
Chapter 2

Viability and Capturability

2.1 Introduction

This rather long chapter is the central one. It is aimed at allowing the
reader to grasp enough concepts and statements of the principal results
proved later on in the book to read directly and independently most of
the chapters of the book: Chaps. 4, p. 125 and 6, p. 199 for qualitative
applications, Chap. 8, p. 273 and 9, p. 319 for other quantitative concepts,
Chaps. 7, p. 247 and 15, p. 603 for social science illustrations, Chaps. 3, p. 105,
14, p. 563 and 16, p. 631 in engineering, even though, here and there, some
results require statements proved in the mathematical Chaps. 10, p. 375 and
11, p. 437.

This chapter defines and reviews the basic concepts: evolutions and their
properties, in Sect. 2.2, p. 45, and next, several sections providing examples of
evolutionary systems. We begin by the simple single-valued discrete systems
and differential equations.

We next introduce parameters in the dynamics of the systems, and, among
these parameters, distinguish constant coefficients, controls, regulons and
tyches (Sect. 2.5, p. 58) according to the roles they will play. They motivate
the introduction of controlled discrete and continuous time systems. All these
systems generate evolutionary systems defined in Sect. 2.8, p. 68, the abstract
level where it is convenient to study the viability and capturability properties
of the evolutions they govern, presented in detail in Chap. 10, p. 375.

Next, we review the concepts of viability kernels and capture basins, under
discrete time controlled systems in Sect. 2.9, p. 71. In this framework, the
computation of the regulation map is easy and straightforward. We present
the viability kernel algorithm in Sect. 2.9.2, p. 74 and use it to compute the
Julia sets and Fatou dusts in Sect. 2.9.3, p. 75 and show in Sect. 2.9.4, p. 79
how the celebrated fractals are related to viability kernels under the class of
discrete disconnected systems.
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44 2 Viability and Capturability

Viability kernels and capture basins under continuous time controlled
systems are the topics of Sect. 2.10, p. 85. We illustrate the concepts of
viability kernels by computing the viability kernel under the (backward)
Lorenz system, since we shall prove in Chap. 9, p. 319 that it contains the
famous Lorenz attractor.

Viability kernels and capture basins single out initial states from which
at least one discrete evolution is viable forever or until it captures a target.
We are also interested to the invariance kernels and absorption basins made
of initial states from which all evolutions are viable forever or until they
capture a target. One mathematical reason is that these concepts are, in
some sense, “dual” to the concepts of viability kernels and capture basins
respectively, and that they will play a fundamental role for characterizing
them. The other motivation is the study of “tychastic” systems where the
parameters are tyches (perturbations, disturbances, etc.) which translate one
kind of uncertainty without statistical regularity, since tyches are neither
under the control of an actor nor chosen to regulate the system.

We also address computational issues:

• viability kernel and capture basin algorithms for computing viability
kernels and capture basins under discrete system in Sect. 2.9.2, p. 74,

• and next, discretization issues in Sect. 2.14, p. 96.

For computing viability kernels and capture basins under continuous
time controlled systems, we proceed in two steps. First, approximate the
continuous time controlled systems by discretized time controlled systems, so
that viability kernels and capture basins under discretized systems converge
to the viability kernels and capture basins under the continuous time
evolutionary system, and next, compute the viability kernels and capture
basins under the discretized time controlled systems by the viability kernel
and capture basin algorithms.

This section just mentions these problems and shows how the (trivial)
characterization of viability kernels and capture basins under discretized
controlled systems gives rise to the tangential conditions characterizing them
under the continuous time controlled system, studied in Chap. 11, p. 437.

The chapter ends with a “viability survival kit” in Sect. 2.15, p. 98,
which summarizes the most important statements necessary to apply viability
theory without proving them. They are classified in three categories:

• At the most general level, where simple and important results and are
valid without any assumption,

• At the level of evolutionary systems, where viability kernels and capture
basins are characterized in terms of local viability properties and backward
invariance,

• At the level of control systems, where viability kernels and capture basins
are characterized in terms of “tangential characterization” which allows
us to define and study the regulation map.
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2.2 Evolutions

Let X denote the state space of the system. Evolutions describe the behavior
of the state of the system as a function of time.

Definition 2.2.1 [Evolutions and their Trajectories] The time t
ranges over a set T that is in most cases,

1. either the discrete time set of times j ∈ T := N := {0, . . . , +∞{
ranging over the set of positive integers j ∈ N,

2. or the continuous time set of times t ∈ T := R+ := [0, . . . , +∞[
ranging over the set of positive real numbers or scalars t ∈ R+.

Therefore, evolutions are functions x(·) : t ∈ T �→ x(t) ∈ X describing the
evolution of the state x(t). The trajectory (or orbit) of an evolution x(·) is
the subset {x(t)}t∈T ⊂ X of states x(t) when t ranges over T.

Warning: The terminology “trajectory” is often used as a synonym of
evolution, but inadequately: a trajectory is the range of an evolution.

Unfortunately, for discrete time evolutions, tradition imposes upon us to
regard discrete evolutions as sequences and to use the notation −→x : j ∈
N �→ xj := x(j) ∈ X . We shall use this notation when we deal explicitly
with discrete time. We use the notation x(·) : t ∈ R+ �→ x(t) ∈ X for
continuous time evolutions and whenever the results we mention are valid for
both continuous and discrete times. It should be obvious from the context
whether x(·) denotes an evolution when time ranges over either discrete T :=
N+ time set or continuous T := R+ time set.

The choice between these two representations of time is not easy. The
“natural” one, which appears the simplest for non mathematicians, is the
choice of the set T := N+ of discrete times. It has drawbacks, though. On
one hand, it may be difficult to find a common time scale for the different
components of the state variables of the state space of a given type of models.
On the other hand, by doing so, we deprive ourselves from the concepts
of velocity, acceleration and other dynamical concepts introduced by Isaac
Newton (1642–1727), that are not well taken into account by discrete time
systems as well as of the many results of the differential and integral calculus
gathered for more than four centuries since the invention of the infinitesimal
calculus by Gottfried Leibniz (1646–1716). Therefore, the choice between
these two representations of times being impossible, we have to investigate
both discrete and continuous time systems. Actually, the results dealing with
viability kernels and capture basins use the same proofs, as we shall see in
Chap. 10, p. 375. Only the viability characterization becomes dramatically
simpler, not to say trivial, in the case of discrete systems.
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Note however that for computational purposes, we shall approximate
continuous time systems by discrete time ones where the time scale becomes
infinitesimal.

Warning: Viability properties of the discrete analogues of continuous-
time systems can be drastically different : we shall see on the simple example
of the Verhulst logistic equation that the interval [0, 1] is invariant under
the continuous system

x′(t) = rx(t)(1 − x(t))

for all r ≥ 0 whereas the viability kernel of [0, 1] under its discrete
counterpart

xn+1 = rxn(1 − xn)

is a Cantor subset of [0, 1] when r > 4. Properties of discrete counterparts
of continuous time dynamical systems can be different from their discretiza-
tions. These discretizations, under the assumptions of adequate convergence
theorems, share the same properties than the continuous time systems.

We shall assume most of the time that:

1. the state space is a finite dimensional vector space X := R
n,

2. evolutions are continuous functions x(·) : t ∈ R+ �→ x(t) ∈ X describing
the evolution of the state x(t).

We denote the space of continuous evolutions x(·) by C(0,∞; X).
Some evolutions, mainly motivated by physics, are classical: equilibria and

periodic evolutions. But these properties are not necessarily adequate for
problems arising in economics, biology, cognitive sciences and other domains
involving living beings. Hence we add the concept of evolutions viable in
a environment or capturing a target in finite time to the list of properties
satisfied by evolutions.

2.2.1 Stationary and Periodic Evolutions

We focus our attention to specific properties of evolutions, denoting by H ⊂
C(0,∞; X) the subset of evolutions satisfying these properties. For instance,
the most common are stationary ones and periodic ones:

Definition 2.2.2 [Stationary and Periodic Evolutions]

1. The subset X ⊂ C(0,∞; X) of stationary evolutions is the subset of
evolutions x : t �→ x when x ranges over the state space X.



2.2 Evolutions 47

2. The subset PT (X) of T -periodic evolutions is the subset of evolutions
x(·) ∈ C(0,∞; X) such that, ∀t ≥ 0, x(t + T ) = x(t).

