us assume that there is only a finite set of directions (Ω j) into which the
photons can travel. Consider a beam into direction Ωi which travels a distance Δs
through the medium. Several effects can lead to the augmentation and reduction of
the beam.

2.3.1 Absorption

When a photon hits an atom or molecule inside the medium with the right amount
of energy it can be absorbed, thus leading to an excited state of the atom/molecule.
The amount of absorbed photons is directly proportional to the distance traveled
and to the number of photons itself. Thus the change in the spectral intensity due to
absorption is

(Δψ)abs =−κψΔs. (23)

2.3.2 Scattering

The photons can hit atoms or molecules in the medium and change their direction.
We assume that the energy (or frequency) of the photons does not change (elastic
scattering). We denote the fraction of photons that change their direction from Ω j

to Ωi by Si j. Note that the normalization condition

∑
i

Si j = 1 (24)

has to hold. The win/loss balance reads

(Δψ(Ωi))scat = σ

(
−ψ(Ωi)+∑

j

Si jψ(Ω j)

)
Δs. (25)

2.3.3 Emission

If the medium has a finite temperature then it also emits thermal radiation which is
distributed as blackbody radiation. The emitted intensity along a path is again pro-
portional to the length of the path. If the spectral intensity of the photons ψ were a
Planckian itself there should be no net absorption/emission. Hence the proportion-
ality constant must be κ . Thus the intensity change caused by emission is

(Δψ)em = κBΔs. (26)



64 M. Frank and A. Klar

2.3.4 Overall Balance

Drawing a balance of the different effects, we obtain the discrete transfer equation

ψ(s+ Δs,Ωi) = ψ(s,Ωi)

+Δs

(
κ(B(T )−ψ(Ωi))+ σ

(
∑

j

Si jψ(Ω j)−ψ(Ωi)

))
. (27)

The sum on the right hand side can be interpreted as a numerical quadrature rule.
The matrix Si j can be interpreted as the evaluation of a function,

Si j = s(Ωi,Ω j). (28)

If we assume that the set of directions is continuous, then the summation over all
directions becomes an integration over the unit sphere. We obtain for all Ω ∈ S2,

ψ(s+ Δs,Ω) = ψ(s,Ω)

+Δs

(
κ(B(T )−ψ(Ω))+σ

(∫
S2

s(Ω ,Ω ′)ψ(Ω ′)dΩ ′−ψ(Ω)
))

.

(29)

The normalization property (24) becomes

∫
S2

s(Ω ,Ω ′)dΩ ′ = 1. (30)

A beam travels a distance Δx in a time Δx
c , where c is the speed of light. Thus we

have

ψ(t + Δx/c,x + ΩΔx,Ω) = ψ(t,x,Ω)

+ Δx

(
κ(B(T )−ψ(t,x,Ω))+ σ

(∫
S2

s(Ω ,Ω ′)ψ(t,xΩ ′)dΩ ′ −ψ(t,x,Ω)
))

.

(31)

Taking the limit Δx→ 0 we arrive at the radiative transfer equation. The frequency
ν can be incorporated as an additional parameter. At a position x and a time t, for
all directions Ω ∈ S2, for all frequencies ν ∈ [0,∞] it holds

1
c

∂tψ(t,x,Ω ,ν)+ Ω∇ψ(t,x,Ω ,ν)

= κ(B(ν,T )−ψ(t,x,Ω ,ν))+ σ
(∫

S2
s(Ω ,Ω ′)ψ(t,x,Ω ′,ν)dΩ ′ −ψ(t,x,Ω ,ν)

)
.

(32)
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We will also consider the special case of a one-dimensional slab geometry. We
consider a plate which is finite in one dimension and infinite in the other dimensions.
Thus, the intensity depends only on one space variable and is axially symmetric.
Hence the equation simplifies to

1
c

∂tψ(t,x,μ ,ν)+ μ∂xψ(t,x,μ ,ν)

= κ(2πB(ν,T)−ψ(t,x,μ ,ν))+ σ
(

1
2

∫ 1

−1
ψ(t,x,μ ′,ν)dμ ′ −ψ(t,x,μ ,ν)

)
.

(33)

Here, μ is the cosine of the angle between direction and x-axis.
There are several other versions of the transfer equation, that we will consider in

the following. First of all, in most applications, the time scale is much larger than the
time the radiation needs to propagate into the medium. Thus we neglect the time-
derivative and thus obtain the steady transfer equation. The absorption coefficient
κ and the scattering coefficient σ can in general also depend on position and time.
In the following, we want to assume isotropic scattering. This means that the scat-
tering kernel is actually a constant, s = 1

4π . For the purpose of glass, it often suffices
to consider only absorption.

If frequency-dependence is not important, the so-called grey approximation can
be used, meaning that all quantities are frequency-dependent. For glass manufactur-
ing, however, frequency-dependence is important. Table 2 shows typical absorption
coefficients for glass, depending on frequency. For smaller frequencies, absorption
becomes very large. For all practical purposes, glass is perfectly opaque for frequen-
cies smaller than a limit ν1.

2.4 Overall Energy Conservation

The radiation field, by emission, strongly depends on the temperature of the
medium. On the other hand, by absorption, it also affects the temperature of the
medium. For an overall energy balance we have to take into account this connection.

Table 2 Eight frequency bands for glass

Band ι νι νι+1 κι

1 ∞ 5 0.40
2 5 0.3333 0.50
3 0.3333 0.2857 7.70
4 0.2857 0.2500 15.45
5 0.2500 0.2222 27.98
6 0.2222 0.1818 267.98
7 0.1818 0.1666 567.32
8 0.1666 0.1428 7136.06

0.1428 0 Opaque
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Also, we have to consider the two other modes of energy transfer, heat conduction
and convection.

The general energy conservation equation for a moving compressible fluid may
be stated as [66]

ρm
Du
Dt

= ρ(∂tu + v∇u) =−∇q− p∇v + μΦ + Q̇′′′, (34)

where u is the internal energy, v is the velocity vector, q is the total heat flux vector,
Φ is the dissipation function, and Q̇′′′ is the heat generated within the medium.

If the medium interacts with the radiation field through emission, absorption
and scattering, then the heat flux term q in (34) contains the radiative heat flux.
The radiative contributions to the internal energy and the pressure tensor can be
neglected [66].

If we assume that du = cmdT and furthermore that Fourier’s law of heat
conductivity holds,

q = qcon + F =−k∇T + F, (35)

then (34) becomes

ρmcm(∂tT + v∇T ) = ∇k∇T − p∇v + μΦ + Q̇′′′ −∇F. (36)

In the following we want to restrict ourselves to a fluid at rest or a solid, i.e. v = 0.
Furthermore we want to assume Φ = 0 and Q̇′′′ = 0. Thus we consider

ρmcm∂tT = ∇k∇T −∇F. (37)

By integrating the transfer equation with respect to Ω and ν , we see that this can be
written as

ρmcm∂tT = ∇k∇T −
∫ ∞

0

∫
S2

κ(ψ−B)dΩdν. (38)

2.5 Boundary Conditions

Consider a beam of photons hitting a slab, as shown in Fig. 1. Some of the irradiation
will be reflected at the surface. A fraction of the radiation which penetrates the
medium will be absorbed, the remaining will be transmitted. Thus we define the
quantities

Reflectivity ρ = reflected part of radiation
incoming radiation

Absorptivity α = absorbed part of radiation
incoming radiation

Transmittivity τ = transmitted part of radiation
incoming radiation .
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Fig. 1 Reflection,
absorption, and transmission

By definition, ρ +α +τ = 1. A medium is called opaque if τ = 0, i.e. no radiation
is transmitted. For a black body, α = 1 and ρ = τ = 0.

Radiative energy can also be emitted inside a medium and can be released
through the surface. Since a blackbody is a perfect emitter, we define

emissivity ε = energy emitted from surface
energy emitted from a blackbody at the same temperature .

Radiative transfer is a long-range phenomenon. In principle, if we want to know
the amount of radiation at one point x, we have to take into account radiation ar-
riving from any direction and any point in space. Thus, an energy balance must
be performed either over the whole space or over an enclosure bounded by opaque
walls. When speaking of a wall or surface we actually mean a small layer (compared
to the size of the enclosure) where radiation is reflected, absorbed and emitted.

Consider a domain bounded by an opaque surface and let n denote the outward
normal vector. For a point on the boundary we have the following energy balance
for all incoming directions, i.e. all Ω with n ·Ω < 0,

ψ(x,t,Ω) = ρ(Ω ′)ψ(x,t,Ω ′)+ (1−ρ(Ω))ψb. (39)

Here, Ω ′ = Ω −2(Ω ·n)n is the outgoing direction that is reflected into Ω . Further-
more, Iν,b is the amount of radiation emitted from the surface, cf. Fig. 2.

Mostly, we will assume that the incoming radiation is a Planckian at some
temperature,

ψb = B(Tb). (40)

The reflectivity ρ generally depends on the direction Ω . It can be computed using
Snell’s law. On the interface between two media with refraction indexes n1 and n2,
the refraction angle (with respect to the normal) θ2 of the transmitted ray and the
incident angle θ1 are related by

n1 sinθ1 = n2 sinθ2. (41)
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Fig. 2 Boundary condition

The reflectivity is then given by Fresnel’s equation

ρ =
1
2

[
tan2(θ1−θ2)
tan2(θ1 + θ2)

+
sin2(θ1−θ2)
sin2(θ1 + θ2)

]
. (42)

In the case of total refection, ρ = 1.
The heat equation (38) can for example be supplemented with the following

boundary conditions. Assuming that the opaque body surrounding the medium un-
der consideration is a gas in a large reservoir, we can consider the heat flux through
the boundary due to advection

k
∂T
∂n

= h(Tb−T). (43)

Here, Tb is the outside temperature. We want to note that the value of the parameter
h has to be determined by experiment. Also, we have to emphasize that the modeling
of heat exchange by advection is actually quite sophisticated and still a subject of re-
search. However, we will to assume in the following the simple boundary conditions
stated above.

2.6 Summary

In order to model glass cooling we consider the following radiative transfer problem.
For a point x in the domain V ⊂ R3

cmρm
∂T
∂ t

= ∇ · k∇T −
∫ ∞

ν1

∫
S2

κ(B− I) dΩdν, (44a)

∀ν > ν1 : Ω ·∇ψ = κ(B−ψ)+ σ(φ−ψ), (44b)
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where

φ(x,Ω ,ν) =
1

4π

∫
S2

s(Ω ,Ω ′)ψ(x,Ω ′,ν)dΩ ′

is the scattered intensity. Here, we have explicitly included the opaque band for
frequencies in the interval [0,ν1], where absorption is infinitely high and thus ψ ≡B.

On the boundary, for x ∈ ∂V , the ingoing radiation is prescribed by semi-
transparent boundary conditions

I(Ω) = ρ(n ·Ω)I(Ω ′)+
(
1−ρ(n ·Ω)

)
Ib(Ω), ∀n ·Ω < 0, (44c)

while the temperature is assumed to obey

k n ·∇T = h(Tb−T )+ απ
(n2

n1

)2 ∫ ν1

0
B(ν,Tb)−B(ν,T ) dν. (44d)

The additional term comes from the fact that in the opaque band 0 < ν < ν1 the
medium behaves like a perfect black body.

At initial time t = 0, the temperature shall be given by

T (x,0) = T0(x). (44e)

In these equations, ψ(t,x,Ω ,ν) denotes the specific radiation intensity at point
x ∈V traveling in direction Ω ∈ S2 with frequency ν > 0 at time t ≥ 0. The out-
side radiation Ib is assumed to be known for the ingoing directions (i.e. n ·Ω < 0)
on the boundary. We denote the outward normal on ∂V by n. Furthermore, T (t,x)
denotes the material temperature and Tb is the exterior temperature on the bound-
ary. The equations contain as parameters the opacity κ , the scattering coefficient σ ,
the heat conductivity k and the convective heat transfer coefficient h. Moreover, B
denotes Planck’s function

B(ν,T ) = n2
1

2hPν3

c2

(
e

hPν
kBT −1

)−1

for black body radiation in glass which involves Planck’s constant hP, Boltzmann’s
constant kB and the speed of light in vacuum c. The integration in the second term
of the temperature boundary condition (44d) is done on the opaque interval of the
spectrum [0,ν1], where radiation is completely absorbed. At the interface between
glass and surrounding air with refractive indices n1 > n2, respectively, light rays are
reflected and refracted. This is modeled by the so-called semi-transparent boundary
conditions (44c). The reflectivity ρ ∈ [0,1] is the proportion of radiation that is
reflected. It is equal to 1 if total reflection occurs i.e. if θ1 > θc where θc is the critical
angle given by sinθc = n2/n1. Otherwise ρ is calculated according to Fresnel’s
equation

ρ(μ) =
1
2

( tan2(θ1−θ2)
tan2(θ1 + θ2)

+
sin2(θ1−θ2)
sin2(θ1 + θ2)

)
,
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where the refraction angles θ1 and θ2 are given by cosθ1 = |n ·Ω |= μ and Snell’s
law of refraction

n1 sinθ1 = n2 sinθ2.

The solid angles of the reflected ray in (44c) is

Ω ′ = Ω −2(n ·Ω)n.

Finally, the hemispheric emissivity α of the boundary surface in (44d) is related to
the reflectivity ρ by

α = 2n1

∫ 1

0
1−ρ(μ) dμ .

For these equations and other applications in glass manufacturing problems we refer,
for example, to [39, 40, 46, 87], and the monographs [31] and [60].

Analytical results concerning the existence and uniqueness of solutions to the
transfer equation itself and to the radiative heat transfer equations, where also energy
conservation and additionally heat conduction are considered, have been obtained
by many authors. A rather recent review on methods for transport equations can be
found in [6], cf. also [5]. The transfer equation together with energy conservation
is considered in [28, 58]. The issue of heat conduction is addressed in [37, 43, 44].
Convection, conduction and radiation is treated in [53, 69].

3 Direct Numerical Methods

The main difficulties in solving numerically the integro-differential equation (44)
are the large set of unknowns and the coupling between the transport and the in-
tegral operators. For instance, ψ is a function of time variable t, space variable x,
frequency variable ν , and direction variable Ω . Solving the large linear system of
algebraic equations induced by discretizing these variables is computationally very
demanding.

Here, we focus on the solution of steady-state, mono-energetic, frequency decou-
pled, isotropic radiative transfer problems in three space dimensions. However, all
the methods presented in this paper can be straightforwardly extended to the more
general problem (44). Hence the radiative transfer equation we consider reads

Ω ·∇ψ +(σ + κ)ψ = σφ + κB (45)

with boundary values ψ = g. The (45) models the changes of an intensity ψ(x,Ω) as
particles are passing through the domain V at position point x = (x,y,z)T in the di-
rection Ω = (μ ,η ,ξ )T and are subject to loses due to absorption κ and scattering σ ,
while their number grows due to the source B inside the domain V . We assume that
σ and κ are nonnegative functions and we introduce the mean intensity φ as

φ(x) =
1

4π

∫
S2

ψ(x,Ω ′)dΩ ′. (46)
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We also define the scattering ratio γ and the opacity coefficient ϑ as

γ = max
x∈V

(
σ(x)

σ(x)+ κ(x)

)
and ϑ = min

x∈V

(
σ(x)+ κ(x)

)
diam(V ). (47)

Here diam(V ) is the diameter of the space domain V . In applications, γ and ϑ are
used to characterize the convergence rates of the iterative methods and the diffusion
limits in the optically thick medium.

Many numerical methods have been used to solve the (45). For a review on some
of these methods see [52,75]. It is well known [1] that the standard Source Iteration
(SI) becomes extremely costly when the scattering ratio γ ≈ 1. The standard Dif-
fusion Synthetic Acceleration (DSA) has been widely used to accelerate the source
iteration [4, 10]. The SI and DSA methods can be seen respectively, as Richardson
iteration and preconditioned Richardson iteration with the diffusion approach as
preconditioner.

