
Chapter 2
Statistical and Computational Studies
on Alternative Splicing

Liang Chen

Abstract The accumulating genome sequences and other high-throughput data
have shed light on the extent and importance of alternative splicing in functional reg-
ulation. Alternative splicing dramatically increases the transcriptome and proteome
diversity of higher organisms by producing multiple splice variants from different
combinations of exons. It has an important role in many biological processes includ-
ing nervous system development and programmed cell death. Many human diseases
including cancer arise from defects in alternative splicing and its regulation. This
chapter reviews statistical and computational methods on genome-wide alternative
splicing studies.

2.1 Introduction

Alternative pre-mRNA splicing is a prevalent post-transcriptional gene regula-
tion mechanism which has been estimated to occur in more than 90% of human
genes [1,2]. During alternative splicing, multiple transcript isoforms produced from
a single gene can lead to protein isoforms with distinct functions, which greatly
expands proteomic diversity in higher eukaryotes. The alternative splicing of multi-
ple pre-mRNAs is tightly regulated and coordinated, and is an essential component
for many biological processes including nervous system development and pro-
grammed cell death. The phenomenon of alternative splicing was first discovered in
concept in 1978 [3], and was then verified experimentally in 1987 [4]. Alternative
splicing was previously thought as a relatively uncommon form of gene regulation.
With the accumulation of Expressed Sequence Tags (EST) and mRNA data sets,
genome-wide studies on alternative splicing demonstrated that as many as 60%
of the human genes were alternatively spliced [5–8]. The percentage was further
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increased to 90% which was estimated by the most recent high-throughput sequenc-
ing technology [1, 2]. In addition, there is striking variation in alternative splicing
across different tissues or different developmental stages [5]. These results indicate
that alternative splicing plays an important role in increasing functional complexity
in higher organisms rather than the exception in gene expression. With the availabil-
ity of multiple genome sequences and high-throughput techniques, it is feasible to
study alternative splicing on a genomic scale. Here we present an overview of the
statistical and computational studies on alternative splicing, and important findings
and challenges are highlighted and discussed.

2.2 Types of Alternative Splicing

Alternative splicing events can be classified into cassette exon, mutually exclusive
exons, retained intron, alternative 50 splice sites, alternative 30 splice sites, alterna-
tive promoters, and alternative poly-A sites (Fig. 2.1). The most common type of
alternative splicing is including or skipping a cassette exon in the mature mRNA.
A pair of exons can be mutually exclusively spliced with only one exon included in
the mature mRNA but not both. The excision of an intron can be suppressed, which
results in the retention of the entire intron. And exons can be extended or short-
ened through the use of alternative 50 or 30 splice sites. Strictly speaking, alternative
promoters and alternative poly-A sites are alternative selection of transcription start
sites or poly-A sites and are not due to alternative splicing per se. Among these

Cassette exon Mutually exclusive exons

Retained intron

Alternative 5’splice sites Alternative 3’splice sites

Alternative promoters Alternative poly-A sites

Fig. 2.1 Types of alternative splicing events
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alternative splicing events, intron retention is generally the most difficult type to
detect because it is hard to distinguish from experimental artifacts. For instance,
incompletely spliced transcripts contain intron fragments, which could be mistak-
enly considered as intron retention. Many genes have multiple alternative splicing
events with complex combinations of exons, producing a family of diverse transcript
isoforms. For example, in Drosophila melanogaster, gene Dscam can potentially
produce 38,016 different mature mRNAs by different combinations of 95 cassette
exons [9–11].

2.3 Global Identification of Alternative Splicing Events

2.3.1 Identifying Alternative Splicing by Sequence Alignment

One way to identify alternative splicing events is based on the alignment of ESTs
with genomic and mRNA sequences. EST sequences are short fragments of tran-
scribed cDNA sequences, usually 300–400 base pair (bp). They are produced by
shotgun sequencing of one or both strands of a cloned mRNA. About 61 million
ESTs have been deposited in the public dbEST database (dated as April, 2009, all
species). A number of programs have been developed to align ESTs against the
complete genome sequences efficiently. For example, BLAT is a “BLAST-Like
Alignment Tool” which uses a hashing and indexing algorithm [12]. It is about
500 times faster than BLAST for mRNA/DNA alignments. Given the alignments of
ESTs and genomic sequences, we can mark the locations of exons and introns. The
comparisons of exon-intron structures further distinguish the alternative splicing
events. Sometimes, an EST can be mapped to multiple genomic positions with high
alignment scores. These genome alignments can be further corrected by considering
consensus splice sites. For example, alignment tools SIM4 [13], GMAP [14], and
SPA [15] consider GT: : :AG consensus splice sites to generate valid alignments.
Although the sequence alignment approaches have made much progress in alter-
native splicing detection, challenges remain in dealing with non-canonical splice
junctions, detection of small exons, high EST sequencing errors, bias inherent to
EST preparation, and so on. Other limitations include the insufficient sequence cov-
erage for some transcripts and the biased sampling to a limited number of cell and
tissue types.

After the identification of individual alternative splicing events, a more compli-
cated task is the construction of full-length alternatively spliced transcripts. “Splice
graph” has been introduced to facilitate the construction of full-length transcript
isoforms [16–19]. The splice graph represents a gene as a directed acyclic graph in
which exons are represented as vertices and each splice junction is represented as
a directed edge between two exons (see example in Fig. 2.2). Splice variants can
be inferred by graph algorithms to traverse the graph from a start vertex with no
incoming arcs to an end vertex with no outgoing arcs. A large number of potential
splice variants can be enumerated from a splice graph, but many of them may be
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Fig. 2.2 Splice graph constructed from EST alignments to reference genome. The underlying true
gene structure and the observed evidence alignments are also shown

artificial constructs without biological relevance because exons are not randomly
joined to produce all possible transcript isoforms. Several methods have been pro-
posed to select or prioritize candidate transcripts which are most likely to exist
given the sequence observations. For example, AIR is an integrated software sys-
tem for gene and alternative splicing annotation [16]. It assigns different scores to
different splicing variants based on its support by evidence such as mapping quality,
the length of alignment, accuracy of splice signals, and the level of fragmentation
of evidence alignments. High-scoring splice variants were further selected for the
annotation. ECgene algorithm assesses each possible splice variant based on the
sequence quality and the number of cDNA alignments [18]. Xing et al. applied
the Expectation-Maximization algorithm to identify the most likely traversals based
on the observed number of alignments along the gene [19]. The performance of
these methods is limited by the contamination of ESTs with genomic fragments,
alignment errors, and so on.

2.3.2 Identifying Alternative Splicing by Sequence Content
and Conservation

Because mRNA alternative splicing is a highly regulated process, comparative
genomics can provide us clues about whether there is an alternative exon in sites
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with high selection pressure. Alternative methods have been proposed to predict
alternatively spliced exons based on machine learning algorithms incorporating
features such as sequence content and sequence conservation. Leparc et al. used
splice-site sequence Markov models and a Bayesian classifier to identify cassette
exons from intron sequences [20]. With additional information from sequence con-
servation and phosphorylation or protein-binding motifs, they successfully predicted
and experimentally confirmed 26 novel human cassette exons which are involved in
intracellular signaling. Sorek et al. assembled 243 alternative and 1,753 constitutive
exons that are conserved between human and mouse [21, 22]. They identified sev-
eral features differentiating between alternatively spliced and constitutively spliced
exons. Specifically, alternative exons tend to be smaller, have length that is a mul-
tiple of 3 (to preserve the protein reading frame), have higher sequence identity
between human and mouse sequences, and have higher conservation in the flanking
intronic regions. The most important features are the ones based on the sequence
similarity between human and mouse. Yeo et al. used sequence features to distin-
guish alternative splicing events conserved in human and mouse [23]. Chen et al.
used the Random Forests algorithm to predict skipped exons using features like
position-specific conservation scores [24]. The training data was based on the high-
quality annotation of the Encyclopedia of DNA Elements (ENCODE) regions. The
pilot project of the ENCODE has rigorously identified functional elements in the 1%
region of the human genome. The GENCODE consortium of the ENCODE project
has manually prepared a high-quality annotation for transcripts in the ENCODE
regions. Chen et al. assembled the lists of skipped exons, constitutive exons and
introns as training sets. Using the Random Forest algorithm [25], they were able
to identify skipped exons based on the sequence content and conservation fea-
tures [24]. The Random Forests consist of many decision trees and each tree is
constructed by a bootstrap sample from the original data. A decision tree can be
treated as a set of Boolean functions of features and these conjunctions of features
partition training samples into groups with homogenous class labels. The output of
the Random Forests for each test sample is the class with majority votes from these
trees. The Random Forests generates an internal unbiased estimate of classification
error based on the out-of-bag data during the Forests building process. There is no
need for cross-validation or a separate test data.