Stationary evolutions are periodic evolutions for all periods T .
Stationary and periodic evolutions have been a central topic of investi-

gation in dynamical systems motivated by physical sciences. Indeed, the
brain, maybe because it uses periodic evolutions of neurotransmitters through
subsets of synapses, has evolved to recognize periodic evolutions, in particular
those surrounding us in daily life (circadian clocks associated with the light of
the sun). Their extensive study is perfectly legitimate in physical sciences, as
well as their new developments (bifurcations, catastrophes, dealing with the
dependence of equilibria in terms of a parameter, and chaos, investigating
the absence of continuous dependence of evolution(s) with respect to the
initial states, for instance). However, even though we shall study evolutions
regulated by constant parameters, bifurcations are quite difficult to observe,
as it was pointed out in Sect. 3.3 of the book Introduction to nonlinear systems
and chaos by Stephen Wiggins :

11 [On the Interpretation and Application of Bifurcation Dia-
grams: A Word of Caution] At this point, we have seen enough examples
so that it should be clear that the term bifurcation refers to the phenomenon
of a system exhibiting qualitatively new dynamical behavior as parameters
are varied. However, the phrase “as parameters are varied” deserves careful
consideration [...] In all of our analysis thus far the parameters have been
constant. The point is that we cannot think of the parameter as varying
in time, even though this is what happens in practice. Dynamical systems
having parameters that change in time (no matter how slowly!) and that
pass through bifurcation values often exhibit behavior that is very different
from the analogous situation where the parameters are constant.

The situation in which coefficients are kept constant is familiar in physics,
but, in engineering as well as in economic and biological sciences, they may
have to vary with time, playing the roles of controls in engineering, of regulons
in social and biological sciences, or tyches, when they play the role of random
variables when uncertainty does not obey statistical regularity, as we shall
see in Sect. 2.5, p. 58.

Insofar as physical sciences privilege the study of stability or chaotic
behavior around attractors (see Definition 9.3.8, p. 349) and their attraction
basins (see Definition 9.3.3, p. 347), the thorough study of transient evolutions
have been neglected, although they pervade economic, social and biological
sciences.
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2.2.2 Transient Evolutions

Theory of Games and Economic
Behavior. John von Neumann (1903–1957)
and Oskar Morgenstern (1902–1976) con-
cluded the first chapter of their monograph
“Theory of Games and Economic Behavior”
(1944) by these words: Our theory is
thoroughly static. A dynamic theory would

unquestionably be more complete and therefore, preferable. But there is
ample evidence from other branches of science that it is futile to try to build
one as long as the static side is not thoroughly understood. [...] Finally, let us
note a point at which the theory of social phenomena will presumably take a
very definite turn away from the existing patterns of mathematical physics.
This is, of course, only a surmise on a subject where much uncertainty and
obscurity prevail [...] A dynamic theory, when one is found, will probably
describe the changes in terms of simpler concepts.

Unfortunately, the concept of equilibrium is polysemous. The mathemat-
ical one, which we adopt here, expresses stationary – time independent –
evolution, that is, no evolution. The concept of equilibrium used by von
Neumann and Morgenstern is indeed this static concept, derived from the
concept of general equilibrium introduced by Léon Walras (1834–1910) in his
book Éléments d’économie politique pure (1873) as an equilibrium (stationary
point) of his tâtonnement process.

Another meaning results from the articulation between dynamics and
viability constraints : This means here that, starting from any initial state
satisfying these constraints, at least one evolution satisfies these constraints
at each instant (such an evolution is called viable). An equilibrium can be
viable or not, these two issues are independent of each other.

The fact that many scarcity constraints in economics are presented in
terms of “balance”, such as the balance of payments, may contribute to the
misunderstanding. Indeed, the image of a balance conveys both the concept
of equalization of opposite forces, hence of constraints, and the resulting
stationarity – often called “stability”, again, an ambivalent word connoting
too many different meanings.

This is also the case in biology, since Claude Bernard (1813-1878) intro-
duced the notion of constancy of inner milieu (constance du milieu intérieur).
In 1898 he wrote: Life results form the encounter of organisms and milieu,
[...] we cannot understand it with organisms only, or with milieu only. This
idea was taken up under the name of “homeostasis” by Walter Cannon (1871-
1945) in his book Bodily changes in pain, hunger, fear and rage (1915). This



2.2 Evolutions 49

is again the case in ecology and environmental studies, as well as in many
domains of social and human sciences when organisms adapt or not to several
forms of viability constraints.

2.2.3 Viable and Capturing Evolutions

Investigating evolutionary problems, in particular those involving living
beings, should start with identifying the constraints bearing on the variables
which cannot – or should not – be violated. Therefore, if a subset K ⊂ X
represents or describes an environment, we mainly consider evolutions x(·)
viable in the environment K ⊂ X in the sense that

∀t ≥ 0, x(t) ∈ K (2.1)

or capturing the target C in the sense that they are viable in K until they
reach the target C in finite time:

∃ T ≥ 0 such that
{

x(T ) ∈ C
∀t ∈ [0, T ], x(t) ∈ K

(2.2)

We complement Definition 6, p. 15 with the following notations:

Definition 2.2.3 [Viable and Capturing Evolutions] The subset of
evolutions viable in K is denoted by

V(K) := {x(·) | ∀t ≥ 0, x(t) ∈ K} (2.3)

and the subset of evolutions capturing the target C by

K(K, C) := {x(·) | ∃ T ≥ 0 such that x(T ) ∈ C & ∀t ∈ [0, T ], x(t) ∈ K}
(2.4)

We also denote by
V(K, C) := V(K) ∪ K(K, C) (2.5)

the set of evolutions viable in K outside C, i.e. that are viable in K forever
or until they reach the target C in finite time.

Example: The first examples of such environments used in control theory
were vector (affine) subsets because, historically, analytical formulas could
be obtained. Nonlinear control theory used first geometrical methods, which
required smooth equality constraints, yielding environments of the form

K := {x | g(x) = 0} where g : X := R
c �→ Y := R

b (b < c) is smooth
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Subsets such as smooth manifolds (Klein bottle, for instance), having no
boundaries, the viability and invariance problems were evacuated. This is no
longer the case when the environment is defined by inequality constraints,
even smooth ones, yielding subsets of the form

K := {x | g(x) ≤ 0}

the boundary of which is a proper subset. Subsets of the form

K := {x ∈ L | g(x) ∈ M}

where L ⊂ X , g : X �→ Y and where M ⊂ Y are typical environments
encountered in mathematical economics. It is for such cases that mathemat-
ical difficulties appeared, triggering viability theory.

Constrained subsets in economics and biology are generally not smooth.
The question arose to build a theory and forge new tools that did require
neither the smoothness nor the convexity of the environments. Set-valued
analysis, motivated in part by these viability and capturability issues,
provided such tools.

Remark. These constraints can depend on time (time-dependent con-
straints), as we shall see in Chap. 8, p. 273, upon the state, the history (or
the path) of the evolution of the state. Morphological equations are kind of
differential equations governing the evolution of the constrained state K(t)
and can be paired with evolutions of the state. The issues are dealt in [23,
Aubin]. �


Remark. We shall introduce other families of evolutions, such as the
viable evolutions permanent in a cell C ⊂ K of fluctuating around C
which are introduced in bio-mathematics (see Definition 9.2.1, p. 322). In
“qualitative physics”, a sequence of tasks or objectives is described by a family
of subsets regarded as qualitative cells. We shall investigate the problem
of finding evolutions visiting these cells in a prescribed order (see Sect. 8.8,
p. 302). �


These constraints have to be confronted with evolutions. It is now time
to describe how these evolutions are produced and to design mathematical
translations of several evolutionary mechanisms.

2.3 Discrete Systems

Discrete evolutionary systems can be defined on any metric state space X .
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12 Examples of State Spaces for Discrete Systems:

1. When X := R
d, we take any of the equivalent vector space metrics for

which the addition and the multiplication by scalars is continuous.
2. When Xρ := ρZ

d is a grid with step size ρ, we take the discrete topology,
defined by d(x, x) := 0 and d(x, y) := 1 whenever x �= y. A sequence of
elements xn ∈ X converges to x if there exists an integer N such that
for any n ≥ N , xn = x, any subset is both closed and open, the compacts
are finite subsets. Any single-valued map from X := Z

d to some space E
is continuous.

Deterministic discrete systems, defined by

∀j ≥ 0, xj+1 = ϕ(xj) where ϕ : x ∈ X �→ ϕ(x) ∈ X

are the simplest ones to formulate, but not necessarily the easiest ones to
investigate.

Definition 2.3.1 [Evolutionary Systems associated with Discrete
Systems] Let X be any metric space and ϕ : X �→ X be the single-valued
map associating with any state x ∈ X its successor ϕ(x) ∈ X.
The space of discrete evolutions −→x := {xj}j∈N is denoted by XN. The
evolutionary system Sϕ : X �→ XN associated with the map ϕ : x ∈ X �→
ϕ(x) ∈ X associates with any x ∈ X the set Sϕ(x) of discrete evolutions −→x
starting at x0 = x and governed by the discrete system

∀j ≥ 0, xj+1 = ϕ(xj)

An equilibrium of a discrete dynamical system is a stationary evolution
governed by this system.

An equilibrium x ∈ X (stationary point) of an evolution −→x governed by
the discrete system xj+1 = ϕ(xj) is a fixed point of the map ϕ, i.e., a solution
to the equation ϕ(x) = x. There are two families of Fixed Point Theorems
based:

1. either on the simple Banach–Cacciopoli–Picard Contraction Mapping
Theorem in complete metric spaces,

2. or on the very deep and difficult 1910 Brouwer Fixed Point Theorem on
convex compact subsets, the cornerstone of nonlinear analysis.
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Example: The Quadratic Map The quadratic map ϕ associates with
x ∈ [0, 1] the element ϕ(x) = rx(1−x) ∈ R, governing the celebrated discrete

logistic system xj+1 = rxj(1−xj). The fixed points of ϕ are 0 and c :=
r − 1

r
,

which is smaller than 1. We also observe that ϕ(0) = ϕ(1) = 0 so that the
successor of 1 is the equilibrium 0.