We implement SI, DSA and a Krylov subspace method to solve the (45). We
also propose a fast multilevel algorithm [36] which uses the approximate inverse
operator as a preconditioner and solves the linear system only in the coarse meshes.
Numerical results show this algorithm to be faster than DSA in many regimes. The
robustness, efficiency and convergence rates of these methods are illustrated by sev-
eral numerical test examples in both one and two space dimensions. Comparison
of the results obtained by different methods is also included in this section. The
material in this section is taken from [76].

3.1 Ordinates and Space Discretizations

We start with a discrete ordinates discretization in angle. This corresponds to ex-
panding the integrals on the unit sphere S2 in terms of N weighted quadrature rules,

∫
S2

ψ(x,Ω)dΩ 

N

∑
l=1

wlψ(x,Ωl), (48)

where Ωl = (μl,ηl ,ξl)T , for all l = 1, . . . ,N, with N = n(n+2), and n is the number
of direction cosines. Since Ωl ∈ S2, we have

μ2
l + η2

l + ξ 2
l = 1, for all l = 1,2, . . . ,N.

We assume n an even number of quadrature points so that the points (μl ,ηl,ξl) are
nonzero, symmetric with respect to the x-, y- and z-axis and they are invariant under
90◦ rotations. Furthermore they satisfy the relation

ξ 2
i = ξ 2

1 + 2
i−1
n−2

(1−3ξ 2
1 ),

for i = 1,2, . . . ,n/2 and 0 < ξ1 < 1/3.
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In (48) wl are the corresponding weights chosen to be positive and satisfy

N

∑
l=1

Ωl = 4π ,
N

∑
l=1

Ωlμl = 0,
N

∑
l=1

Ωlηl = 0 and
N

∑
l=1

Ωlξl = 0.

In practice we choose wl = 4π/N and (μl,ηl ,ξl) are set in such a way the above
conditions are guaranteed. Let SN be a given set of N discrete directions in S2, then
a semi-discrete formulation of (45) is

μl
∂ψl

∂x
+ ηl

∂ψl

∂y
+ ξl

∂ψl

∂ z
+(σ + κ)ψl = σφ(x)+ κq(x), (49)

ψl(x) denotes approximation to ψ(x,μl ,ηl ,ξl) and φ is given by

φ(x) =
1

4π

N

∑
l=1

wlψl(x).

To discretize the (49) in space we suppose for simplicity, that the spatial domain is
a box, V = [ax,bx]× [ay,by]× [az,bz]. Then we cover the domain V with a uniform
numerical mesh defined by

Vh =
{

xi jk = (xi,y j,zk)T , xi = iΔx, y j = jΔy, zk = kΔz,

i = 0,1 . . . , I, j = 0,1 . . . ,J, k = 0,1 . . . ,K
}
,

where x0 = ax, xI = bx; y0 = ay, yJ = by; z0 = az, zK = bz; and h denotes the maxi-
mum cell size. We define the averaged grid points

Δx = xi− xi−1, Δy = y j− y j−1, Δz = zk− zk−1,

xi− 1
2

=
xi−1 + xi

2
, y j− 1

2
=

y j−1 + y j

2
, zk− 1

2
=

zk−1 + zk

2
,

for i = 1 . . . , I, j = 1 . . . ,J and k = 1 . . . ,K. By using the notation fi jk to denote the
approximation value of the function f at the grid point (xi,y j,zk), the fully discrete
approximation for the (45) can be written as

μl
ψl,i jk−ψl,i−1 jk

Δx + ηl
ψl,i jk−ψl,i j−1k

Δy + ξl
ψl,i jk−ψl,i jk−1

Δ z

+
(
σi− 1

2 j− 1
2 k− 1

2
+ κi− 1

2 j− 1
2 k− 1

2

)
ψl,i− 1

2 j− 1
2 k− 1

2

= σi− 1
2 j− 1

2 k− 1
2
φi− 1

2 j− 1
2 k− 1

2
κi− 1

2 j− 1
2 k− 1

2
qi− 1

2 j− 1
2 k− 1

2
, (50)

where the cell averages values of ψ are given by
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ψl,i−1 jk =
1

Δx

∫ y j

y j−1

∫ zk

zk−1

ψl(xi,y,z)dydz,

ψl,i j−1k =
1

Δy

∫ xi

xi−1

∫ zk

zk−1

ψl(x,y j,z)dxdz,

ψl,i jk−1 =
1

Δz

∫ xi

xi−1

∫ y j

y j−1

ψl(x,y,zk)dxdy,

ψl,i jk =
1

ΔxΔyΔz

∫ xi

xi−1

∫ y j

y j−1

∫ zk

zk−1

ψl(x,y,z)dxdydz, (51)

In this paper we use the Diamond difference method to approximate the fluxes in
(51). The method consists on centred differences and approximating the function
values at the cell centres fl,i− 1

2 j− 1
2 k− 1

2
by the average of their values at the eight

neighbouring nodes as

fl,i− 1
2 j− 1

2 k− 1
2

=
1
8

[
fl,i−1 j−1k−1 + fl,i−1 jk−1 + fl,i−1 j−1k + fl,i−1 jk

+ fl,i j−1k−1 + fl,i jk−1 + fl,i j−1k + fl,i jk

]
. (52)

Hence the discrete mean intensity φi− 1
2 j− 1

2 k− 1
2

in (50) is given by

φi− 1
2 j− 1

2 k− 1
2

=
N

∑
l=1

wlψl,i− 1
2 j− 1

2 k− 1
2
.

Other discretizations using Legendre polynomial collocation in ordinates and finite
element or Petrov–Galerkin methods in space can be used in the same manner, we
refer to [10, 52, 81, 82] for details. For the discretization of the boundary conditions
in (49) we can proceed as follows:

when x̂ = ax, the normal n(x̂0 jk) = (−1,0,0)T , then n(x̂0 jk) ·Ωl = −μl, and for
μl > 0 we have ψl,0 jk = g0 jk

when ŷ = ay, the normal n(x̂i0k) = (0,−1,0)T , then n(x̂i0k) ·Ωl = −ηl , and for
ηl > 0 we have ψl,i0k = gi0k

when ẑ = az, the normal n(x̂i j0) = (0,0,−1)T , then n(x̂i j0) ·Ωl = −ξl , and for
ξl > 0 we have ψl,i j0 = gi j0

The other three cases can be discretized in a similar way. Needless to say that for a
given l = 1,2, . . . ,N no component of Ωl is ever zero and only three of the above six
cases can hold. Furthermore, in the discretization (50) there are (I +1)(J+1)(K+1)
unknowns ψl,i jk and IK + JI + JK + I + J + K + 1 boundary equations.

3.2 Linear System Formulation

In order to simplify the notations and to get closer to a compact linear algebra for-
mulation of (50), we first define the matrix entries
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dl,i− 1
2 j− 1

2 k− 1
2

=
|μl|
Δx

+
|ηl |
Δy

+
|ξl |
Δz

+
σi− 1

2 j− 1
2 k− 1

2
+ κi− 1

2 j− 1
2 k− 1

2

8
,

el,i− 1
2 j− 1

2 k− 1
2

=
−|μl|

Δx
+
−|ηl|

Δy
+
−|ξl|

Δz
+

σi− 1
2 j− 1

2 k− 1
2
+ κi− 1

2 j− 1
2 k− 1

2

8
.

and

ul,i− 1
2 j− 1

2 k− 1
2

=
|μl|
Δx

+
|ηl|
Δy

+
−|ξl|
Δz

+
σi− 1

2 j− 1
2 k− 1

2
+ κi− 1

2 j− 1
2 k− 1

2

8
,

ūl,i− 1
2 j− 1

2 k− 1
2

=
|μl|
Δx

+
−|ηl|

Δy
+
|ξl|
Δz

+
σi− 1

2 j− 1
2 k− 1

2
+ κi− 1

2 j− 1
2 k− 1

2

8
,

ul,i− 1
2 j− 1

2 k− 1
2

=
|μl|
Δx

+
−|ηl|

Δy
+
−|ξl|

Δz
+

σi− 1
2 j− 1

2 k− 1
2
+ κi− 1

2 j− 1
2 k− 1

2

8
,

vl,i− 1
2 j− 1

2 k− 1
2

=
−|μl|

Δx
+
|ηl |
Δy

+
|ξl|
Δz

+
σi− 1

2 j− 1
2 k− 1

2
+ κi− 1

2 j− 1
2 k− 1

2

8
,

v̄l,i− 1
2 j− 1

2 k− 1
2

=
−|μl|

Δx
+
|ηl |
Δy

+
−|ξl|

Δz
+

σi− 1
2 j− 1

2 k− 1
2
+ κi− 1

2 j− 1
2 k− 1

2

8
,

vl,i− 1
2 j− 1

2 k− 1
2

=
−|μl|

Δx
+
−|ηl|

Δy
+
|ξl|
Δz

+
σi− 1

2 j− 1
2 k− 1

2
+ κi− 1

2 j− 1
2 k− 1

2

8
,

Next, we define the vectors

Ψl ≡

⎛
⎜⎝

Ψl,0
...

Ψl,K

⎞
⎟⎠ ∈ R(I+1)(J+1)(K+1), with

Ψl,k ≡

⎛
⎜⎝

Ψl,0k
...

Ψl,Jk

⎞
⎟⎠ ∈ R(I+1)(J+1), Ψl, jk ≡

⎛
⎜⎝

ψl,0 jk
...

ψl,I jk

⎞
⎟⎠ ∈ R(I+1);

Φ ≡

⎛
⎜⎜⎝

Φ1− 1
2

...
ΦK− 1

2

⎞
⎟⎟⎠ ∈ RIJK , with

Φk− 1
2
≡

⎛
⎜⎜⎝

Φ1− 1
2 k− 1

2
...

ΦJ− 1
2 k− 1

2

⎞
⎟⎟⎠ ∈ RIJ , Φ j− 1

2 k− 1
2
≡

⎛
⎜⎜⎝

φ1− 1
2 j− 1

2 k− 1
2

...
φI− 1

2 j− 1
2 k− 1

2

⎞
⎟⎟⎠ ∈ RI;
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Q≡

⎛
⎜⎜⎝

Q1− 1
2

...
QK− 1

2

⎞
⎟⎟⎠ ∈ RIJK , with

Qk− 1
2
≡

⎛
⎜⎜⎝

Q1− 1
2 k− 1

2
...

QJ− 1
2 k− 1

2

⎞
⎟⎟⎠ ∈ RIJ , Q j− 1

2 k− 1
2
≡

⎛
⎜⎜⎝

q1− 1
2 j− 1

2 k− 1
2

...
qI− 1

2 j− 1
2 k− 1

2

⎞
⎟⎟⎠ ∈ RI;

In what follows we define the matrix Hl (known as sweep matrix) for the first sweep
case μl < 0, ηl < 0, ξl < 0 and the other seven sweep cases can be derived similarly.
In order to simplify the notation, we drop hereafter the space grids subscripts from
the matrix entries unless otherwise stated. Thus,

Hl ≡

⎛
⎜⎜⎜⎜⎜⎝

Dl El
. . .

. . .

Dl El

Dl S
S

⎞
⎟⎟⎟⎟⎟⎠
∈ R(I+1)(J+1)(K+1)×(I+1)(J+1)(K+1), with

Dl ≡

⎛
⎜⎜⎜⎝

Dl Ul
. . .

. . .

Dl Ul

S

⎞
⎟⎟⎟⎠ ∈R(I+1)(J+1)×(I+1)(J+1), with

Dl ≡

⎛
⎜⎜⎜⎝

d u
. . .

. . .

d u
1

⎞
⎟⎟⎟⎠ ∈ R(I+1)×(I+1), Ul ≡

⎛
⎜⎜⎜⎝

u ū
. . .

. . .

u ū
1

⎞
⎟⎟⎟⎠ ∈ R(I+1)×(I+1);

El ≡

⎛
⎜⎜⎜⎝

Vl Wl
. . .

. . .

Vl Wl

S

⎞
⎟⎟⎟⎠ ∈ R(I+1)(J+1)×(I+1)(J+1), with

Vl ≡

⎛
⎜⎜⎜⎝

v v̄
. . .

. . .
v v̄

1

⎞
⎟⎟⎟⎠ ∈R(I+1)×(I+1), Wl ≡

⎛
⎜⎜⎜⎝

v ē
. . .

. . .
v ē

1

⎞
⎟⎟⎟⎠ ∈ R(I+1)×(I+1).
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S ≡

⎛
⎜⎜⎜⎝

S S
. . .

. . .

S S
S

⎞
⎟⎟⎟⎠ ∈ R(I+1)(J+1)×(I+1)(J+1), with

S≡

⎛
⎜⎜⎜⎝

1 1
. . .

. . .
1 1

1

⎞
⎟⎟⎟⎠ ∈ R(I+1)×(J+1).

Σl ≡

⎛
⎜⎜⎜⎜⎝

Σl,1− 1
2

. . .

Σl,K− 1
2

0

⎞
⎟⎟⎟⎟⎠ ∈ R(I+1)(J+1)(K+1)×IJK , with

Σl,k− 1
2
≡

⎛
⎜⎜⎜⎜⎝

Σl,1− 1
2 k− 1

2
. . .

Σl,J− 1
2 k− 1

2

0

⎞
⎟⎟⎟⎟⎠ ∈ R(I+1)(J+1)×IJ, and

Σl, j− 1
2 k− 1

2
≡

⎛
⎜⎜⎜⎜⎜⎝

σ
1− 1

2 j− 1
2 k− 1

2
+κ

i− 1
2 j− 1

2 k− 1
2

8
. . .

σ
i− 1

2 j− 1
2 k− 1

2
+κ

i− 1
2 j− 1

2 k− 1
2

8
0

⎞
⎟⎟⎟⎟⎟⎠
∈R(I+1)×I.

Using these definitions with Ψ and Φ being the unknowns, the fully discrete
equation (50) can be written in matrix form as

⎛
⎜⎜⎜⎝

H1 −Σ1
. . .

...
HN −ΣN

−w1
4π S . . . −wN

4π S I

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Ψ1
...

ΨN

Φ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Q1
...

QN

0

⎞
⎟⎟⎟⎠ , (53)

where I is the IJK× IJK identity matrix and 0 is the IJK null vector. The linear
system (53) can be rewritten in common linear algebra notation as

Ax = b (54)
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with

A≡

⎛
⎜⎜⎜⎝

H1 −Σ1
. . .

...
HN −ΣN

−w1
4π S . . . −wN

4π S I

⎞
⎟⎟⎟⎠ , x≡

⎛
⎜⎜⎜⎝

Ψ1
...

ΨN

Φ

⎞
⎟⎟⎟⎠ , and b≡

⎛
⎜⎜⎜⎝

Q1
...

QN

0

⎞
⎟⎟⎟⎠ .

3.3 Preconditioning Techniques

In computational radiative transfer the desired quantity is usually the mean intensity
Φ which is a function only of position x. Therefore we use the Gaussian elimination
to eliminate the intensity Ψ1, . . . ,ΨN from (53) and the reduced equation

(
I− 1

4π

N

∑
l=1

wlSH−1
l Σl

)
Φ =

1
4π

N

∑
l=1

wlSH−1
l Ql , (55)

is solved for Φ . We rewrite (55) in compact form as

(
I−A

)
Φ = f , (56)

where the Schur matrix A and the right hand side f are given by

A =
1

4π

N

∑
l=1

wlSH−1
l Σl and f =

1
4π

N

∑
l=1

wlSH−1
l Ql.

In this section we briefly discuss some numerical methods used in the literature to
solve the linear system (56).