As shown in Fig. 2.3, there are dramatic differences in the conservation scores of
the flanking regions of alternative exons and constitutive exons. Alternative exons
have higher conservation level in the flanking intronic regions compared to consti-
tutive exons. These more conserved regions provide good candidates for functional
regulatory motifs. The enriched sequence motifs in these regions may participate
in the alternative splicing modulation which could be different from the regular
splicing process.

Besides the flanking intronic regions, the exonic regions are also involved in the
splicing regulation. However, the comparative genomics studies on exonic regions
are more complicated, because additional selective pressure is imposed on the cod-
ing sequence in order to preserve the protein sequence. It has been shown that the
evolution rate is lower for exon regions near the intron-exon boundaries than the
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Fig. 2.3 Position-specific conservation for the flanking intronic regions of constitutive exons
(black) and alternative exons (grey) (Adapted from [24]). Y axis is the average conservation score
at each position. The error bar indicates the standard error of the mean. Constitutive exons and
alternative exons were assembled from the high-quality annotation of the ENCODE project. The
conservation score is the PhastCon score from the UCSC Genome Browser (http://genome.ucsc.
edu/)

middle part of exons, by estimating the non-synonymous substitution rate and the
synonymous substitution rate from the alignment of human-mouse sequences [26].
The SNP density is the lowest near the splice sites, which also indicates that exon
regions near the splice sites are under higher selection pressure [27]. These findings
suggest that the exon regions near the junctions are involved in splicing regulation.
Further studies are needed to distinguish the selection pressure on alternative exons,
constitutive exons, and amino acid constrains.

2.3.3 Identify Alternative Splicing by Microarray

Although the sequence alignment and the comparative genomics approaches have
made much progress in the prediction of alternative splicing events, they give us
only a qualitative rather than a quantitative view of alternative splicing. They only
provide evidence about the existence of an alternative splicing event, but cannot give

http://genome.ucsc.edu/
http://genome.ucsc.edu/
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information about its temporal and spatial regulation nor the degree of alternative
splicing.

The highly parallel nature of microarray platforms makes it possible to iden-
tify and quantify all of alternative splicing for a specific tissue, developmental
stage, or disease versus normal conditions of the cell. Traditional microarrays are
spotted with EST-derived cDNAs or 30-clustered oligonucleotide sequences rep-
resenting the total transcript abundance. These microarrays are not suitable for
alternative splicing studies and special probes need to be designed instead. For
example, splice junction arrays bear probes spanning annotated exon-exon junc-
tions for individual splice variant. Johnson et al. designed a set of five Agilent
microarrays containing �125,000 different 36-nucleotide (nt) junction probes to
monitor the exon-exon junctions of 10,000 multi-exon Human RefSeq genes across
52 tissues and cell lines [5]. Boutz et al. used splice junction arrays to monitor
the reprogrammed alternative splicing during neuronal development [28]. Besides
splice junction arrays, alternative arrays uses “exon-centric” probes. For instance,
in the design of Affymetrix exon arrays, gene annotations from databases were
assembled to infer transcript clusters and exon clusters. A transcript cluster roughly
corresponds to a gene. In many cases, an exon cluster represents a true biological
exon and it acts as one probe selection region. In other cases, an exon cluster repre-
sents the union of multiple overlapping exons possibly due to alternative splice sites.
Such exon clusters were further fragmented into multiple probe selection regions
according to the hard edges (e.g., splice sites). Multiple probes were designed for
each probe selection region as a probe set. The Affymetrix human exon array (1.0
ST) contains approximately 1.4 million probe sets interrogating over one million
exon clusters. Analysis of alternative splicing in 16 human tissues with these arrays
identified a large number of tissue-specific exons [29]. Yeo et al. used Affymetrix
exon arrays to identify the differential alternative splicing between human embry-
onic stem cells and neural progenitor cells [30]. More recent microarrays include
both junction probes and exon body probes. Castle et al. designed probes targeting
on exons or junctions to monitor 203,672 exons and 178,351 exon-exon junctions
in 17,939 human genes across 48 diverse human tissues and cell lines [31]. In addi-
tion, tiled oligonucleotide arrays spanning whole chromosomes or genomes provide
comprehensive coverage and avoid the need of prior information about exons. How-
ever, this approach is expensive and needs extremely large number of probes. These
microarray designs are summarized in Fig. 2.4. In principle, all data analysis tools
developed for standard gene microarrays can be used in the analysis of alternative
splicing microarrays. The special challenge is how to distinguish splicing signal
from transcription signal. The methods outlined below present some tools that have
been used on the alternative splicing microarray data analysis.

2.3.3.1 Splicing Index

For the alternative splicing microarray analysis, the most straightforward approach
is the splicing index calculation [32]. In the splicing index approach, exon inclusion
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Splice junction array

Exon tiling array

Exon array with junction
and exon probes

Tiling array

Fig. 2.4 Alternative splicing microarrays. Black dot lines represent junction probes. Black solid
lines represent exon probes. For tiling arrays, probes are designed along the genome disregarding
gene structure (grey lines)

rates under two conditions are compared to identify differential alternative splic-
ing events. Gene-level normalized exon intensity is defined as the ratio of the exon
intensity to the gene intensity. For example, the normalized intensity (NI) for exon
i in experiment j is:

NIij D Eij =Gj (2.1)

where Eij is the estimated intensity level for exon i in experiment j and Gj is
the estimated gene intensity. “Gene intensity” here represents the overall transcript
abundance of a gene which may include a family of transcript isoforms. “Gene
intensity” can be estimated by dynamic weighting of the most informative probes.
It is robust to outliers due to alternative splicing. Thus, the contributions from
alternative exons to “gene intensity” are trivial.

A significant difference in the normalized exon intensity indicates that this exon
has different inclusion or exclusion rates (relative to the gene level) between two
conditions. The splicing index for experiment 1 and experiment 2 is defined as:

Splicing index D log2.NIi1=NIi2/: (2.2)

Therefore, an extreme value of splicing index indicates a differential alternative
splicing event.
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2.3.3.2 ANOSVA

Analysis of splice variation (ANOSVA) uses a statistical testing principle to detect
putative splicing variation from expression data [33]. It is based on a two-way
analysis of variance (ANOVA) model:

yijkl D �C ˛i C ˇj C �ij C error; (2.3)

where yijkl is the observed log intensity of probe k of probe set i (or exon i ), mea-
sured in experiment j of experiment set l ; � is the baseline intensity level for all
probes in all experiments; ˛i is the average probe affinity of probe set i ; ˇj is the
experiment effect; and �ij is the interaction term for probe set i and experiment j .
A large change in splicing will result in a large interaction term �ij . However, due
to the limited number of replicates for exon-array experiments and the resultant lim-
ited statistical power, it is difficult to identify interactions. Meanwhile, a significant
interaction term does not necessarily mean a large change in splicing, because the
unfitness of the single-concentration model without the interaction term may be sim-
ply due to the high noise level. Preliminary evaluation of ANOSVA on exon array
data did not yield good performance (Alternative Transcript Analysis Methods for
Exon Arrays Whitepaper, Affymetrix). Therefore, ANOSVA should be used with
caution.