For K := [0, 1] ⊂ R to be a state space under this discrete logistic system,
we need ϕ to map K := [0, 1] to itself, i.e., that r ≤ 4. Otherwise, for

r > 4, the roots of the equation ϕ(x) = 1 are equal to a :=
1
2
−
√

r2 − 4r

2r
and

b :=
1
2

+
√

r2 − 4r

2r
, where b < c. We denote by d ∈ [0, a] the other root of the

equation ϕ(d) = c. Therefore, for any x ∈]a, b[, ϕ(x) > 1.
A way to overcome this difficulty is to associate with the single-valued

ϕ : [0, 1] �→ R the set-valued map Φ : [0, 1] � [0, 1] defined by Φ(x) := ϕ(x)
when x ∈ [0, a] and x ∈ [b, 1] and Φ(x) := ∅ when x ∈]a, b[. Let us set

ω�(y) :=
1
2
−

√
r2 − 4ry

2r
and ω�(y) :=

1
2

+

√
r2 − 4ry

2r

The inverse Φ−1 is defined by

Φ−1(y) :=
(
ω�(y), ω�(y)

)

Fig. 2.1 Discrete Logistic System.

The graph of the function x �→ ϕ(x) := rx(1 − x) for r = 5 is displayed as
a function ϕ : [0, 1] �→ R as a set-valued map Φ : [0, 1] � [0, 1] associating
with any x ∈ [a, b] the empty set. Equilibria are the abscissas of points of
the intersection of the graph Graph(ϕ) of ϕ and of the bisectrix. We observe
that 0 and the point c (to the right of b) are equilibria. On the right, the
graph of the inverse is displayed, with its two branches.
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The predecessors Φ−1(0) and Φ−1(c) of equilibria 0 and c are initial states
of viable discrete evolutions because, starting from them, the equilibria are
their successors, from which the evolution remains in the interval forever.
They are made of ω�(0) = 1 and of c1 := ω�(c). In the same way, the four
predecessors Φ−2(0) := Φ−1(Φ−1(0)) = {ω�(1) = a, ω�(1) = b} and Φ−2(c)
are initial states of viable evolutions, since, after two iterations, we obtain
the two equilibria from which the evolution remains in the interval forever.
And so on: The subsets Φ−p(0) and Φ−p(c) are made of initial states from
which start evolutions which reach the two equilibria after p iterations, and
thus, which are viable in K. They belong to the viability kernel of K (see
Definition 2.9.1, p. 71 below). This study will resume in Sect. 2.9.4, p. 79.

2.4 Differential Equations

2.4.1 Determinism and Predictability

We begin by the simplest class of continuous time evolutionary systems, which
are associated with differential equations

x′(t) = f(x(t))

where f : X �→ X is the single-valued map associating with any state x ∈ X
its velocity f(x) ∈ X .

Definition 2.4.1 [Evolutionary Systems associated with Differen-
tial Equations] Let f : X �→ X be the single-valued map associating with
any state x ∈ X its velocity f(x) ∈ X.
The evolutionary system Sf : X � C(0, +∞; X) defined by f : X �→ X is
the set-valued map associating with any x ∈ X the set Sf (x) of evolutions
x(·) starting at x and governed by differential equation

x′(t) = f(x(t))

The evolutionary system is said to be deterministic if Sf : X �
C(0, +∞; X) is single-valued. An equilibrium of a differential equation is
a stationary solution of this equation.

An equilibrium x (stationary point) of a differential equation x′(t) =
f(x(t)) being a constant evolution, its velocity is equal to 0, so that it is
characterized as a solution to the equation f(x) = 0.
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The evolutionary system Sf associated with the single-valued map f is a
priori a set-valued map, taking:

1. nonempty values Sf (x) whenever there exists a solution to the differential
equation starting at x, guaranteed by (local) existence theorems (the Peano
Theorem, when f is continuous),

2. at most one value Sf (x) whenever uniqueness of the solution starting at
x is guaranteed. There are many sufficient conditions guaranteeing the
uniqueness: f is Lipschitz, by the Cauchy–Lipschitz Theorem, or f is
monotone in the sense that there exists a constant λ ∈ R such that

∀x, y ∈ X, 〈f(x) − f(y), x − y〉 ≤ λ‖x − y‖2

(we shall not review other uniqueness conditions here.)

Since the study of such equations, linear and nonlinear, has, for a long
time, been a favorite topic among mathematicians, the study of dynamical
systems has for a long time focussed on equilibria: existence, uniqueness,
stability, which are investigated in Chap. 9, p. 319.

Existence and uniqueness of solutions to a differential equation was iden-
tified with the mathematical description of determinism by many scientists
after the 1796 book L’Exposition du système du monde and the 1814 book
Essai philosophique sur les probabilités by Pierre Simon de Laplace (1749–
1827):

Determinism and predictability. “We must regard the
present state of the universe as the effect of its anterior
state and not as the cause of the state which follows. An
intelligence which, at a given instant, would know all the
forces of which the nature is animated and the respective
situation of the beings of which it is made of, if by the
way it was wide enough to subject these data to analysis,
wouldembrace in a unique formula the movements of the

largest bodies of the universe and those of the lightest atom: Nothing would
be uncertain for it, and the future, as for the past, would present at its eyes.”
Does it imply what is meant by “predictability”?

Although a differential equation assigns a unique velocity to each state, this
does not imply that the associated evolutionary system S : X � C(0, +∞; X)
is deterministic, in the sense that it is univoque (single-valued). It may
happen that several evolutions governed by a differential equation start from
a same initial state. Valentin–Joseph Boussinesq (1842–1929) used this lack
of uniqueness property of solutions to a differential equation starting at some
initial state (that he called “bifurcation”, with a different meaning that this
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word has now, as in Box 11, p. 47) to propose that the multivalued character
of evolutions governed by a univoque mechanism describes the evolution of
living beings.

The lack of uniqueness of some differential equations does not allows us
to regard differential equations as a model for a deterministic evolution.
Determinism can be translated by evolutionary systems which associate with
any initial state one and only one evolution.

But even when a differential equation generates a deterministic evolu-
tionary system, Laplace’s enthusiasm was questioned by Henri Poincaré in
his study of the evolution of the three-body problem, a simplified version
of the evolution of the solar system in his famous 1887 essay. He observed
in his 1908 book “La science et l’hypothèse” that tiny differences of initial
conditions implied widely divergent positions after some time:

Predictions. “If we knew exactly the laws of Nature and
the situation of the universe at the initial moment, we
could predict exactly the situation of that same universe
at a succeeding moment. But even if it was the case
that the natural laws had no longer any secret for us,
we could still know the situation approximately. If that
enabled us to predict the succeeding situation with the
same approximation, that is all we require, and we should
say that the phenomenon has been predicted, that it is

governed by the laws. But it is not always so; it may happen that small
differences in the initial conditions produce very great ones in the final
phenomena. A small error in the former will produce an enormous error
in the latter. Prediction becomes impossible and we obtain a fortuitous
phenomenon.”

The sensitive dependence on initial conditions is one prerequisite of
“chaotic” behavior of evolutions, resurrected, because, two centuries earlier,
even before Laplace, Paul Henri Thiry, Baron d’Holbach wrote in one of his
wonderful books, the 1770 Système de la nature:

Holbach. “Finally, if everything in nature is linked to
everything, if all motions are born from each other although
they communicate secretely to each other unseen from us,
we must hold for certain that there is no cause small enough
or remote enough which sometimes does not bring about the
largest and the closest effects on us. The first elements of
athunderstorm may gather in the arid plains of Lybia, then

will come to us with the winds, make our weather heavier, alter the moods
and the passions of a man of influence, deciding the fate of several nations”.
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Some nonlinear differential equations produce chaotic behavior, quite
unstable, sensitive to initial conditions and producing fluctuating evolutions
(see Definition 9.2.1, p. 322). However, for many problems arising in biologi-
cal, cognitive, social and economic sciences, we face a completely orthogonal
situation, governed by differential inclusions, regulated or controlled systems,
tychastic or stochastic systems, but producing evolutions as regular or stable
(in a very loose sense) as possible for the sake of adaptation and viability
required for life.

2.4.2 Example of Differential Equations: The Lorenz
System

Since uncertainty is the underlying theme of this book, we propose to
investigate the Lorenz system of differential equations, which is deterministic,
but unpredictable in practice, as a simple example to test results presented
in this book.