3.3.1 Source Iteration

The most popular iterative method to solve (55) is the Richardson iteration known
in the radiative transfer community as Source Iteration (SI) method. Given an initial
guess Φ(0), the (m+ 1)-iterate solution is obtained by

Φ(m+1) =
1

4π

N

∑
l=1

wlSH−1
l

(
Ql + ΣlΦ(m)

)
, m = 0,1, . . . . (57)

It is easy to see that iteration (57) is equivalent to preconditioned block Gauss–
Seidel method applied to (54), where the preconditioner is the block lower triangle
of the matrix A. Thus, if M is the block lower triangle of A,
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M ≡

⎛
⎜⎜⎜⎝

H1
. . .

HN

−w1
4π S . . . −wN

4π S I

⎞
⎟⎟⎟⎠ ,

x and b are as given in (54), then

Mx(m+1) = (M−A)x(m) + b,

and

x(m+1) = (I−M−1A)x(m) + M−1b. (58)

Therefore the (m+ 1)-iterate mean intensity satisfy

Φ(m+1) =
1

4π

N

∑
l=1

wlSH−1
l Ψ (m+1)

l =
1

4π

N

∑
l=1

wlSH−1
l

(
Ql + ΣlΦ(m)

)
,

which is identical to (57).
Formal results from linear algebra [29, 35] demonstrate that the preconditioned

Richardson iteration (58) converges rapidly as long as the norm of the matrix (I−
M−1A) is small. This condition is ensured by taking the scattering ratio γ small,
compare [1] for analysis. For γ � 1 the SI method converges rapidly, but for γ ≈ 1
(large optical opacity) convergence becomes slow and may restrict the efficiency of
the SI algorithm. The SI algorithm can be implemented as follows

Algorithm 1: SI algorithm

given the initial guess Φ(0)

do m = 0,1, . . . , itmax
do l = 1,2, . . . ,N

a. set wl ←− Ql + ΣlΦ(m)

b. solve for yl: Hlyl = wl

c. set wl ←− Syl

end do

d. compute Φ(m+1) =
1

4π

N

∑
l=1

wlwl

e. compute r(m) = Φ(m+1)−Φ(m)

if

(‖r(m)‖L2

‖r(0)‖L2
≤ τ

)
stop

end do

Here itmax is the maximum number of the iterations m, τ is a given tolerance and
‖.‖L2 is the discrete L2-norm. The step (b) can be solved directly using Gaussian
elimination known in computational radiative transfer as sweeping procedure. Addi-
tionally, for each direction Ωl in SN only one of the eight possible sweeps is needed.
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3.3.2 Diffusion Synthetic Acceleration

Among the methods used to accelerate the SI algorithm are the synthetic
acceleration procedures [1, 4]. The procedures consist on splitting the SI in to two-
step iterations. Thus, we denote ψ(m+ 1

2 ) as first iteration for the SI in the continuous
form of the problem (45),

Ω ·∇ψ(m+ 1
2 ) + (σ + κ)ψ(m+ 1

2 ) =
σ
4π

∫
S2

ψ(m)(x,Ω ′)dΩ ′+ κq(x),

ψ(m+ 1
2 )(x̂,Ω) = g(x̂), (59)

and an equation for ψ(m+1) is required in such a way to be more accurate approxi-
mation to ψ than ψ(m+ 1

2 ). To perform this step with synthetic acceleration method,
we subtract (59) from (45),

Ω ·∇(ψ−ψ(m+ 1
2 ))+(σ + κ)

(
ψ−ψ(m+ 1

2 )) =
σ
4π

∫
S2

(
ψ−ψ(m))(x,Ω ′)dΩ ′,(

ψ−ψ(m+ 1
2 ))(x̂,Ω) = 0, (60)

then (60) are replaced by an approximate problem. The Diffusion Synthetic Accel-
eration (DSA) method [4] approximates the (60) by the diffusion problem

−∇ ·
( 1

3(σ + κ)
∇ϕ

)
+ κϕ =

σ
4π

∫
S2

(
ψ−ψ(m))(x,Ω ′)dΩ ′, x ∈V,

Here ϕ(x) is an approximation to the mean intensity

ϕ(x)≈ 1
4π

∫
S2

(
ψ(m+1)−ψ(m+ 1

2 ))(x,Ω ′)dΩ ′.

Thus the (m+ 1)-iterate mean intensity is given by

φ (m+1) = φ (m+ 1
2 ) + ϕ .

Note that (61) does not depend on the angle variable Ω , is linear elliptic equation and
simple to solve numerically with less computational cost and memory requirement.

In order to build a discretization for the diffusion problem (61) which is consis-
tent to the one used for the radiative transfer equation (45), we consider the same
grid structure and the same notations as those used in Sect. 2. Hence a space dis-
cretization for the (61) reads as

−D2
h

( 1
3(σ + κ)

ϕ
)

i jk
+ κi− 1

2 j− 1
2 k− 1

2
ϕi− 1

2 j− 1
2 k− 1

2
= pi− 1

2 j− 1
2 k− 1

2
, (61)
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where pi− 1
2 j− 1

2 k− 1
2

= σi− 1
2 j− 1

2 k− 1
2

(
φ (m+ 1

2 )
i− 1

2 j− 1
2 k− 1

2
− φ (m)

i− 1
2 j− 1

2 k− 1
2

)
and the difference

operator D2
h is given by D2

h = D2
x +D2

y +D2
z , with

D2
x (β ϕ)i jk =

βi jk + βi+1 jk

2
ϕi+1 jk−ϕi jk

(Δx)2 − βi−1 jk + βi jk

2
ϕi jk−ϕi−1 jk

(Δx)2 ,

D2
y (β ϕ)i jk =

βi jk + βi j+1k

2

ϕi j+1k−ϕi jk

(Δy)2 − βi j−1k + βi jk

2

ϕi jk−ϕi j−1k

(Δy)2 ,

D2
z (β ϕ)i jk =

βi jk + βi jk+1

2

ϕi jk+1−ϕi jk

(Δz)2 − βi jk−1 + βi jk

2

ϕi jk−ϕi jk−1

(Δz)2 .

The functions κi− 1
2 j− 1

2 k− 1
2
, ϕi− 1

2 j− 1
2 k− 1

2
and pi− 1

2 j− 1
2 k− 1

2
appeared in (61) are given

as in formula (52). The gradient in the boundary conditions is approximated by
upwinding without using ghost points. For example, on the boundary surface x = ax

of the domain V , the boundary discretization is

ϕ 1
2 j+ 1

2 k+ 1
2
− 2

3(σ 1
2 j− 1

2 k− 1
2
+ κ 1

2 j− 1
2 k− 1

2
)

ϕ 3
2 j− 1

2 k− 1
2
−ϕ 1

2 j− 1
2 k− 1

2

Δx
= 0,

and similar work has to be done for the other boundaries. All together, the above
discretization leads to a linear system of form

Dϕ = p, (62)

where D is IJK× IJK nonsymmetric positive definite matrix obtained from the dif-
ference diffusion operator (61) with boundary conditions included, and p is IJK
vector containing the right hand side term.

Once again the DSA method can be viewed as preconditioned Richardson itera-
tion for the linear system (54) with the diffusion matrix D like preconditioner,

x(m+1) =
(
I−D−1A

)
x(m) + D−1b,

and D−1 is obtained by solving the diffusion linear system (62). In terms of Φ this
is equivalent to

Φ(k+1) =
(

I− (I−D−1)A
)

Φ(k) + (I−D−1)b.

The implementation of DSA method to approximate the solution of the radiative
transfer equation (45) is carried out in the following algorithm

Algorithm 2: DSA algorithm

given the initial guess Φ(0)

do m = 0,1, . . . , itmax
(a) – (d) are similar to Algorithm 1 for the intermediate solution Φ(m+ 1

2 )
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(e) compute p = σ
(
Φ(m+ 1

2 )−Φ(m)
)

(f) solve for ϕ : Dϕ = p

(g) set Φ(m+1) = Φ(m+ 1
2 ) + ϕ

(h) compute r(m) = Φ(m+1)−Φ(m)

if

(‖r(m)‖L2

‖r(0)‖L2
≤ τ

)
stop

end do

Note that the first lines in Algorithm 2 are similar to the Algorithm 1. How-
ever, the source iteration algorithm gives only the intermediate solution Φ(m+ 1

2 )

which has to be corrected by adding the solution ϕ obtained by the diffusion ap-
proach. Furthermore, if iterative methods are used for the diffusion approach, then
an inner iteration loop has to be added to the iteration used by the SI algorithm and
an outer SI iteration may require less accuracy from the inner iterations.

3.3.3 Krylov Subspace Methods

In general the matrices A and A in (54) and (56) respectively are nonsymmetric
and not diagonally dominant. Furthermore, since σ and κ are nonnegative functions
and SN has nonzero directions, the matrix A has positive diagonal elements and
nonpositive off-diagonal elements. In addition, if el,i− 1

2 j− 1
2 k− 1

2
≤ 0, for all l, i, j,k,

then the matrix A is weakly diagonally dominant. This condition is equivalent to

h = max
(
Δx,Δy,Δz

) ≤max
i jk

(
8|μl|

σi− 1
2 j− 1

2 k− 1
2
+ κi− 1

2 j− 1
2 k− 1

2

,

8|ηl|
σi− 1

2 j− 1
2 k− 1

2
+ κi− 1

2 j− 1
2 k− 1

2

,
8|ξl|

σi− 1
2 j− 1

2 k− 1
2
+ κi− 1

2 j− 1
2 k− 1

2

)
, ∀ l, (63)

which means physically that the cell size is no more than eight mean free paths of
the particles being simulated. Needless to say that the condition (63) gives the bound
of the coarser mesh should be used in the computations.

In this paper we propose two Krylov subspace based methods, namely the
BI-Conjugate Gradient Stabilized (Bicgstab) [86] and the Generalized Minimal
Residual (Gmres(m)) [71], where m stands for the number of restarts for Krylov
subspace used in the orthogonalization. Bicgstab method has been applied early in
[82] to solve (56). The main idea behind these approaches is that the Krylov sub-
space methods can be interpreted as weighted Richardson iteration

x(m) =
(

I−αP−1A
)

x(m−1) + αP−1b, 0 < α < 2, m = 1, . . . , (64)

applied to the linear system (54), where the relaxation parameters α and the precon-
ditioner P are variables within each iteration step. Note that when α = 1 and P = M
the iteration (64) is reduced to the SI method.
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The Bicgstab and Gmres(m) algorithms to solve the linear system (56) can be
implemented in the conventional way as in [36,71,86], with the only difference that
the dense matrix A can not be explicitly stored. All what is needed, however, is a
subroutine that performs a matrix-vector multiplication as shown in the following
algorithm

Algorithm 3: Matrix-vector multiplication

given a vector u, to apply the matrix A to u we proceed as
do l = 1, . . . ,N

a. set vl ←− Σlu
b. solve for wl : Hlwl = vl

c. set vl ←− Swl

end do

d. set u←− u− 1
4π

N

∑
l=1

wlvl

Note that only three vectors (u, vl and wl) are needed to perform the multiplication
of the matrix A to the vector u. Moreover, only three calls for the algorithm 3 are
required from the Bicgstab or Gmres(m) subroutines.

Preconditioned Bicgstab or Gmres(m) methods can be also used. For instance,
in the case when the matrix A is diagonally dominant, the Bicgstab or Gmres(m)
methods can be accelerated by using the diagonal as a preconditioner. This approach
which requires additional computational work can be easily implemented. It is worth
to say that incomplete Cholesky or ILU type preconditioners can not be used to solve
(56) because the matrix A is never formed explicitly.

3.4 A Fast Multilevel Preconditioner

We describe in this section multilevel solvers for the linear system (56) using an
approximate inverse operator as preconditioner on each level of the multigrid hier-
archy. Multilevel methods were first applied to radiative transfer problems in [36].
The author proposes two different type of smoothings to approximate solutions for
the one dimensional version of (45) in slab geometry.

To formulate multilevel solvers we first modify our notation slightly. Using the
discretizations introduced in Sect. 2 we assume for simplicity, a given sequence of
uniform, equidistant nested grids

V1 ⊂V2 ⊂ ·· · ⊂VL−1 ⊂VL = Vh,

on V with respective mesh sizes Δx = Δy = Δz = 2−l, l = 1, . . . ,L. We use the
subscripts l and L to refer to the coarse and fine level respectively. Therefore the
problem statement (56) becomes

(
I−AL

)
ΦL = fL. (65)
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With M being the iteration matrix, multilevel can be written as follows

MΦ(m+1)
L +

(
I−AL−M

)
Φ(m)

L = fL.

This formulation is equivalent to,

Φ(m+1)
L = Φ(m)

L + M−1
(

fL− (I−AL)Φ
(m)
L

)
= Φ(m)

L + M−1r(m),

where r denotes the residual associated to (65) and is defined by

r = fL− (I−AL)ΦL.

The preconditioner we consider in this section is the Atkinson–Brakhage approxi-
mate inverse [8] given as

M−1 = BL
l = I +(I−Al)−1AL. (66)

Then the (m+ 1)-iterate solution for (65) is simply

Φ(m+1)
L = Φ(m)

L + BL
l r(m).

Analysis of convergence for this kind of multilevel methods has been done in [36].
The central ideas in this analysis are the strong convergence and collective compact-
ness of the operators generated by Al .

Let us first define the two-level (Grid2) algorithm. Applying the multilevel pre-
conditioner (66) to the problem (65) we need the fine-to-coarse grid transfer operator
R l

L defined by
R l

LΦL = Φl,

and the coarse-to-fine grid transfer operator PL
l defined by

PL
l Φl = ΦL.

A natural way to choose these operators is, bilinear interpolation for PL
l and simple

injection for R l
L as in the standard multigrid literature [30]. However, for radiative

transfer equation with discontinuous variables these operators have to be changed
to those given in [3] which are specially designed for problems with jumping coef-
ficients. Note that to use these operators we require that any discontinuity of κ , σ
or q in (45) is a spatial mesh point.

The Grid2 algorithm for solving (65) is detailed in the following steps

Algorithm 4: Grid2 algorithm

given the fine level {L,AL, fL}, the coarse level {l,Al, fl}, the initial guess

Φ(0)
L and the tolerance τ

do m = 0,1, . . . , itmax
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a. compute the residual r(m) = fL− (I−AL)Φ
(m)
L

b. set uL←−ALr(m)

c. restriction ul ←−R l
LuL

d. solve on the coarse level for vl: (I−Al)vl = ul

Nyström interpolation
e. compute wl ←−Alvl

f. prolongation wL←−PL
l wl

g. set zL←− uL + wL

h. compute the preconditioner p←− r + zL

i. update the solution Φ(m+1)
L = Φ(m)

L + p

j. compute the residual r(m+1) = fL− (I−AL)Φ
(m+1)
L

if

(‖r(m+1)‖L2

‖r(0)‖L2
≤ τ

)
stop

end do

The step (d) usually solves the coarse problem exaclty using direct methods. How-
ever, since Al is dense matrix which is never explicitly computed nor stored,
iterative solvers are required to perfom the step (d). In our numerical examples
we used Gmres(m) method which has been discussed in Sect. 4. Note that in our
context the notation Grid2 for two-level algorithm does not necessarily mean that
we consider two levels of mesh refinements. Thus, Algorithm 4 is also appli-
cable in cases where we have two different space discretizations on the same mesh
(L �= l + 1).

