
2. Natural Time. Background

Abstract. Time and not space poses the greatest challenge to science. Conventional time is
modeled as the one-dimensional continuum � of real numbers. This continuity, however,
does not stem from any fundamental principle. On the other hand, natural time χ , which is
a new time domain introduced by the authors in 2001, is not continuous and its values as
well as those of the energy form countable sets. Novel dynamical features hidden behind
time series in complex systems can emerge upon analyzing them in natural time, which
conforms to the desire to reduce uncertainty and extract signal information as much as
possible. The fluctuations, under time reversal, of the natural time can serve in time series
for the quantification of the long-range dependence. Natural time analysis also enables the
study of the dynamical evolution of a complex system and identifies when the system enters
a critical state. In particular, the normalized power spectrumΠ(ω) is introduced in natural
time, and its Taylor expansion leads, at low natural (cyclic) frequencies ω (ω → 0), to the
expressionΠ(ω)≈ 1−κ1ω2. The values of the coefficient κ1, which is just the variance of
natural time, i.e., κ1 = 〈χ2〉−〈χ〉2, are useful in identifying the approach to a critical point
such as SES whose κ1 value is shown to be 0.070. In addition, natural time analysis enables
the distinction between the two origins of self-similarity, i.e., whether self-similarity solely
results from long-range temporal correlations (the process’s memory only) or solely from
the process’s increments’ infinite variance (heavy tails in their distribution). In general,
however, the self-similarity may result from both these origins, a case that can be also
identified by natural time.

2.1 Introduction to natural time

In this Section, we follow Ref. [50]. In reviewing the state of physics today, a consensus
seems to emerge that we are missing something absolutely fundamental, e.g., Refs. [2, 17].
Furthermore, there is a widespread belief that, it is not space but time that in the end poses
the greatest challenge to science (e.g., p. 18 of Ref. [71]) as it will be further discussed in
the next subsection.
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120 2. Natural Time. Background

2.1.1 Time and not space poses the greatest challenge to science

Time, according to Weyl (see p. 5 of Ref. [67]) for example, is “the primitive form of
the stream of consciousness. It is a fact, however, obscure and perplexing to our minds,
that . . . one does not say this is but this is now, yet no more” or according to Gödel “that
mysterious and seemingly self-contradictory being which, on the other hand, seems to
form the basis of the world’s and our own existence” (p. 111 of Ref. [71]). The challenge
seems to stem from the fact that special relativity and quantum mechanics, which are the
two great (and successful) theories of twentieth-century physics, are based on entirely
different ideas, which are not easy to reconcile. (In general, the former theory, according
to Einstein [10], is an example of “principled theory” in the sense that you start with the
principles that underlie the theory and then work down to deduce the facts, while the latter
is a “constructive theory” meaning that it describes phenomena based on some known facts
but an underlying principle to explain the strangeness of the quantum world has not yet
been found.) In particular, special relativity puts space and time on the same footing, but
quantum mechanics treats them very differently, e.g., see p. 858 of Ref. [69]. (In quantum
gravity, space is fluctuating and time is hard to define, e.g., Ref. [70].) More precisely, as
far as the theory of special relativity is concerned, let us recall the following wording of
Einstein [11]:

“Later, H. Minkowski found a particularly elegant and suggestive expression . . . , which
reveals a formal relationship between Euclidean geometry of three dimensions and the
space time continuum of physics . . . . From this it follows that, in respect to its rôle in the
equations of physics, though not with regard to its physical significance, time is equiv-
alent to the space co-ordinates (apart from the relations of reality). From this point of
view, physics is, as it were, Euclidean geometry of four dimensions, or, more correctly, a
statics in a four-dimensional Euclidean continuum.” – whereas in quantum mechanics, Von
Neumann complains [28]:

“First of all we must admit that this objection points at an essential weakness which
is, in fact, the chief weakness of quantum mechanics: its non-relativistic character, which
distinguishes the time t from the three space coordinates x,y,z, and presupposes an objec-
tive simultaneity concept. In fact, while all other quantities (especially those x,y,z, closely
connected with t by the Lorentz transformation) are represented by operators, there corre-
sponds to the time an ordinary number-parameter t, just as in classical mechanics.”

Note also that Pauli [33] has earlier shown that there is no operator canonically con-
jugate to the Hamiltonian, if the latter is bounded from below. This means that for many
systems a time operator does not exist. In other words, the introduction of an operator t
is basically forbidden and the time must necessarily be considered as an ordinary number
(but recall the long-standing question that Schrödinger’s equation, as well as Einstein’s
general theory of relativity, is symmetric under time reversal in contrast to the fact that
our world is not, e.g., Ref. [35]). These observations have led to a quite extensive liter-
ature mainly focused on time-energy (as well as on “phase-action”) uncertainty relation,
proposing a variety of attempts to overcome these obstacles. The discussion of this liter-
ature, however, lies beyond the scope of the present monograph. We just summarize here
that the (conventional) time t is currently modeled as the one-dimensional continuum �
of the real numbers, e.g., p. 10 of Ref. [70] (or p. 12 of Ref. [67] in which it is stated that
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“. . . the straight line . . . is homogeneous and a linear continuum just like time”). It is the
consequences of this continuity that will be compared to the newly introduced concept of
natural time, in a sense that will be discussed later in Section 2.7.

2.1.2 Definition of natural time

In a time series comprising N events, the natural time

χk = k/N (2.1)

serves as an index for the occurrence of the k-th event [51, 52], and it is smaller than, or
equal to, unity (note that the symbol χ originates from the ancient Greek word χρ óνoς
(chronos), see the cover page, which means “time”).

In natural time analysis the evolution of the pair of two quantities (χk,Qk) is consid-
ered, where χk = k/N, N being the total number of events, and Qk denotes in general a
quantity proportional to the energy of the individual (k-th) event [51, 52]. Equivalently
with Qk, one can consider the quantity

pk =
Qk

∑N
n=1 Qn

, (2.2)

N

∑
k=1

pk = 1, (2.3)

where pk is the normalized energy emitted during the k-th event. In other words, the
evolution of the pair either (χk,Qk) or (χk, pk) is considered in natural time analysis.

For example, to perform the analysis of dichotomous electric signals (Fig. 2.1(a)),
which is frequently the case of a SES activity (see Chapter 1), we consider Qk as being
proportional to the duration of the k-th pulse [51, 52, 55, 54]. As another example, we refer
to the analysis of seismic events (Fig. 2.1(b)): we then consider the evolution of the pair
(χk,M0k) where M0k stands for the seismic moment of the k-th earthquake [51, 53, 61, 60],
since M0k is proportional to the energy emitted in that earthquake (note that M0k differs
essentially from the magnitude M, but they are interconnected [21] M0k ∝ 10cM where
c≈ 1.5, see also Section 6.1). Other examples elaborated in this monograph are: first, the
analysis of electrocardiograms (see Fig. 2.2) which will be discussed in detail in Chapter
9. Second, the case of long-duration SES activities of non-obvious dichotomous nature,
which is treated in Section 4.11. Third, the analysis of various dynamical models (among
which a case of quasi-periodic Qk, see Fig.(8.4)) in natural time which is discussed in
detail in Chapter 8.



122 2. Natural Time. Background

S
ei

sm
ic

m
om

en
t

1st 2 nd 3 rd 4th 5 th

2
nd 3

rd

1
st

4
th

m
ag

ni
tu

de

1/4 2/4 3/4

1/5 2/5 3/5 4/5 1

1

du
ra

tio
n

E

(a)

(b)

t conventional time 

natural time  

natural time  

t conventional time 

Fig. 2.1 (a) How a dichotomous series
of electric pulses in conventional time
t (upper panel, red) can be read in
natural time χ (lower panel, blue). The
symbol E stands for the electric field.
(b) The same as in (a), but for a series
of seismic events.

2.1.3 The “uniform” distribution

Among the various applications of natural time that will be discussed throughout this
monograph, there is the fundamental paradigm of the “uniform” distribution that corre-
sponds for example to the case when the system under study is in a stationary state emitting
uncorrelated bursts of energy:

As a “uniform” distribution we consider the case when Qk are positive independent
and identically distributed (p.i.i.d.) random variables.

In this case, the expectation value � (pk) of the point probabilities pk is � (pk) = 1/N
by virtue of Eq. (2.3).

Let us now consider the distribution

p(χ) =
N

∑
k=1

pkδ (χ−χk) =
N

∑
k=1

pkδ
(
χ− k

N

)
(2.4)
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that corresponds to the point probabilities pk. (Note that, δ (x) stands for the usual
Dirac delta function.)

As N → ∞, p(χ) for a “uniform” distribution tends to

p(χ) = 1, (2.5)

leading to an average value of natural time

〈χ〉=
∫ 1

0
χ p(χ) dχ =

1
2
. (2.6)

2.2 Time reversal and natural time

In a time series comprising N events, the effect of the time-reversal operator T̂ on Qk is
given by

T̂ Qk = QN−k+1, (2.7)

so that the first pulse (k = 1) is positioned last in the time reversed time-series, the second
becomes last but one, etc.

