
2 Eta Products

2.1 Level, Weight, Nominator and Denominator of an
Eta Product

By an eta product we understand any finite product of functions

f(z) =
∏

m

η(mz)am

where m runs through a finite set of positive integers and the exponents
am may take any values from Z, positive or negative or 0. (Of course, an
exponent 0 contributes a trivial factor 1 to the product, and therefore we
may as well assume that am �= 0 for all m.) Since the product is finite, the
lowest common multiple N = lcm{m} exists, and every m divides N . We
write

f(z) =
∏

m|N
η(mz)am , (2.1)

and we call f an eta product of level N . Here, formally, m runs through
all positive divisors of the positive integer N , and some of the exponents am

might be 0. We will use this notation also in cases when N is bigger than
lcm{m}; then N is a multiple of the level of the eta product.

Some authors use the term eta quotient for functions as in (2.1), and they
reserve the term eta product for the case when am ≥ 0 for all m.

Often we will use the notation

[1a1 , 2a2 , 3a3 , . . .]

as an abbreviation for the eta product η(z)a1η(2z)a2η(3z)a3 . . . . This nota-
tion is adopted from [42]. The term in square brackets will often be written
as a fraction with positive exponents in its numerator and denominator.
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An eta product (2.1) transforms like a modular form of weight

k =
1
2

∑

m

am

with some multiplier system on the congruence group Γ0(N). This means
that for every L =

(
a b
c d

)
∈ Γ0(N) we have

f(Lz) = f

(
az + b

cz + d

)
= vf (L)(cz + d)kf(z)

where vf (L) is some 24th root of unity which can be computed from the
multiplier system vη of the eta function. We will rarely need to know the
values vf (L) of the multiplier system of f explicitly. We have

vf (L) = vf

(
a b
c d

)
=

∏

m|N

(
vη

(
a mb

c/m d

))am

where the values of vη are given explicitly in Theorem 1.7. Highly important

for us, however, is the value vf (T ) for the translation T =
(

1 1
0 1

)
. We

write
1
24

∑

m|N
mam =

s

t
(2.2)

in lowest terms, i.e., with gcd(s, t) = 1. Then it is a trivial consequence from
η(z + 1) = e

(
1
24

)
η(z) that we have vf (T ) = e

(
s
t

)
,

f(Tz) = f(z + 1) = e
(s

t

)
f(z).

It follows that f has a Fourier expansion of the form

f(z) =
∑

n≡s( mod t), n≥s

cne
(nz

t

)
(2.3)

with coefficients cn ∈ Z, cs = 1. In particular, s
t is the order of f at the

cusp ∞. We call s the numerator and t the denominator of the eta prod-
uct (2.1). The denominator t is a divisor of 24.

An explicit formula for vf (L) is given in [105], Theorem 1.64 in the case when
the weight k and the number (2.2) are integers (whence t = 1) and when also
1
24

∑
m|N maN/m is an integer; in this case vf (L) is a function of d only.

For a Fourier series (2.3), the sign transform is

f
(
z + 1

2

)
= e

(
s
2t

) ∑

n≡s( mod t), n≥s

(−1)(n−s)/tcne
(nz

t

)
.
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Modifying our concept from Sect. 1.2, we will also call the series for e(− s
2t ) ×

f(z + 1
2 ) the sign transform of the series for f(z).

An eta product f of level N as in (2.1) will be called old if there is an integer
d ≥ 1, a proper divisor N1 of N and an eta product g of level N1 such that
f(z) = g(dz). Otherwise f will be called a new eta product. Since f and g
have identical Fourier coefficients, it often suffices to study new eta products.
Nevertheless, sometimes it is advantageous to consider old ones. For example,
g(z) = η(z)η(2z) and f(z) = η(8z)η(16z) both are old eta products of level
16, while g is new of level 2. But f has period 1, and hence its Fourier
expansion is a power series in the variable q = e(z), which might be nicer
than the expansion of g with fractional powers of q.—We emphasize that our
concept of a new eta product has little to do with the concept of a newform in
the theory of Hecke operators as explained in Sect. 1.7. Only occasionally it
will happen that a new eta product is also a Hecke eigenform. (Incidentally,
η(z)η(2z) is such an example; see Sect. 10.1.)