The fully multilevel algorithm (Gridnest) or nested iteration as refered to in [30]
can be implemented recursively as follows

Algorithm 5: Gridnest algorithm

given the finest level {lmax,Almax , flmax}, the coarsest level
{lmin,Almin , flmin} and the tolerances {τl}, l = lmin, . . . , lmax

a. Solve on the coarsest level for Φlmin : (I−Almin)Φlmin = flmin

do k = lmin + 1, . . . , lmax

b. set l←− k−1
c. set L←− k
d. compute the right hand side fL

e. set Φ(0)
L ←−PL

l Φl

f. set τ←− τl

g. call Grid2 to solve for ΦL: (I−AL)ΦL = fL

end do

Some comments are in order. The steps (b)–(f) are needed only to set the inputs,

fine level {L,AL, fL}, coarse level {l,Al, fl}, initial guess Φ(0)
L and tolerance τ to

the algorithm Grid2. Recall that Gridnest uses coarse levels to obtain improved ini-
tial guesses for fine level problems. The tolerance parameters {τl}, which determine
how many iterations of the multilevel algorithm to do on each level, can be consid-
ered either fixed or adaptively chosen during the course of computation.
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3.5 Numerical Results

The methods discussed in the above sections are tested on a PC with AMD-K6
200 processors using Fortran compiler, see [76] for details. In all these methods the
iterations are terminated when

‖r(m)‖L2

‖r(0)‖L2
≤ 10−5. (67)

To solve the diffusion problem in DSA we used a preconditioned Bicgstab whereas,
Gmres(10) is used in Grid2 and Gridnest to solve the coarse problems. These inner
iterations are stopped as in (67) but with 10−2 instead of 10−5. In all our computa-
tions for the two space dimension cases we used a discrete SN-direction set with 60
directions from [22].

3.5.1 Radiative Transfer Equation in 1D Slab Geometry

Our first example is the (45) in 1D slab geometry

μ
∂ψ
∂x

+(σ + κ)ψ =
σ
2

∫ 1

−1
ψ(x,μ ′)dμ ′+ κq(x) (68)

ψ(0,μ) = 1, μ > 0, and ψ(1,μ) = 0, μ < 0.

We set q = 0, we used 64 Gauss quadrature nodes in the discrete ordinates and a
fine mesh of 512 gridpoints in the space dicrestization. The convergence results for
two different values of σ and κ are shown in Fig. 3. The fast convergence of Grid2
is well demonstrated in both cases. Although the scattering ratio for the two cases
is 0.99, Grid2 method shows strong reduction of number of iterations comparing to
the other methods. Same observation is shown when the regime is optically thick
(σ = 99, κ = 1).

Next we want to compare the efficiency of these methods in terms of CPU time
and number of iterations when the scattering ratio γ runs in the range (0,1). To this
end we set σ = 10 and we vary κ keeping the fine gridpoints fixed to 512. In Fig. 4
we plot the scattering ratio versus the number of iterations in the left and versus the
CPU time in the right. Grid2 and Gmres(40) preserve roughly the same amount of
computational work (referring to number of iterations and CPU time) in the whole
interval, while the SI and DSA become costly for values of γ near 1.

3.5.2 Radiative Transfer Equation with Thermal Source

The second example is the (45) in the unit square with a thermal source q = B(T ),
with B is the frequency-integrated Planckian B = aRT 4 with aR is the radiation
constant (aR = 1.8× 10−8). We fix the temperature to have the linear profile
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Fig. 3 Convergence plots for the radiative transfer equation in 1D slab geometry

T (x,y) = 800x + 1,000 and the boundary function g(x̂, ŷ) = B(T (x̂, ŷ)). In Fig. 5
we show the convergence plots for different values of σ and κ using a fine mesh
of 257× 257 gridpoints. In all cases Grid2 algorithm presents faster convergence
behaviour than DSA even in the diffusion regime (σ = 100 and κ = 1).

We summarize in Table 3 the CPU time consumed for each method to perform
the computations with the different values of σ and κ . In Table 4 we report, the
number of gridpoints I× J at each level, the iteration counter m for that level, the
number of iterations in Gmres(10) iGmres, the L∞-norm of the residual, ‖r(m)‖L∞ , and
the factor ‖r(m)‖L∞/‖r(m−1)‖L∞ .

The results presented in Table 4 do not include those obtained for σ = 1, κ = 1
or σ = 100, κ = 1 because the number of iterations m in Grid2 is very large.
For instance, for σ = 100, κ = 1 this number surpasses 15 on the coarsest mesh.
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Fig. 4 Plots of scattering ratio γ versus the number of iterations in (a) and the CPU time (seconds)
in (b). In both figures σ is fixed to 10

Nevertheless, in all these test cases we have observed that there is very little variation
in the number iGmres and the reduction factor ‖r(m)‖L∞/‖r(m−1)‖L∞ as the meshes are
refined.

The results of these tables and Fig. 5 show various interesting features about the
behaviours of the preconditioner used by each method. First, where the scattering
ratio γ = 0.99 (σ = 100 and κ = 1), it is clear that the SI method is unacceptably
slow to converge. The convergence rate is improved significantly by Gmres(40), and
it is improved even more by DSA method but at the cost of extra work and storage.
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Fig. 5 Convergence plots for the radiative transfer equation with thermal source

Table 3 CPU time (in seconds)

SI DSA Gmres(40) Grid2

σ = 1, κ = 10 17.8 29.1 15.5 17.1
σ = 1, κ = 1 33.7 77.4 20.8 23.5
σ = 100, κ = 1 2389.8 82.3 174.4 121.7

The most effective method for solving this example, however, is the multilevel
Grid2 and Gridnest methods. Second, the number of iterations iGmres in Gridnset
remain nearly the same in all levels and is bounded by the number in the coarsest
level.
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Table 4 Results obtained by Gridnest for σ = 1 and κ = 10 at different levels

I× J m iGmres ‖r(m)‖L∞ ‖r(m)‖L∞ /‖r(m−1)‖L∞

33×33 0 0.73E+00
1 2 0.32E-01 0.43E-01
2 2 0.12E-02 0.37E-01
3 3 0.56E-05 0.46E-04

65×65 0 0.11E-01
1 2 0.33E-03 0.30E-01
2 2 0.12E-05 0.36E-04

129×129 0 0.83E-02
1 2 0.67E-03 0.81E-01
2 2 0.53E-05 0.79E-04

257×257 0 0.22E-02
1 2 0.73E-04 0.33E-01
2 2 0.15E-06 0.20E-04

0 2

1

0.23

0.44 0.88 1.22

σ = 1

κ = 0

σ = 0

κ = 10 κ = 0

σ = 0 κ = 0.001 σ = 0 κ = 100

s = 1

s = 0 s = 0

s = 0s = 0

σ = 100

Fig. 6 Geometry and values of σ , κ , s = κq for the discontinuous equation

3.5.3 Radiative Transfer Equation with Discontinuous Variables

The aim of this example is to test the multilevel algorithm for radiative transfer prob-
lem with jumping coefficients. Thus, the problem statement is the (45) augmented
by discontinuous scattering, absorption and source term [2]. The space domain ge-
ometry and the values of σ , κ and s = κB for each subdomain are given in Fig. 6.
We take in the first run of this example vacuum boundary conditions whereas, in the
second run we use the nonhomogeneous boundary condition g,

g(x̂, ŷ) =

⎧⎪⎪⎨
⎪⎪⎩

1 when x̂ = 0 and 0≤ ŷ≤ 1,
1 when ŷ = 0 and 0 < ŷ≤ 0.44,
1 when ŷ = 1 and 0 < ŷ≤ 0.44,
0 otherwise.
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Fig. 7 Convergence rates for the discontinuous equation subject to vacuum boundary conditions
(top) and nonhomogeneous boundary conditions (bottom)

Table 5 CPU time (in seconds)

SI DSA Gmres(40) Grid2

Vacuum boundary condition 794.04 304.42 192.25 205.22
Nonhomogeneous boundary condition 1100.18 397.53 110.07 201.91

The space domain is discretized uniformly into 400×200 gridpoints at the finest
level. We display in Fig. 7 the convergence rates for the two runs. Table 5 provides
the running time used by each method for these computations. A simple inspection
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Table 6 Gridnest results for the discontinuous problem with vacuum boundary

I× J m iGmres ‖r(m)‖L∞ ‖r(m)‖L∞ /‖r(m−1)‖L∞

100×50 0 0.13E+01
1 9 0.50E+00 0.39E+00
2 9 0.13E+00 0.27E+00
3 8 0.24E-01 0.19E+00
4 7 0.14E-02 0.57E-01
5 7 0.45E-05 0.32E-02

200×100 0 0.51E-01
1 8 0.10E-02 0.21E-01
2 7 0.78E-05 0.73E-02
3 7 0.32E-07 0.41E-02

400×200 0 0.79E-02
1 7 0.40E-04 0.51E-02
2 7 0.13E-06 0.33E-02

800×400 0 0.38E-02
1 7 0.24E-04 0.64E-02
2 7 0.94E-07 0.39E-02

of Fig. 7 shows that Grid2 algorithm solves this problem more effectively than SI or
Gmres(40) methods and with less iterations than DSA method.

Furthermore, we note that the Gmres(40) method performs poorly after the sev-
enth iteration in both runs. This may be partly due to the fact that the discontinuous
σ and κ coefficients change the matrix structure very badly. While, it is not surpris-
ing that the SI algorithm performs very poorly in this case. An examination of the
CPU time in Table 5 reveals that Gmres(40) consumes less computational work than
the other methods. We have observed that the main part of the CPU time needed in
DSA or Grid2 is used by Bicgstab or Gmres(10) to solve the diffusion problem in
DSA or the coarse linear system in Grid2, respectively. However, by limiting the
number of iterations in Bicgstab and Gmres(10) to 1, or increasing the tolerance
from 10−2 to 10−1, the results change favourably with significant advantage for
Grid2.

Table 6 tabulates the results obtained by Gridnest using four levels. It can be
clearly seen that there is very little variation in the number iGmres and the reduction
factor ‖r(m)‖L∞/‖r(m−1)‖L∞ as the meshes are refined.

3.5.4 Radiative Transfer Equation with Frequency Dependence

Our final example is the frequency-dependent problem

Ω ·∇ψ(x,Ω ,ν)+
(
σ + κ

)
ψ(x,Ω ,ν) =

σ
4π

∫
S2

ψ(x,Ω ′,ν)dΩ ′+ κB(T,ν), (69)
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with boundary condition ψ = B(T (x̂),ν). Here ψ = ψ(x,Ω ,ν), T = T (x),
σ = σ(x,ν) and κ = κ(x,ν) denote respectively, the radiation intensity, the tem-
perature, the scattering and the opacity within the frequency ν > 0.

In order to discretize the (69) with respect to the frequency variable ν , we assume
N frequency bands [νι ,νι+1], ι = 1, . . . ,N with piecewise constant absorption,

κ = κι , ∀ ν ∈ [νι ,νι+1] ι = 1, . . . ,N.

We define the frequency-averaged intensity in the band [νι ,νι+1] by

ψι =
∫ νι+1

νι
ψ(x,Ω ,ν ′)dν ′.

Then, the (69) are transformed to a system of N radiative transfer equations of the
form

Ω ·∇ψι(x,Ω)+
(
σι + κι

)
ψι (x,Ω) =

σι
4π

∫
S2

ψι (x,Ω ′)dΩ ′+ κι

∫ νι+1

νι
B(T,ν ′)dν ′.

(70)
To approximate the frequency integrals we used trapezoidal formula. In our numer-
ical simulations we use eight frequency bands [νι ,νι+1], ι = 1, . . . ,8 from glass
manufacturing [47]. These frequencies are given in Table 2 in the introduction.

We compute the solution of the (69) in a unit square, on the refined grid with
100×100 gridpoints, and 64 discrete ordinates. Hence the number of unknowns for
each frequency band is 64×104, and these computations are done for the 8 frequen-
cies such that the overall number of equations amounts 5.12× 106. The scattering
parameter σ is varying in the set {1,10,100}. For every frequency band we calcu-
late it corresponding scattering ratio and, we store the number of iterations and the
running time obtained by each method. The results are given in Table 7.

All the algorithms iterate the solution in a large iteration numbers for the first
frequency bands (with large scattering ratio), then these numbers go decreasing as
the frequency bands grow until their reach the minimum for the last frequency band.
In this case when the size of scattering ratio is changing dramatically over the fre-
quency bands, only the DSA and Grid2 algorithms lead to satisfying results for all
frequencies and also in diffusive limit (σ = 100). The superiority of Grid2 is clearly
demonstrated in Table 7.

4 Higher-Order Diffusion Approximations

Approximations that are widely used are the PN approximations, cf. Sect. 5.1. A
major drawback in higher dimensions and for complicated problems is the large
number of equations which have to be solved. We propose the SPN approximations
as alternatives to the full glass equations. This class of approximations uses diffusion
equations instead of the radiative transfer equations. The number of equations is
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Table 7 Number of iterations and CPU time for the eight frequency-bands problem

Band Scattering ratio SI Gmres(40) DSA Grid2

1 0.71428 13 6 6 3
2 0.66666 13 6 6 3
3 0.11494 7 5 4 3
4 0.06077 6 4 4 3

σ = 1 5 0.03450 5 4 3 3
6 0.00371 4 3 3 2
7 0.00175 3 3 3 2
8 0.00014 3 2 2 2

CPU(sec) ——— 30.45 26.36 39.38 29.29

1 0.96153 117 17 8 5
2 0.95238 114 17 8 5
3 0.56497 21 8 5 4
4 0.39292 14 7 5 3

σ = 10 5 0.26329 10 5 5 3
6 0.03597 5 3 3 3
7 0.01732 4 3 3 3
8 0.00173 3 2 2 2

CPU(sec) ——— 108.30 36.61 35.13 38.40

1 0.99601 1577 79 16 15
2 0.99502 1637 79 17 14
3 0.92850 151 22 15 10
4 0.86617 80 16 14 9

σ = 100 5 0.78137 48 12 15 8
6 0.27175 10 5 5 4
7 0.14985 8 4 4 4
8 0.01381 4 3 3 2

CPU(sec) ——— 1190.73 107.80 57.27 122.05

considerably reduced compared to the PN equations. The method originates from
neutron transport theory in nuclear physics where it was successfully introduced.
Nevertheless, it suffered from a lack of theoretical foundation with the result that it
was not completely accepted in the field. This has been remedied, however, during
the last decade, such that the method has now been substantiated.

We want to study the optically thick regime where the opacity κ is large and the
radiation is conveyed in a diffusion-like manner. Therefore, we rewrite the above
equations in non-dimensional form introducing reference values which correspond
to typical values of the physical quantities. In order to obtain a diffusion scaling we
impose the relations

tre f = cmρmκre f x2
re f

Tre f

Ire f
, and kre f =

Ire f

κre f Tre f
,
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on these reference values and define the non-dimensional parameter

ε =
1

κre f xre f
(71)

which is small in the optically thick, diffusive regime. Then the rescaled equations
read (without marking the scaled quantities):

ε2 ∂T
∂ t

= ε2∇ · k∇T −
∫ ∞

ν1

∫
S2

κ(B−ψ) dΩdν, (72a)

∀ν > 0,Ω ∈ S2 : εΩ ·∇ψ = κ(B−ψ). (72b)

Here, we have neglected scattering. This can be incorporated in a straightforward
way, however. The boundary condition for the temperature changes into

εk n ·∇T = h(Tb−T)+ απ
(n2

n1

)2 ∫ ν1

0
B(ν,Tb)−B(ν,T ) dν. (72c)

It is well known that an outer asymptotic expansion of (72a) and (72b) leads to equi-
librium diffusion theory, which is, in the cases considered here, expected to be valid
in the interior of V , see e.g. [46,67,68]. The diffusion or Rosseland approximation is

∂T
∂ t

= ∇ ·
(

k + kr(T )
)

∇T, with kr(T ) =
4π
3

∫ ∞

ν1

1
κ

∂B
∂T

dν.

However, this diffusion theory is not capable of describing boundary layers and the
question arises whether more sophisticated approximations can suitably model the
boundary layer effects. In the realm of neutron transport, such higher-order asymp-
totic corrections to diffusion theory exist, and are reasonably well understood; they
are the so-called simplified PN (SPN) theories, see [9, 80]. These SPN theories are,
in fact, diffusion in nature i.e. diffusion equations or coupled systems of diffusion
equations are employed. They contain boundary layer effects and can be remark-
ably accurate, much more accurate than the standard Rosseland approximation. In
practice, these equations are viewed as an extended form of the classical diffusion
theory. No separate boundary layer treatment is necessary because the boundary lay-
ers are included in the SPN equations. For other approximate theories for the above
equations and applications, see for example [17, 49]. The material of this section is
taken from [47].