Thus, the time reversal operator T̂ in natural time acting on pk results in

T̂ pk = pN−k+1 (2.8)
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Fig. 2.2 (a) Schematic diagram (not to scale) of a four heartbeat excerpt of an ECG (for the notation of
the inflection points see § 9.1.1) in the usual (conventional) time domain. The durations Qm, Qm+1, Qm+2
of the three RR intervals are shown. (b) The RR interval time series of (a) read in natural time; the vertical
bars are equally spaced, but the length of each bar denotes the duration of the corresponding RR interval
marked in (a). In (c) and (d) we depict (a) and (b), respectively, but under time reversal. Reprinted with
permission from Ref. [57]. Copyright (2007), American Institute of Physics.
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Let us consider an example from the case of electrocardiogram (ECG) analysis dis-
cussed in detail in Chapter 9. Figure 2.2(a) provides a schematic diagram of a four-
heartbeat excerpt of an ECG in the conventional time domain. The durations Qm, Qm+1
and Qm+2 of the three RR (beat to beat) intervals are marked in green, red and blue, re-
spectively. In Fig. 2.2(b), we show how the RR interval time series of Fig. 2.2(a) is read
in natural time: the vertical bars are equally spaced and the length of each bar denotes the
duration of the corresponding RR interval marked in Fig. 2.2(a). We now turn to the effect
of the time reversal: Fig. 2.2(c) depicts how the four heartbeat excerpt of Fig. 2.2(a) be-
comes upon reversing the conventional time (thus the sequential order of colors–durations
in Fig. 2.2(a) has been reversed) and Fig. 2.2(b) turns to Fig. 2.2(d). Time reversal may re-
veal important elements of the dynamics of the system as will become clear, for example,
in identifying the occurrence time of an impending cardiac arrest; see § 9.4.1.

2.2.1 Interconnection of the average value of natural time with the effect of a small

linear trend on a “uniform” distribution

The way through which natural time captures the influence of the effect of a small linear
trend on a “uniform” distribution is studied on the basis [60, 58] of the parametric family
of probability density functions (cf. Eq. (2.5)):

p(χ;ε) = 1+ ε(χ−1/2), (2.9)

where the parameter ε quantifies the linear trend. Such a family of pdfs shares the inter-
esting property

T̂ p(χ;ε) = p(χ;−ε), (2.10)

i.e, the action of the time reversal is obtained by simply changing the sign of ε . A linear
measure of ε in natural time is [58] the average of the natural time itself since:

〈χ〉=
∫ 1

0
χ p(χ;ε) dχ =

1
2

+
ε
12

. (2.11)

In the following subsection, we shall show that if we consider the fluctuations of this
simple measure upon time reversal, we can obtain information on the long-range depen-
dence of Qk.

2.2.2 Quantification of the long-range dependence from the fluctuations of the

average value of natural time under time reversal

As discussed in § 1.4.1, in order to study the long-range dependence in a time series,
e.g., Qk, we have to define a scale-dependent measure (for example, F(s) of Eq. (1.12)
constitutes such a measure in DFA; see § 1.4.2).
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We shall show that such a scale-dependent measure is the one that quantifies how the
average value of natural time fluctuates upon time reversal when considering a window
of length l (= number of) consecutive events sliding through the time series Qk.

In a window of length l starting from Qm0 (thus ending at Qm0+l−1), the values of
natural time are χk = k/l for k = 1,2, . . . , l and correspond to the point probabilities pk =
Qm0+k−1/∑l

i=1 Qm0+i−1. Since under time reversal we have T̂ pk = pl−k+1, the fluctuations
of the average value of natural time under time reversal could be quantified by

Δχ2
l ≡ � [(〈χ〉−〈T̂χ〉)2] = �

⎧⎨
⎩
[

l

∑
k=1

k
l
(pk− pl−k+1)

]2
⎫⎬
⎭ , (2.12)

where the symbol � [. . .] denotes the expectation value obtained when a window of length
l is sliding through the time series Qk. The evaluation of � [. . .] can be carried out either
by full computation or by Monte Carlo; the full computation refers to the case when the
window is sliding consecutively event by event, i.e., m0 takes all the N − l + 1 (m0 =
1,2, . . .N− l + 1) possible values, whereas in Monte Carlo evaluation m0 is selected ran-
domly. The argument of � [. . .] is computed by substituting pk = Qm0+k−1/∑l

i=1 Qm0+i−1

and pl−k+1 = Qm0+l−k/∑l
i=1 Qm0+i−1. The sum of the resulting values over the number of

the selected segments (different m0) is assigned to � [. . .].
By expanding the square in the last part of Eq. (2.12), we obtain

Δχ2
l =

l

∑
k=1

(
k
l

)2

� [(pk− pl−k+1)2]+ ∑
k �=m

km
l2 � [(pk− pl−k+1)(pm− pl−m+1)]. (2.13)

Equation (2.3) constitutes the basic relation that interrelates pk, i.e., ∑l
k=1 pk = 1 or equiva-

lently pk = 1−∑m�=k pm. By subtracting from the last expression its value for k = l−k+1,
we obtain pk− pl−k+1 =−∑m�=k(pm− pl−m+1), and hence

(pk− pl−k+1)2 =− ∑
m�=k

(pk− pl−k+1)(pm− pl−m+1) . (2.14)

By substituting Eq. (2.14) into Eq. (2.13), we obtain

Δχ2
l = −

l

∑
k=1

(
k
l

)2

∑
m�=k

� [(pk− pl−k+1)(pm− pl−m+1)]

+ ∑
k �=m

km
l2 � [(pk− pl−k+1)(pm− pl−m+1)] (2.15)

which simplifies to

Δχ2
l =−∑

k,m

(k−m)2

l2 � [(pk− pl−k+1)(pm− pl−m+1)] . (2.16)
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The negative sign appears because (pk − pl−k+1) and (pm − pl−m+1) are in general
anti-correlated in view of Eq. (2.14). We notice that the quantity −� [(pk − pl−k+1)
(pm− pl−m+1)] in Eq. (2.16) is similar to the covariance Cov(pk, pm) ≡ �

{
[pk−� (pk)]

[pm−� (pm)]
}

, thus capturing the correlations between pk and pm as they appear within
the window length l under time reversal. Hence, Δχ2

l due to Eq. (2.16) may reveal non-
trivial correlations between the elements of the time series Qk.

Let us now assume that Qk are long-range correlated, thus it may be justified to use the
ansatz (see § 1.5.1.1):

−� [(pk− pl−k+1)(pm− pl−m+1)] ∝
(k−m)2χH

l2 , (2.17)

where χH is a scaling exponent and we divided by l2 because the probability pk is expected
to scale with 1/l in view of ∑l

k=1 pk = 1. Substituting Eq. (2.17) into Eq. (2.16), we have

Δχ2
l ∝ l4+2χH /l4 (2.18)

so that

Δχl

(
≡
√
Δχ2

l

)
∝ lχH . (2.19)

Equation (2.19) reveals that the scaling exponent χH can be determined from the slope
of the logΔχl versus log l plot.

2.2.2.1 An example from fractional Brownian motion and fractional Gaussian noise

time series

In order to examine the validity of the above result of Eq. (2.19) when the quantities
Qk come from fractional Brownian motion (fBm) or fractional Gaussian noise (fGn) (see
§ 1.5.1.1), we employ the following procedure. First, we generate fBm (or fGn) time series
Xk (consisting of 2×104 points) for a given value of the self-similarity index H using the
Mandelbrot–Weierstrass function [25, 44, 13] of Eq. (3.37) described in detailed later in
§ 3.4.3; see also Ref. [60]. Second, since Qk should be positive, we normalize the resulting
Xk time series to zero mean and unit standard deviation and then add to the normalized
time series Nk a constant factor c to ensure the positivity of Qk = Nk + c (for the purpose
of the present study we used c = 10). The resulting Qk time series is then used for the
calculation of the fluctuations of Δχl versus the scale l which are shown in Figs. 2.3(a)
and 2.3(d) for fGn and fBm, respectively. The upper three panels of Fig. 2.3 correspond to
fGn and the lower three to fBm. We observe that:
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For fGn we have the interconnection (see Fig. 2.3(b)) χH ≈H−1 corresponding to
descending curves(see Fig. 2.3(a)).

For fBm the interconnection turns (see Fig. 2.3(e)) to χH ≈ H corresponding to
ascending curves (see Fig. 2.3(d)).

In order to judge the merits or demerits of the procedure proposed here for the determi-
nation of the scaling exponent, we compare Figs. 2.3(b) and 2.3(e) with Figs. 2.3(c) and
2.3(f), respectively, that have been obtained by DFA (§ 1.4.2). This comparison reveals that
the results are more or less comparable for fGn, while for fBm the exponent χH deviates
less from the behavior of an ideal estimator of the true scaling exponent (drawn in dashed
green) compared to the exponent αDFA obtained from the DFA method, especially for the
largest H values.

2.3 Characteristic function. Mathematical background

Here, we recapitulate some useful properties related to the notion of the characteristic
function in Probability Theory. These are given here without proofs, which can be found
in Ref. [12]. For further studies see Ref. [7].

2.3.1 Definition of the characteristic function

Definition 2.1. Let X be a random variable with probability distribution F . The character-
istic function of F (or of X) is the function ϕ defined for real ζ by

ϕ(ζ ) =
∫ +∞

−∞
eiζX F{dX}= u(ζ )+ iv(ζ ), (2.20)

where u(ζ ) = ℜ[ϕ(ζ )] and v(ζ ) = ℑ[ϕ(ζ )].
For distributions F with a probability distribution function f

ϕ(ζ ) =
∫ +∞

−∞
eiζX f (X) dX . (2.21)

According to Ref. [12], we make the following terminological note. In the accepted
terminology of Fourier analysis ϕ is the Fourier–Stieltjes transform of F . Such transforms
are defined for all bounded measures and the term “characteristic function” emphasizes
that the measure has unit mass. (No other measures have characteristic functions.) On the
other hand, integrals of the form (2.21) occur in many connections and one can say that
Eq. (2.21) defines the ordinary Fourier transform of f . The characteristic function of F is
the ordinary Fourier transform of the pdf f (when the latter exists), but the term Fourier
transform applies also to other functions.
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We now note that the function Φ(ω), defined as

Φ(ω) =
∑N

k=1 Qk exp
(
iω k

N

)
∑N

n=1 Qn
=

N

∑
k=1

pk exp
(

iω
k
N

)
, (2.22)

is a characteristic function of pk for all ω ∈�.