2.3.3.3 FIRMA

Instead of estimating the interaction term �ij explicitly, FIRMA (Finding isoforms
using robust multichip analysis) [34] frames the problem of detecting alternative
splicing as a problem of outlier detection. In FIRMA, yijk represents log intensity of
probe k of exon i measured in experiment j (signal has been background-corrected
and normalized). It is modeled as:

yijk D cj C pk C error; (2.4)

where cj is the experiment effect and pk is the probe effect. The residual from the
fitted model is:

rijk D yijk � Ocj C Opk: (2.5)

The residual describes the discrepancy of probe intensity in a given experiment from
the expected expression and gives a measure of the hidden interaction term �ij . The
final score statistic is:

Fij D mediank2exon j .rijk=s/: (2.6)

The standard error, s, is calculated by the median absolute deviation (MAD) of the
residuals. Compared with ANOSVA, FIRMA can detect alternative splicing with-
out replicates. And the interaction term is not directly inferred and reflected by a
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robust measure of the residuals instead. FIRMA assumes that the interaction term
has limited effect so that c and p are still well estimated in the model without the
interaction term.

2.3.3.4 DECONV

The above methods target on each individual exon to determine whether it is dif-
ferentially spliced or not. They do not require the whole exon-intron structure of a
gene. A gene may have multiple positions of alternative splicing and the resulted
multiple (>2) splice variants can coexist in the same condition. Another challeng-
ing task is to estimating the relative abundance of each variant in one condition.
Wang et al. developed a gene structure-based splice variant deconvolution method
(DECONV) to estimate the splice variant’s concentration [35]. DECONV assumes
that there is linear relationship between the probe intensity and the target transcript
concentration as proposed by Li and Wong [36]. In the reduced model of Li and
Wong,

yij D PMij �MMij D aixj C "ij ; (2.7)

where yij is the intensity level for probe i in experiment j , ai is the probe affinity,
and xj is the target transcript concentration. DECONV extends the model for
multiple splice variants case:

Y D A � G � T C E; (2.8)

where Y is an I by J matrix with yij representing the intensity for probe i in experi-
ment j , A D diag.a11; : : : ; aII / is the diagonal matrix of unknown affinities for
all of the probes included in the gene; matrix T D fTkj g represents the unknown
concentration of the k-th splice variant in the j -th experiment; the property matrix
G D fgikg relates probes with different splice variants according to whether the
probe belongs to the transcript or not.

gik D 1 if probe i belongs to splice variant k, (2.9)

D 0 if probe i does not belong to splice variant k.

And E is the error term. To estimate the unknown A and T, they minimize the
function:

f .A;T/ D .kY � AGTk2/
2; (2.10)

under the constraints:

IX

iD1

a2
i i D constant; (2.11)

ai i � 0; (2.12)

tkj � 0: (2.13)
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The maximum likelihood estimation framework is finally used by iteratively fixing
A and solving for T, then fixing T and solving for A until convergence. DECONV
works well for genes with two transcript isoforms, but is less than perfect for genes
with three or more isoforms. DECONV requires the complete information about the
number and the structure of all possible splice variants for a gene. It is not intended
for the discovery of new splice variants.

2.3.3.5 SPACE

A similar algorithm, SPACE (splicing prediction and concentration estimation), was
proposed to predict the structures and the abundances of transcript isoforms from
microarray data [37]. Besides matrices A and T, they also treated the gene structure
matrix G as unknown. A “non-negative matrix factorization” method was applied
to handle the non-negative constraints and factorize Y into W and H:

YIJ � WIK � HKJ: (2.14)

Remember that Y � A � G � T, so H gives the relative concentration of each splice
variant and W contains information of both probe affinity and gene structure. Specif-
ically, they used the maximum value of each row of the W matrix as the affinity of
the corresponding probe.

ai i D maxk.Wik/ (2.15)

G D A�1W:

Here G will be a matrix whose entries are between 0 and 1. There is a slight change
in the definition of G:

gik D 1 if probe i belongs to splice variant k, (2.16)

D 0 if probe i does not belong to splice variant k,

D ˛ if probe i partially hybridizes with splice variant k.

The authors reported that the estimation of isoform structure and abundance depends
on the number of experiments. When there are only a few experiments (e.g., 5), the
estimation error tends to be high. They also mentioned that the model works better
if the array includes more probes that are able to distinguish different isoforms or if
several different experimental conditions with high variability are considered.

2.3.3.6 GenASAP

Shai et al. developed the GenASAP (Generative model for the alternative splic-
ing array platform) algorithm to infer the expression levels of transcript isoforms
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Fig. 2.5 Custom microarray design for cassette exons. Dot lines represent junction probes. Solid
lines represent exon body probes

including or excluding a cassette exon [38]. This was designed specifically for a
custom microarray in which an exon-skipping event is represented by three exon
body probes and three junction probes (see Fig. 2.5). The probe intensity xi can be
written as:

xi D �i1s1 C �i2s2 C "i ; (2.17)

where xi is one of the six intensity values for the six specially designed probes, s1
and s2 are the two unknown concentrations of the transcript isoforms, �i1 and �i2

are the affinity between probe i and the two transcript isoforms, and "i is the error
term. To account for the scale-dependent noise and the outliers, the above model is
changed to:

xi D .r.�i1s1 C �i2s2 C "i //
1�oi .�i /

oi ; (2.18)

where r is the scale factor accounting for noise levels at the measured intensity, �i

is a pure noise component for the outlier, and oi is the binary indicator whether
the probe measurement is an outlier or not. The conditional probability can be
written as:

P.XjS; r;O/ D
Y

i

N .xi I r.�i1s1 C �i2s2/; r
2 i /

1�oi N .xi I "i ; �i /
oi ; (2.19)

where N .xI�; �2/ indicates the density of point x under normal distribution with
mean � and variance �2. The variance of probe intensity is r2 i . The mean and
variance for outliers are "i and �i . And it assumes independence among probes. The
authors used a truncated normal distribution (ˇ � 0) to satisfy the non-negative
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constraint on isoform abundance and maximized the lower bound of the log likeli-
hood instead of the log likelihood itself during their variational EM learning because
the exact posterior cannot be computed.

GenASAP performs well on the abundance estimation and outperforms many
supervised methods. It has been successfully applied to the analysis of alternative
splicing in mammalian cells and tissues [39, 40]. But it is specific to the focused
probe design. In addition, if a gene has more than one alternative exon and more
than two transcript isoforms consequently, GenASAP cannot distinguish isoforms
which all include the tested cassette exon, neither can it further distinguish isoforms
which all exclude the tested cassette exon.