4.1 Asymptotic Analysis and Derivation of the SPN
Approximations

To solve (72a) in the domain V , we write this equation as

(
1 +

ε
κ

Ω ·∇
)

ψ(x,t,Ω ,ν) = B(ν,T ).
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and apply Neumann’s series to formally invert the operator

ψ =
(

1 +
ε
κ

Ω ·∇
)−1

B

∼=
[
1− ε

κ
Ω ·∇+

ε2

κ2 (Ω ·∇)2− ε3

κ3 (Ω ·∇)3 +
ε4

κ4 (Ω ·∇)4 · · ·
]
B. (73)

Integrating with respect to Ω and using the result

∫
S2

(Ω ·∇)n dΩ = [1 +(−1)n] :
2π

n + 1
∇n,

where ∇2 = ∇ ·∇ = Δ is the Laplacian, we get

ϕ =
∫

S2
ψ dΩ = 4π

[
1 +

ε2

3κ2 ∇2 +
ε4

5κ4 ∇4 +
ε6

7κ6 ∇6 · · ·
]
B +O(ε8).

Hence,

4πB =
[
1 +

ε2

3κ2 ∇2 +
ε4

5κ4 ∇4 +
ε6

7κ6 ∇6
]−1

ϕ +O(ε8)

=

{
1−

[ ε2

3κ2 ∇2 +
ε4

5κ4 ∇4 +
ε6

7κ6 ∇6
]

+
[ ε2

3κ2 ∇2 +
ε4

5κ4 ∇4 +
ε6

7κ6 ∇6
]2

−
[ ε2

3κ2 ∇2 +
ε4

5κ4 ∇4 +
ε6

7κ6 ∇6
]3 · · ·

}
ϕ +O(ε8),

so we have the asymptotic expansion

∀ν > 0 : 4πB =
[
1− ε2

3κ2 ∇2− 4ε4

45κ4 ∇4− 44ε6

945κ6 ∇6
]
ϕ +O(ε8). (74)

If we discard terms of O(ε4), O(ε6) or O(ε8) we obtain the SP1,SP2 and SP3 approx-
imations, respectively. All these equations contain the frequency ν as a parameter.

4.1.1 SP1 and Diffusion Approximations

From (74), we obtain

4πB = ϕ− ε2

3κ2 ∇2ϕ +O(ε4)
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and up to O(ε4) we may write the equation in the form

∀ν > 0 : −ε2∇ · 1
3κ

∇ϕ + κϕ = κ(4πB). (75a)

In this equation, ν is simply a parameter. Thus, in practice, these equations would
be solved independently for each frequency or frequency group and subsequently
coupled via (72a). By (75a),

∫ ∞

ν1

∫
S2

κ(B− I) dΩ dν =
∫ ∞

ν1

κ(4πB−ϕ) dν =−ε2
∫ ∞

ν1

∇ · 1
3κ

∇ϕ dν +O(ε4).

Thus, the energy equation (72a) becomes up to O(ε2):

∂T
∂ t

= ∇ · k∇T +
∫ ∞

ν1

∇ · 1
3κ

∇ϕ dν. (75b)

Equations (75b) and (75a) are the SP1 approximation to (72a) and (72b). Since (75b)
is only of order O(ε2) the approximation is O(ε2). Using ϕ = 4πB+O(ε2) in (75b)
one obtains up to O(ε2)

∂T
∂ t

= ∇ · k∇T +
∫ ∞

ν1

∇ · 1
3κ

∇(4πB) dν

= ∇ · k∇T + ∇ ·
(4π

3

∫ ∞

ν1

1
κ

∂B
∂T

dν
)

∇T, (76)

i.e. we have obtained the conventional equilibrium diffusion or Rosseland
approximation (73). However, (75a) permits a boundary layer behaviour near the
boundary ∂V that is not present in (76).

4.1.2 SP2 Approximation

From (74), we get for ε going to 0

4πB = ϕ− ε2

3κ2 ∇2ϕ− 4ε2

15κ2 ∇2
( ε2

3κ2 ∇2ϕ
)

+O(ε6).

This implies
ε2

3κ2 ∇2B = ϕ−4πB +O(ε4).

Hence, with O(ε6) error, the expansion above gives

4πB = ϕ− ε2

3κ2 ∇2ϕ− 4ε2

15κ2 ∇2[ϕ−4πB] = ϕ− ε2

3κ2 ∇2
[
ϕ +

4
5
(ϕ−4πB)

]
,
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or equivalently,

−ε2∇ · 1
3κ

∇
[
ϕ +

4
5
(ϕ−4πB)

]
+ κϕ = κ(4πB). (77)

Equation (77) implies

∫ ∞

ν1

∫
S2

κ(B− I) dΩ dν =−ε2
∫ ∞

ν1

∇ · 1
3κ

∇
[
ϕ +

4
5
(ϕ−4πB)

]
dν +O(ε4).

Thus, the energy equation (72b) becomes up to O(ε4)

∂T
∂ t

= ∇ · k∇T +
∫ ∞

ν1

∇ · 1
3κ

∇
[
ϕ +

4
5
(ϕ−4πB)

]
dν. (78)

These two equations can be written in a more advantageous way if we define

ξ = ϕ +
4
5
(ϕ−4πB). (79)

Introducing the new variable ξ into (77) and (78) we obtain the SP2 equations:

∂T
∂ t

= ∇ · k∇T +
∫ ∞

ν1

∇ · 1
3κ

∇ξ dν, and (80a)

−ε2∇ · 3
5κ

∇ξ + κξ = κ(4πB). (80b)

There is a remarkable similarity between the SP2 (80) and the SP1 (75). This is
because the SP1 equations contain some, but not all, of the O(ε4) correction terms.
In the realm of neutron transport, the SP2 approximation has not found favour be-
cause, in the presence of material inhomogenities, it yields discontinuous solutions.
However, it is obvious that (80b) and (80a) can not produce a discontinuous solution.

Also, in the realm of neutron transport, the SP1 and SP2 solutions are not capable
of exhibiting boundary layer behaviour, while the more complicated SP3 solution
described below does incorporate this in a remarkably accurate way. However, the
radiative transfer SP1 and SP2 equations stated here can contain boundary layer be-
haviour. The SP3 approximation derived in the following should capture significant
radiative transfer boundary effects that are not captured by the SP1 and SP2 approxi-
mations.

4.1.3 SP3 Approximation

Ignoring terms of O(ε8) in (74), we get
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4πB = ϕ− ε2

3κ2 ∇2
[
ϕ +

4ε2

15κ2 ∇2ϕ +
44ε4

315κ4 ∇4ϕ
]
+O(ε8)

= ϕ− ε2

3κ2 ∇2
[
ϕ +

(
1 +

11ε2

21κ2 ∇2
)( 4ε2

15κ2 ϕ
)]

+O(ε8)

= ϕ− ε2

3κ2 ∇2
[
ϕ +

(
1− 11ε2

21κ2 ∇2
)−1( 4ε2

15κ2 ϕ
)]

+O(ε8) (81)

Hence, if we define

ϕ2 ≡
(

1− 11
21

ε2

κ2 ∇2
)−1( 2ε2

15κ2 ϕ
)
, (82)

then (81) becomes up to O(ε8):

4πB = ϕ− ε2

3κ2 ∇2(ϕ + 2ϕ2)

or

∀ν > 0 : −ε2∇ · 1
3κ

∇(ϕ + 2ϕ2)+ κϕ = κ(4πB), (83a)

while (82) becomes

− 11ε2

21κ2 ∇2ϕ2 + ϕ2 =
2
15

ε2

κ2 ∇2ϕ =
2
5

( ε2

3κ2 ∇2ϕ
)

=
2
5

[
−4πB + ϕ− 2ε2

3κ2 ∇2ϕ2

]

or ( 4
15
− 11

21

) ε2

κ2 ∇2ϕ2 + ϕ2 =
2
5
(ϕ−4πB)

or eventually

∀ν > 0 : −ε2∇ · 9
35κ

∇ϕ2 + κϕ2− 2
5

κϕ =−2
5

κ(4πB). (83b)

By (83a) we get up to O(ε6)

∫ ∞

ν1

∫
S2

κ(B− I) dΩ dν =−ε2
∫ ∞

ν1

∇ · 1
3κ

∇(ϕ + 2ϕ2) dν.

Thus, the energy equation (72b) becomes

∂T
∂ t

= ∇ · k∇T +
∫ ∞

ν1

∇ · 1
3κ

∇(ϕ + 2ϕ2) dν. (83c)
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Equation (83c) together with the two approximate (83a, 83b) form the SP3

approximation to the system (72a) and (72b).
These equations can be rewritten in a computationally more advantageous way.

Let us calculate θ{(83a)}+{(83b)} :

−ε2∇ · 1
κ

∇
{

θ
3

(ϕ + 2ϕ2)+
9

35
ϕ2

}
+ κ

{
θϕ + ϕ2− 2

5
ϕ
}

= κ
(

θ − 2
5

)
(4πB).

We seek linear combinations of both equations such that the two functions in the
brackets on the left are scalar multiples. More explicitly, we look for θ that fulfills
the condition

θ
3

(ϕ + 2ϕ2)+
9

35
ϕ2 = μ2

(
θϕ + ϕ2− 2

5
ϕ
)
, (84)

where μ2 > 0 is a constant to be determined later. Equation (84) holds for arbitrary
ϕ and ϕ2 iff

θ
3

= μ2
(

θ − 2
5

)
and

2θ
3

+
9

35
= μ2.

The second of these equations may be solved for θ and we get a quadratic equation
in μ2:

1
2

μ2− 9
70

= μ2
(2

3
μ2− 11

14

)
.

Its discriminant is positive and thus we obtain two positive real solutions

μ2
1 =

3
7
− 2

7

√
6
5
, and μ2

2 =
3
7

+
2
7

√
6
5
,

and the corresponding values of the scalar θ are

θ1 =
9

35
− 3

7

√
6
5
, and θ2 =

9
35

+
3
7

√
6
5
.

Now relation (84) implies, for n = 1,2,

(
−ε2∇ · 1

κ
∇μ2

n + κ
)[

θnϕ + ϕ2− 2
5

ϕ
]

=
(

θn− 2
5

)
κ(4πB). (85)

This suggests that we define two new independent variables for n = 1,2

In =
θnϕ + ϕ2−2/5ϕ

θn−2/5
= ϕ +

1
θn−2/5

ϕ2 = ϕ + γnϕ2 (86)

where

γn =
1

θn−2/5
=

5
7

[
1 +(−1)n3

√
6
5

]
.
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The two equations in (85) are now

−ε2μ2
1 ∇ · 1

κ
∇I1 + κI1 = κ(4πB), (87a)

−ε2μ2
2 ∇ · 1

κ
∇I2 + κI2 = κ(4πB). (87b)

The advantage of this form of the SP3 equations is that the diffusion equations are
uncoupled. It will be seen below that there remains, however, a weak coupling in
the boundary conditions.

The linear transformation of variables above is inverted according to the formulae

ϕ =
γ2I1− γ1I2

γ2− γ1
, and ϕ2 =

I2− I1

γ2− γ1
. (88)

Defining three constants

w0 =
1

γ2− γ1
=

7
30

√
5
6

=
7

36

√
6
5
, and (89a)

w1 =
γ2

γ2− γ1
=

1
6

(
3 +

√
5
6

)
, w2 =

−γ1

γ2− γ1
=

1
6

(
3−

√
5
6

)
(89b)

we can write ϕ = w1I1 + w2I2 and ϕ2 = w0(I2− I1) and we have furthermore

1
3
(ϕ + 2ϕ2) =

1
3
(w1−2w0)I1 +

1
3
(w2 + 2w0)I2 = a1I1 + a2I2.

Here again we introduced constants

a1 =
w1−2w0

3
=

1
30

(
5−3

√
5
6

)
, and a2 =

w2 + 2w0

3
=

1
30

(
5 + 3

√
5
6

)
.

In this way, the SP3 energy equation (83c) above becomes:

∂T
∂ t

= ∇ · k∇T +
∫ ∞

ν1

∇ · 1
κ

∇(a1I1 + a2I2) dν. (90)

4.2 Boundary Conditions for SPN Approximations

The boundary conditions for the SPN equations in neutron transport come from a
variational principle, see [9, 80]. Here, we use the boundary conditions developed
for the transport case to state (and rewrite in a more suitable form) the boundary
conditions for SP1,SP2 and SP3 approximations to the transport problem (72b) with
the boundary condition (44c).
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We consider the transport equation (72b)

∀ν > 0 : εΩ ·∇ψ(x,Ω)+ κI(x,Ω) = κB, x ∈V,

with semi-transparent boundary conditions on ∂V

ψ(x,Ω) = ρ(n ·Ω)ψ(x,Ω ′)+
(
1−ρ(n ·Ω)

)
ψb(x,Ω), n ·Ω < 0.

Let us define the scalar flux as before

ϕ(x) =
∫

S2
ψ(x,Ω) dΩ ,

and define two integrals of the influx into the domain for m = 1,3

ψm(x) =
∫

n·Ω<0

(
1−ρ(n ·Ω)

)
Pm(|Ω ·n|)Ib(x,Ω) dΩ , x ∈ ∂V. (91)

Here, the Legendre polynomials of order 1 and 3 are used:

P1(μ) = μ , and P3(μ) =
5
2

μ3− 3
2

μ .

Furthermore, it is convenient in the sequel to have the following integrals at hand:

r1 = 2π
∫ 1

0 μρ(μ) dμ ,

r2 = 2π
∫ 1

0 μ2ρ(μ) dμ ,

r3 = 2π
∫ 1

0 μ2ρ(μ) dμ ,

r4 = 2π
∫ 1

0 μP3(μ)ρ(μ) dμ ,

r5 = 2π
∫ 1

0 P3(μ)ρ(μ) dμ ,

r6 = 2π
∫ 1

0 P2(μ)P3(μ)ρ(μ) dμ ,

r7 = 2π
∫ 1

0 P3(μ)P3(μ)ρ(μ) dμ ,

The boundary conditions in [9, 80] were derived for the case ρ = 0 = const. For
semi-transparent boundary conditions the same arguments apply and the calcula-
tions can be analogously carried out, the only difference beeing modifications in the
coefficients. We therefore content ourselves with stating the resulting equations. In
the SP1 approximation (75a), the boundary condition for ϕ is:

∀ν > 0 : (1−2r1)ϕ(x)+ (1 + 3r2)
2ε
3κ

n ·∇ϕ(x) = 4ψ1(x). (92)

The boundary condition for ϕ in the SP2 approximation (80b) is, see [80]:

(1 − 2r1)ϕ +(1 + 3r2)
2ε
3κ

n ·∇
[
ϕ +

4
5
(ϕ−4πB)

]

+ (1−4(3r3− r1))
1
2
(ϕ−4πB) = 4ψ1. (93)
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These equations reduce to (92) if one deletes the (ϕ − 4πB) terms in them. They
can be written in a more advantageous way if we define ξ as in Sect. 2 which is
equivalent to

ϕ =
5
9

ξ +
4
9
(4πB).

One obtains

(1 − 2r1)
(5

9
ξ +

4
9
(4πB)

)
+(1 + 3r2)

2ε
3κ

n ·∇ξ

+ (1−4(3r3− r1))
1
2

(5
9

ξ +
4
9
(4πB)−4πB

)
= 4ψ1,

or, using the abbreviations

α1 =
5
6
(1−4r3) α2 =

1
6
(−1 + 12r1−20r3)

the SP2 boundary conditions for ξ in (80b) can be written:

∀ν > 0 : α1ξ (r)+ (1 + 3r2)
2ε
3κ

n ·∇ξ (r) = α24πB(T(x))+ 4ψ1(x). (94)

The boundary conditions (92) and (93) were derived variationally, not from a bound-
ary layer analysis. They should be accurate if Ib(x,Ω) is a reasonably smooth
function of Ω , but they could be inaccurate if Ib is not smooth.