Studying a simplified meteorological model made of a system of three
differential equations, the meteorologist Edward Lorenz discovered by chance
(the famous serendipity) in the beginning of the 1960s that for certain
parameters for which the system has three non stable equilibria, the “limit
set” was quite strange, “chaotic” in the sense that many evolutions governed
by this system “fluctuate”, approach one equilibrium while circling around it,
then suddenly leave away toward another equilibrium around which it turns
again, and so on. In other words, this behavior is strange in the sense that
the limit set of an evolution is not a trajectory of a periodic solution.1

Predictability: Does the flap of a butterfly’s wing in
Brazil set off a tornado in Texas? After Henri Poincaré
who discovered the lack of predictability of evolutions of the
three-body problem, Lorenz presented in 1979 a lecture to
the American Association for the Advancement of Sciences
with the above famous title.

Lorenz introduced the following variables:

1. x, proportional to the intensity of convective motion,

1 As in the case of two-dimensional systems, thanks to the Poincaré–Bendixon Theorem.
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2. y, proportional to the temperature difference between ascending and
descending currents,

3. z, proportional to the distortion (from linearity) of the vertical tempera-
ture profile.

Their evolution is governed by the following system of differential equations:
⎧⎨
⎩

(i) x′(t) = σy(t) − σx(t)
(ii) y′(t) = rx(t) − y(t) − x(t)z(t)
(iii) z′(t) = x(t)y(t) − bz(t)

(2.6)

where the positive parameters σ and b satisfy σ > b+1 and r is the normalized
Rayleigh number.

We observe that the vertical axis (0, 0, z)z∈R is a symmetry axis, which is
also the viability kernel of the hyperplane (0, y, z) under the Lorenz system,
from which the solutions boil down to the exponentials (0, 0, ze−bt).

Fig. 2.2 Trajectories of six evolutions of the Lorenz system.

starting from initial conditions (i, 50, 0), i = 0, . . . , 5. Only the part of the
trajectories from step times ranging between 190 and 200 are shown for
clarity.

If r ∈]0, 1[, then 0 is an asymptotically stable equilibrium. If r = 1, the
equilibrium 0 is “neutrally stable”. When r > 1, the equilibrium 0 becomes
unstable and two more equilibria appear:
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e1 :=
(√

b(r − 1),
√

b(r − 1), r − 1
)

& e2 :=
(
−
√

b(r − 1),−
√

b(r − 1), r − 1
)

Setting r� :=
σ(σ + b + 3)

σ − b − 1
, these equilibria are stable when r� > 1 and

unstable when r > r�. We take σ = 10, b = 8
3 and r = 28 in the numerical

experiments.

2.5 Regulons and Tyches

For physical and engineering systems controlled in an optimal way by optimal
controls, agents are decision makers or identified actors having access to the
controls of the system.

For systems involving living beings, agents interfering with the evolution-
ary mechanisms are often myopic, conservative, lazy and opportunistic, from
molecules to (wo)men, exhibiting some contingent freedom to choose among
some regulons (regulatory parameters) to govern evolutions.

In both cases, controls and regulons may have to protect themselves
against tychastic uncertainty, obeying no statistical regularity.

These features are translated by adding to state variables other ones,
parameters, among which (constant) coefficients, controls, regulons and
tyches. These different names describe the different questions concerning their
role in the dynamics of the system.

In other words, the state of the system evolves according to evolutionary
laws involving parameters, which may in their turn depend on observation
variables of the states:

Definition 2.5.1 [Classification of Variables]

1. states of the system;
2. parameters, involved in the law of evolution of the states;
3. values, indicators which provide some information on the system, such

as exit functions, minimal time functions, minimal length functions,
Lyapunov functions, value functions in optimal control, value of a
portfolio, monetary mass, congestion traffic, etc.;

4. observations on the states, such as measurements, information, predic-
tions, etc., given or built.

We distinguish several categories of parameters, according to the existence
or the absence of an actor (controller, agent, decision-maker, etc.) acting on
them on one hand, or the degree of knowledge or control on the other hand,
and to explain their role:
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Definition 2.5.2 [Classification of Parameters] Parameters can be
classified in the following way:

1. constant coefficients which may vary, but not in time (see Box 11, p. 47),
2. parameters under the command of an identified actor, called controls (or

decision parameters),
3. parameters evolving independently of an identified actor, which can

themselves be divided in two classes:

a. Regulons or regulation controls,
b. Tyches, perturbations, disturbances, random events.

These parameters participate in different ways to the general concept of
uncertainty. A given system can depend only on controls, and is called a
controlled system, or on regulons, and is called a regulated system or on
tyches, and is called a tychastic system. It also can involve two or three of
these parameters: for instance, if it involves controls and tyches, it is called
a tychastic controlled system, and, in the case of regulons and tyches, a
tychastic regulated system.

The study of parameterized systems thus depends on the interpretation of
the parameters, either regarded as controls and regulons on one hand, or as
tyches or random variables on the other.

1. In control theory, it is common for parameters to evolve in order to solve
some specific requirements (optimality, viability, reachability) by at least
one evolution governed by an identified actor (agent, decision-maker,
etc.). Control theory is also known under the names of automatics, and,
when dealing with mechanical systems, robotics. Another word, Cybernet-
ics, from the Greek kubernesis,“control”,“govern”, as it was suggested first
by André Ampère (1775–1836), and later, by Norbert Wiener (1894-1964)
in his famous book Cybernetics or Control and Communication in the
Animal and the Machine published in 1948, is by now unfortunately no
longer currently used by American specialists of control theory. In physics
and engineering, the actors are well identified and their purpose clearly
defined, so that only state, control and observation variables matter.

2. In biological, cognitive, social and economic sciences, these parameters
are not under the control of an identified and consensual agent involved in
the evolutionary mechanism governing the evolutions of the state of the
system. In those so called “soft sciences” involving uncertain evolutions
of systems (organizations, organisms, organs, etc.) of living beings, the
situation is more complex, because the identification of actors governing
the evolution of parameters is more questionable, so that we regard in this
case these parameters as regulons (for regulatory parameters).
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13 Examples of States and Regulons

Field State Regulon Viability Actors
Economics Physical Fiduciary Economic Economic

goods goods scarcity agents
Genetics Phenotype Genotype Viability or Bio-mechanical

homeostasis metabolism
Sociology Psychological Cultural Sociability Individual

state codes actors
Cognitive Sensorimotor Conceptual Adaptiveness Organims
sciences states codes

The main question raised about controlled systems is to find “optimal
controls” optimizing an intertemporal criteria, or other objectives, to
which we devote Chap. 4, p. 125. The questions raised about regulated
system deal with “inertia principle” (keep the regulon constant as long as
viability is not at stakes), inertia functions, heavy evolutions, etc., which
are exposed in Chap. 6, p. 199.

3. However, even control theory has to take into account some uncertainty
(disturbances, perturbations, etc.) that we summarize under the name
of tyches. Tyches describe uncertainties played by an indifferent, maybe
hostile, Nature.

Tyche. Uncertainty without statistical regularity
can be translated mathematically by parameters
on which actors, agents, decision makers, etc.
have no controls. These parameters are often per-
turbations, disturbances (as in “robust control”
or “differential games against nature”) or more
generally, tyches (meaning “chance” in classical
Greek, from the Goddess Tyche) ranging over a
state-dependent tychastic map. They could have
be called “random variables” if this terminology
were not already preempted by probabilists.

This is why we borrow the term of tychastic evolution to Charles Peirce who
introduced it in 1893 under the title evolutionary love:
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Tychastic evolution. “Three modes of evolution have
thus been brought before us: evolution by fortuitous
variation, evolution by mechanical necessity, and evo-
lution by creative love. We may term them tychastic
evolution, or tychasm, anancastic evolution, or anancasm,
and agapastic evolution, or agapasm.” In this paper,
Peirce associates the concept of anancastic evolution
with the Greek concept of necessity, ananke, anticipating

the “chance and necessity” framework that motivated viability theory.

When parameters represent tyches (disturbances, perturbations, etc.), we are
interested in “robust” control of the system in the sense that all evolutions
of the evolutionary system starting from a given initial state satisfy a given
evolutionary property.

Fortune fortuitously left its role to randomness, originating in the French
“randon”, from the verb “randir”, sharing the same root than the English “to
run” and the German rennen. When running too fast, one looses the control
of himself, the race becomes a poor “random walk”, bumping over scandala
(stones scattered on the way) and falling down, cadere in Latin, a matter of
chance since it is the etymology of this word. Hazard was imported by William
of Tyre from the crusades from Palestine castle named after a dice game, az
zahr. Now dice, in Latin, is alea, famed after Julius Caesar’s alea jacta est,
which was actually thrown out the English language: chance and hazard took
in this language the meaning of danger, itself from Latin dominarium. Being
used in probability, the word random had to be complemented by tyche for
describing evolutions without statistical regularity prone to extreme events.

Zhu Xi (1130–1200), one of the most important unorthodox
neo-Confucian of the Song dynasty, suggested that “if you want to treat
everything, and as changes are infinite, it is difficult to predict, it must,
according to circumstances, react to changes (literally, “follow, opportunity,
reaction, change), instead of a priori action.