2.3.4 Identify Alternative Splicing by High Throughput
Sequencing

Recently, high-throughput sequencing based approach (RNA-Seq) has also been
developed to map and quantify transcriptomes. Poly(A)C mRNAs are purified from
cells and fragmented to small size (e.g., �200 bp). Then they are converted into
cDNA and sequenced by the high-throughput sequencing techniques. Sequence
tags or reads (usually about 25 � 50 bp for Solexa and SOLid or 250 � 400 bp for
454, and the length expected to increase slightly) from the sequencing machines
are mapped to genes and used as a quantitative measure of the expression level.
RNA-seq has been successfully applied to yeast [41,42], Arabidopsis thaliana [43],
mouse [44, 45], and human [1, 2, 46, 47]. For RNA-seq data, inclusion or exclusion
rate of an exon was calculated based on the exon body reads, the flanking inclusion
junction reads, and the exclusion junction reads. For example, Wang et al. used the
“percent spliced in”(PSI or � ) values to determine the fraction of mRNA containing
an exon [1]. The PSI value was estimated as the ratio of the density of inclusion reads
(i.e. reads per position in regions supporting the inclusion isoform) to the sum of the
densities of inclusion and exclusion reads. Pan et al. used the inclusion and exclu-
sion junction reads to quantify the transcript percentage [2]. In their study, the results
from RNA-seq data are consistent with results which are from custom microarrays
mentioned in GeneASAP. The correlation is 0.8 when applying a threshold of 20 or
more reads in one experiment that match at least one of the three splice junctions
representing inclusion or skipping of a cassette exon. The correlation increases to
0.85 when a threshold of 50 or more junction reads is applied.

Besides the analysis at the individual exon level, Jiang and Wong developed a
method to estimate the transcript isoform abundance from RNA-seq data [48]. This
is achieved by solving a Poisson model. Suppose a gene has m exons with lengths
L D .l1; : : : ; lm/ and n transcript isoforms with expressions 	 D .
1; : : : ; 
n/. If
two isoforms share part of an exon, the exon was split into several parts and each
part was treated as an exon respectively. The count of reads falling a specific region
s (e.g., an exon or an exon-exon junction) is the observed data Xs. Let w be the
total number of mapped reads. Then X follows a Poisson distribution with mean �.
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When s is exon j , � D lj w
Pn

iD1 cij 
i where cij is 1 if isoform i contains exon
j and 0 otherwise. When s is an exon-exon junction, � D lw

Pn
iD1 cij cik
i where

l is the length of the junction region, and j and k are indices of the two exons
involved in the junction. Assuming the independence among different regions, the
joint log-likelihood function can be written as:

log.L .	jxs ; s 2 S// D
X

s2S

log.L .	jxs//: (2.20)

The isoform abundance 
’s can be obtained by the maximum likelihood estimate
(MLE). When the true isoform abundance 
 is not on the boundary of the param-
eter space, the distribution of O	 can be approximated asymptotically by a normal
distribution with mean 	 and covariance matrix equal to the inverse Fisher infor-
mation matrix I.	/�1. However, in one experimental condition, many isoforms are
lowly expressed and the likelihood function is truncated at 
i D 0. The constraints

i � 0 for all i make the covariance matrix estimated by I.	/�1 unreliable. Instead,
they developed a Bayesian inference method based on importance sampling form
the posterior distribution of 
’s. They utilized the RefSeq mouse annotations and
applied their model to a RNA-seq data set. Their results have good consistency with
RT-PCR experiments (Pearson’s correlation coefficient >0.6).

Instead of estimating the isoform abundance in each experiment, Zheng and
Chen proposed a hierarchical Bayesian model, BASIS (Bayesian analysis of splic-
ing isoforms), to identify differentially expressed transcript isoforms between two
experiments. BASIS can be applied to both tiling array data and RNA-seq data [49].
For each probe i that appears in at least one transcript isoform of gene g, consider
the linear model:

�ygi D
X

�ˇgjxgij C�"gi ; (2.21)

where�ygi is the intensity difference between two conditions for probe i of gene g
(�ygi D y1

gi �y2
gi , the intensity is background corrected and normalized),�ˇgj is

the expression difference between two conditions for the j -th transcript isoform of
gene g, xgij is the binary indicator of whether probe i belongs to isoform j ’s exon
region, and�"gi is the error term. Within one data set, g ranges from 1 toG, where
G is the total number of genes; i ranges from 1 to ng where ng is the total number
of probes for gene g; and j ranges from 1 to sg where sg is the total number of
transcript isoforms for gene g. The total �"gi ’s (g D 1; : : : ; G and i D 1; : : : ; ng )
are divided into 100 bins. Each bin contains thousands of probes with similar values.
Because probe intensity variance is dependent on probe intensity mean, probes in the
same bin exhibit similar variances. The same model can be specified for RNA-seq
data with y representing the read coverage over each position.

A hierarchical Bayesian model is constructed as:

�Yg j�ˇg ;˙ g � Nng
.Xg�ˇg ;˙g/; g D 1; : : : ; GI

˙ g � diag.�g1; : : : ; �gng
/; �gi D ım if probe (or position) i of gene g 2 binmI
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ım � IG.�=2; ��=2/; m D 1; : : : ; 100I
�ˇg j�g � Nsg

.0;Rg/I
Rg � diag.
g1; : : : ; 
gsg

/; 
gj D �gj if �gj D 0 and 
gj D  gj if �gj D 1I

f .�g/ D
sgY

j D1

p�gj .1 � p/1��gj I

where �Yg , �ˇg , and Xg are matrices with elements described before, �g is a
latent variable, Nng

and Nsg
stand for multivariate normal distributions, and IG

stands for the inverse gamma distribution. Given the isoform amount differences
(�ˇg ) and the probe arrangements (Xg), the probe intensity (or read coverage)
differences (�Yg) follow a multivariate normal distribution with mean Xg�ˇg and
variance ˙ g . For the variance ˙g , specifically, if a probe (or position) is assigned to
bin m, the variance of the intensity (or coverage) difference is ım. ım itself is a ran-
dom variable following an inverse gamma distribution. �gj is an indicator whether
the j -th isoform is differentially expressed. When �gj D 0, the isoform difference
�ˇgj � N .0; �gj / and when �gj D 1, �ˇgj � N .0;  gj /. Here N stands
for normal distribution. �gj was set as a small value so that when �gj D 0, �ˇgj

is small enough to be estimated as 0.  gj was set as a large value so that when
�gj D 1,�ˇgj is large enough to be included in the final model. Therefore, the
latent variable � can perform variable selection for the linear model. The errors for
probes belonging to the same gene can be heteroscedastic and assigned to different
bins. In the prior distributions for parameters �ˇ; ı;� , there are hyperparameters
.�;  ; �; p/. Model parameters were inferred based on an ergodic Markov chain
generated by the Gibbs sampler.

In summary, a latent variable was introduced to perform direct statistical selec-
tion of differentially expressed isoforms. BASIS has the ability to borrow informa-
tion across different probes (or positions) from the same genes and different genes.
It can handle the heteroscedasticity of probe intensity or sequence read coverage,
and has been successfully applied to a whole-genome human tiling array data and
a mouse RNA-seq data. The authors also found that the power of BASIS is related
to gene structure [49]. Specifically, if a gene has more probes (or positions), the
power of BASIS is larger. If the difference among isoforms is larger, the power
of BASIS is larger. BASIS does not rely on the percentage of isoform-specific posi-
tions, and it considers the joint behavior of positions. The model also depends on the
completeness of the known splicing patterns of each gene. The authors utilized the
Alternative Splicing and Transcript Diversity database [50]. As information accu-
mulates and novel transcript isoforms are discovered, a more accurate and complete
alternative splicing annotation database will further improve results derived from
BASIS.
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2.4 Alternative Splicing Regulation in Eukaryotes