Finally, the SP3 boundary conditions for ϕ and ϕ2 in (83a) and (83b) are, see [9]:
for all frequencies ν > 0 and x ∈ ∂V there must hold

(1 − 2r1)
1
4

ϕ(x)+ (1−8r3)
5

16
ϕ2(x)+ (1 + 3r2)

ε
6κ

n ·∇ϕ(x)

+
(1 + 3r2

3
+

3r4

2

) 2ε
3κ

n ·∇ϕ2(x) = ψ1(x), (95a)

− (1 + 8r5)
1

16
ϕ(x)+ (1−8r6)

5
16

ϕ2(x)+ 3r4
ε

6κ
n ·∇ϕ(x)

+
(

r4 +
3

14
(1 + 7r7)

) ε
κ

n ·∇ϕ2(x) = ψ3(x). (95b)

or formally

A1ϕ(x)+ A2ϕ2(x)+ A3
ε
κ

n ·∇ϕ(x)+ A4
ε
κ

n ·∇ϕ2(x) = ψ1(x)

B1ϕ(x)+ B2ϕ2(x)+ B3
ε
κ

n ·∇ϕ(x)+ B4
ε
κ

n ·∇ϕ2(x) = ψ3(x).
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We still have to derive boundary conditions for I1 and I2. Using the formulae in (88),
we can transform the boundary conditions for ϕ and ϕ2 into boundary conditions
for I1 and I2. The equations above then become

(A1γ2w0−A2w0)I1 +(−A1γ1w0 + A2w0)I2

+(A3γ2w0−A4w0)
ε
κ

n ·∇I1

+(−A3γ2w0 + A2w0)
ε
κ

n ·∇I2 = ψ1

(B1γ2w0−B2w0)I1 +(−B1γ1w0 + B2w0)I2

+(B3γ2w0−B4w0)
ε
κ

n ·∇I1

+(−B3γ2w0 + B2w0)
ε
κ

n ·∇I2 = ψ3

or, again formally rewritten for writing convenience,

C1I1 +C2I2 +C3
ε
κ

n ·∇I1 +C4
ε
κ

n ·∇I2 = ψ1

D1I + D2I2 + D3
ε
κ

n ·∇I1 + D4
ε
κ

n ·∇I2 = ψ3.

We eliminate the gradient term n ·∇I2 in the first equation and n ·∇I1 in the second
in order to get boundary conditions for the I1 and I2 equations, respectively. We find

(C1D4−D1C4)I1 +(C3D4−D3C4)
ε
κ

n ·∇I1

=−(C2D4−D2C4)I2 +(D4 ψ1−C4 ψ3)

−(C2D3−D2C3)I2 +(C3D4−D3C4)
ε
κ

n ·∇I2

= (C1D3−D1C3)I1− (D3 ψ1−C3 ψ3)

so, if we set D = C3D4−D3C4 and define constants

α1 = (C1D4−D1C4)/D,

β1 = −(C1D3−D1C3)/D,

α2 = −(C2D3−D2C3)/D,

β2 = (C2D4−D2C4)/D,

then we end up with SP3 boundary conditions in the following form:

α1I1(x)+
ε
κ

n ·∇I1(x) =−β2I2(x)+ (D4 ψ1(x)−C4 ψ3(x))/D, (96a)

α2I2(x)+
ε
κ

n ·∇I2(x) =−β1I1(x)− (D3 ψ1(x)−C3 ψ3(x))/D. (96b)
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Equations (96a) and (96a) are the boundary conditions to go with the diffusion
equations (87a) and (87b), respectively. The coupling of I1 and I2 in the boundary
conditions is very weak.

Consider, for example, the simple case when there is no reflection ρ = 0 and
ψb(x,Ω) = ψb(x) is isotropic. Then by (91),

ψm(x) = 2πψb(x)
1∫

0

Pm(μ) dμ = πψb(x)
{

1, for m = 1,
1
4 , for m = 3.

The constants r1, . . . ,r7 are all zero such that we find after some calculations D =
1

144

√
6/5 and the constants in the boundary conditions are

α1 = 5
96

(
34 + 11

√
6/5

)
,

β1 = 5
96

(
2−√6/5

)
,

α2 = 5
96

(
34 + 11

√
6/5

)
,

β2 = 5
96

(
2 +

√
6/5

)
.

Finally, the source terms in (96a) and (96b) become in this case

[
6ψ1(x)−2

(
3±5

√
6
5

)
ψ3(x)

]
= πψb(x)

[
6+2

(
3±5

√
6
5

)
1
4

]

=
5
2

πψb(x)

[
3±

√
6
5

]
.

The approximate SPN-theories stated above are simpler than transport theory be-
cause they do not contain the angular variable Ω . However, they do contain the
frequency variable ν . It is formally possible to derive simpler theories in which the
frequency is eliminated. We refer to [48].

5 Moment Models

First we briefly review the basics of the moment approach. Consider again the trans-
port equation (32) for the radiation. We will assume isotropic scattering here. This
equation is in fact a system of infinitely many coupled integro-differential equations
that describes the distribution ψ of all photons in time, space and velocity space. On
the one hand this system is computationally very expensive and on the other hand
we are not interested in the photon distribution itself but in macroscopic quantities
like the mean energy or mean flux of the radiation field. For instance, only the gradi-
ent of the radiative flux enters into the energy balance. The macroscopic quantities
are moments of the distribution function. Let

〈 · 〉 :=
∫

S2
· dΩ (97)
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denote the average over all directions. The energy, flux vector and pressure tensor
of the radiation field are defined, respectively, as

E := 〈ψ〉, F := 〈Ωψ〉, P := 〈(Ω ⊗Ω)ψ〉. (98)

To derive equations for the macroscopic quantities we multiply the transport equa-
tion by 1 and Ω and average over all directions. We obtain the conservation laws

∇F = κ(〈B〉−E) (99)

∇P =−(κ + σ)F. (100)

These are four equations (the first is a scalar equation, the second has three
components) for 10 unknowns (E scalar, F 3-component vector, P symmetric 3×3-
matrix). Hence we have to pose an additional condition. Usually this condition is
a constitutive equation for the highest moment P, expressed in terms of the lower
moments E and F . This is referred to as the closure problem. The simplest approxi-
mation, the so-called P1 approximation, is obtained if we assume that the underlying
distribution is isotropic. Thus, we obtain P = 1

3 E and therefore

∇F = κ(〈B〉−E) (101)

∇
1
3

E =−(κ + σ)F. (102)

The general PN closure is usually derived in a different way.

5.1 Spherical Harmonics

The Spherical Harmonics approach is one of the oldest approximate methods for
radiative transfer [20, 33]. For the sake simplicity, we restrict our explanation to the
case of slab geometry. The derivation for three-dimensional case can be found for
example in [12] and also in standard textbooks [14,41,62]. The idea of the spherical
harmonics approach is to express the angular dependence of the distribution function
in terms of a Fourier series,

ψ(μ) =
∞

∑
l=0

ψSH
l

2l + 1
2

Pl(μ), (103)

where Pl are the Legendre polynomials. These form an orthogonal basis of the space
of polynomials with respect to the standard scalar product on [−1,1],

∫ 1

−1
Pl(μ)Pk(μ)dμ =

2
2l + 1

δlk. (104)
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In more space dimensions, one uses spherical harmonics, which are an orthogonal
system on the unit sphere.

If we truncate the Fourier series at l = N we have

ψSH(μ) =
N

∑
l=0

ψSH
l

2l + 1
2

Pl(μ). (105)

One can obtain equations for the Fourier coefficients

ψSH
l =

∫ 1

−1
ψSH(μ)Pl(μ)dμ (106)

by testing (32) with Pl(μ) and then integrating. Thus we get

∇
∫ 1

−1
μPl(μ)ψSH(μ)dμ = κ(2〈B〉δl0−ψSH

l )+ σ(ψ0δl0−ψSH
l ) (107)

for the moments ψSH
l of the distribution function. Using the recursion relation

(l + 1)Pl+1(μ)+ lPl−1(μ) = (2l + 1)μPl(μ) (108)

we obtain

∇
(

l + 1
2l + 1

ψSH
l+1 +

l
2l + 1

ψSH
l−1

)
= κ(2〈B〉δl0−ψSH

l )+ σ(ψ0δl0−ψSH
l ). (109)

This is a linear system of first order partial differential equations. For a criterion on
how many moments are sufficient for a given problem see [78].

The two most widely used boundary conditions are Mark [54, 55] and Marshak
[56] boundary conditions. The idea of the Mark boundary conditions is to assign the
values of the distribution at certain directions μi which are the zeros of the Legendre
polynomial of order N +1. That this is in fact a natural boundary condition becomes
clear in the next section.

Marshak’s boundary conditions, on the other hand, demand that the ingoing half
moments of the distribution are prescribed, i.e. for the left boundary

∫ 1

0
Pl(μ)ψ(μ)dμ . (110)

This, in some sense, reflects the boundary conditions for the full equations.
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5.2 Minimum Entropy Closure

The approximations based on the expansion of the distribution function into a
polynomial or the equivalent diffusion approximations suffer from serious draw-
backs. First, anisotropic situations are not correctly described. This becomes
apparent most drastically for a ray of light, where |P| = E . Also, the distribution
function can become negative and thus the moments computed from the distribu-
tion can become unphysical. Second, boundary conditions cannot be incorporated
exactly. At a boundary we usually prescribe the ingoing flux only. Here we have to
prescribe values for the full moments. These moments contain the unknown outgo-
ing radiation. Moreover, a polynomial expansion cannot capture discontinuities in
the angular photon distribution. Krook [42] remarks that at the boundary there is
usually a discontinuity in the distribution between in- and outgoing particles.

In this section, we want to describe one idea which resolves the first problem. The
idea is to use an Entropy Minimization Principle to obtain the constitutive equation
for P. This principle has become the main concept of Rational Extended Thermo-
dynamics [61].

We want to explain the Entropy Minimization Principle and its practical appli-
cation by means of our simple moment system (99–100). To close the system we
determine a distribution function ψME that minimizes the radiative entropy

H∗R(ψ) =
∫

S 2

∫ ∞

0
h∗R(ψ)dνdΩ (111)

with

h∗R(ψ) =
2kν2

c3 (n logn− (n + 1) log(n + 1)) where n =
c2

2hν3 ψ (112)

under the constraint that it reproduces the lower order moments,

〈ψME〉= E and 〈ΩψME〉= F. (113)

The entropy is the the well-known entropy for bosons adapted to radiation fields
[63, 70]. At first sight, it is not clear why the distribution should minimize the en-
tropy when all that is known for non-equilibrium processes is that there exists an
entropy inequality. But it can be shown [15] that the minimization of the entropy for
given moments and the entropy inequality are equivalent.

The above minimization problem can be solved explicitly and the pressure can
be written as [16]

P = D( f )E. (114)

Here, f = F
E is the relative flux,

D( f ) =
1− χ( f )

2
I +

3χ( f )−1
2

f ⊗ f
| f |2 (115)
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is the Eddington tensor and

χ( f ) =
5−2

√
4−3| f |2
3

(116)

is the Eddington factor. The Eddington tensor can always be written in the form
(115) under the assumption that the intensity is symmetric about a preferred direc-
tion [50]. The minimum entropy Eddington factor satisfies the natural constraints

tr(D) = 1 (117)

D( f )− f ⊗ f ≥ 0 (118)

f 2 ≤ χ( f )≤ 1 (119)

In the literature, the Eddington factor (116) has been derived based on many, appar-
ently not connected, ideas. Levermore [50] assumed that there existed a reference
frame in which the distribution was exactly isotropic and used the covariance of the
radiation stress tensor. Anile et al. [7] derived it by collecting physical constraints
on the Eddington factor and supposing the existence of an additional conservation
law, where the conserved quantity behaves like the physical entropy near radiative
equilibrium. The minimum entropy system was thoroughly investigated in [16, 84].
Further variable Eddington factors have been proposed, cf. [50, 59] and references
therein.

The closed system has several desirable properties. The flux is limited in a natural
way, i.e. | f | < 1. Physically, this corresponds to the fact that information can-
not travel faster than the speed of light. Furthermore, the underlying distribution
function is always positive. Also, the system can be transformed to a symmetric
hyperbolic system [7], which makes it accessible to a general mathematical the-
ory [21]. Again, Marshak type boundary conditions can be derived.

5.3 Flux-Limited Diffusion and Entropy Minimization

The classical diffusion approximation is a linear parabolic partial differential
equation. In this equation, information is propagated at infinite speed. This can also
be seen from the fact that the flux |F | is not bounded by the energy E (relative flux
f < 1). But this should hold, due to the definition of the moments. Thus the classical
diffusion approximation contradicts fundamental physical concepts.

Therefore the concept of flux-limited diffusion has been introduced. A diffusion
equation is called flux-limited if

|F | ≤ E. (120)

The following is a summary of [50]. We begin by writing the moment equations in
the form
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∇F = κ(〈B〉−E) (121)

∇(DE) =−(σ + κ)F, (122)

with the Eddington tensor D. Two assumptions in the derivation of the classical
diffusion equation will be modified. First, the Eddington tensor is only identically
equal to 1

3 for isotropic radiation. For a ray of light (“free-streaming”), on the other
hand, we should have |DE| = E . Second, one should not neglect ∂tF . Instead, we
note that in the diffusive as well as in the free-streaming regime, the spatial and
temporal derivatives of the relative flux f = F

E and the Eddington tensor D can be
neglected.

Rewriting the equations in terms of f and E we get

∇( f E) = κ(〈B〉−E) (123)

∇(DE) =−(σ + κ) f E. (124)

The second equation becomes

∇(DE) =−(σ + κ) f E. (125)

Inserting (123) into (125), we obtain

f ∇ f + ∇((D− f ⊗ f )E)+ σ̄ f E = 0 (126)

with σ̄ = κ〈B〉+σE
E . If we drop the derivatives of f and D, we arrive at

(D− f ⊗ f )∇E + σ̄ f E = 0, (127)

or

(D− f ⊗ f )R = f with R =− 1
σ̄

∇E
E

. (128)

The idea is now to

1. Choose D as a function of f
2. Solve (D− f ⊗ f )R = f for f
3. Insert f (R) into the first moment equation to obtain a diffusion approximation

The first step shows how the concept of flux-limited diffusion is related to a (non-
linear) moment closure. If

D =
1− χ

2
I +

3χ−1
2

f ⊗ f
| f | (129)

then f is an eigenvector of D and also of (D− f ⊗ f ) with

(D− f ⊗ f ) f = (χ−| f |2) f . (130)
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Hence the equation (D− f ⊗ f )R = f has the solution

R =
f

χ− f 2 . (131)

Solving this equation for f and writing the result as

f = λ (R)R (132)

we arrive at the closure

F =− 1
σ̄

λ
(

1
σ̄

∇E
E

)
∇E. (133)

If one chooses for D the minimum entropy Eddington factor then [50]

λ =
3(1−β 2)2

(3 + β 2)2 (134)

where β is implicitly given by

R =
4β (3 + β 2)
(1−β 2)2 . (135)

The same boundary conditions as for the diffusion approximation can be used.

5.4 Partial Moments

In spite of its advantages the minimum entropy system still suffers from a major
drawback. In Fig. 8 we show a numerical test case [11] with two colliding beams.
The parameters are κ = 2.5, σ = 0. The temperature inside the medium is zero.

At both sides, beams with a radiative temperature TR :=
(

E
σSB

)1/4
, where σSB is

Stefan–Boltzmann’s constant, of 1000 and relative fluxes of f = ±0.99, respec-
tively, enter. Figure 8 shows the radiative energy. The full moment model has a
qualitatively wrong solution with two shocks. This is not surprising since this Ed-
dington factor, as stated above, is related to radiation which is isotropic in a certain
frame [50]. This assumption is violated in the test case above. The unphysical be-
havior can be remedied by combining Minimum Entropy with the partial moment
idea described in the following.