The four ideograms follow, opportunity, reaction, change:

are combined to express in Chinese:

1. by the first half, “follow, opportunity”, , the concept of randomness
or stochasticity,

2. while Shi Shuzhong has proposed that the second half, “reaction, change”,
; translate the concept of tychasticity,

3. and “no, necessary”, , translates contingent.
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2.6 Discrete Nondeterministic Systems

Here, the time set is N, the state space is any metric set X and the
evolutionary space is the space XN of sequences −→x := {xj}j∈N of elements
xj ∈ X . The space of parameters (controls, regulons or tyches) is another
set denoted by U . The evolutionary system is defined by the discrete
parameterized system (ϕ, U) where:

1. ϕ : X × U �→ X is a map associating with any state-parameter pair (x, u)
the successor ϕ(x, u),

2. U : X � U is a set-valued map associating with any state x a set U(x) of
parameters feeding back on the state x.

Definition 2.6.1 [Discrete Systems with State-Dependent Param-
eters] A discrete parameterized system Φ := ϕ(·, U(·)) defines the evolu-
tionary system SΦ : X � XN in the following way: for any x ∈ X, SΦ(x)
is the set of sequences −→x governed by

{
(i) xj+1 = ϕ(xj , uj)
(ii) uj ∈ U(xj)

(2.7)

starting from x.

When the parameter space is reduced to a singleton, we find discrete
equations xj+1 = ϕ(xj) as a particular case. They generate deterministic
evolutionary systems Sϕ : X �→ XN.

Setting
Φ(x) := ϕ(x, U(x)) = {ϕ(x, u)}u∈U(x)

the subset of all available successors ϕ(x, u) at x when u ranges over the
set of parameters allows us to treat these dynamical systems as difference
inclusions:

Definition 2.6.2 [Difference Inclusions] Let Φ(x) := ϕ(x, U(x))
denote the set of velocities of the parameterized system. The evolutions −→x
governed by the parameterized system

{
(i) xj+1 = ϕ(xj , uj)
(ii) uj ∈ U(xj)

(2.8)

are governed by the difference inclusion

xj+1 ∈ Φ(xj) (2.9)

and conversely.
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An equilibrium of a difference inclusion is a stationary solution of this
inclusion.

Actually, any difference inclusion xj+1 ∈ Φ(xj) can be regarded as a
parameterized system (ϕ, U) by taking ϕ(x, u) := u and U(x) := Φ(x).

Selections of the set-valued map U are retroactions (see Definition 1.7,
p. 18) governing specific evolutions. Among them, we single out the following

• The Slow Retroaction. It is associated with a given fixed element a ∈ X
(for instance, the origin in the case of a finite dimensional vector space).
We set

u◦(x) :=
{

y ∈ U(x) | d(a, y) = inf
z∈U(x)

d(a, z)
}

The evolutions governed by the dynamical system

∀n ≥ 0, xn+1 ∈ ϕ(xn, u◦(xn))

are called slow evolutions, i.e., evolutions associated with parameters
remaining as close as possible to the given element a. In the case of a
finite dimensional vector space, slow evolutions are evolutions associated
with controls with minimal norm.

• The Heavy Retroaction. We denote by P(U) the hyperspace (see
Definition 18.3.3, p. 720) of all subsets of U . Consider the set-valued
map S : P(U) × U � U associating with any pair (A, u) the subset
S(A, u) := {v ∈ A | d(u, v) = infw∈A d(u, w)} of “best approximations of
u by elements of A”. The evolutions governed by the dynamical system

∀n ≥ 0, xn+1 ∈ ϕ(xn, s(U(xn), un−1))

are called heavy evolutions.
This amounts to taking at time n a regulon un ∈ s(U(xn), un−1) as close
as possible to the regulon un−1 chosen at the preceding step. If such a
regulon un−1 belongs to U(xn), it can be kept at the present step n. This
is in this sense that the selection s(U(x), u) provides a heavy solution,
since the regulons are kept constant during the evolution as long as the
viability is not at stakes.
For instance, when the state space is a finite dimensional vector space
X supplied with a scalar product and when the subsets U(x) are closed
and convex, the projection theorem implies that the map s(U(x), u) is
single-valued.
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2.7 Retroactions of Parameterized Dynamical Systems

2.7.1 Parameterized Dynamical Systems

The space of parameters (controls, regulons or tyches) is another finite
dimensional vector space U := R

c.

Definition 2.7.1 [Evolutionary Systems associated with Control
Systems] We introduce the following notation

1. f : X × U �→ X is a map associating the velocity f(x, u) of the state x
with any state-control pair (x, u),

2. U : X � U is a set-valued map associating a set U(x) of controls feeding
back on the state x.

The evolutionary system S : X � C(0, +∞; X) defined by the control
system (f, U) is the set-valued map associating with any x ∈ X the set
S(x) of evolutions x(·) governed by the control (or regulated) system

{
(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ U(x(t)) (2.10)

starting from x.

Remark. Differential equation (2.10)(i) is an “input-output map” associ-
ating an output-state with an input-control. Inclusion (2.10)(ii) associates
input-controls with output-states, “feeds back” the system (the a priori
feedback relation is set-valued, otherwise, we just obtain a differential
equation). See Figure 1.4, p. 14. �


Remark. We have to give a meaning to the differential equation x′(t) =
f(x(t), u(t)) and inclusion u(t) ∈ U(x(t)) in system (2.10). Since the param-
eters are not specified, this system is not valid for any t ≥ 0, but only for
“almost all” t ≥ 0 (see Theorems 19.2.3, p.771 and 19.4.3, p.783). We delay
the consequences of the Viability Theorem with such mathematical property.
The technical explanations are relegated to Chap. 19, p.769 because they are
not really used in the rest of the book. By using graphical derivatives Dx(t)(1)
instead of the usual derivatives, the “differential” equation Dx(t)(1) �
f(x(t), u(t)) providing the same evolutions holds true for any t ≥ 0 (see
Proposition 19.4.5, p.787). �
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2.7.2 Retroactions

In control theory, open and closed loop controls, feedbacks or retroactions
provide the central concepts of cybernetics and general systems theory:

Definition 2.7.2 [Retroactions] Retroactions are single-valued maps ũ :
(t, x) ∈ R+ × X �→ ũ(t, x) ∈ U that are plugged as inputs in the differential
equation

x′(t) = f(x(t), ũ(t, x(t))) (2.11)

In control theory, state-independent retroactions t �→ ũ(t, x) := u(t)
are called open loop controls whereas time-independent retroactions x �→
ũ(t, x) := ũ(x) are called closed loop controls or feedbacks. See Figure 1.7,
p. 18.

The class Ũ in which retroactions are taken must be consistent with the
properties of the parameterized system so that

• the differential equations x′(t) = f(x(t), ũ(t, x(t))) have solutions2,
• for every t ≥ 0, ũ(t, x) ∈ U(x).

When no state-dependent constraints bear on the controls, i.e., when
U(x) = U does not depend on the state x, then open loop controls can
be used to parameterize the evolutions S(x, u(·))(·) governed by differential
equations (2.10)(i).

This is no longer the case when the constraints on the controls depend
on the state. In this case, we parameterize the evolutions of control system
(2.10) by closed loop controls or retroactions.

Inclusion (2.10)(ii), which associates input-controls with output-states,
“feeds back” the system in a set-valued way. Retroactions can be used to
parameterize the evolutionary system spanned by the parameterized system
(f, U): with any retroaction ũ we associate the evolutionary system S(·, ũ)
generated by the differential equation

x′(t) = f(x(t), ũ(t, x(t)))

Whenever a class Ũ has been chosen, we observe the following

{S(x, ũ)}ũ∈Ũ ⊂ S(x)

2 Open loop controls can be only measurable. When the map f : X×U �→ X is continuous,
the Carathéodory Theorem states that differential equation (2.10)(i) has solutions even
when the open loop control is just measurable, (and thus, can be discontinuous as a function
of time). It is the case whenever they take their values in a finite set, in which case they
are usually called “bang-bang controls” in the control terminology.
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The evolutionary system can be parameterized by a feedback class Ũ if
equality holds true.

The choice of an adequate class Ũ of feedbacks regulating specific
evolutions satisfying required properties is often an important issue. Finding
them may be a difficult problem to solve. Even though one could solve
this problem, computing or using a feedback in a class too large may
not be desirable whenever feedbacks are required to belong to a class of
specific maps (constant maps, time-dependent polynomials, etc.). Another
issue concerns the use of a prescribed class of retroactions and to “combine”
them to construct new feedbacks for answering some questions, viability or
capturability, for instance. This issue is dealt with in Chap. 11, p. 437.

Remark. For one-dimensional systems, retroactions are classified in
positive retroactions, when the phenomenon is “amplified”, and negative ones
in the opposite case. They were introduced in 1885 by French physiologist
Charles-Edouard Brown-Séquard under the nicer names “dynamogenic” and
“inhibitive” retroactions respectively. �


The concepts of retroaction and feedback play a central role in control
theory, for building servomechanisms, and then, later, in all versions of the
“theory of systems” born from the influence of the mathematics of their time
on biology, as the Austrian biologist Ludwig von Bertalanffy (1901-1972) in
his book Das biologische Weltbild published in 1950, and after Jan Smuts
(1870-1950) in his 1926 Holism and evolution. The fact that not only effects
resulted from causes, but that also effects retroacted on causes, “closing” a
system, has had a great influence in many fields.