2.3.2 Properties of the characteristic function

Definition 2.2. The moments mn and the absolute moments Mn of X are given by

mn =
∫ +∞

−∞
XnF{dX}, (2.23)

and
Mn =

∫ +∞

−∞
|X |nF{dX}. (2.24)

The following important theorem holds [12]:

Theorem 2.1. If Mn < ∞, the n-th derivative of ϕ exists and is a continuous function given
by

ϕ(n)(ζ ) = in
∫ +∞

−∞
eiζX XnF{dX} (2.25)

leading to

ϕ ′(0) = im1, (2.26)
ϕ ′′(0) = −m2, (2.27)
ϕ ′′′(0) = −im3, etc. (2.28)

It is important to note that the converse in Eq. (2.27) is also true: If ϕ ′′(0) exists, then
m2 < ∞. For example, the function ϕα(ζ ) = exp(−|ζ |α) is not acceptable as a char-
acteristic function when α > 2, because the second moment of a distribution should be
non-vanishing (note that this fact is important for understanding the applications of Lévy
α-stable distributions in physics, e.g., see Refs. [27, 46, 47]).

Thus, the moments mn of the distribution are calculated from the behavior of the char-
acteristic function as ζ → 0.

There exists [12] another important theorem which describes the behavior of the char-
acteristic function for large values of ζ : if F has a pdf f , then ϕ(ζ )→ 0 as ζ →±∞. If f
has integrable derivatives f ′, f ′′, . . . , f (n), then |ϕ(ζ )|= o(|ζ |−n) as |ζ | → ∞.
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2.4 The normalized power spectrum Π(ω) or Π(φ) and the variance

κ1 of natural time

For the purpose of natural time analysis, the following continuous function Φ(ω), recall
Eq. (2.22), was introduced [51, 52]:

Φ(ω) =
∑N

k=1 Qk exp
(
iω k

N

)
∑N

n=1 Qn
=

N

∑
k=1

pk exp
(

iω
k
N

)
=

N

∑
k=1

pk eiωχk (2.29)

where
ω = 2πφ , (2.30)

φ standing for the frequency in natural time, termed natural frequency.

We then compute the normalized power spectrum Π(ω) as

Π(ω) = |Φ(ω)|2 =

∣∣∣∣∣
N

∑
k=1

pk eiω k
N

∣∣∣∣∣
2

(2.31)

which does not change of course under time reversal. The functionΦ(ω) should not be
confused with the discrete Fourier transform because ω is here a continuous variable.

Using Eq. (2.4), we have

∫ 1

0
eiωχ p(χ) dχ =

N

∑
k=1

[∫ 1

0
pkδ (χ−χk) eiωχ dχ

]
=

N

∑
k=1

pk eiωχk , (2.32)

thus Φ(ω) can be written as

Φ(ω) =
∫ 1

0
eiωχ p(χ) dχ =

N

∑
k=1

pk eiωχk . (2.33)

If we regard p(χ) in Eq. (2.33) as the probability density function of χ , in analogy with
probability theory, its Fourier transform Φ(ω) may be regarded as the characteristic func-
tion of χ , representing the expectation value of eiωχ (see Eq. (2.21) in § 2.3.1).

By differentiations at the origin, i.e., as ω → 0, Φ(ω) gives (see Theorem 2.1) the
statistical properties of p(χ), such as the mean, variance etc. In view of Eq. (2.31), we
now focus on the small ω values of Π(ω) by considering [51] its Taylor expansion,
around ω = 0,

Π(ω) = 1−κ1ω2 +κ2ω4 +κ3ω6 +κ4ω8 + . . . (2.34)
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where

κ1 =− 1
2

d2Π(ω)
dω2

∣∣∣∣
ω=0

. (2.35)

We now consider

d2Π(ω)
dω2 =Φ∗(ω)

d2Φ(ω)
dω2 +Φ(ω)

d2Φ∗(ω)
dω2 +2

dΦ(ω)
dω

dΦ∗(ω)
dω

(2.36)

and taking into account Eq. (2.29) along with the fact that Φ(0) = 1, we find:

κ1 = −1
2

⎡
⎣−∑

k
pkχ2

k −∑
k

pkχ2
k +2

(
∑
k

pkχk

)2
⎤
⎦

= 〈χ2〉−〈χ〉2, (2.37)

where

〈χn〉=
N

∑
k=1

pkχn
k (2.38)

denote the moments of the natural time χ ‘weighted’ by pk.

Thus, the quantity κ1 corresponds to the variance of natural time:

κ1 = 〈χ2〉−〈χ〉2 =
N

∑
k=1

pk

(
k
N

)2

−
(

N

∑
k=1

k
N

pk

)2

. (2.39)

Since the normalized power spectrum Π(ω) does not change under time reversal, the
same holds for κ1.

The remaining terms of Eq. (2.34) can be shown [51] to be equal to

κ2 =
〈χ2〉2

4
+
〈χ4〉
12

− 〈χ〉〈χ
3〉

3
(2.40)

κ3 =
〈χ3〉2

36
+
〈χ〉〈χ5〉

60
− 〈χ

6〉
360

− 〈χ
2〉〈χ4〉
24

(2.41)

κ4 =
〈χ8〉

20160
+
〈χ2〉〈χ6〉

720
+
〈χ4〉2
576

− 〈χ
3〉〈χ5〉
360

− 〈χ〉〈χ
7〉

2520
(2.42)

When considering the symmetric expansion of p(χ) in the region [−1,1] which is ob-
tained by selecting p(0) ≡ limχ→0 p(χ) and p(−χ) ≡ p(χ), we obtain that p(χ) can be
expanded [51, 55] in a cosine Fourier series for χ ∈ (0,1]:
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p(χ) = 1+
∞

∑
n=1

pn cos(nπχ) (2.43)

where

pn = 2
∫ 1

0
p(χ)cos(nπχ)dχ , (2.44)

are the cosine Fourier series expansion coefficients. Equation (2.43) could give insight into
what one should expect for the normalized power spectra Π(ω).

We recall that the lowest frequency included in this expansion, in addition to φ = 0, is
φ = 0.5 corresponding to ω = π .

Furthermore, Π(ω) for ω � π , or φ � 0.5, by virtue of the Taylor expansion (2.34)
and Eqs. (2.39), (2.40), (2.41) and (2.42) resembles the properties of the characteristic
function Φ(ω) for p(χ) since its Taylor expansion coefficients are explicitly related to the
moments of natural time χ . Of course, these moments do not appear in such a simple way
as they appear in Theorem 2.1.

The detailed study of the quantity κ1 shows that it exhibits (see Section 3.3) positivity,
concavity, experimental stability and reveals that it has interesting physical properties;
see Chapters 4 to 8.

By combining Eqs. (2.33), (2.35), (2.43) and (2.44), the following interrelation between
κ1 and the Fourier coefficients of p(χ) can be found [51]

κ1 = 〈χ2〉−〈χ〉2 =
1

12
+

1
2π2

∞

∑
n=1

p2n

n2 −
[

1
2π2

∞

∑
k=0

p2n+1

(n+1/2)2

]2

. (2.45)

We now calculate the limit for the variance κ1 in the case of a “uniform” distribution,
see § 2.1.3, for which p(χ) = 1 and pn = 0. Thus, Eq. (2.45) leads to κ1 = 1/12. This
will be hereafter labeled κu, i.e.,

κu =
1

12
= 0.0833 . . . (2.46)

The κ1 value has been calculated in a variety of cases discussed in the present mono-
graph. In particular, for SES activities it is theoretically obtained in § 2.4.2 and given in
Table 4.6 for several experimental cases. The latter table also includes the κ1 value for
various “artificial” noises, and Table 4.4 the ionic current fluctuations in membrane chan-
nels. The κ1 value for the case when the increments of the time series of Qk are p.i.i.d.
random variables of finite variance is calculated in § 2.5.3 and for power law distributed
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(uncorrelated) energy bursts in § 2.5.4. For the case of fBm time series the κ1 value will
be discussed later in § 3.4.3 and for short-range correlated time series in § 3.4.5. As for
dichotomous Markovian time series the κ1 value will be treated in Chapter 4; see Fig. 4.22.
Moreover, the κ1 value for long-term seismicity will be discussed in Chapter 6, while for
the seismicity that evolves after the initiation of SES activities and before the mainshock
occurrence will be treated in Chapter 7 for several cases. Finally, for various dynamical
models discussed in Chapter 8, the results for the κ1 value when the critical point is ap-
proached are compiled in Table 8.1. Note also that the κ1 values for a case when Qk are
quasi-periodic are depicted in Fig. 8.4.

The largest κ1 value obtained either from experimental data or from theoretical models
is 0.25. A theoretical explanation of this fact is given in § 3.3.2.1.

2.4.1 The normalized power spectrum for the “uniform” distribution

Using Eqs. (2.31) and (2.33), we obtain

Π(ω) =
∣∣∣∣∫ 1

0
eiωχ p(χ) dχ

∣∣∣∣2 =
∫ 1

0

∫ 1

0
p(χ)p(ψ) eiω(χ−ψ) dχ dψ (2.47)

After the transformation of variables: X = (χ+ψ)/2 and δ = (χ−ψ), the double integral
in Eq. (2.47) becomes

Π(ω) = 2
∫ 1

0
cos(ωδ )

∫ 1− δ
2

δ
2

p
(

X− δ
2

)
p
(

X +
δ
2

)
dX dδ (2.48)

Equation (2.48) can be also written as

Π(ω) = 2
∫ 1

0
cos(ωδ )G(δ ) dδ (2.49)

with

G(δ ) =
∫ 1− δ

2

δ
2

p
(

X− δ
2

)
p
(

X +
δ
2

)
dX (2.50)

We can now estimate the normalized power spectrum Πu(ω) for the “uniform” dis-
tribution. As already mentioned this is the case when Qk are p.i.i.d. random variables.
Thus, the pdf p(χ) becomes p(χ) = 1 for all χ ∈ (0,1]; Eq. (2.50) simply results in

G(δ ) =
∫ 1− δ

2
δ
2

dX = 1−δ leading, see Eq. (2.49), to the normalized power spectrum

Πu(ω) = 2
∫ 1

0
(1−δ )cos(ωδ ) dδ =

sin2(ω/2)
(ω/2)2 (2.51)
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When expanding Πu(ω) of Eq. (2.51) around ω → 0, we obtain

Πu(ω)≈
[

1− 1
3!