The partial moment idea is somehow intermediate between the Discrete Ordi-
nates approach and Moment Models. In Discrete Ordinates models the integral over
all directions is discretized with a numerical quadrature rule. This yields a cou-
pled system of finitely many transport equations, each describing transport into one
direction.
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Fig. 8 Radiative energy. Artificial radiative shock wave in the full moment entropy (M1) model

Let A be a partition of the unit sphere S2, where A ∈ A denotes the set of the
angular integration. Instead of integrating over all directions we average over each
A ∈A separately. Thus we define the average

〈 · 〉A :=
∫

A
· dΩ . (136)

Again, we multiply the transport equation by 1 and Ω and average over each A∈A
to obtain

∇FA = 〈S〉A (137)

∇PA = 〈ΩS〉A. (138)

We define the corresponding partial moments by

EA = 〈I〉A (139)

FA = 〈Ω I〉A (140)

PA = 〈(Ω ⊗Ω)I〉A. (141)

To close this system we have to find an equation for the partial pressures PA as
functions of the partial energies EA and partial fluxes FA.

Examples for the choice of A , which are used later, are

• For the full moment model we have A = S2, i.e. the integral is over the full sphere.
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• For the half moment model we have A ∈ {S2
+,S2−}. Here, S2

+ = {Ω ∈ S2 :
Ωx > 0} is the positive half sphere, where the x-component of Ω is positive, and
S2− = {Ω ∈ S2 : Ωx < 0} analogously is the negative half sphere.

• For the quarter moment model we have A ∈ {S2
++,S2

+−,S2−−,S2−+}. Here,
S2

++ = {Ω ∈ S2 : Ωx > 0,Ωy > 0} is the quarter sphere in the first quadrant.
Analogously, S2

+− = {Ω ∈ S2 : Ωx > 0,Ωy < 0} etc.

One could also choose other sets for the angular integration.

5.5 Partial Moment PN Closure

The basic idea of the PN closure is to expand the photon distribution into a polyno-
mial. Here we use the same idea, but separately for both half ranges. This approach
has been investigated in the literature in different forms and contexts and mostly
in connection with boundary conditions, for example recently in [11]. Schuster and
Schwarzschild [73, 74] introduce two constant distributions for left- and rightgoing
photons (P0 approximation). Krook [42], based on ideas of Sykes [79], considers
half moment in one space dimension with a PN closure. Sherman [77] compares
full-PN and half-PN numerically in 1D. Özisik et al. [64] derive a half moment P1

closure in spherical geometry. Further references can be found in [57], where also
an octuple P1 closure in cylindrical geometry is introduced. Similar ideas appear in
related subjects, like gas dynamics, cf. [13] and references therein.

For the half moment P1 system in one space-dimension, for instance, we assume
that in each half range the distribution can be represented by a polynomial of degree
one. The coefficients of the polynomial are determined by the constraint that the
lower order half moments should be reproduced. The half moment P1 system reads,

∂xF+ = κ
(

1
2
〈B〉−E+

)
+ σ

(
1
2
(E+ + E+)−E+

)
(142)

∂x(χ+( f+)E+) = κ
(

1
4
〈B〉−F+

)
+ σ

(
1
4
(E+ + E+)−F+

)
(143)

∂xF− = κ
(

1
2
〈B〉−E−

)
+ σ

(
1
2
(E+ + E+)−E+

)
(144)

∂x(χ−( f−)E−) = κ
(
−1

4
〈B〉−F−

)
+ σ

(
−1

4
(E+ + E+)−F−

)
. (145)

The partial Eddington factors are

χ±( f±) =−1
6
± f± with f± =

F±
E±

. (146)

We note that this is a hyperbolic system. The eigenvalues associated to the “+”
moments are positive, while the eigenvalues associated to the “−” moments are
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negative, in accordance with physical intuition. This structure makes the formulation
of accurate boundary conditions easy. We simply prescribe the ingoing half
moments, in accordance with the conditions for the full equations. For more discus-
sions, including existence and uniqueness results, and the explicit quarter moment
P1 closure in two space-dimensions we refer the reader to [72].

5.6 Partial Moment Entropy Closure

The partial moment entropy closure was introduced for radiative heat transfer in [19]
and developed in [18, 25, 85]. For the sake of completeness we recall the procedure
explained earlier. We have to find a distribution function ψME that minimizes the
radiative entropy H∗R given by (111–112), under the constraint that it reproduces the
lower order partial moments,

〈ψME〉A = EA and 〈ΩψME 〉A = FA (147)

for all A ∈A . The minimizer is given by

ψME = ∑
A∈A

1

α4
A(1 + βA ·Ω)4

1A, (148)

where αA and βA are Lagrange multipliers corresponding to the constraints. This
formula differs from the one given in [19] since we consider frequency-averaged
quantities here. It can be obtained from the minimizer in [19] by integration over ν .

In the case of A = {S2
+,S2−}, the half moments over this distribution can be

computed explicitly.
Note that E± ≥ 0,F+≥ 0,F− ≤ 0. Multiplying the transfer equation with m(μ) =

1+,1−,μ+,μ−) and integrating with respect to ν and μ we get

ε∂xF+ = κ
(

1
2
〈B〉−E+

)
+ σ

(
1
2
(E+ + E+)−E+

)
(149)

ε∂x〈(μ+)2ψ〉= κ
(

1
4
〈B〉−F+

)
+ σ

(
1
4
(E+ + E+)−F+

)
(150)

ε∂xF− = κ
(

1
2
〈B〉−E−

)
+ σ

(
1
2
(E+ + E+)−E+

)
(151)

ε∂x〈(μ−)2ψ〉= κ
(
−1

4
〈B〉−F−

)
+ σ

(
−1

4
(E+ + E+)−F−

)
. (152)

This system is closed by an entropy minimization principle. Then, the minimizer
ψME is determined by

H∗R(ψME) = min
ψ
{H∗R(ψ) : 〈m(μ)ψ〉= (E+,E−,F+,F−)} ,
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i.e. ψME minimizes the entropy under the constraint of a reproduction of the half
space moments with E+ ≥ 0,E− ≥ 0,F+ ≥ 0,F− ≤ 0 as above.
Solutions of similiar minimization problems are discussed in [16]. A straightforward
computation shows that in the present case the unique solution ψME = ψME(T,μ) =
ψME(T,μ ,ν) is given by

ψME(T,μ) =
2hν3

c2

1

exp( hν
kT (α−(1−+ β−μ−)+ α+(1+ + β+μ+)))−1

,

where α+ > 0,α− > 0 and β+ >−1,β− < 1 are determined by the constraints

〈1±ψME〉= σSB

π
T 4 β 2±±3β±+ 3

3α4±(1±β±)3
= E±

〈μ±ψME〉= σSB

π
T 4 β±±3

6α4±(1±β±)3
= F±.

The temprature T is introduced here as a normalization parameter to measure the
deviation from the usual Planckian. We mention in passing that in general maxi-
mization of entropy is a touchy business, see for example [34].

Having solved the minimization problem, one obtains

1
c
〈(μ±)2ψME〉= σ

cπ
T 4 1

3α4±(1±β±)3
= χ±( f±)E±,

if we define the relative fluxes f± = F±
cE± and the Eddington factors

χ±( f±) =
8 f 2±

1±6 f±+
√

1±12 f±−12 f 2±
.

Approximating 〈(μ±)2ψ〉 ∼ 〈(μ±)2ψME〉 in (149)–(152) and using the above
computation we arrive at

∂xF+ = κ
(

1
2
〈B〉−E+

)
+ σ

(
1
2
(E+ + E+)−E+

)
(153)

∂x(χ+( f+)E+) = κ
(

1
4
〈B〉−F+

)
+ σ

(
1
4
(E+ + E+)−F+

)
(154)

∂xF− = κ
(

1
2
〈B〉−E−

)
+ σ

(
1
2
(E+ + E+)−E+

)
(155)

∂x(χ−( f−)E−) = κ
(
−1

4
〈B〉−F−

)
+ σ

(
−1

4
(E+ + E+)−F−

)
. (156)
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The system (153–156) is a stationary hyperbolic equation with relaxation terms. An
analysis of the equations has been performed in [26].

The eigenvalues associated to E+ and F+ are always positive while the
eigenvalues associated to E− and F− are always negative. This result agrees with
intuition since E+ and F+ describe transport to the right, while E− and F− describe
transport to the left. Therefore we have to prescribe two boundary conditions on the
left and right hand side, respectively. We use at x = 0:

F+ = 〈μ+ [ρ(μ)ψME(T,−μ)+ (1−ρ(μ))B(Tout)]〉 (157)

χ+E+ = 〈(μ+)2 [ρ(μ)ψME(T,−μ)+ (1−ρ(μ))B(Tout)]〉 (158)

and the analogous conditions at x = 1. Equations (153)–(158) are solved together
with the temperature equation in the form

ε2∂tT = ε2k∂xxT −2πκ
(

2σSB

π
T 4− (E+ + E−)

)
(159)

and corresponding boundary conditions.
The Partial Moment Entropy approximation has a lot of desirable physical and

mathematical properties. The underlying distribution function is always positive.
Hence the relative flux and the speed of propagation are limited. The system is
symmetriziable hyperbolic. This makes it accessible to a powerful mathematical
theory guaranteeing well-posedness locally in time. Like the full moment entropy
approximation [16], the system correctly approaches the diffusive limit and the free-
streaming limit. The eigenvalues of the half moment and quarter moment entropy
aproximation have a special structure. For the half moment case, the eigenvalues
of the “+” direction are always positive, the eigenvalues of the “−” direction are
always negative. Both are bounded in modulus by the speed of light c. This property
makes very simple and accurate numerical schemes possible, for example kinetic
schemes or upwind schemes. The formulation of accurate boundary conditions is
again straight-forward.

6 Frequency-Averaged Moment Equations

Moment models are obtained by testing (32) with functions depending on direction,
in our case (1,μ)T , then integrating the result over all the directions and frequencies.
Then, the system does only depend on time and space variables, and is hence far
cheaper to solve. However, this has a cost since we are not always able to reproduce
neither frequency dependent problems nor very stiff directional configurations such
as the collision of two opposite beams [11, 19].

In order to solve this difficulty, we do not average over all directions and all
frequencies but distinguish photons going to the left and to the right and different
frequency bands.
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Let

〈g〉+m =

ν
m+ 1

2∫

ν
m− 1

2

∫ 1

0
gdμdν and 〈g〉−m =

ν
m+ 1

2∫

ν
m− 1

2

∫ 0

−1
gdμdν (160)

denote the average over all right/left-going photons in the mth frequency band
[νm− 1

2
,νm+ 1

2
[. We denote the bands as half-open intervals to have mathemati-

cally disjoint sets. However, since only integrals over the bands matter, one could
also use closed intervals. The moments E+

R,m = 〈ψ〉+m , F+
R,m = 〈Ωψ〉+m and P+

R,m =
〈(Ω ⊗Ω)ψ〉+m are respectively the radiative energy, the radiative flux and the radia-
tive pressure inside the mth group and the positive half-space. The quantities for the
negative half space are defined in analogy.

Testing (32) with (1,μ)T and averaging with the above defined averages we get

∂xF+
R,m = κ̂+

m aθ 4
m,+− κ̃+

m E+
R,m + σ̃+

m

(
E+

R,m+E−R,m
2 −E+

R,m

)
(161)

∂xP+
R,m = κ̂+

m
a
2 θ 4

m,+− κ̌+
m F+

R,m− σ̃+
m

(
E+

R,m+E−R,m
4 −F+

R,m

)
(162)

and

∂xF−R,m = κ̂−m aθ 4
m,−− κ̃−m E−R,m + σ̃−m

(
E+

R,m+E−R,m
2 −E−R,m

)
(163)

∂xP−R,m =−κ̂−m a
2 θ 4

m,−− κ̌−m F−R,m− σ̃−m

(
−E+

R,m+E−R,m
4 −F−R,m

)
, (164)

where we have used the following frequency averages of the frequency dependent
quantites κ and σ :

κ̂+
m =

〈κB〉+m
〈B〉+m , κ̃+

m =
〈κψ〉+m
〈ψ〉+m , κ̌+

m =
〈κμψ〉+m
〈μψ〉+m and σ̃+

m =
〈σψ〉+m
〈ψ〉+m . (165)

6.1 Entropy Minimization

For each m (161)–(164) is a system of 4 equations for 6 unknown moments. To
obtain a well-posed system one usually expresses the highest moment, here P±R,m, as
a function of the lower order moments, here E±R,m and F±R,m. This is referred to as
“closure” of the system.

To close the system here, we use entropy minimization, see [7, 16, 51, 61]. Com-
pare [19] for the grey half space model and [83] for the multigroup full space model.

Let us first recall the definition of the radiative entropy,

hR(I) =
2kν2

c3

[
nI lnnI− (nI + 1) ln(nI + 1)

]
(166)
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where

nI =
c2

2hν3 ψ . (167)

According to the entropy minimization principle, we determine a distribution
function that minimizes the radiative entropy under the constraint that it reproduces
the lower order moments,

HR(ψME) = min
ψ

{
H(ψ) = ∑

m
(〈hR(ψ)〉+m + 〈hR(ψ)〉−m) : : |

∀m : 〈ψ〉±m = E±m and c〈μψ〉±m = F±m
}
. (168)

This gives the closure function,

ψME(Ω ,ν)=∑
m

1[ν
m−1

2
;ν

m+1
2
[
2hν3

c2

[
exp(

hν
k

(α+
m (1+β +

m μ+)+α−m (1+β−m μ−))−1
]−1

(169)
where α±m ,β±m are Lagrange multipliers, that are defined to reproduce the moments.

6.2 Inversion of the System

The next step is to express the Lagrange multipliers α±m ,β±m as functions of E±R,m,
F±R,m and to substitute

P±R,m ≈ 〈ψME(α±m ,β±m )〉±m = 〈ψME(E±R,m,F±R,m)〉±m . (170)

Hence we obtain a system for E±R,m and F±R,m.
For the grey half space model [19], the Lagrange multipliers as functions of the

moments can be computed explicitly. However, with the introduction of multigroup
variables this is not the case anymore. Integrations require the knowledge of the
following function,

Ξ(η) =
η∫

0

ξ 3[exp(ξ )−1]−1dξ . (171)

For example,

E+
m =

1
c

∫ 1

0

∫ ν
m+ 1

2

ν
m− 1

2

ψME dνdμ

=
∫ 1

0

2k4

h3c3 (α+
m (1 + β +

m μ+))−1(Ξ(ν ′
m+ 1

2
)−Ξ(ν ′

m− 1
2
))dμ (172)
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with ν ′ = hν
k α+(1 + β +μ+). Unfortunately, except for η = 0 and η = +∞ there is

no analytic expression of Ξ . A numerical calculation would be too expensive since
we have to be very accurate. Therefore, in [83] an approximation was introduced,
which we can also be used here,

Ξ(η)
C∞ + exp(−C∗η)
imax

∑
i=0

Ciη i (173)

The constants Ci are chosen so that the approximation has a very good behaviour in
the vicinity of η = 0. For our applications, taking imax = 5 is sufficient.

Once this approximation is made, it is possible to integrate and hence to compute
the Lagrange multipliers of the minimization problem as functions of the moments.
Then, we are able to compute the radiative pressures as functions of the radiative
energies and fluxes. Moreover, we can show that we can write the pressures in
Eddington form, P±R = D±R E±R , where

D±m =
(1− χ±m )

2
: Id +

(3χ±m −1)
2

:
F±m ⊗F±m∥∥F±m

∥∥2 . (174)

The scalars χ±m are called Eddington factors.

6.3 Properties

The multigroup half space model keeps the interesting properties of the other mo-
ment models closed by entropy minimization, that is to say

• The main physical properties remain: conservation of the total energy and dissi-
pation of the total entropy. Moreover, the addition of multigroup allows to have
a better balanced-energy in the case of strongly frequency-dependant problems.