2.2 Eta Products on the Fricke Group

For the moment, let us put fm(z) = η(mz), where m is a positive integer.
From η(−1/z) =

√
−iz η(z) it follows that

fm(WN z) = fm

(
− 1

Nz

)
= η

(
− 1

(N/m)z

)
=

√
−(iN/m)z η

(
N

m
z

)
.

Thus, for an eta product f of level N as in (2.1), we obtain

f(WN z) =
∏

m|N

(
(−i(N/m)z)1/2η

(
N

m
z

))am

=
∏

m|N

(
(−imz)1/2η(mz)

)aN/m

= (−iz)k

( ∏

m|N
maN/m

)1/2 ∏

m|N
η(mz)aN/m .

The eta product f transforms like a modular form of weight k for the Fricke
group Γ∗(N) if and only if

f(WNz) =
(

−i
√

Nz
)k

f(z).

We see that this holds if and only if the condition

aN/m = am for all m|N (2.4)

is satisfied. An eta product with this property will be called an eta product
on the Fricke group of level N .
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We observe that an eta product of level N is determined by its system of τ(N)
exponents am, whereas roughly half of these parameters—exactly �τ(N)/2�
of them—suffice to determine an eta product on the Fricke group. Here,
τ(N) = σ0(N) is the number of positive divisors of N , as introduced in
Sect. 1.5.

2.3 Expansion and Order at Cusps

The product for η(z) tells us that this function is nowhere 0. Therefore, eta
products (2.1) are holomorphic on the upper half plane regardless of their
system of exponents am. However, we will restrict our study to eta products
which are holomorphic at all cusps, too. In particular, the order at the cusp
∞ should be non-negative, i.e.,

s

t
≥ 0.

We need conditions for an eta product to be holomorphic at the other cusps
r ∈ Q. For this purpose we give a formula for the order of functions η(mz)
at an arbitrary cusp and, somewhat more general, for the Fourier expansion
of η(mz) at cusps. This expansion will eventually be useful when we want
to decide whether a linear combination of eta products is a cusp form, where
the eta products are holomorphic at all cusps, but not cusp forms themselves.

Proposition 2.1 Let fm(z) = η(mz) with m ∈ N, and let r = − d
c ∈ Q be

a reduced fraction with c �= 0. Let a, b be chosen such that A =
(

a b
c d

)
∈

SL2(Z). Then we have:

(1) The expansion of fm at the cusp r is

fm(A−1z) = vη(L)
(

gcd(c, m)
m

(−cz + a)
)1/2

×
∞∑

n=1

(
12
n

)
e

(
n2

24m

(
(gcd(c, m))2z + ν gcd(c, m)

) )

where L =
(

x ∗
u ∗

)
∈ SL2(Z), x = md

gcd(c,m) , u = − c
gcd(c,m) , and ν is some

integer.

(2) The order of fm at the cusp r is

ord(fm, r) =
1

24m
(gcd(c, m))2 .
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Proof. Since c, d are relatively prime, we can choose a, b ∈ Z such that
A =

(
a b
c d

)
∈ SL2(Z). We get A−1(∞) =

(
d −b

−c a

)
(∞) = − d

c = r and

fm(A−1z) = η

(
mdz − mb

−cz + d

)
= η(αz)

where α =
(
md −mb

−c a

)
, det(α) = m. The expansion of fm at r is given by

the expansion of fm(A−1z) at ∞. In order to find it, we need some matrix
L =

(
x y
u v

)
∈ SL2(Z) such that the lower left entry in L−1α vanishes. We

have

L−1α =
(

v −y
−u x

) (
md −mb

−c a

)
=

(
∗ ∗

−mdu − cx ∗

)
.

Therefore we need that mdu + cx = 0. Thus for the first column of L we can
choose the relatively prime integers

x =
md

gcd(c, md)
=

md

g
, u = − c

g
, with g = gcd(c, m).