(ω
2

)2
]2

≈ 1− 2
3!

(ω
2

)2
= 1− 1

12
ω2 (2.52)

When considering the expansion of Eq. (2.34), we observe that Eq. (2.52) results to
κ1 = κu = 1/12 in accordance with Eq. (2.46).

2.4.2 The normalized power spectrum of seismic electric signals

Here, we focus on the normalized power spectrum of SES activities which are emitted
when criticality is approached [51, 52]. Thus, we rely on the physics behind their gen-
eration discussed in Section 1.6. We first consider the following two laboratory measure-
ments. (i) Indentation experiments even in simple ionic crystals showed that transient elec-
tric signals are emitted, without the action of any external electric field, due to (formation
and motion of) point and linear defects, e.g., see Ref. [62]. (ii) Independent measurements
[37] revealed that, as the glass transition is approached, a polarization time series is emitted
which probably arises from the reorientation process of electric dipoles; this process in-
cludes a large number of atoms (cooperativity). The feature of this polarization time series
is strikingly similar [48] to the measured SES activities. This similarity is reminiscent of
the pressure stimulated currents model [49] discussed in § 1.6.2, which suggests that upon
a gradual variation of the pressure (stress) P on a solid, when approaching the critical
pressure (stress) Pcr, transient electric signals are emitted arising from the (re)orientation
of electric dipoles (formed due to defects). This emission occurs when the following con-
dition is obeyed (which is just Eq. (1.48) of § 1.6.2):

dP
dt

∣∣∣∣
T

vm,b

kT
=− 1

τ(Pcr)
, (2.53)

where dP
dt

∣∣
T is the pressure rate and τ(Pcr) is the relaxation time of the dipoles at the crit-

ical pressure. It has been argued, see p. 404 of Ref. [49], that the values of the migration
volume vm,b associated with SES generation should exceed the mean atomic volume by or-
ders of magnitude, and this entails that the relevant (re)orientation process should involve
the motion of a large number of “atoms” . Thus, the laboratory measurements fortify the
suggestion [48] that the emission of the SES activities could be discussed in the frame of
the theory of dynamic phase transitions (critical phenomena). The very stochastic nature
of the relaxation process has been repeatedly discussed in the literature (see p. 350 of Ref.
[19] and references therein; other suggestions have been reviewed in Ref. [31], while illu-
minating aspects have been forwarded in Ref. [66]). A stochastic analysis was based on the
concept of clusters, the structural rearrangement of which develops in time [19]. Accord-
ing to this analysis the exponential relaxation of the polarization is arrested at a random
time variable ηi and the instantaneous orientation reached at this instant is “frozen” at a
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value exp(−βiηi) where βi = b = constant (see fig. 11.19 of Ref. [19]). Assuming that
ηi itself follows an exponential distribution, with a time constant τ0 � τ(Pcr), an almost
constant current would be expected for as long as this unit “lives” (i.e., for a duration ηi).

As a result of cooperativity, the duration Qk of a SES activity pulse is envisaged as the
sum of nk such identical units, thus Qk = ∑nk

i=1ηi. Under this assumption, the duration Qk
of the k-th pulse in a SES activity follows the gamma distribution with a mean lifetime
nkτ0 and variance nkτ2

0 (e.g., see lemma 8.1.6.5. of Ref. [30]), i.e., the average duration is
given by:

� (Qk) = nkτ0 (2.54)

and its variance by:
� (Q2

k)−n2
kτ

2
0 = nkτ2

0 . (2.55)

As already mentioned (§ 1.6.2), the SES activity is emitted when the focal area enters
into the critical regime. The approach of a system to a critical point can be characterized by
a feature that events begin to be temporally correlated, which is equivalent to a persistent
avalanching. The condition for the persistent avalanching can be expressed as

� (Qk+1) = Qk (2.56)

which means that the average Qk+1 value of the k + 1-th event is maintained at the level
already reached by the previous one. This is reminiscent of the aspect that the reorientation
of a spin in the random-field Ising Hamiltonian, will cause on average just one more spin
to flip at the critical point [23]. Since Qk+1 is assumed to be distributed according to the
gamma distribution, we also have:

�

{
[Qk+1−� (Qk+1)]

2
}

= � (Qk+1)τ0 ⇒
� (Q2

k+1) = Qkτ0 +Q2
k (2.57)

We now turn to the evaluation of the normalized power spectrumΠ(ω), see Eqs. (2.49)
and Eq. (2.50), for the SES activities. We will first attempt to evaluate the average value
G̃(δ )

G̃(δ ) =
∫ 1− δ

2

δ
2

�

[
QX− δ

2
QX+ δ

2

]
dX (2.58)

as it results from all SES activities comprising N pulses. Note that G̃(δ ) is similar to
G(δ ) of Eq. (2.50) apart from the fact that it does not involve the normalized pdfs p(X −
δ
2 )p(X + δ

2 ). When for example X− δ
2 = k/N and X + δ

2 = l/N, we have

� [QX− δ
2

QX+ δ
2
] = � [QkQl ] =

∫
. . .
∫

︸ ︷︷ ︸
N

QkQl d�1 d�2 . . . d�k . . . d�l . . . d�N (2.59)

where�1,�2 . . .�N are the pdfs for the durations Q1,Q2, . . .QN , respectively. Using the
normalization condition of the pdfs, we can eliminate the integrals over�l+1 to�N
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� [QkQl ] =
∫

. . .
∫

︸ ︷︷ ︸
l

QkQl d�1 d�2 . . . d�k . . . d�l (2.60)

and using Eq. (2.56) we can integrate over�l down to�k

� [QkQl ] =
∫

. . .
∫

︸ ︷︷ ︸
k

Q2
k d�1 d�2 . . . d�k (2.61)

Performing now the integration over �k by using the recursive relation of Eq. (2.57) for
k = k−1, we obtain

� [QkQl ] =
∫

. . .
∫

︸ ︷︷ ︸
k−1

(Qk−1τ0 +Q2
k−1) d�1 d�2 . . . d�k−1 (2.62)

whereas a second application of the recursive relations of Eqs. (2.56) and (2.57) into
Eq. (2.62) results in

� [QkQl ] =
∫

. . .
∫

︸ ︷︷ ︸
k−2

(2Qk−2τ0 +Q2
k−2) d�1 d�2 . . . d�k−2 , (2.63)

a third one to

� [QkQl ] =
∫

. . .
∫

︸ ︷︷ ︸
k−3

(3Qk−3τ0 +Q2
k−3) d�1 d�2 . . . d�k−3 , (2.64)

and so on. Finally, we obtain

� [QX− δ
2

QX+ δ
2
] = � [QkQl ] =

∫ [
(k−1)Q1τ0 +Q2

1
]

d�1 . (2.65)

Restoring k = (X− δ
2 )N into Eq. (2.65), we obtain

� [QX− δ
2

QX+ δ
2
] = α

(
X− δ

2

)
+β , (2.66)

where α =
∫

Nτ0Q1 d�1 and β =
∫ (

Q2
1− τ0Q1

)
d�1 = (

∫
Q1 d�1)

2. Substituting Eq.
(2.66) into Eq. (2.58), we obtain

G̃(δ ) =
∫ 1− δ

2

δ
2

[
α
(

X− δ
2

)
+β

]
dX = α

(1−δ )2

2
+β (1−δ ). (2.67)

Equation (2.67) provides G̃(δ ) for the SES activities comprising N pulses. We note the
existence of two terms in the right-hand side of Eq. (2.67): The last term, which is simply
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proportional to (1− δ ), originates from the positivity of Qk and is also present in the

case of the “uniform” distribution, see Eq. (2.51). On the other hand, the first term (1−δ )2

2
comes from the memory of the critical process as reflected in Eq. (2.66), which states that
the expectation � [QX− δ

2
QX+ δ

2
] depends solely on X − δ

2 , i.e., the natural time elapsed
since the initiation of the process.

In order to determine the normalized power spectrum for SES activities through a for-
mula similar to Eq. (2.49), e.g.,

Π(ω) = 2
∫ 1

0
cos(ωδ )� (δ ) dδ (2.68)

we need also to average over all possible values of N to obtain an appropriate � (δ ). The
quantity of G(δ ) in Eq. (2.49), as well as � (δ ) in Eq. (2.68), is dimensionless since it
results from the pdf p(χ) in Eq. (2.49). Equation (2.67) was obtained, however, without
normalizing QX− δ

2
and QX+ δ

2
by the appropriate factor

(∫
Qχ dχ

)2 because the inclusion
of such a factor in the denominator would hinder the integration procedure followed. As
a first approximation, we construct a dimensionless quantity from Eq. (2.67), thus for
example we divide G̃(δ ) by α:

G̃(δ )
α

=
(1−δ )2

2
+
β
α

(1−δ ). (2.69)

The quantity � (δ ) is expected to be a weighted sum of the right-hand side of Eq. (2.69)
for various values of N, thus it will be of the form

� (δ ) ∝
(1−δ )2

2
+
(
β
α

)
(1−δ ), (2.70)

where
(
β
α

)
stands for the corresponding average – renormalized – value of the ratio

β
α

=
(
∫

Q1 d�1)
2∫

Nτ0Q1 d�1
=

n1

N
. (2.71)

Let us now impose (natural time) scale invariance which should hold for criticality. This
means that the result should be independent of N. Hence, the time scale τ0, so far arbitrary,
should be such that the results obtained from Eq. (2.71) for various N lead to a value

(labeled
(
β
α

)
in Eq. (2.70)) independent of N. This is satisfied when τ0 = const.×Q1/N as

it is evident from Eq. (2.71). Since when a single SES pulse is emitted the only reasonable
time scale to assume is that of the duration of the single pulse, we should impose τ0 =
Q1/N. Thus, we may write (

β
α

)
=

(
∫

Q1 d�1)
2∫

Q2
1d�1

. (2.72)
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Assuming that at the initiation of the SES activity, only one unit is available, i.e, n1 = 1, the
duration Q1 in Eq. (2.72) is exponentially distributed (see Eqs. (2.54) and (2.55)) leading
to (

β
α

)
=

1
2
. (2.73)

Equation (2.70) then reads

� (δ ) ∝
(1−δ )2

2
+

(1−δ )
2

. (2.74)

Inserting Eq. (2.74) into Eq. (2.68), we obtain that for the SES activities (critical dy-
namics) the normalized power spectrum equals to [51]

Π(ω) =
18

5ω2 −
6cosω

5ω2 − 12sinω
5ω3 . (2.75)

Expanding Eq. (2.75) around ω = 0 (see Eqs. (2.34) and (2.35)), we get

Π(ω)≈ 1−κ1ω2, (2.76)

where
κ1 = 0.070. (2.77)

An inspection of Fig. 4.7 shows that for the region of natural frequencies 0 ≤ φ < 0.5
(recall the shaded remark after Eq. (2.44)) the experimental results for the SES activities
agree favorably with Eq. (2.75). In addition, for the SES activities observed to date, see
Table 4.6, the validity of Eq. (2.77) has been confirmed.