The splicing of pre-mRNA transcripts is carried out by spliceosomes which are
large ribonucleoprotein complexes with more than 100 core proteins and five small
nuclear RNAs [51, 52]. Besides the core splicing factors, there are additional trans-
acting splicing regulators. Consequently, in addition to the core splicing signals
including the 50 splice site (50 ss), the 30 splice site (30 ss), and the branch point
sequence (BPS), there is a large amount of splicing regulatory elements for both
constitutive exons and alternative exons. These splicing regulatory elements (SREs)
can be further classified as exonic splicing enhancers (ESEs), exonic splicing
silencer (ESSs), intronic splicing enhancers (ISEs), or intronic splicing silencers
(ISSs) based on their locations and functions. Due to the selective constraints,
enhancers are expected to play predominant roles in the efficient constitutive splic-
ing, and silencers are expected to play predominant roles in the control of alternative
splicing [53]. Large-scale screens of exonic SREs have been conducted experi-
mentally and computationally. Fewer screens for intronic SREs were performed
although intronic SREs may have a more prominent role in the alternative splicing
regulation because the intronic regions flanking alternative exons are more con-
served than those flanking constitutive exons. Motif discovery methods commonly
used in transcription factor binding motif identification, in principle, can also be
used for the splicing regulatory motif finding. Compared with transcription factor
binding sites, the SREs are usually shorter, more degenerate, and have less informa-
tion content. This poses additional challenges to predict SREs. Similar as the DNA
motifs for transcription factor binding, multiple copies of SREs for a single exon
will increase their effect on splicing regulation [54–58]. Experimental approaches
like cross-linking/immunoprecipitation (CLIP), RNP immunoprecipitation (RIP),
and genomic SELEX were applied to identify the binding sites of RNA-binding pro-
teins. Those approaches can be further extended to genome-wide studies of SREs.
However, similar as transcription factors, the binding of splicing regulators may not
necessarily lead to the regulation.

In the process of alternative splicing, splicing regulators bind to various pre-
mRNAs and affect a large number of exons. Meanwhile the splicing pattern of a
specific exon is determined by multiple pre-mRNA-binding proteins [59,60]. There-
fore, it is particularly interesting and challenging to study how the splicing of a
group of exons is co-regulated; how the splicing of an exon is combinatorially con-
trolled by multiple regulators; and what are the general rules of “splicing code”
(a set of rules that can predict the splicing patterns of pre-mRNAs [60, 61]). In a
recent study of alternative splicing across tissues, association links between genes
and exons were identified through partial correlation studies [62]. This method was
named pCastNet (partial Correlation analysis of splicing transcriptome Network).
These association links can provide information about the regulation relationship
between genes and the splicing of exons. It will help us to understand the gene
regulation at an exon-level resolution.

We first introduce some notations. If the Pearson correlation coefficient is
denoted as rab between variable a and variable b, the first-order partial correlation
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coefficient between a and b conditioning on c is:

rab�c D rab � racrbcq
.1 � r2

ac/.1 � r2
bc
/

(2.22)

The second-order partial correlation coefficient between a and b conditioning on c
and d is:

rab�cd D rab�c � rad �crbd �cq
.1 � r2

ad �c/.1 � r2
bd �c/

(2.23)

In pCastNet, three types of associations will be considered for a pair of genes:
gene-gene (GG) association, exon-gene (EG) association, and exon-exon (EE)
association. For GG association, the Pearson correlation coefficient is calculated
between gene 1 (g1) and gene 2 (g2) and denoted as rg1g2

. For EG association,
considering an exon (e1) of gene 1 and gene 2 (g2), besides the Pearson correla-
tion coefficient re1g2

, the first-order partial correlation coefficient between e1 and
g2 conditioning on gene 1 (g1) is also calculated as re1g2�g1

. The partial correlation
can be interpreted as the association between e1 and g2 after removing the effect of
g1. If the partial correlation is high, the association between e1 and g2 is not due
to the correlation between g1 and g2. For EE association, the correlation between
an exon (e1) of gene 1 and an exon (e2) of gene 2 is calculated as re1e2

. The partial
correlations re1e2�g1

, re1e2�g2
, and the second-order partial correlation coefficient

re1e2�g1g2
can also be calculated to exclude the possibility that the EE correlation

is due to the EG or the GG correlation. In summary, if the p-value for rg1g2
is

significant, a GG link between gene 1 and gene 2 can be declared. If the p-values
for both re1g2

and re1g2�g1
are significant, an EG link between e1 and g2 can be

declared and the association is not due to GG association. If the p-values for re1e2
,

re1e2�g1
,re1e2�g2

, and re1g2�g1g2
are significant, an EE link between the two exons e1

and e2 can be declared, and the association is not due to GG or EG associations.
The authors used the approach proposed by Efron [63] to control the expected

FDR conditioning on a dependence effect parameterA. The sparseness of a network
was estimated according to the conditional FDR and a threshold on the sparse-
ness was then chosen. The sparseness of a network is defined as the percentage of
true links among all possible node pairs. The threshold selection has several advan-
tages: first, the corresponding correlation thresholds are data dependent; second, we
can derive an accurate estimate of the number of falsely declared links taking into
consideration the dependence among hypotheses; and third, we can integrate prior
information about the sparseness of networks if this information is available.

By applying pCastNet to exon arrays in 11 human tissues, the authors found
that gene pairs with exon-gene or exon-exon links tend to have similar functions or
are present in the same pathways. More interestingly, gene pairs with exon-gene or
exon-exon links tend to share cis-elements in promoter regions and microRNA
binding elements in 30 untranslated regions, which suggests the coupling of
co-alternative-splicing, co-transcription-factor-binding, and co-microRNA-binding.
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2.5 Alternative Splicing, Genetic Variation, and Disease

Because of its important role in gene regulation, malfunction of alternative splicing
has contributed to many human diseases [64–66]. Among point mutations associated
with human genetic diseases in the Human Gene Mutation Database, about 9.5% of
them are within splice sites and may cause RNA splicing defects [67]. In addition,
many disease mutations that target synonymous and nonsynonymous amino acid
codon positions often affect the exon splicing and cause function defects. It was
estimated that as many as 50% of disease mutations in exons affect splicing [68].
Differential alternative splicing studies have been performed in many diseases such
as cancers. For instances, altered transcript isoform levels have been detected for
many genes in prostate and breast cancer without significant changes in total tran-
script abundance [69, 70]. In addition, a study of Hodgkin lymphoma tumors using
custom alternative splicing microarrays found that the relative abundance of alterna-
tively spliced isoforms correlates with transformation and tumor grade [71]. These
studies suggest that alternative splicing profiling may provide additional tools for
tumor diagnosis.

Kwan et al. also studied the heritability of alternative splicing in healthy peo-
ple [72]. They investigated the alternative splicing variation among humans using
exon array profiling in lymphoblastoid cell lines derived from the CEU HapMap
population. Through family-based linkage studies and allelic association studies,
they identified marker loci linked to particular alternative splicing events. They
detected both annotated and novel alternatively spliced variants, and that such
variation among individuals is heritable and genetically controlled.

2.6 Online Resources

At the end of this chapter, we provide a list of online databases for alternative
splicing in Table 2.1. These databases collect alternative splicing events in different
organisms or study the effect of alternative splicing on protein structures, RT-PCR,
and so on.