2.7.3 Differential Inclusions

In the early times of (linear) control theory, the set-valued map was assumed
to be constant (U(·) = U) and even the parameter set U was taken to be
equal to the entire vector space U := R

c. In this case, the parameterized
system is a system of parameterized differential equations, so that the theory
of (linear) differential equations could be used.

The questions arose to consider the case of state-dependent constraints
bearing on the controls. For example, set-valued maps of the form U(x) :=∏m

j=1[aj(x), bj(x)] summarize state-dependent constraints of the form:

∀t ≥ 0, ∀j = 1, . . . , m, aj(x(t)) ≤ uj(t) ≤ bj(x(t))

When the constraints bearing on the parameters (controls, regulons,
tyches) are state dependent, we can no longer use differential equations. We
must appeal to the theory of differential inclusions, initiated in the early
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1930’s by André Marchaud and Sanislas Zaremba, and next, by the Polish
and Russian schools, around Tadeusz Ważewski and Alexei Filippov, who laid
the foundations of the mathematical theory of differential inclusions after the
1950’s.

Indeed, denoting by

F (x) := f(x, U(x)) = {f(x, u)}u∈U(x)

the subset of all available velocities f(x, u) at x when u ranges over the set
of parameters, we observe the following:

Lemma 2.7.3 [Differential Inclusions] Let F (x) := f(x, U(x)) denote
the set of velocities of the parameterized system. The evolutions x(·)
governed by the parameterized system

{
(i) x′(t) = f(x(t), u(t))
(ii) u(t) ∈ U(x(t)) (2.12)

are governed by the differential inclusion

x′(t) ∈ F (x(t)) (2.13)

and conversely.
An equilibrium of a differential inclusion is a stationary solution of this

inclusion.

By taking f(x, u) := u and U(x) := F (x), any differential inclusion
x′(t) ∈ F (x(t)) appears as a parameterized system (f, U) parameterized by
its velocities. Whenever we do not need to write the controls explicitely, it is
simpler to consider a parameterized system as a differential inclusion. Most
theorems on differential equations can be adapted to differential inclusions
(some of them, the basic ones, are indeed more difficult to prove), but they
are by now available.

However, there are examples of differential inclusions without solutions,
such as the simplest one:

Example of Differential Inclusion Without Solution: The con-
strained set is K := [a, b] and the subsets of velocities are singletons except
at one point c ∈]a, b[, where F (x) := {−1, 1}:

F (x) :=

⎧⎨
⎩

+1 if x ∈ [a, c[
−1 or + 1 if x = c
−1 if x ∈]c, b]
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No evolution can start from c. Observe that this is no longer a counter-
example when F (c) := [−1, +1], since in this case c is an equilibrium, since
its velocity 0 belongs to F (c).

Remark. Although a differential inclusion assigns several velocities to a
same states, this does not imply that the associated evolutionary system is
non deterministic. It may happen for certain classes of differential inclusions.
This is the case for instance when there exists a constant λ ∈ R such that

∀x, y ∈ X, ∀u ∈ F (x), ∀v ∈ F (y), 〈u − v, x − y〉 ≤ λ‖x − y‖2

because in this case evolutions starting from each initial state, if any, are
unique. �


For discrete dynamical systems, the single-valuedness of the dynamics ϕ :
X �→ X is equivalent to the single-valuedness of the associated evolutionary
system Sϕ : X �→ XN. This is no longer the case for continuous time
dynamical systems:

Warning: The deterministic character of an evolutionary system gen-
erated by a parameterized system is a concept different from the set-valued
character of the map F . What matters is that the evolutionary system S
associated with the parameterized system is single-valued (deterministic evo-
lutionary systems) or set-valued (nondeterministic evolutionary systems).

It is the case, for instance, for set-valued maps F which are monotone set-
valued maps in the sense that

∀ y ∈ Dom(F ), ∀ u ∈ U(x), y ∈ V (y), 〈u − v, x − y〉 ≤ 0

2.8 Evolutionary Systems

Therefore, we shall study general evolutionary systems defined as set-valued
maps X � C(0, +∞; X) satisfying given requirements listed below. For
continuous time evolutionary systems, the state space X is a finite dimen-
sional vector space for most examples. However, besides the characterization
of regulation maps, which are specific for control systems, many theorems
are true even in cases when the evolutionary system is not generated by
control systems or differential inclusions, and for infinite dimensional vector
spaces X .
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Other Examples of State Spaces:

1. When X := C(−∞, 0; X) is the space of evolution histories (see Chap. 12
of the first edition of [18, Aubin]), we supply it with the metrizable
compact convergence topology,

2. When X is a space of spatial functions when one deals with partial
differential inclusions or distributed control systems, we endow it with
its natural topology for which it is a complete metrizable spaces,

3. When X := K(Rd) is the set of nonempty compact subsets of the vector
space R

d, we use the Pompeiu–Hausdorff topology (morphological and
mutational equations, presented in [23, Aubin]).

The algebraic structures of the state space appear to be much less relevant
in the study of evolutionary systems. Only the following algebraic operations
on the evolutionary spaces C(0, +∞; X) are used in the properties of viability
kernels and capture basins:

Definition 2.8.1 [Translations and Concatenations]

1. Translation Let x(·) : R+ �→ X be an evolution. For all T ≥ 0,
the translation (to the left) κ(−T )(x(·)) of the evolution x(·) is defined
by κ(−T )(x(·))(t) := x(t + T ) and t the translation (to the right)
κ(+T )(x(·))(t) := x(t − T ),

2. Concatenation Let x(·) : R+ �→ X and y(·) : R+ �→ X be two
evolutions. For all T ≥ 0, the concatenation (x(·) �T y(·))(·) of the
evolutions x(·) and y(·) at time T is defined by

(x(·) �T y(·))(t) :=
{

x(t) if t ∈ [0, T ]
κ(+T )(y(·))(t) := y(t − T ) if t ≥ T

(2.14)

Fig. 2.3 Translations and Concatenations.

• plain (—): x(·) for t ∈ [0, T ];
• dash dot dot (− · ·): x(·) for t ≥ T ;
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• dot (· · · ): y(·);
• dash dot (−·): κ(−T )(x(·));
• dashed (− −): (x �T y)(·).
x(·) is thus the union of the plain and the dash dot dot. The concatenation
x(·) �T y(·) of x and y is the union of the plain and the dashed.

The concatenation (x(·) �T y(·))(·) of two continuous evolutions at time T
is continuous if x(T ) = y(0). We also observe that (x(·)�0 y(·))(·) = y(·), that
∀T ≥ S ≥ 0, (κ(−S)(x(·) �T y(·))) = (κ(−S)x(·)) �T−S y(·) and thus, that

∀T ≥ 0, κ(−T )(x(·) �T y(·)) = y(·)

The adaptation of these definitions to discrete time evolutions is obvious:
⎧⎨
⎩

(i) κ(−N)(−→x )j := xj+N

(ii) (−→x �N
−→y )j :=

{
xj if 0 ≤ j < N
yj−N if j ≥ N

(2.15)

We shall use only the following properties of evolutionary systems:

Definition 2.8.2 [Evolutionary Systems] Let us consider a set-valued
map S : X � C(0, +∞; X) associating with each initial state x ∈ X a
(possibly empty) subset of evolutions x(·) ∈ S(x) starting from x in the
sense that x(0) = x. It is said to be an evolutionary system if it satisfies

1. the translation property: Let x(·) ∈ S(x). Then for all T ≥ 0, the
translation κ(−T )(x(·)) of the evolution x(·) belongs to S(x(T )),

2. the concatenation property: Let x(·) ∈ S(x). Then for every T ≥ 0 and
y(·) ∈ S(x(T )), the concatenation (x(·) �T y(·))(·) belongs to S(x).

The evolutionary system is said to be deterministic if S : X � C(0, +∞; X)
is single-valued.

There are several ways for describing continuity of the evolutionary system
x � S(x) with respect to the initial state, regarded as stability property:
Stability means generally that the solution of a problem depends continuously
upon its data or parameters. Here, for differential inclusions, the data are
usually and principally the initial states, but can also be other parameters
involved in the right hand side of the differential inclusion. We shall introduce
them later, when we shall study the topological properties of the viability
kernels and capture basins (See Sect. 10.3.2, p. 387 of Chap. 10, p. 375).
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2.9 Viability Kernels and Capture Basins for Discrete
Time Systems

2.9.1 Definitions

Definition 6, p. 15 can be adapted to discrete evolution −→x : it is viable in a
subset K ⊂ X (an environment) if:

∀n ≥ 0, xn ∈ K (2.16)

and capture a target C if it is viable in K until it reaches the target C in
finite time:

∃ N ≥ 0 such that
{

xN ∈ C
∀n ≤ N, xN ∈ K

(2.17)

Consider a set-valued map Φ : X � X from a metric space X to itself,
governing the evolution −→x : n �→ xn defined by

∀j ≥ 0, xj+1 ∈ Φ(xj)

and the associated evolutionary system SΦ : X � XN associating with any
x ∈ X the set of evolutions −→x of solutions to the above discrete system
starting at x. Replacing the space C(0, +∞; X) of continuous time-dependent
functions by the space XN of discrete-time dependent functions (sequences)
and making the necessary adjustments in definitions, we can still regard SΦ

as an evolutionary system from X to XN.
The viability kernels Viab(ϕ,U)(K, C) := ViabΦ(K, C) := ViabSΦ(K, C)

and the invariance kernels InvΦ(K, C) := InvSΦ(K, C) are defined in the very
same way:

Definition 2.9.1 [Viability Kernel under a Discrete System] Let
K ⊂ X be an environment and C ⊂ K a target.