An alternative derivation that κ1 ≈ 0.070 for SES activities, can be given on the basis
of the Ising model if we also consider its qualitative similarity under certain conditions
with the pressure-stimulated currents model (§ 1.6.2) for the SES generation, as will be
explained in § 8.4.1.

Note that the relation κ1 = 0.070, i.e., Eq. (2.77), emerges for several dynamical mod-
els approaching criticality which are compiled in Table 8.1.

2.5 Distinction of the origins of self-similarity

A large variety of natural systems exhibit irregular and complex behavior which at first
looks erratic, but in fact possesses scale-invariant structure (e.g., see Refs. [34, 20]). As
explained in § 1.5.1, a process {X(t)}t≥0 is called self-similar [24] with index H > 0, if it
has the property

X(λ t) d= λHX(t) ∀ λ > 0. (2.78)
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Equation (2.78) means a “scale invariance” of the finite-dimensional distributions of X(t),
which does not imply, in stochastic processes, the same for the sample paths (e.g., see
Ref. [65]). In this Section, following Ref. [59], we will explain how natural time enables
the distinction of the two origins of self-similarity.

2.5.1 The two origins of self-similarity. Background

Examples of self-similar processes are Brownian, fractional Brownian (fBm), Lévy stable
and fractional Lévy stable motion (fLsm). Lévy stable distributions (which are followed
by many natural processes, e.g., see Refs. [46, 47]) differ greatly from the Gaussian ones
because they have heavy tails and their variance is infinite (e.g., see Refs. [65, 38]).

An important point in analyzing data from natural systems that exhibit scale-invariant
structure is the following. In several systems this nontrivial structure points to long-range
temporal correlations; in other words, the self-similarity results from the process’s memory
only (e.g., the case of fBm discussed in § 1.5.1.1). Alternatively, the self-similarity may
solely result from the process’s increments’ infinite variance, e.g., Lévy stable motion.
(Note that in distributions that are applicable to a large variety of problems, extreme events
have to be truncated for physical reasons, e.g., finite size effects – when there is no infinity
[6] – and this is why we write hereafter “infinite”.) In general, however, the self-similarity
may result from both these origins (e.g., fLsm). It is the main aim of this Section to discuss
how a distinction of the two origins of self-similarity (i.e., process’s memory and process’s
increments’ “infinite” variance) can be in principle achieved by employing natural time
analysis.

Before proceeding, the following clarifications are necessary as far as the aforemen-
tioned two sources of self-similarity are concerned. Long-range temporal correlations,
which are quoted above as a first origin of self-similarity, are an immediate consequence of
Eq. (2.78) with H > 1

2 defining a self-similar process. We stress, however, that long-range
correlations do not automatically imply self-similarity of a process. Multifractal processes
provide a large class of counter-examples (note that the natural time analysis of multi-
plicative cascades is discussed in § 6.2.5). The second origin of self-similarity comes from
the statistical properties of the increments of the process. We emphasize, however, that
the statistics of these increments does not automatically lead to nontrivial self-similarity
of the process. Specifically, a process which is invariant under shuffling of the increments
has independent increments and is characterized by the self-similarity index 1

2 .

2.5.2 The expectation value of κ1 when a (natural) time window of length l is sliding

through a time series

Here, we focus on the expectation value � (κ1) of the variance (κ1) of natural time
when sliding a (time) window of length l through a time series of Qk > 0,k = 1,2, . . .N
(while in § 2.2.2 we calculated the fluctuations of the average value of the natural time
itself under time reversal). In a window of length l starting at k = k0, the quantities
p j = Qk0+ j−1/∑l

m=1 Qk0+m−1, j = 1,2, . . . , l are obtained, which satisfy the necessary
conditions
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p j > 0, (2.79)

l

∑
j=1

p j = 1 (2.80)

to be considered as point probabilities. We then define [51, 55] the moments of the natural
time χ j = j/l as 〈χq〉= ∑l

j=1( j/l)q p j and hence

κ1 =
l

∑
j=1

(
j
l

)2

p j−
[

l

∑
j=1

j
l

p j

]2

. (2.81)

Note that κ1 is a nonlinear functional of {p j}. Let us consider the expectation value
μ j ≡ � (p j) of p j. For the purpose of our calculation the relation between the vari-
ance of p j, Var(p j) ≡ � [(p j − μ j)2], and the covariance of p j and pm, Cov(p j, pm) ≡
� [(p j−μ j)(pm−μm)], is important. In view of Eqs. (2.79) and (2.80), the quantities μ j,
Var(p j) and Cov(p j, pm) are always finite independent of the presence of heavy tails in
Qk. Using the constraint of Eq. (2.80), leading to p j−μ j = ∑m�= j(μm− pm), we obtain

Var(p j) =− ∑
m�= j

Cov(p j, pm). (2.82)

We now turn to the evaluation of � (κ1), and study its difference from the one that corre-
sponds to the average time series� = {μk} which is labeled κ1,� ,

κ1,� =
l

∑
j=1

(
j
l

)2

μ j−
[

l

∑
j=1

j
l
μ j

]2

. (2.83)

Hence,

� (κ1)−κ1,� = �

⎡
⎣ l

∑
m=1

m2

l2 (pm−μm)−
(

l

∑
m=1

m
l

pm

)2

+

(
l

∑
m=1

m
l
μm

)2
⎤
⎦ . (2.84)

In view of the definition of μm, the first term in the right-hand side of Eq. (2.84) vanishes,
whereas the latter two terms reduce to the variance of 〈χ〉:

� (κ1)−κ1,� =−�
⎧⎨
⎩
[

l

∑
m=1

m
l

(pm−μm)

]2
⎫⎬
⎭ . (2.85)

Expanding this variance, we get

κ1,� −� (κ1) =
l

∑
m=1

m2

l2 Var(pm)+2
l−1

∑
j=1

l

∑
m= j+1

jm
l2 Cov(p j, pm) . (2.86)

which, upon using Eq. (2.82), leads to
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� (κ1)−κ1,� =
l−1

∑
j=1

l

∑
m= j+1

( j−m)2

l2 Cov(p j, pm) =
1
2

l

∑
j=1

l

∑
m=1

( j−m)2

l2 Cov(p j, pm) .

(2.87)
This relation turns to

� (κ1) = κ1,� + ∑
all pairs

( j−m)2

l2 Cov(p j, pm) , (2.88)

where ∑all pairs≡∑l−1
j=1 ∑l

m= j+1 (compare Eq. (2.88) with Eq. (2.16) in which a term similar
to the covariance Cov(p j, pm) has been discussed).

The case when Qk do not exhibit temporal correlations: This is the case for example of
randomly shuffled data. As the window is sliding through the whole time series, Qk takes
of course every position j within the window of length l. Then, Eq. (2.80) leads to

� (p j) =
1
l
, (2.89)

and Cov(p j, pm) becomes independent of j and m, thus Eq. (2.82) becomes

Cov(p j, pm) =−Var(p)
(l−1)

. (2.90)

Since Var(p j) is also independent of j, Var(p j) was merely substituted by Var(p). More-
over, κ1,� reduces to κ1,c, where κ1,c corresponds to the constant time series � = {xk} :
xk = 1/l, k = 1,2, . . . l, which is given by

κ1,c =
l

∑
m=1

m2

l3 −
(

l

∑
m=1

m
l2

)2

= κu

(
1− 1

l2

)
, (2.91)

where κu = 1/12 ≈ 0.0833. Turning now to Eq. (2.86) and by adding and subtracting
Var(p)

l−1 ∑ m2

l2 , we obtain that:

For shuffled data

� (κ1) = κu

(
1− 1

l2

)
−κu(l +1) Var(p) . (2.92)

In view of Eqs. (2.79) and (2.80), Var(p) < � (p2) < � (p) = 1/l, and thus the second
term in Eq. (2.92) remains finite for l → ∞.

The l-dependence of Var(p) when Qk have a finite second moment is obtained from

Var(pk) =
1
l2 �

[(
lQk

∑l
n=1 Qn

−1
)2
]

, (2.93)
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where the quantity � [(lQk/∑l
n=1 Qn − 1)2] is asymptotically l-independent. The latter

arises as follows: if � (Qk) = μ and Var(Qk) = σ2(< ∞), as a result of the central limit the-
orem [12], we have � (∑l

k=1 Qk/l) = μ and Var(∑l
k=1 Qk/l) = σ2/l. The latter two equa-

tions, for large enough l imply that � [(lQk/∑l
n=1 Qn− 1)2] ≈ � [(Qk/μ − 1)2] = σ2/μ2.