2.7 Summary

Alternative splicing has been realized as one of the most important gene regula-
tory mechanisms. The related research has been reinvigorated by the availability
of large amount of sequence data and high-throughput technologies. Nevertheless,
many important questions regarding the function, the mechanism, and the regulation
of alternative splicing remain unanswered. The statistical and computational analy-
sis of alternative splicing has also emerged as an important and relatively new field.
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Table 2.1 Online databases for alternative splicing

Database Description Link

ASTD [50] human, mouse, and rat http://www.ebi.ac.uk/astd/main.html
PALSdb [73] human, mouse, and worm http://ymbc.ym.edu.tw/palsdb/
SpliceInfo [74] human http://spliceinfo.mbc.nctu.edu.tw/
ASmodeler [75] human, mouse, and rat http://genome.ewha.ac.kr/ECgene/

ASmodeler/
ECgene [76] human, mouse, rat, dog,

zebrafish, fruit fly, chick,
rhesus, and C. elegans

http://genome.ewha.ac.kr/ECgene/

ASG [77] human http://statgen.ncsu.edu/asg/
DEDB [78] fruit fly http://proline.bic.nus.edu.sg/dedb/
EuSplice [79] 23 eukaryotes http://66.170.16.154/EuSplice
ASPicDB [80] human http://t.caspur.it/ASPicDB/
HOLLYWOOD [81] human and mouse http://hollywood.mit.edu
AS-ALPS [82] the effects of alternative splicing

on protein structure,
interaction and network in
human and mouse

http://as-alps.nagahama-i-bio.ac.jp

SpliceCenter [83] the impact of alternative splicing
on RT-PCR, RNAi,
microarray, and peptide-based
studies

http://discover.nci.nih.gov/splicecenter

SpliVaP [84] changes in signatures among
protein isoforms due to
alternative splicing

http://www.bioinformatica.crs4.org/
tools/dbs/splivap/

They will provide valuable information about the precisely regulated alternative
splicing process and help us to advance our knowledge about the post-transcriptional
regulation.

References

1. Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore,
S. F., Schroth, G. P., & Burge, C. B. (2008). Alternative isoform regulation in human tissue
transcriptomes. Nature, 456, 470–476.

2. Pan, Q., Shai, O., Lee, L. J., Frey, B. J., & Blencowe, B. J. (2008). Deep surveying of alter-
native splicing complexity in the human transcriptome by high-throughput sequencing. Nature
Genetics, 40, 1413–1415.

3. Gilbert, W. (1978). Why genes in pieces? Nature, 271, 501.
4. Breitbart, R. E., Andreadis, A., & Nadal-Ginard, B. (1987). Alternative splicing: A ubiquitous

mechanism for the generation of multiple protein isoforms from single genes. Annual Review
of Biochemistry, 56, 467–495.

5. Johnson, J. M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P. M., Armour, C. D., Santos, R.,
Schadt, E. E., Stoughton, R., & Shoemaker, D. D. (2003). Genome-wide survey of human
alternative pre-mRNA splicing with exon junction microarrays. Science, 302, 2141–2144.

http://www.ebi.ac.uk/astd/main.html
http://ymbc.ym.edu.tw/palsdb/
http://spliceinfo.mbc.nctu.edu.tw/
http://genome.ewha.ac.kr/ECgene/ASmodeler/
http://genome.ewha.ac.kr/ECgene/ASmodeler/
http://genome.ewha.ac.kr/ECgene/
http://statgen.ncsu.edu/asg/
http://proline.bic.nus.edu.sg/dedb/
http://66.170.16.154/EuSplice
http://t.caspur.it/ASPicDB/
http://hollywood.mit.edu
http://as-alps.nagahama-i-bio.ac.jp
http://discover.nci.nih.gov/splicecenter
http://www.bioinformatica.crs4.org/tools/dbs/splivap/
http://www.bioinformatica.crs4.org/tools/dbs/splivap/


50 L. Chen

6. Kan, Z., Rouchka, E. C., Gish, W. R., & States, D. J. (2001). Gene structure prediction and
alternative splicing analysis using genomically aligned ESTs. Genome Research, 11, 889–900.

7. Mironov, A. A., Fickett, J. W., & Gelfand, M. S. (1999). Frequent alternative splicing of human
genes. Genome Research, 9, 1288–1293.

8. Modrek, B., Resch, A., Grasso, C., & Lee, C. (2001). Genome-wide detection of alternative
splicing in expressed sequences of human genes. Nucleic Acids Research, 29, 2850–2859.

9. Graveley, B. R., Kaur, A., Gunning, D., Zipursky, S. L., Rowen, L., & Clemens, J. C.
(2004). The organization and evolution of the dipteran and hymenopteran Down syndrome
cell adhesion molecule (Dscam) genes. RNA, 10, 1499–1506.

10. Missler, M., & Sudhof, T. C. (1998). Neurexins: Three genes and 1001 products. Trends in
Genetics, 14, 20–26.

11. Zdobnov, E. M., von Mering, C., Letunic, I., Torrents, D., Suyama, M., Copley, R. R.,
Christophides, G. K., Thomasova, D., Holt, R. A., Subramanian, G. M., Mueller, H. M.,
Dimopoulos, G., Law, J. H., Wells, M. A., Birney, E., Charlab, R., Halpern, A. L., Kokoza,
E., Kraft, C. L., Lai, Z., Lewis, S., Louis, C., Barillas-Mury, C., Nusskern, D., Rubin, G. M.,
Salzberg, S. L., Sutton, G. G., Topalis, P., Wides, R., Wincker, P., Yandell, M., Collins, F. H.,
Ribeiro, J., Gelbart, W. M., Kafatos, F. C., & Bork, P. (2002). Comparative genome and
proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science, 298, 149–159.

12. Kent, W. J. (2002). BLAT – the BLAST-like alignment tool. Genome Research, 12, 656–664.
13. Florea, L., Hartzell, G., Zhang, Z., Rubin, G. M., & Miller, W. (1998). A computer program

for aligning a cDNA sequence with a genomic DNA sequence. Genome Research, 8, 967–974.
14. Wu, T. D., & Watanabe, C. K. (2005). GMAP: A genomic mapping and alignment program for

mRNA and EST sequences. Bioinformatics, 21, 1859–1875.
15. van Nimwegen, E., Paul, N., Sheridan, R., & Zavolan, M. (2006). SPA: A probabilistic

algorithm for spliced alignment. PLoS Genetics, 2, e24.
16. Florea, L., Di Francesco, V., Miller, J., Turner, R., Yao, A., Harris, M., Walenz, B., Mobarry,

C., Merkulov, G. V., Charlab, R., Dew, I., Deng, Z., Istrail, S., Li, P., & Sutton, G. (2005). Gene
and alternative splicing annotation with AIR. Genome Research, 15, 54–66.

17. Heber, S., Alekseyev, M., Sze, S. H., Tang, H., & Pevzner, P. A. (2002). Splicing graphs and
EST assembly problem. Bioinformatics, 18(Suppl 1), S181–S188.

18. Kim, N., Shin, S., & Lee, S. (2005). ECgene: Genome-based EST clustering and gene modeling
for alternative splicing. Genome Research, 15, 566–576.

19. Xing, Y., Yu, T., Wu, Y. N., Roy, M., Kim, J., & Lee, C. (2006). An expectation-maximization
algorithm for probabilistic reconstructions of full-length isoforms from splice graphs. Nucleic
Acids Research, 34, 3150–3160.

20. Leparc, G. G., & Mitra, R. D. (2007). Non-EST-based prediction of novel alternatively spliced
cassette exons with cell signaling function in Caenorhabditis elegans and human. Nucleic Acids
Research, 35, 3192–3202.

21. Sorek, R., & Ast, G. (2003). Intronic sequences flanking alternatively spliced exons are
conserved between human and mouse. Genome Research, 13, 1631–1637.

22. Sorek, R., Shemesh, R., Cohen, Y., Basechess, O., Ast, G., & Shamir, R. (2004). A non-EST-
based method for exon-skipping prediction. Genome Research, 14, 1617–1623.

23. Yeo, G. W., Van Nostrand, E., Holste, D., Poggio, T., & Burge, C. B. (2005). Identification
and analysis of alternative splicing events conserved in human and mouse. Proceedings of the
National Academy of Sciences of the United States of America, 102, 2850–2855.

24. Chen, L., & Zheng, S. (2008). Identify alternative splicing events based on position-specific
evolutionary conservation. PLoS One, 3, e2806.

25. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
26. Parmley, J. L., Urrutia, A. O., Potrzebowski, L., Kaessmann, H., & Hurst, L. D. (2007). Splicing

and the evolution of proteins in mammals. PLoS Biology, 5, e14.
27. Fairbrother, W. G., Holste, D., Burge, C. B., & Sharp, P. A. (2004). Single nucleotide

polymorphism-based validation of exonic splicing enhancers. PLoS Biology, 2, e268.
28. Boutz, P. L., Stoilov, P., Li, Q., Lin, C. H., Chawla, G., Ostrow, K., Shiue, L., Ares, M., Jr., &

Black, D. L. (2007). A post-transcriptional regulatory switch in polypyrimidine tract-binding
proteins reprograms alternative splicing in developing neurons. Genes & Development, 21,
1636–1652.



2 Statistical and Computational Studies on Alternative Splicing 51

29. Clark, T. A., Schweitzer, A. C., Chen, T. X., Staples, M. K., Lu, G., Wang, H., Williams,
A., & Blume, J. E. (2007). Discovery of tissue-specific exons using comprehensive human
exon microarrays. Genome Biology, 8, R64.

30. Yeo, G. W., Xu, X., Liang, T. Y., Muotri, A. R., Carson, C. T., Coufal, N. G., & Gage,
F. H. (2007). Alternative splicing events identified in human embryonic stem cells and neural
progenitors. PLoS Computational Biology, 3, 1951–1967.

31. Castle, J. C., Zhang, C., Shah, J. K., Kulkarni, A. V., Kalsotra, A., Cooper, T. A., & Johnson,
J. M. (2008). Expression of 24,426 human alternative splicing events and predicted cis
regulation in 48 tissues and cell lines. Nature Genetics, 40, 1416–1425.

32. Clark, T. A., Sugnet, C. W., & Ares, M., Jr. (2002). Genomewide analysis of mRNA processing
in yeast using splicing-specific microarrays. Science, 296, 907–910.

33. Cline, M. S., Blume, J., Cawley, S., Clark, T. A., Hu, J. S., Lu, G., Salomonis, N., Wang,
H., & Williams, A. (2005). ANOSVA: A statistical method for detecting splice variation from
expression data. Bioinformatics, 21(Suppl. 1), i107–i115.

34. Purdom, E., Simpson, K. M., Robinson, M. D., Conboy, J. G., Lapuk, A. V., & Speed,
T. P. (2008). FIRMA: A method for detection of alternative splicing from exon array data.
Bioinformatics, 24, 1707–1714.

35. Wang, H., Hubbell, E., Hu, J. S., Mei, G., Cline, M., Lu, G., Clark, T., Siani-Rose, M. A., Ares,
M., Kulp, D. C., & Haussler, D. (2003). Gene structure-based splice variant deconvolution
using a microarray platform. Bioinformatics, 19(Suppl. 1), i315–i322.

36. Li, C., & Wong, W. H. (2001). Model-based analysis of oligonucleotide arrays: Expression
index computation and outlier detection. Proceedings of the National Academy of Sciences of
the United States of America, 98, 31–36.

37. Anton, M. A., Gorostiaga, D., Guruceaga, E., Segura, V., Carmona-Saez, P., Pascual-
Montano, A., Pio, R., Montuenga, L. M., & Rubio, A. (2008). SPACE: An algorithm to predict
and quantify alternatively spliced isoforms using microarrays. Genome Biology, 9, R46.

38. Shai, O., Morris, Q. D., Blencowe, B. J., & Frey, B. J. (2006). Inferring global levels of
alternative splicing isoforms using a generative model of microarray data. Bioinformatics, 22,
606–613.

39. Pan, Q., Shai, O., Misquitta, C., Zhang, W., Saltzman, A. L., Mohammad, N., Babak, T.,
Siu, H., Hughes, T. R., Morris, Q. D., Frey, B. J., & Blencowe, B. J. (2004). Revealing global
regulatory features of mammalian alternative splicing using a quantitative microarray platform.
Molecular Cell, 16, 929–941.

40. Fagnani, M., Barash, Y., Ip, J. Y., Misquitta, C., Pan, Q., Saltzman, A. L., Shai, O., Lee, L.,
Rozenhek, A., Mohammad, N., Willaime-Morawek, S., Babak, T., Zhang, W., Hughes, T. R.,
van der Kooy, D., Frey, B. J., & Blencowe, B. J. (2007). Functional coordination of alternative
splicing in the mammalian central nervous system. Genome Biology, 8, R108.

41. Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., & Snyder, M. (2008).
The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320,
1344–1349.

42. Wilhelm, B. T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C. J.,
Rogers, J., & Bahler, J. (2008). Dynamic repertoire of a eukaryotic transcriptome surveyed at
single-nucleotide resolution. Nature, 453, 1239–1243.

43. Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry, C. C., Millar, A. H., &
Ecker, J. R. (2008). Highly integrated single-base resolution maps of the epigenome in
Arabidopsis. Cell, 133, 523–536.

44. Cloonan, N., Forrest, A. R., Kolle, G., Gardiner, B. B., Faulkner, G. J., Brown, M. K., Taylor,
D. F., Steptoe, A. L., Wani, S., Bethel, G., Robertson, A. J., Perkins, A. C., Bruce, S. J.,
Lee, C. C., Ranade, S. S., Peckham, H. E., Manning, J. M., McKernan, K. J., & Grimmond,
S. M. (2008). Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature
Methods, 5, 613–619.

45. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621–628.



52 L. Chen

46. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., & Gilad, Y. (2008). RNA-seq: An
assessment of technical reproducibility and comparison with gene expression arrays. Genome
Research, 18, 1509–1517.

47. Sultan, M., Schulz, M. H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M.,
Borodina, T., Soldatov, A., Parkhomchuk, D., Schmidt, D., O’Keeffe, S., Haas, S., Vingron, M.,
Lehrach, H., & Yaspo, M. L. (2008). A global view of gene activity and alternative splicing by
deep sequencing of the human transcriptome. Science, 321, 956–960.

48. Jiang, H., & Wong, W. H. (2009). Statistical inferences for isoform expression in RNA-Seq.
Bioinformatics,25, 1026–1032.

49. Zheng, S., & Chen, L. (2009). A hierarchical Bayesian model for comparing transcriptomes at
the individual transcript isoform level. Nucleic Acids Research, 37,e75.

50. Stamm, S., Riethoven, J. J., Le Texier, V., Gopalakrishnan, C., Kumanduri, V., Tang, Y.,
Barbosa-Morais, N. L., & Thanaraj, T. A. (2006). ASD: A bioinformatics resource on
alternative splicing. Nucleic Acids Research, 34, D46–D55.

51. Zhou, Z., Licklider, L. J., Gygi, S. P., & Reed, R. (2002). Comprehensive proteomic analysis
of the human spliceosome. Nature, 419, 182–185.

52. Jurica, M. S., & Moore, M. J. (2003). Pre-mRNA splicing: Awash in a sea of proteins.
Molecular Cell, 12, 5–14.

53. Wang, Z., & Burge, C. B. (2008). Splicing regulation: From a parts list of regulatory elements
to an integrated splicing code. RNA, 14, 802–813.

54. Huh, G. S., & Hynes, R. O. (1994). Regulation of alternative pre-mRNA splicing by a novel
repeated hexanucleotide element. Genes & Development, 8, 1561–1574.

55. McCullough, A. J., & Berget, S. M. (1997). G triplets located throughout a class of small verte-
brate introns enforce intron borders and regulate splice site selection. Molecular Cell Biology,
17, 4562–4571.