The subset ViabΦ(K, C) of initial states x0 ∈ K such that at least one
evolution −→x ∈ SΦ(x0) starting at x0 is viable in K for all n ≥ 1 or viable
in K until it reaches C in finite time is called the viability kernel of K with
target C under S.

When the target C = ∅ is the empty set, we say that ViabΦ(K) =
ViabΦ(K, ∅) is the viability kernel of K.

The subset CaptΦ(K, C) of initial states x0 ∈ K such that at least one
evolution −→x ∈ SΦ(x0) starting at x0 is viable in K until it reaches C in
finite time is called the capture basin of C viable in K under SΦ.

We say that
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1. a subset K is viable outside the target C ⊂ K under the discrete system
SΦ if K = ViabΦ(K, C) and that K is viable under SΦ if K = ViabΦ(K),

2. that C is isolated in K if C = ViabΦ(K, C),
3. that K is a repeller if ViabΦ(K) = ∅, i.e. if the empty set is isolated in

K.

We introduce the discrete invariance kernels and absorption basins:

Definition 2.9.2 [Invariance Kernel under a Discrete System] Let
K ⊂ X be a environment and C ⊂ K a target.

The subset InvΦ(K, C) := InvSΦ(K, C) of initial states x0 ∈ K such
that all evolutions −→x ∈ SΦ(x0) starting at x0 are viable in K for all
n ≥ 1 or viable in K until they reach C in finite time is called the discrete
invariance kernel of K with target C under SΦ.

When the target C = ∅ is the empty set, we say that InvΦ(K) :=
InvΦ(K, ∅) is the discrete invariance kernel of K.

The subset AbsΦ(K, C) of initial states x0 ∈ K such that all evolu-
tions −→x ∈ SΦ(x0) starting at x0 are viable in K until they reach C in finite
time is called the absorption basin of C invariant in K under SΦ.

We say that

1. a subset K is invariant outside a target C ⊂ K under the discrete
system SΦ if K := InvΦ(K, C) and that K is invariant under SΦ if
K = InvΦ(K),

2. that C is separated in K if C = InvΦ(K, C).

In the discrete-time case, the following characterization of viability and
invariance of K with a target C ⊂ K is a tautology:

Theorem 2.9.3 [The Discrete Viability and Invariance Character-
ization] Let K ⊂ X and C ⊂ K be two subsets and Φ : K � X govern
the evolution of the discrete system. Then the two following statements are
equivalent

1. K is viable outside C under Φ if and only if

∀x ∈ K\C, Φ(x) ∩ K �= ∅ (2.18)

2. K is invariant outside C under Φ if and only if

∀x ∈ K\C, Φ(x) ⊂ K (2.19)
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Unfortunately, the analogous characterization is much more difficult in the
case of continuous time control systems, where the proofs of the statements
require almost all fundamental theorems of functional analysis to be proved
(see Chap. 19, p.769).

Remark. The fact that the above characterizations of viability and
invariance in terms of (2.18) and (2.19) are trivial does not imply that using
them is necessarily an easy task: Proving that Φ(x) ∩ K is not empty or
that Φ(x) ⊂ K can be difficult and requires some sophisticated theorems
of nonlinear analysis mentioned in Chap. 9, p. 319. We shall meet the same
obstacles – but compounded – when using the Viability Theorem 11.3.4,
p. 455 and Invariance Theorem 11.3.7, p. 457 for continuous time systems. �


For discrete systems xj+1 ∈ Φ(xj) := ϕ(xj , U(xj)), it is also easy to
construct the regulation map RK governing viable evolutions in the viability
kernel:

Definition 2.9.4 [Regulation Maps] Let (ϕ, U) be a discrete parameter-
ized system, K be an environment and C ⊂ K be a target. The regulation
map RK is defined on the viability kernel of K by ∀x ∈ Viab(ϕ,U)(K, C)\C,

RK(x) := {u ∈ U(x) such that ϕ(x, u) ∈ Viab(ϕ,U)(K, C)} (2.20)

The regulation map is computed from the discrete parameterized system
(ϕ, U), the environment K and the target C ⊂ K.

For discrete-time parameterized systems (ϕ, U), all evolutions governed
by the discrete parameterized subsystem (ϕ, RK) are viable in the viability
kernel of K with target C. Unfortunately, this important property is no longer
necessarily true for continuous-time systems.

Theorem 2.9.5 [Invariance Property of Regulation Maps] The
regulation map RK satisfies

Viab(ϕ,U)(K, C) = Inv(ϕ,RK)(K, C)

All other submaps P ⊂ RK also satisfy

Viab(ϕ,U)(K, C) = Inv(ϕ,P )(K, C) (2.21)

The regulation map is the largest map satisfying this property.

Proof. Theorem 2.9.3, p. 72 and Definition 2.9.4, p. 73 imply that the
regulation map RK satisfy
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Viab(ϕ,U)(K, C) = Inv(ϕ,RK)(K, C)

1. If Q ⊂ RK ⊂ U is a set-valued map defined on Viab(ϕ,U)(K, C), then
inclusions

{
Viab(ϕ,U)(K, C) = Inv(ϕ,RK)(K, C) ⊂ Inv(ϕ,Q)(K, C)
⊂ Viab(ϕ,Q)(K, C) ⊂ Viab(ϕ,RK)(K, C) ⊂ Viab(ϕ,U)(K, C)

imply that all the subsets coincide, and in particular, that Inv(ϕ,Q)(K, C) =
Viab(ϕ,U)(K, C).

2. The regulation map RK is the largest one by construction satisfying
(2.21), p. 73, because if a set-valued map P ⊃ RK is strictly larger
than RK , then there would exist an element (x0, u0) ∈ Graph(P ) \
Graph(RK), i.e., such that ϕ(x0, u0) /∈ Viab(ϕ,U)(K, C). But since
Inv(ϕ,P )(K, C) ⊂ Viab(ϕ,U)(K, C), all elements ϕ(x, u) when u ∈ P (x0)
belong to Viab(ϕ,U)(K, C), a contradiction. �


2.9.2 Viability Kernel Algorithms

For evolutionary systems associated with discrete dynamical inclusions and
control systems, the Viability Kernel Algorithm and the Capture Basin
Algorithm devised by Patrick Saint-Pierre allow us to

1. compute the viability kernel of an environment or the capture basin of a
target under a control system,

2. compute the graph of the regulation map governing the evolutions viable
in the environment, forever or until they reach the target in finite time.

This algorithm manipulates subsets instead of functions, and is part of the
emerging field of “set-valued numerical analysis”.

The viability kernel algorithm provides the exact subset of initial states
of the state space from which at least one evolution of the discrete system
remains in the constrained set, forever or until it reaches the target in finite
time, without computing these evolutions.

However, viable evolutions can be obtained from any state in the viability
kernel or the capture basin by using the regulation map. The viability kernel
algorithms provide the regulation map by computing their graphs, which are
also subsets.

This regulation map allows us to “tame” evolutions to maintain them
in the viability kernel or the capture basin. Otherwise, using the initial
dynamical system instead of the regulation map, evolutions may quickly leave
the environment, above all for systems which are sensitive to initial states,
such as the Lorenz system.
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Consequently, viability kernel and capture basin algorithms face the
same “dimensionality curse” than algorithms for solving partial differential
equations or other “grid” algorithms. They manipulate indeed “tables” of
points in the state space, which become very large when the dimension of the
state space is larger than 4 or 5. At the end of the process, the graph of the
regulation map can be recovered and stored in the state-control space, which
requires higher dimensions. Once the graph of the regulation map is stored,
it is then easy to pilot evolutions which are viable forever or until they reach
their target.

Despite these shortcomings, the viability kernel algorithms present some
advantage over the simulation methods, known under the name of shooting
methods. These methods compute the evolutions starting at each point and
check whether or not at least one evolution satisfies the required properties.
They need much less memory space, but demand a considerable amount of
time, because, the number of initial states of the environment is high, and
second, in the case of controlled systems, the set of evolutions starting from
a given initial state becomes huge.

On the other hand, viability properties and other properties of this type,
such as asymptotic properties, cannot be checked on computers. For instance,
one cannot verify whether an evolution is viable forever, since computers
provide evolutions defined on a finite number of time steps.