Thus, Eq. (2.93) becomes (note that Var(pk) is independent of k)

Var(p) =
σ2

l2μ2 . (2.94)

For Qk which do not exhibit time correlations, e.g., randomly shuffled data:
If Qk do not exhibit heavy tails and have finite variance, Var(p) scales (Eq. (2.94))

as 1/l2, thus � (κ1), as l increases in Eq. (2.92), converges to κu. The same holds for
the most probable value κ1,p of κ1.

Otherwise, the expectation value � (κ1) differs from κu -pointing that κ1,p also
differs from κu, i.e., κ1,p �= κu – thus identifying the presence of heavy tails in the
examined time series.

2.5.2.1 Comments on the expectation value of κ1 for a given window length l

Let us now comment on the expectation value � (κ1) of κ1 when a (natural) time window
of length l is sliding through a time series of Qk > 0, which as mentioned (see Eq. (2.88))
is given by

� (κ1) = κ1,� + ∑
all pairs

( j−m)2

l2 Cov(p j, pm), (2.95)

Let us first discuss the case when Qk are shuffled randomly. Equation (2.95) then turns
to (see Eq. (2.92))

� (κ1,shu f ) = κu

(
1− 1

l2

)
−κu(l +1) Var(p). (2.96)

If Qk do not exhibit heavy tails and have finite variance, Eq. (2.96) reveals (see the
discussion above, § 2.5.2) that � (κ1,shu f ) rapidly converges to κu. For example, this is
the case of the SES activities [60] discussed in Chapter 4, e.g., see § 4.7.1. Otherwise,
� (κ1,shu f ) differs from κu, thus pointing to κ1,p �= κu. This is the case, for example, of the
earthquakes discussed in Chapter 6.

Second, if Qk do exhibit time correlations, the difference between the κ1,p for the orig-
inal and the shuffled time series most likely originates from the difference of Eqs. (2.95)
and (2.96), respectively. The extent to which the latter difference is nonzero accounts for
the time correlations irrespective if Qk exhibit heavy tails. For example, this is clearly the
case of aftershocks and the case of earthquake catalogs in general (both of which exhibit
heavy tails) discussed in detail in Section 6.3 (e.g., see Figs. 6.14 and 6.13, respectively).

The application of the above results to two important examples are given in the next
two subsections.
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2.5.3 The case when the increments of the time series of Qk are positive i.i.d.

random variables of finite variance

We first discuss the case when the increments of the time series of Qk are p.i.i.d. random
variables rn of finite variance. In this case Qk = ∑k

n=1 rn, and hence Qk is on average linearly
related to k. Thus, it is expected that the continuous distribution p(χ), that corresponds to
pk see Eq. (2.4), is p(χ) = 2χ . Using

κ1 =
∫ 1

0
p(χ)χ2 dχ−

(∫ 1

0
p(χ)χ dχ

)2

, (2.97)

a direct calculation leads to the value κ1 = 1
18 ≈ 0.056 which significantly differs from

that κu ≈ 0.083 of the “uniform” distribution (see Eq. (2.46)). In view of the fact that the
increments have finite variance, the distribution of Qk for a given N has also finite variance.
Hence, as shown in the previous subsection, we expect that when Qk are shuffled randomly
the resulting κ1 values should scatter around κu. A numerical example for exponentially
distributed increments is shown in Fig. 2.4.
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Fig. 2.4 The pdf of κ1 that
has been obtained by shuffling
the Qk randomly in the case of
exponential increments, i.e., rn
are randomly drawn from an
exponential distribution. Here,
N = 500 and the original time
series results in κ1 = 0.055.
See also Fig. 3.3.

2.5.4 The value of κ1 when a (natural) time window is sliding through power law

distributed energy bursts

We now study a case of self-similarity resulting from the process’s increments’ “infinite”
variance. Here, we restrict ourselves to (slowly driven) systems that emit energy bursts
obeying a power law distribution

P(E)∼ E−γ (2.98)
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where γ is constant. In a large variety of such systems in diverse fields, an inspection of
the experimental data reveals that the γ exponent lies in a narrow range 1.5 ≤ γ ≤ 2.1
and mostly within even narrower bounds, i.e., γ = 1.5 to 1.8. To realize the diversity
of the phenomena that exhibit the aforementioned property, we compile some indicative
examples in Table 2.1, which are the following.

Table 2.1 Compilation of the experimental values of the power law exponent γ determined in different
physical processes. Taken from Ref. [59].

Process / type of measurement γ References

Dislocation glide in hexagonal 1.6 [26]
ice single crystals (acoustic emission)

Intermittent plastic flow 1.6 [9]
in nickel microcrystals

Solar flares 1.5–2.1 [5, 32, 18, 29]

Microfractures before the 1.5 [14, 1]
breakup of wood (acoustic emission)

Microfractures before the 2.0 [14, 1]
breakup of fiberglass (acoustic emission)

Earthquakes 1.5–1.8 See Ref. [36]
and references therein

Icequakes ≈1.8 See p.212 of Ref. [64]
and references therein

First, crystalline materials subjected to an external stress, display bursts of activity ow-
ing to the nucleation and motion of dislocations. These sudden local changes produce
acoustic emission waves which reveal that a large number of dislocations move coopera-
tively in an intermittent fashion (e.g., see Ref. [22] and references therein). As a precise
example, we include in Table 2.1 the results of acoustic emission experiments on stressed
single crystals of ice under viscoelastic deformation (creep), which show that the proba-
bility distribution of energy bursts intensities obey a power law distribution with γ = 1.6
spanning many decades (see fig. 1 of Ref. [26]). Second, the same exponent is found [9]
(i.e., γ = 1.60± 0.02) in the analysis of intermittent plastic flow observations (i.e., mea-
surements of discrete slip events for loadings above the elastic–plastic transition) on nickel
microcrystals (see fig. 2 of Ref. [9]). Third, we consider the case of solar flares that rep-
resent impulsive energy releases in the solar corona (e.g. see Ref. [29] and references
therein; see also Ref. [4] in which it is concluded that earthquakes and solar flares exhibit
the same distributions of sizes, inter-occurrence times, and the same temporal clustering).
This energy release is observed in various forms: thermal, soft and hard X-ray emissions,
accelerated particles etc. The statistical analysis of these impulsive events show that the
energy distribution exhibits, over several orders of magnitude, a power law with exponents
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Fig. 2.5 The probability density function
P(κ1) versus κ1 for several values of γ .
Taken from Ref. [59].

γ ranging from 1.5 to approximately 2.1 (depending on the experimental procedure and the
geometrical assumptions adopted in the analysis). Other examples are: acoustic emission
from microfractures before the breakup of heterogeneous materials (wood, fiberglass), ice-
quakes and earthquakes.

The following procedure is now applied. We generate a large amount (500,000) of arti-
ficial data obeying Eq. (2.98) for a certain γ value with energy E ≥ 1 and randomly shuffle
them. This was repeated for various γ values by keeping the total number of events con-
stant (which implies that when changing γ , the maximum energy involved in the calcula-
tion also changes). These randomized (“shuffled” [63, 56]) data are subsequently analyzed
[61] in the natural time domain: the calculation of the variance κ1 is made for an event
taking time windows for l = 6 to 40 consecutive events (i.e., while in § 2.5.2 the value of
l was kept constant, here l varies within certain limits and no κ1 averaging is made). The
choice of the precise value of the upper limit of l is not found decisive, since practically
the same results are obtained even if the number of consecutive events was changed from
6–40 to 6–100. And second, this process was performed for all the events (for all the l
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Fig. 2.6 The values of κ1,p as a func-
tion of γ for power law distributed
data. The continuous line has been
drawn as a guide to the eye. Note
that κ1,p ≈ 0.070 for γ ≈ 1.87, see
also Fig. 2.5. Taken from Ref. [59].
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values, e.g. between l = 6 to l = 40) by scanning the whole dataset. In Fig. 2.5, we plot the
pdf P(κ1) versus κ1 for several γ values. The most probable value κ1,p (for γ = constant)
is also plotted in Fig. 2.6 versus the corresponding γ value.

This curve interrelates κ1 and γ for the shuffled data (thus an eventual process’s mem-
ory is destroyed) and hence the plotted κ1,p values (which differ markedly from κu)
correspond to the self-similarity resulting solely from the heavy-tailed distribution.

Note that the study of the origin of the self-similarity in real earthquake data will be
elaborated in Chapter 6.

2.5.5 Conclusions

In summary, the origin of self-similarity may be distinguished as follows:

If self-similarity exclusively results from the process’s memory, the κ1 value should
change to κu = 1/12 for the (randomly) shuffled data. This is the case of the SES
activities, e.g. see § 4.7.1.

On the other hand, if the self-similarity results from process’s increments’ “infinite”
variance only, the most probable value κ1,p should be the same (but differing from κu)
for the original and the (randomly) shuffled data.

When both origins of self-similarity are present, the relative strength of the contri-
bution of the one origin with respect to that of the other can be quantified on the basis
of Eqs. (2.95) and (2.96), e.g., see § 6.3.2.

2.6 Origin of the optimality of the natural time representation

Here we address the problem [3] of optimality of the natural time representation of time
series resulting from complex systems. For this purpose, we first study the structures of
the time-frequency representations [7] of the signals by employing the Wigner function
[68] to compare the natural time representation with the ones, either in conventional time
or in other possible reparametrizations. We shall see that significant enhancement of the
signal is observed in the time-frequency space if natural time is used, in marked contrast
to other time domains. To quantify this localization property, we examine the generalized
entropic measure proposed by Tsallis [45], which has been widely discussed in the studies
of complex dynamical systems (see also Section 6.5).
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In time series analysis, it is desired to reduce uncertainty and extract signal informa-
tion as much as possible. Consequently, the most useful time domain should maximize
the information measure, and hence minimize the entropy. We find that this can sta-
tistically be ascertained in natural time, by investigating a multitude of different time
domains.