From det(L−1α) = det(α) = m we infer that

L−1α =
(

∗ ∗
0 m/g

)
=

(
g ν
0 m/g

)

with some ν ∈ Z. (Observe that we can compute ν = −mbv − ya explicitly,
depending on m and r.) Now we get

fm(A−1z) = η(αz) = η(LL−1αz)

= vη(L)
(

u
gz + ν

m/g
+ v

)1/2

η(L−1αz)

= vη(L)
(

−cz − cν/g

m/g
+ v

)1/2

η

(
gz + ν

m/g

)

= vη(L)
(

g

m

(
−cz − cν − vm

g

))1/2

η

(
g2

m
z +

νg

m

)

= vη(L)
(

g

m
(−cz + a)

)1/2

η

(
g2

m
z +

νg

m

)

= vη(L)
(

g

m
(−cz + a)

)1/2 ∞∑

n=1

(
12
n

)
e

(
n2

24m
(g2z + νg)

)
.

This proves our first assertion. The first non-vanishing term in (−cz+a)−1/2 ×
fm(A−1z) is a constant multiple of e(g2z/24m). Thus, by our definition of
the order, we obtain ord(fm, r) = g2/24m, which is the second assertion. �

We note an immediate consequence of the second assertion:
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Corollary 2.2 Let f be an eta product as in (2.1), and let r = − d
c ∈ Q,

gcd(c, d) = 1. Then the order of f at the cusp r is

ord(f, r) =
1
24

∑

m|N

(gcd(c, m))2

m
am.

An eta product f will be called a holomorphic eta product if its orders at all
cusps are non-negative,

ord(f, r) ≥ 0 for all r ∈ Q ∪ ∞.

Holomorphic eta products (2.1) are (entire) modular forms for Γ0(N). They
are cusp forms if and only if all the orders are positive,

ord(f, r) > 0 for all r ∈ Q ∪ ∞.

In this case we will call them cuspidal eta products, and non-cuspidal other-
wise.

2.4 Conditions for Holomorphic Eta Products

From Corollary 2.2 we get conditions for an eta product to be holomorphic
or a cusp form. These are conditions for infinitely many cusps. Of course,
it suffices to check these conditions for a finite system of representatives of
inequivalent cusps of Γ0(N), i.e., for the orbits of this group on Q ∪ ∞. The
number of inequivalent cusps of Γ0(N) is

∑
m|N ϕ(gcd(m, N/m)), where ϕ is

the Euler function; this is known from several textbooks; see [125], p. 102,
for example. A set of representatives of inequivalent cusps is given in [92],
formula (2). Using this, it would be possible to characterize holomorphic and
cuspidal eta products by systems of finitely many inequalities. In fact, one
can find such a characterization using nothing else but Corollary 2.2:

We observe that the order of f at a cusp does only depend on the denominator
c of that cusp. If m is any divisor of N then for all c ∈ Z we have

gcd(c, m) = gcd(gcd(c, N), m),

and gcd(c, N) is a divisor of N . Therefore the conditions ord(f, r) ≥ 0 are
satisfied for all r ∈ Q ∪ ∞ if and only if

ord(f, 1/c) ≥ 0 for all c|N,

and similarly for strict inequalities. This proves the following result:
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Corollary 2.3 An eta product f as in (2.1) is holomorphic if and only if the
inequalities

∑

m|N

(gcd(c, m))2

m
am ≥ 0

hold for all positive divisors c of N . It is a cuspidal eta product if and only
if all these inequalities hold strictly.

2.5 The Cones and Simplices of Holomorphic Eta Prod-
ucts

According to Corollary 2.3, we introduce rational numbers αcm, a matrix A
and a column vector X by

αcm =
(gcd(c, m))2

m
, A = A(N) = (αcm)c, m, X = (am)m ∈ R

τ(N),

(2.5)
where the positive divisors m, c of N are taken in some arbitrary, but fixed or-
der. (Usually the divisors will be in their natural order.) Then the condition
for holomorphic eta products of level N reads

A(N) · X ≥ 0, (2.6)

and cuspidal eta products are characterized by A(N) X > 0. The system of
linear inequalities in (2.6) defines an intersection of τ(N) closed halfspaces
in R

τ(N) whose bounding hyperplanes all pass through the origin. So this
system defines a closed simplicial cone with its vertex at the origin. We
denote this cone by K(N), i.e.

K(N) = {X ∈ R
τ(N) | A(N)X ≥ 0}. (2.7)

We can reformulate Corollary 2.3 as follows:

Corollary 2.4 An eta product (2.1) is holomorphic if and only if its vector
of exponents X = (am)m is a lattice point in the cone K(N). It is cuspidal
if and only if X is an interior point of K(N).
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