56. Chou, M. Y., Underwood, J. G., Nikolic, J., Luu, M. H., & Black, D. L. (2000). Multisite
RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src
neural-specific splicing. Molecular Cell, 5, 949–957.

57. Wang, Z., Rolish, M. E., Yeo, G., Tung, V., Mawson, M., & Burge, C. B. (2004). Systematic
identification and analysis of exonic splicing silencers. Cell, 119, 831–845.

58. Zhang, X. H., & Chasin, L. A. (2004). Computational definition of sequence motifs governing
constitutive exon splicing. Genes & Development, 18, 1241–1250.

59. Black, D. L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annual Review
of Biochemistry, 72, 291–336.

60. Matlin, A. J., Clark, F., & Smith, C. W. (2005). Understanding alternative splicing: Towards a
cellular code. Nature Review. Molecular Cell Biology, 6, 386–398.

61. Fu, X. D. (2004). Towards a splicing code. Cell, 119, 736–738.
62. Chen, L., & Zheng, S. (2009). Studying alternative splicing regulatory networks through partial

correlation analysis. Genome Biology, 10, R3.
63. Efron, B. (2007). Correlation and large-scale simultaneous significance testing. Journal of the

American Statistical Association, 102, 93–103.
64. Faustino, N. A., & Cooper, T. A. (2003). Pre-mRNA splicing and human disease. Genes &

Development, 17, 419–437.
65. Garcia-Blanco, M. A., Baraniak, A. P., & Lasda, E. L. (2004). Alternative splicing in disease

and therapy. Nature Biotechnology, 22, 535–546.
66. Blencowe, B. J. (2000). Exonic splicing enhancers: Mechanism of action, diversity and role in

human genetic diseases. Trends in Biochemical Sciences, 25, 106–110.
67. Krawczak, M., Thomas, N. S., Hundrieser, B., Mort, M., Wittig, M., Hampe, J., & Cooper,

D. N. (2007). Single base-pair substitutions in exon-intron junctions of human genes: Nature,
distribution, and consequences for mRNA splicing. Human Mutation, 28, 150–158.

68. Blencowe, B. J. (2006). Alternative splicing: New insights from global analyses. Cell, 126,
37–47.

69. Li, H. R., Wang-Rodriguez, J., Nair, T. M., Yeakley, J. M., Kwon, Y. S., Bibikova, M., Zheng,
C., Zhou, L., Zhang, K., Downs, T., Fu, X. D., & Fan, J. B. (2006). Two-dimensional transcrip-
tome profiling: Identification of messenger RNA isoform signatures in prostate cancer from
archived paraffin-embedded cancer specimens. Cancer Research, 66, 4079–4088.



2 Statistical and Computational Studies on Alternative Splicing 53

70. Li, C., Kato, M., Shiue, L., Shively, J. E., Ares, M., Jr., & Lin, R. J. Cell type and culture
condition-dependent alternative splicing in human breast cancer cells revealed by splicing-
sensitive microarrays. Cancer Research, 66, 1990–1999 (2006).

71. Relogio, A., Ben-Dov, C., Baum, M., Ruggiu, M., Gemund, C., Benes, V., Darnell, R. B., &
Valcarcel, J. (2005). Alternative splicing microarrays reveal functional expression of neuron-
specific regulators in Hodgkin lymphoma cells. The Journal of Biological Chemistry, 280,
4779–4784.

72. Kwan, T., Benovoy, D., Dias, C., Gurd, S., Serre, D., Zuzan, H., Clark, T. A., Schweitzer, A.,
Staples, M. K., Wang, H., Blume, J. E., Hudson, T. J., Sladek, R., & Majewski, J. (2007).
Heritability of alternative splicing in the human genome. Genome Research, 17, 1210–1218.

73. Huang, Y. H., Chen, Y. T., Lai, J. J., Yang, S. T., & Yang, U. C. (2002). PALS db: Putative
Alternative Splicing database. Nucleic Acids Research, 30, 186–190.

74. Huang, H. D., Horng, J. T., Lin, F. M., Chang, Y. C., & Huang, C. C. (2005). SpliceInfo:
An information repository for mRNA alternative splicing in human genome. Nucleic Acids
Research, 33, D80–D85.

75. Kim, N., Shin, S., & Lee, S. (2004). ASmodeler: Gene modeling of alternative splicing
from genomic alignment of mRNA, EST and protein sequences. Nucleic Acids Research, 32,
W181–W186.

76. Kim, P., Kim, N., Lee, Y., Kim, B., Shin, Y., & Lee, S. (2005). ECgene: Genome annotation
for alternative splicing. Nucleic Acids Research, 33, D75–D79.

77. Leipzig, J., Pevzner, P., & Heber, S. (2004). The Alternative Splicing Gallery (ASG): Bridging
the gap between genome and transcriptome. Nucleic Acids Research, 32, 3977–3983.

78. Lee, B. T., Tan, T. W., & Ranganathan, S. (2004). DEDB: A database of Drosophila
melanogaster exons in splicing graph form. BMC Bioinformatics, 5, 189.

79. Bhasi, A., Pandey, R. V., Utharasamy, S. P., & Senapathy, P. (2007). EuSplice: A uni-
fied resource for the analysis of splice signals and alternative splicing in eukaryotic genes.
Bioinformatics, 23, 1815–1823.

80. Castrignano, T., D’Antonio, M., Anselmo, A., Carrabino, D., D’Onorio De Meo, A., D’Erchia,
A. M., Licciulli, F., Mangiulli, M., Mignone, F., Pavesi, G., Picardi, E., Riva, A., Rizzi, R.,
Bonizzoni, P., & Pesole, G. (2008). ASPicDB: A database resource for alternative splicing
analysis. Bioinformatics, 24, 1300–1304.

81. Holste, D., Huo, G., Tung, V., & Burge, C. B. (2006). HOLLYWOOD: A comparative relational
database of alternative splicing. Nucleic Acids Research, 34, D56–D62.

82. Shionyu, M., Yamaguchi, A., Shinoda, K., Takahashi, K., & Go, M. (2009). AS-ALPS: A
database for analyzing the effects of alternative splicing on protein structure, interaction and
network in human and mouse. Nucleic Acids Research, 37, D305–D309.

83. Ryan, M. C., Zeeberg, B. R., Caplen, N. J., Cleland, J. A., Kahn, A. B., Liu, H., & Weinstein,
J. N. (2008). SpliceCenter: A suite of web-based bioinformatic applications for evaluating the
impact of alternative splicing on RT-PCR, RNAi, microarray, and peptide-based studies. BMC
Bioinformatics, 9, 313.

84. Floris, M., Orsini, M., & Thanaraj, T. A. (2008). Splice-mediated Variants of Proteins
(SpliVaP) – data and characterization of changes in signatures among protein isoforms due
to alternative splicing. BMC Genomics, 9, 453.



http://www.springer.com/978-3-642-16344-9


	Root
	2 Statistical and Computational Studies on Alternative Splicing
	2.1 Introduction
	2.2 Types of Alternative Splicing
	2.3 Global Identification of Alternative Splicing Events
	2.3.1 Identifying Alternative Splicing by Sequence Alignment
	2.3.2 Identifying Alternative Splicing by Sequence Content and Conservation
	2.3.3 Identify Alternative Splicing by Microarray
	2.3.3.1 Splicing Index
	2.3.3.2 ANOSVA
	2.3.3.3 FIRMA
	2.3.3.4 DECONV
	2.3.3.5 SPACE
	2.3.3.6 GenASAP

	2.3.4 Identify Alternative Splicing by High Throughput Sequencing

	2.4 Alternative Splicing Regulation in Eukaryotes
	2.5 Alternative Splicing, Genetic Variation, and Disease
	2.6 Online Resources
	2.7 Summary
	References