Consider a signal {x(t)} represented in conventional time, t. The normalized time-
frequency Wigner function associated with it is defined by

W (t,ω) = A
∫

dτ e−iωτx(t− τ/2)x(t + τ/2), (2.99)

where A = [π
∫

dtx2(t)]−1 is the normalization constant and ω is the frequency. Numeri-
cally, it is necessary to discretize and make finite both time and frequency, and the inte-
gral has to be replaced by a sum. To make comparison of the natural time analysis with
Eq. (2.99), it is convenient to rescale χk by Nχk, which is precisely the pulse number,
k ≡ tk. The quantity, Qk , has a clear meaning for dichotomous time series (Fig. 2.1(a)),
whereas for nondichotomous time series, threshold should be appropriately applied (e.g.,
the mean value plus half of the standard deviation) to transform it to a dichotomous one.
The normalized Wigner function associated with Qk is now given as follows:

W (k, ω̃) = B
N−1

∑
i=0

Qk−iQk+i cos[ω̃(tk+i− tk−i)], (2.100)

where B = [π∑N
k=1 Q2

k ]
−1 stands for the normalization constant and ω̃ is the dimensionless

“frequency”. In the sum, Qk with k ≤ 0 and k > N should be set equal to zero. Note that
Eq. (2.100) is a discrete version of the continuous Wigner function in Eq. (2.99) and unlike
the ordinary definition, the transformation in Eq. (2.100) is not orthogonal in general.

Figure 2.7 depicts the Wigner functions in the time-frequency spaces for the conven-
tional time (a) and the natural time (b). Remarkably, significant enhancement of the signal
is observed in the latter case, with the scale of enhancement being about 10 times. A local-
ized structure emerges in natural time, in contrast to a moderate profile in the conventional
time representation.

In the natural time domain, the time difference between two consecutive pulses (i.e.,
inter-occurrence time) is equally spaced and dimensionless, and is here taken to be unity:
tk+1− tk = 1. However, for the sake of comparison, we will later consider various time
domains in which the occurrence time tk = Nuk in Eq. (2.100) is made random. The con-
ventional time representation is characterized by a constant time increment Δ t (e.g., 1 sec),
and the occurrence of the i-th event is at ti = iΔ t. To generate the random time domains
artificially, we consider uniformly distributed uk so that the average inter-occurrence time
is again unity. Performing Monte-Carlo simulation, we have constructed more than 1,000
different time domains and integrated over ω (ω̃) over 0 to π [rad/sec] ([rad]), which can
cover the regimes of interest (recall that when tk = k, W (k,ω+π) = W (k,ω)).
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Fig. 2.7 The plots of the Wigner functions
of the SES activity A of Fig. 2.8 given
below in (a) the conventional time domain
and (b) the natural time domain. Significant
enhancement of the signal is recognized
in the natural time domain at both edges
but mainly in the localized structures in the
intermediate region. Note that, instead of χk,
Nχk = k is used (see the text). ω has the unit
[rad/sec], whereas has ω̃ has [rad]. Taken
from Ref. [3].
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Fig. 2.8 Excerpts of 4 SES
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and 6 “artificial” noises, labeled
n1–n6, in normalized units, see
the caption of Fig. 4.2. Taken
from Ref. [3].
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To quantify the degrees of disorder in the time-frequency spaces with various time
domains, we employ as mentioned the Tsallis entropy [45] defined by

Sq =
1

1−q

(∫
dμW q−1

)
, (2.101)

where
∫

dμ is the collective notation for integral and sum over the time-frequency space
and q is the positive entropic index. In the limit q → 1, this quantity tends to the form
of the Boltzmann–Gibbs–Shannon entropy S =−∫ dμW lnW . This limit cannot however
be taken, since the Wigner function is a pseudo-distribution and takes negative values, in
general. The quantity Sq is, however, well defined if q is even. Thus, we propose to use the
value

q = 2, (2.102)

which, by considering Eqs. (2.100) and (2.101), results in:

S2 = 1− 1
2π
×

⎧⎪⎨
⎪⎩

∑N
k=1 ∑N−1

l=0 ∑N−1
l′=0 Qk−lQk+lQk−l′Qk+l′

sin[π(tk+l−tk−l+tk+l′−tk−l′ )]
π(tk+l−tk−l+tk+l′−tk−l′ )[

∑N
k=1

(
Q2

k +∑N−1
l=1 Qk−lQk+l

sin[π(tk+l−tk−l)]
π(tk+l−tk−l)

)]2 +

∑N
k=1 ∑N−1

l=0 ∑N−1
l′=0 Qk−lQk+lQk−l′Qk+l′

(
δl+l′,0 +δl,l′ +

sin[π(tk+l−tk−l−tk+l′+tk−l′ )]
π(tk+l−tk−l−tk+l′+tk−l′ )

)
[
∑N

k=1

(
Q2

k +∑N−1
l=1 Qk−lQk+l

sin[π(tk+l−tk−l)]
π(tk+l−tk−l)

)]2

⎫⎪⎬
⎪⎭

(2.103)

Table 2.2 The values of Prob(S2 < Snat
2 ) together with the number of pulses N for the electric signals of

Fig. 2.8 with N > 50. The estimation error is at the most 1.6%.

Signal N Prob(S2 < Snat
2 )(%)

K1 312 3.7
K2 141 6.9
U 80 8.1

n1 216 5.7
n2 1080 <0.1
n3 259 2.7
n4 396 1.6
n5 432 2.8

To examine how the natural time representation is superior to other ones, in Ref. [3] we
made comparison of the values of S2 for 10 different time series [54] of electric signals
(see Fig. 2.8, whereas Fig. 4.9 depicts their natural time representation): 4 SES activities
and 6 “artificial” noises. The results of 8 (out of the 10) signals comprising more than
50 pulses are compiled in Table 2.2 in which we give the values of Prob(S2 < Snat

2 ), i.e.,
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the probability that S2 calculated for a time domain different than the natural time domain
to be smaller than the value Snat

2 calculated for natural time (note that this value comes
from Eq. (2.103) and should not be confused with the entropy S in natural time defined by
Eq. (3.1), see Chapter 3). This probability Prob(S2 < Snat

2 ) was estimated as follows. For
each time domain produced by Monte–Carlo the corresponding S2 value was calculated
through Eq. (2.103) and compared to Snat

2 . For signals with a reasonable number of pulses,
e.g., larger than 50, Table 2.2 reveals that the quantity Snat

2 , in fact, tends to be minimum
compared to those of other representations attempted. In addition, it is mentioned that Snat

2
is also appreciably smaller than S2 in conventional time (see Fig. 2.7).

In conclusion, we investigated if natural time yields an optimal representation for en-
hancing the signals in the time-frequency space by employing the Wigner function
and measuring its localization property by means of the Tsallis entropy. For this pur-
pose, we compared the values of the entropy for various time series (being either SES
activities or “artificial” noises) represented in a multitude of different time domains.
We find that the entropy is highly likely to be minimum for natural time, implying the
least uncertainty in the time-frequency space. This explains why dynamical evolution
of diverse systems can be better described in natural time.

2.7 Is time continuous?

Natural time χ , from its definition, is not continuous and takes values which are rational
numbers in the range (0,1]. (In these numbers, as the complex system evolves, the numer-
ators are just the natural numbers (except 0), which denote the order of appearance of the
consecutive events.) Hence, one of the fundamental differences between (conventional)
time and natural time refers to the fact that the former is based on the idea of continuum,
while the latter is not. Following Ref. [50], here we aim at raising some consequences of
this difference, and in particular those that stem from the set theory developed by Can-
tor, having in mind the following crucial remark made by Schrödinger (see pp. 62–63 of
Ref. [40]):

“We are familiar with the idea of the continuum, or we believe ourselves to be. We are
not familiar with the enormous difficulty this concept presents to the mind, unless we have
studied very modern mathematics (Dirichlet, Dedekind,Cantor).”

2.7.1 Differences between natural time and conventional time on the basis

of set theory

We clarify in advance that we do not tackle here the case (since it is inapplicable to our
universe [16]) raised by Gödel in 1949 who discovered [15] unexpected solutions to the
equations of general relativity corresponding to universes in which no universal temporal
ordering is possible (see also Refs. [8, 71] and references therein). This solution acquires
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its simplest form (see p.86 in Ref. [39]) “with two of the coordinate-line-elements time-
like (the other two space-like)”. Interestingly, Schrödinger in an early version of Ref. [39],
which was published almost simultaneously with Gödel’s work, had also emphasized that
“there is no necessity for just three of the four line-elements being space-like, one time-like
. . . ”.

We now recapitulate some points of the Cantor set theory that are relevant to our present
discussion.

A transfinite number or transfinite cardinal is the cardinality of some infinite set,
where the term cardinality of a set stands for the number of members it contains,
e.g., see Ref. [43].

The set of natural numbers is labeled by � , while the number of natural numbers is
designated by ℵ0, i.e., ℵ0 = |� | (note that the cardinality of a set S is labeled |S|). In this
transfinite number, the zero subscript is justified by the fact that, as proved by Cantor, no
infinite set has a smaller cardinality than the set of natural numbers.

It can be shown that the set of rational numbers designated by � has the same cardi-
nality as the set of natural numbers, or |� | = |�| (e.g., Theorem 2 in Ref. [43]). In
other words, the rationals are exactly as numerous as the naturals.

Note that a set is countable i f f its cardinality is either finite or equal to ℵ0 and in
particular is termed denumerable i f f its cardinality is exactly ℵ0 (note that as usually, for
“if and only if” we write simply “i f f ”). A set is uncountable i f f its cardinality is greater
than ℵ0; see also below.

Hence, natural time takes values (which, as mentioned, are rational numbers) that form
in general a countable set; this becomes a denumerable set in the limit of infinitely
large number of events (see § 2.7.2).