• The model naturally limits the flux. This property can be expressed as follows:

∀m, :
F±m
E±m

< 1 (175)

This means that the photons cannot travel faster than the speed of the light. We
note that this important property is often not satisfied by macroscopic models.

• For 1D problems, it is very easy to make a simple numerical scheme that can
efficiently solve every possible angular configuration. This is done only by using
upwind schemes (see [19]). We chose to develop only a four-moments model to
obtain a simple and very competitive model. However, in some situations one
might need more moments to capture the physical solution [78].

• The cost of the method is low and can be lowered to be less than the number of
groups times the cost of the half space model by doing a pressure precalculation.
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These properties are the most important ones but it is to note that the multigroup
half space model keeps all the properties (and limitations) of both the half space [19]
and multigroup full space [83] models.

7 Numerical Comparisons

7.1 Numerical Results

The approximations presented above have different mathematical structures. The
Discrete Ordinates, Spherical Harmonics and partial PN equations are linear first
order partial differential equations. The minimum entropy and the partial moment
entropy system are nonlinear hyperbolic first order partial differential equations. On
the other hand the diffusion and flux-limited diffusion equations are parabolic equa-
tions, whereas the SPN equations are elliptic/parabolic. We remark that, although
they are closely related, the minimum entropy moment model and flux-limited dif-
fusion with the same Eddington factor are not completely equivalent, but can in fact
have very different solutions. For example, the solutions for the minimum entropy
system can have shocks whereas this is impossible for flux-limited diffusion.

In the following Figures we show some numerical comparisons of the different
models. The abbreviations in the legends mean

• S40/Transport: Discrete Ordinates Solution with 40 directions
• P1: P1 approximation with Marshak boundary conditions
• SP1: SP1/Diffusion approximation with Marshak boundary condition
• FLD: flux-limited diffusion with minimum entropy Eddington factor and

Marshak boundary conditions
• HSP1: half P1 approximation
• HSM1: half moment entropy approximation
• Quarter Space: quarter moment entropy approximation

The transport solution has been obtained with a direct discretization as described
above. The parabolic equations SP1 and FLD have been discretized with a stan-
dard finite difference scheme. For the balance laws P1, HSP1, HSM1 and Quarter
Space we used kinetic schemes based on the distribution function from the moment
closure. All of the latter systems have eigenvalues in modulus less than the speed
of light. Thus, similar CFL conditions hold. To be valid in the diffusive limit, the
kinetic schemes can be modified to become asymptotic preserving, cf. [19] for a
simple analysis in 1D.

7.2 Grey Transport

First, we investigate the transport equation (with fixed temperature) without
frequency dependence. In Fig. 9 we consider a given temperature profile in the unit
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Fig. 9 Steady radiative energy for a fixed temperature profile T (x) = 1000+800x in the interval
[0,1], κ = 1, σ = 0.1

interval [0,1], T (x) = 1000 + 800x. This temperature enters into the Planck source
term 〈B〉 via Stefan–Boltzmann’s law

〈B〉(T ) = σSBT 4. (176)

At the boundary we prescribe black body radiation at the corresponding temperature
as ingoing radiation. In Fig. 9 we see that the high order Discrete Ordinates solution
(considered as benchmark result) and the half moment approximations agree very
well, whereas P1, SP1 and flux-limited diffusion differ significantly.

This becomes more striking in the 2D example in Fig. 10. The P1 and SP1 ap-
proximations are unable to capture the simple anisotropy in this test case, whereas
the quarter moment model and the solution of the full equations agree very well.

7.3 Grey Cooling

Here we apply the above methods to a cooling problem. We use an initial tempera-
ture of 1,000 K and an outside temperature of 300 K. The parameters a, ε , κ are set
equal to 1. α and the reflectivity are chosen equal to 0. k is chosen equal to 1 and 0.1,
i.e. we consider two situations where heat conduction and radiation are dominating,
respectively. u is chosen equal to zero. The gridsize is Δx = 0.01, Δ t = 10−4. For
the radiative transfer solution a Gaussian quadrature with 64 points is used for the
angular discretization. We use the above first order finite difference discretization



Radiative Heat Transfer and Applications for Glass Production Processes 121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

16
x 104

x

 1
/4

π 
∫ I

 d
Ω

 

κ=0.01, σ=0.1

Transport
Quarter Space
SP3
P1

Fig. 10 Steady radiative energy for a fixed temperature profile T (x) = 1000+400(x+y) in [0,1]2,
κ = 0.01, σ = 0.1. Cut along the diagonal
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Fig. 11 Temperatures at time t = 0.01 with k = 1

in space and a Newton iteration to obtain an approximate solution of the nonlin-
ear equations (153–156). The calculated temperatures are shown in Figs. 11 and 13.
The mean intensities, i.e. E+ + E− in the half moment case and < μI > for the ra-
diative transfer solutions, are shown in Figs. 12 and 14. The results obtained with
the half space moment method, the P1 approximation, the SP3 approximation [47]
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Fig. 12 Mean intensity at time t = 0.01 with k = 1
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Fig. 13 Temperatures at time t = 0.01 with k = 0.1

and the solution of the full transport equation are compared. We note that the usual
Rosseland or diffusion approximation [45] gives in all cases results which are far
less accurate than the solutions considered here. As can be seen in the figures the
half moment method outperforms the other methods in both cases.
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Fig. 14 Mean intensity at time t = 0.01 with k = 0.1

7.4 Multigroup Transport

First we consider only the equation for the radiative intensity with a fixed matter
temperature profile. We divide the spectrum into four bands [λi− 1

2
,λi+ 1

2
[ (]νi+ 1

2
,

νi− 1
2
] respectively) with piecewise constant κi on [λi− 1

2
,λi+ 1

2
[. We used λ 1

2
= 0 μm,

λ 3
2

= 1.035 μm, λ 5
2

= 2.07 μm, λ 7
2

= 7 μm and λ 9
2

= ∞ and σ = 0.

In Figs. 15–17 we compare the results obtained with the half space moment
model to the solution of the full RHT equations using a source iteration as well
as diffusive P1 and SP3 approximations. For details on these equations we refer the
reader to [47]. The classical Rosseland approximation gives in all cases considered
here far less accurate results.

For the radiative energy

ER =
∫ ∞

0

∫ 1

−1
ψdμdν = ∑

m
(E+

R,m + E−R,m) (177)

we define, in analogy to Stefan’s law, the radiative temperature

TR :=
(

2πER

a

)1/4

. (178)

The parameters corresponding to Fig. 15 are κ1 = 100 m−1, κ2 = 1 m−1, κ3 = 10
m−1, κ4 = ∞ and represent a rather diffusive, optically thick physical regime.
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Fig. 15 Steady radiative temperature for a fixed matter temperature profile, T (x) = 1000+800x,
Tb(0) = 1000, Tb(1) = 1800. Diffusive regime. Four frequency bands
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Fig. 16 Steady radiative temperature for a fixed matter temperature profile, T (x) = 500+1500x,
Tb(0) = 500, Tb(1) = 2000. Transport regime. Four frequency bands

The half space model performs better than the diffusive approximations which are
designed for this physical situation. The differences become more striking in Fig. 16
where we chose a rather opposite physical regime with large photon mean free path,
κ1 = 0.1 m−1, κ2 = 0.01 m−1, κ3 = 1 m−1, κ4 = ∞. We chose the same absorp-
tion coefficients in Fig. 17. However, while in the first two cases the boundary
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Fig. 17 Steady radiative temperature for a fixed matter temperature profile, T (x) = 500, Tb(0) =
1500, Tb(1) = 2000. Transport regime. Four frequency bands

temperature agreed with the interior matter temperature we chose here a much
higher boundary temperature which corresponds to heat flux entering the medium.
The half space model is far more accurate than the diffusive approximations.

7.5 Multigroup Cooling

In our next test case we consider the transport equation coupled to the heat equation.
We use k = h = 1, α = 0 and ρ = 0. The outside temperature is Tb = 1,000 at the
left and Tb = 1,800 at the right boundary. The scattering and absorption coefficients
are chosen as in our second and third uncoupled test cases. In Fig. 18 we show the
steady radiative temperature. Again, the new half space model agrees best with the
full transport solution.

7.6 Adaptive methods for the Simulation of 2-d and 3-d Cooling
Processes

The application that we study here is the cooling of a glass cube representing a typ-
ical fabrication step in glass manufacturing. We consider clean glass, which means
that the treatment of scattering can be omitted. The frequencies are approximated
by an eight-band model. The values used are given in Table 2. Furthermore, we set

k = 1 , h = 0.001 , Tb = 300
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Fig. 18 Steady radiative temperature for the coupled equations, Tb(0) = 1,000, Tb(1) = 1,800.
Transport regime. Four frequency bands

and start with a uniform temperature distribution T0(x)=1,000. The time integration
is stopped at t =0.001.

We use a space-time adaptive method described in detail in [38]. We validate
the SPN-solutions with numerical solutions to the full RHTE. The full RHTE is
solved by a diamond differencing discretization coupled with a discrete ordinate
method which uses 60 directions [10, 76]. This is for the present situation sufficient
to obtain an accurate solution for the transport problem provided the spatial grid is
chosen fine enough.

7.6.1 Two-Dimensional Glass Cooling

We consider an infinitely long square glass block which allows us to use a two-
dimensional approximation on the scaled square domain Ω =[0,1]2.

In Fig. 19, we show temperature distributions at the final time te =0.001 obtained
for the SP3-approximation. As expected, the strongest cooling takes place in the cor-
ners of the computational domain. The meshes automatically chosen by our adaptive
approach are highly refined at the boundary caused by the steep temperature gradi-
ents there. In this case, a stable uniform discretization of the two-dimensional RHTE
requires the solution of a linear system with more than 4.8 million unknowns in each
time step, whereas the dimension of the linear algebraic systems for the adaptive
SP3-approximation is not greater than 272,000.

In Fig. 20 the SPN-solutions are compared to the full RHTE- and Rosseland
approximation. In particular, they reconstruct the temperature near the boundary
much more accurately than the Rosseland approximation which is often used in
engineering practice.
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Fig. 19 Two-dimensional temperature distributions and spatial meshes on Ω = [0,1]2 resulting
from SP3-approximations at te = 0.001. The temperature axis ranges from 300 to 1,000. Strong
refinement takes place in the boundary layer due to the large temperature gradients there
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Fig. 20 Comparison of two-dimensional temperature distributions at te = 0.001 along the line
y = 0.5 obtained from different radiation models. The SP3-solution matches very well with the
RHTE solution inside the glass cube. Some differences are visible in the boundary region. Both
SPN -approximations give much more accurate results than the Rosseland approximation

The time steps in the adaptive procedure increase rapidly by two orders of mag-
nitude reflecting the ongoing diffusive smoothing in the boundary layer. Altogether
9 and 24 time steps are needed. In contrast, a uniform time discretization yielding
the same accuracy, requires 100 steps.
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Concerning the computation times the parameters discussed above lead to the
following results: Using the method described above without adaptivity in space and
time for Rosseland, SP1 and SP3 the computational effort is approximately doubled

484 704.5 925

Fig. 21 Three-dimensional temperature distribution and adaptive spatial mesh on Ω = [0,1]3

resulting from the SP3-approximation at te =0.001. We removed one small cube to present details
from inside the glass cube. Refinement takes place in the boundary layer due to the large tempera-
ture gradients there. The adaptive mesh consists of 82,705 grid points
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Fig. 22 Comparison of three-dimensional temperature distributions at te = 0.001 along the line
y= z=0.5 obtained from different radiation models. The SP3-solution matches very well with the
RHTE solution, whereas the Rosseland approximation gives quite poor results

from Rosseland to SP1 and from SP1 to SP3. The solution of the RHT problem using
the multigrid method described in [76] takes again approximately twice as much
time as the SP3 solution for the same accuracy. Adaptivity in space yields a factor
of 3–5 in computation time for the present situation and adaptivity in time yields a
factor of 10–50.
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7.6.2 Three-Dimensional Glass Cooling

We consider a glass block which is represented by a scaled cube Ω =[0,1]3.
Figure 21 displays the SP3-solution and the adaptive three-dimensional grid

chosen by our method for TOLx=0.01. As already observed in the two-dimensional
case, the SPN-solutions approximate the temperature computed from the full RHTE
very well. In contrast to the Rosseland approximation, they exhibit physically cor-
rect boundary layers as can be seen from Fig. 22. To accurately capture these
boundary layers, the use of local refinement is essential.

The mesh shown in Fig. 21 consists of 82,705 nodes, leading to a linear system
of order 1,405,985. A uniform method requires approximately 250,000 grid points
to reach a comparable solution quality. The solution of the full RHTE is done on a
100× 100× 100-grid, yielding a linear system with 480 million unknowns which
has to be solved in each time step. The comparison of the computation times yields
similiar results as in 2-D.

To conclude, these investigations show that the SPN-equations and moment meth-
ods described above are a relatively inexpensive way to improve the accuracy of
classical diffusion models. Compared to the solution of full radiative heat transfer
equations, the complexity and computer time are considerably reduced. Further re-
duction can be achieved by fully adaptive discretization methods steered by robust
a posteriori error estimators.
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17. Dubroca, B.: Thèse d’Etat, Dept. of Mathematics, University of Bordeaux (2000)
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88. Viskanta, R., Mengüc, M.P.: Radiation heat transfer in combustion systems. Prog. Energy
Combust. Sci. 13, 97–160 (1987)



http://www.springer.com/978-3-642-15966-4


	Radiative Heat Transfer and Applications for Glass Production Processes
	1 Introduction
	2 Radiative Heat Transfer Equations for Glass
	2.1 Fundamental Quantities
	2.1.1 Intensity
	2.1.2 Energy Flux
	2.1.3 Heat Flux
	2.1.4 Radiation Pressure

	2.2 Blackbody Radiation
	2.3 The Transfer Equation
	2.3.1 Absorption
	2.3.2 Scattering
	2.3.3 Emission
	2.3.4 Overall Balance

	2.4 Overall Energy Conservation
	2.5 Boundary Conditions
	2.6 Summary

	3 Direct Numerical Methods
	3.1 Ordinates and Space Discretizations
	3.2 Linear System Formulation
	3.3 Preconditioning Techniques
	3.3.1 Source Iteration
	3.3.2 Diffusion Synthetic Acceleration
	3.3.3 Krylov Subspace Methods

	3.4 A Fast Multilevel Preconditioner
	3.5 Numerical Results
	3.5.1 Radiative Transfer Equation in 1D Slab Geometry
	3.5.2 Radiative Transfer Equation with Thermal Source
	3.5.3 Radiative Transfer Equation with Discontinuous Variables
	3.5.4 Radiative Transfer Equation with Frequency Dependence


	4 Higher-Order Diffusion Approximations
	4.1 Asymptotic Analysis and Derivation of the SPN Approximations
	4.1.1  SP1 and Diffusion Approximations
	4.1.2 SP2 Approximation
	4.1.3 SP3 Approximation

	4.2 Boundary Conditions for SPN Approximations

	5 Moment Models
	5.1 Spherical Harmonics
	5.2 Minimum Entropy Closure
	5.3 Flux-Limited Diffusion and Entropy Minimization
	5.4 Partial Moments
	5.5 Partial Moment PN Closure
	5.6 Partial Moment Entropy Closure

	6 Frequency-Averaged Moment Equations
	6.1 Entropy Minimization
	6.2 Inversion of the System
	6.3 Properties

	7 Numerical Comparisons
	7.1 Numerical Results
	7.2 Grey Transport
	7.3 Grey Cooling
	7.4 Multigroup Transport
	7.5 Multigroup Cooling
	7.6 Adaptive methods for the Simulation of 2-d and 3-d Cooling Processes
	7.6.1 Two-Dimensional Glass Cooling 
	7.6.2 Three-Dimensional Glass Cooling 


	References