Further, since in natural time analysis we consider the pairs (χk,Qk), the values
of the quantity Qk should form a set with cardinality smaller than (or equal to) ℵ0. In
other words, the values of the energy also form a countable set, which reflects of course
that the energy is not continuous, thus the quantization of energy seems to emerge.

The fact that |� | = |�| is an astounding result in view of the following. The rational
numbers are dense in the real numbers, which means that between any two rational num-
bers on the real number line we can find infinitely more rational numbers. In other words,
although the set of rational numbers seems to contain infinities within infinities, there are
just as many natural numbers as there are rational numbers. This reflects the following
point.

Let us assume that we follow the evolution of a system with some (experimental) accu-
racy, in which, as mentioned, in the limit of infinitely large number of events the cardinality
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of the set of the values of natural time is ℵ0. Let us assume that we now repeat the mea-
surement with more sensitive instrumentation, i.e., counting events above an appreciably
smaller energy threshold (which should be constrained by the uncertainty principle, but a
further discussion on this point lies beyond the scope of the present monograph, as already
mentioned in § 2.1.1); hence between two consecutive events of the former measurement a
considerable number of appreciably smaller events may be monitored. The corresponding
cardinality, in contrast to our intuition, is again ℵ0. In other words, when considering the
limit of infinitely large number of consecutive events, the natural time takes values that
form a denumerable set and this remains so even upon increasing the accuracy (and hence
lowering the uncertainty) of our measurement. The inverse, i.e., when the instrumentation
becomes less sensitive, may correspond to a “coarse graining” procedure.

We now turn to the aspects of Cantor set theory related to the real numbers, which
as mentioned are associated with the conventional time. It is shown that the number of
points on a finite line segment is the same as the number of points on an infinite line (e.g.,
Theorem 13 in Ref. [43]). Considering the definition: the number of real numbers is the
same as the number of points on an infinite line (or in the jargon, the numerical continuum
has the same cardinality as the linear continuum), let “c” designate the cardinality of the
continuum – or equivalently the cardinality of the set of real numbers. (Hence c = |�|
by definition.) It is proven (e.g., Theorem 16 in Ref. [43]) that the set of real numbers is
uncountable, or |�|> ℵ0. (Equivalently, this theorem asserts that c > ℵ0.)

Hence, the values of conventional time form an uncountable set, in contrast to that of
natural time which in general as mentioned is countable.

In order to further inspect this fundamental difference, we resort to the continuum hy-
pothesis (CH) which was formulated (but not proved) by Cantor.

Continuum hypothesis, after Euclid’s parallel postulate, was the first major conjecture
to be proved undecidable by standard mathematics [43].

We first clarify that the power set ∗S of a set S, which is the set of all subsets of S, has
a cardinality |∗S|= 2|S| when S is finite. According to Cantor’s Theorem the cardinality of
the power set of an arbitrary set has a greater cardinality than the original arbitrary set,
i.e., |∗S| > |S| (e.g., Theorem 4 in Ref. [43]). This theorem is trivial for finite sets, but
fundamental for infinite sets. Hence, for any infinite cardinality, there is a larger infinite
cardinality, namely, the cardinality of its power set.

The continuum hypothesis asserts that there is no cardinal number α such that
ℵ0 < α < c.

Then it follows that the next largest transfinite cardinal after ℵ0 (labeled ℵ1) is c, thus
c = ℵ1. Since Cantor proved (e.g., Theorem 17 in Ref. [43]) that ℵ1 = 2ℵ0 , CH leads to:
c = 2ℵ0 (thus, this is the number of points on an infinite line).
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Hence, if we assume CH, the cardinality of the set of the values of natural time – in
the limit of infinitely large number of events – corresponds to ℵ0, while that of the
conventional time is 2ℵ0 .

The values of the former, as mentioned, are rational numbers, while almost all the
values of the latter are irrational, because, since 2ℵ0 
ℵ0, almost all reals are irrational
numbers. (On the other hand, without assuming CH we have essentially no idea which
transfinite number corresponds to c, and we would know the cardinality of the naturals,
integers, and rationals, but not the cardinality of the reals, e.g., see Ref. [43].) As for the
values of Qk, they are not necessarily rational, because in general when taking ℵ0 (at the
most) out of 2ℵ0 values they may all be irrational.

Hence, in the limit of infinitely large number of events, even upon gradually improving
the accuracy of our measurements, both sets {χk} and {Qk} remain denumerable, the
former consisting of rational numbers only.

2.7.2 Proof of the cardinality of the set of the values of natural time

We now indicate how in the limit of infinitely large number of events we conclude that the
cardinality of the set of the values of natural time equals to ℵ0. Let us tabulate the values
of natural time upon the occurrence of each event:

after the first event 1
after the second event 1

2
2
2

after the third event 1
3

2
3

3
3

after the fourth event 1
4

2
4

3
4

4
4

. . .
after the Nth event 1

N
2
N

3
N

4
N . . . N

N

This indicates that the cardinality of the set of the values of natural time |{χk}| should
be greater than (or equal to) N(number of entries in the first column) and smaller than (or
equal to) N2 (number of entries in the square N×N matrix), i.e.,

N ≤ |{χk}| ≤ N2. (2.104)

Thus, for N → ∞ we have ℵ0 ≤ |{χk}| ≤ ℵ2
0 and since ℵ2

0 = ℵ0 (see Theorem 22 of
Ref. [43]), we find that |{χk}|= ℵ0.

2.7.3 Is natural time compatible with Schrödinger’s point of view?

Schrödinger, in order to point out “the intricacy of the continuum”, used the following
example (see pp. 138–143 of Ref. [41]): Let us consider the interval [0,1], you first take
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away the whole middle third including its left border point, thus the points from 1/3 to
2/3 (but you leave 2/3). Of the remaining two-thirds you again take away “the middle
thirds”, including their left border points, but leaving their right border points. With the
remaining “four ninths” you proceed in the same way and so on. The cardinality of the set
that remains ad infinitum is no less than that of [0,1] because it can be shown [41] that there
is a one-to-one correspondence between their elements. Moreover, since it is a subset of
[0,1], its cardinality is also no greater, so it must in fact be equal. In particular, Schrödinger
concludes [41] as follows: “The remarkable fact about our remaining set is that, although
it covers no measurable interval, yet it still has the vast extension of any continuous range.
This astonishing combination of properties is, in mathematical language, expressed by
saying that our set has still the ‘potency’ of the continuum, although it is ‘of measure
zero’.” In other words, the cardinality of the aforementioned remaining set considered by
Schrödinger exceeds drastically that of the set of the values of natural time.

Let us now comment on the common view that (conventional) time is continuous, keep-
ing in the frame that, as pointed out by Schrödinger (p. 145 of Ref. [42]) “our sense per-
ceptions constitute our sole knowledge about things”. In short, it seems that the continuity
of time does not stem from any fundamental principle, but probably originates from the
following demand on continuity discussed by Schrödinger (see p. 130 of [41]):

“From our experiences on a large scale . . . physicists had distilled the one clear-cut
demand that a truly clear and complete description of any physical happening has to fulfill:
it ought to inform you precisely of what happens at any point in space at any moment of
time . . . . We may call this demand the postulate of continuity of the description.”

Schrödinger, however, subsequently commented on this demand as follows (see p. 131
of Ref. [41]): “It is this postulate of continuity that appears to be unfulfillable!...” and
furthermore added: “We must not admit the possibility of continuous observation.”
Considering these important remarks, we may say that the concept of natural time is
not inconsistent with Schrödinger’s point of view.

2.7.4 Conclusions

Conventional time is currently assumed continuous, but this does not necessarily result
from any fundamental principle. Its values form an uncountable set, almost all of which
may be irrational numbers. On the other hand, natural time is not continuous, and its
values form a countable set consisting of rational numbers only; further, the values of
the energy also form a countable set but they are not necessarily rational. In the limit of
infinitely large number of events, the cardinality of the set of the values of natural time
is ℵ0 (irrespective of whether we increase the accuracy of the measurement), thus being
drastically smaller than that of conventional time, which equals to 2ℵ0 if we accept the
validity of the continuum hypothesis.
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Today 58(12), 60–61 (2005)
17. Hooft, G.T.: In Does God play dice? Physics World, December 2005, (http://physicsweb.org/

articles/world)
18. Hughes, D., Paczuski, M., Dendy, R.O., Helander, P., McClements, K.G.: Solar flares as cascades of

reconnecting magnetic loops. Phys. Rev. Lett. 90, 131101 (2003)
19. Jonscher, A.K.: Universal Relaxation Law. Chelsea Dielectric Press, London (1996)
20. Kalisky, T., Ashkenazy, Y., Havlin, S.: Volatility of linear and nonlinear time series. Phys. Rev. E 72,

011913 (2005)
21. Kanamori, H.: Quantification of earthquakes. Nature 271, 411–414 (1978)
22. Koslowski, M., LeSar, R., Thomson, R.: Avalanches and scaling in plastic deformation. Phys. Rev.

Lett. 93, 125502 (2004)
23. Kuntz, M.C., Sethna, J.P.: Noise in disordered systems: The power spectrum and dynamic exponents

in avalanche modelss. Phys. Rev. B 62, 011699 (2000)
24. Lamperti, J.W.: Semi-stable stochastic processes. Trans. Am. Math. Soc. 104, 62–78 (1962)
25. Mandelbrot, B.B., Wallis, J.R.: Some long-run properties of geophysical records. Water Resources

Research 5, 321–340 (1969)
26. Miguel, M.C., Vespignani, A., Zapperi, S., Weiss, J., Grasso, J.R.: Intermittent dislocation flow in

viscoplastic deformation. Nature 410, 667–671 (2001)

http://classes.yale.edu/fractals/
http://classes.yale.edu/Fractals/RandFrac/fBm/fBm4.html
http://physicsweb.org/articles/world
http://physicsweb.org/articles/world


156 2. Natural Time. Background
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