Nothing guarantees that the finite time chosen to stop the computation
of the solution is large enough to check whether a property bearing on the
whole evolution is valid. Such property can be satisfied for a given number of
times, without implying that it still holds true later on, above all for systems,
like the Lorenz one, which are sensitive to initial conditions.

Finally, starting from an initial state in the viability kernel or the capture
basin, shooting methods use solvers which do not take into consideration the
corrections for imposing the viability of the solution, for instance. Since the
initial state is only an approximation of the viability kernel, the absence of
these corrections does not allow us to “tame” evolutions which then may
leave the environment, and very quickly for systems which are sensitive to
initial states, such as the Lorenz system or the discrete time dynamics related
to Julia sets.

2.9.3 Julia and Mandelbrot Sets

Studies of dynamical systems (bifurcations, chaos, catastrophe) focus on the
dependence on some properties of specific classes of dynamical systems of
constant parameters u (which, in contrary to the control case, are not allowed
to evolve with time): The idea is to study a given property in terms of the
parameter u of a discrete dynamical system xj+1 = ϕ(xj , u) where u is a
parameter ranging over a subset U .
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Benôıt Mandelbrot introduced in the late 1970’s the Mandelbrot sets and
functions in his investigation of the fractal dimension of subsets:

Definition 2.9.6 [The Mandelbrot Function] For a discrete dynamical
system xj+1 = ϕ(xj , u) where u is a parameter ranging over a subset U ,
the Mandelbrot function μ : X ×U �→ R+ ∪{+∞} associates with any pair
(x, u) the scalar

μ(x, u) := sup
j≥0

‖xj‖

where xj+1 = ϕ(xj , u) and x0 = x.
The subset Ku := Viabϕ(B(0, 1)) is the filled-in Julia set and its boundary
Ju := ∂Ku the Julia set.

The Mandelbrot function μ is characterized through the viability kernel
of an auxiliary system:

Lemma 2.9.7 [Viability Characterization of the Mandelbrot Func-
tion] Let us associate with the map ϕ the following map Φ : X × U × R �→
X × U × R defined by Φ(x, u, y) = (ϕ(x, u), u, y).Consider the subset

K := {(x, u, y) ∈ X × U × R | ‖x‖ ≤ y}

Then the Mandelbrot function is characterized by the formula

μ(x, u) = inf
(x,u,y)∈ViabΦ(K)

y

or, equivalently,

μ(x, u) ≤ y if and only if x ∈ Viabϕ(·,u)(B(0, y))

Proof. Indeed, to say that (x, u, y) belongs to the viability kernel of K :=
{(x, u, y) | ‖x‖ ≤ y} means that the solution (xj , u, y) to the auxiliary system
satisfies

∀j ≥ 0, ‖xj‖ ≤ y

i.e., that μ(x, u) ≤ y. �

This story was initiated by Pierre Fatou and Gaston Julia:
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Pierre Fatou and Gaston Julia. Pierre
Fatou [1878-1929] and Gaston Julia [1893-
1978] studied in depth the iterates of com-
plex function
z �→ z2 + u,
or, equivalently, of the map
(x, y) �→ ϕ(x, y) := (x2 − y2 + a, 2xy + b)

when z = x + iy and u = a + ib.
The subset Ku := Viabϕ(B(0, 1)) is the filled-in Julia set for this specific
map ϕ and its boundary Ju := ∂Ku the Julia set. The subsets whose filled-in
Julia sets have empty interior are called Fatou dust.

Therefore, the viability kernel algorithm allows us to compute the Julia
sets, offering an alternative to “shooting methods”. These shooting methods
compute solutions of the discrete system starting from various initial states
and check whether a given property is satisfied or not. Here, this property
is the viability of the evolution for a finite number of times. Instead, the
Viability Kernel Algorithm provides the set of initial states from which at
least one evolution is viable forever, without computing all evolutions to check
whether one of them satisfies it.

Furthermore, the regulation map built by the Viability Kernel Algorithm
provides evolutions which are effectively viable in the viability kernel. This is
a property that shooting methods cannot provide:

• first, because the viability kernel is not known precisely, but only
approximatively,

• and second, because even if we know that the initial state belongs to
the viability kernel, the evolution governed by such a program is not
necessarily viable

The reason why this happens is that programs computing evolutions are
independent of the viability problem. They do not make the corrections at
each step guaranteeing that the new state is (approximatively) viable in K,
contrary to the one computed with Viability Kernel Algorithm.

The more so in this case, since this system is sensitive to initial data.
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Fig. 2.4 Julia sets: Douady Rabbit and Fatou Dust.

We refer to Figure 2.5 for the computation of its boundary, the Julia set,
thanks to Theorem 9.2.18. Even for discrete systems, the round-off errors do
not allow the discrete evolution to remain in filled-in Julia set, which is the
viability kernel of the ball, whereas the viability kernel algorithm provides
both the filled-in Julia set, its boundary and evolutions which remain in the
Julia set.

In 1982, a deep theorem by Adrien Douady and Hubbard states that Ku

is connected if and only if μ(0, u) is finite.

Theorem 9.2.18, p. 339 states that the Julia set is the viability kernel of
K \C if and only if it is viable and C absorbs the interior of Ku. In this case,
the Viability Kernel Algorithm also provides the Julia set Ju by computing
the viability kernel of K \ C.

We illustrate this fact by computing the viability kernel of the complement
of a ball B(0, α) ⊂ K in K whenever the interior of Ku is not empty
(we took u = −0.202 − 0.787i). We compute the viability kernel for α :=
0.10, 0.12, 0.14 and 0.16, and we observed that this viability kernel is equal
to the boundary for α = 0.16. In this case, the ball B(0, 0.16) is absorbing
the interior of the filled-in Julia set. The resulting computations can be seen
in Figures 2.4 and 2.5.
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Fig. 2.5 Computation of the Julia set.

The figure on the left is the filled-in Julia set Ku with u = −0.202− 0.787i,
which is the viability kernel of the unit ball. The other figures display the
viability kernels of K \ B(0, α) for α := 0.10, 0.12, 0.14 and 0.16. We
obtain the Julia set for α = 0.16. Theorem 9.2.18, p. 339 states that the ball
B(0, 0.16) absorbs the interior of the filled-in Julia set.

2.9.4 Viability Kernels under Disconnected Discrete
Systems and Fractals

If Φ is disconnecting, the viability kernel is a Cantor set, with further
properties (self similarity, fractal dimension). Recall that Φ−1 denotes the
inverse of Φ.

Definition 2.9.8 [Hutchinson Maps] A set-valued map Φ is said to be
disconnecting on a subset K if there exists a finite number p of functions
αi : K �→ X such that
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∀x ∈ K, Φ−1(x) :=
p⋃

i=1

αi(x)

and such that there exist constants λi ∈]0, 1[ satisfying: for each subset
C ⊂ K,

⎧⎨
⎩

(i) ∀i = 1, . . . , p, αi(C) ⊂ C (αi is antiextensive)
(ii) ∀i �= j, αi(C) ∩ αj(C) = ∅
(iii) ∀i = 1, . . . , p, diam(αi(C)) ≤ λidiam(C)

If the functions αi : K �→ K are contractions with Lipschitz constants
λi ∈]0, 1[, then Φ−1 is called an Hutchinson map (introduced in 1981 by
John Hutchinson and also called an iterated function system by Michael
Barnsley.)

We now define Cantor sets:

Definition 2.9.9 [Cantor Sets] A subset K is said to be

1. perfect if it is closed and if each of its elements is a limit of other elements
of K,

2. totally disconnected if it contains no nonempty open subset,
3. a Cantor set if it is non-empty compact, totally disconnected and perfect.

The famous Cantor Theorem states:

Theorem 2.9.10 [The Cantor Theorem] The viability kernel of a
compact set under a disconnecting map is an uncountable Cantor set.

The Cantor set is a viability kernel and the Viability Kernel Algorithm is
the celebrated construction procedure of the Cantor set.
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Fig. 2.6 Example: Cantor Ternary Map.
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Corollary 2.9.11 [The Cantor Ternary Set] The Cantor ternary set
C is the viability kernel of the interval [0, 1] under the Cantor Ternary Map
Φ defined on K := [0, 1] ⊂ R by

Φ(x) := (3x, 3(1 − x))

The Cantor Ternary Set is a self similar (see Definition 2.9.14, p. 84),
symmetric, uncountable Cantor set with fractal dimension log 2

log 3 (see Defini-
tion 2.9.13, p. 83) and satisfies C = α1(C)∪α2(C) and α1(C)∩α2(C) = ∅.

Proof. The Cantor Ternary Map is disconnecting because

Φ−1(x) :=
(
α1(x) :=

x

3
, α2(x) := 1 − x

3

)

so that α1(K) =
[
0, 1

3

]
and α2(K) =

[
2
3 , 1

]
and that the αi’s are antiextensive

contractions of constant 1
3 . �


Example: Quadratic Map In Sect. 2.3, p. 50, we associated with the
quadratic map ϕ(x) := 5x(1 − x) the set-valued map Φ : [0, 1] � [0, 1]
defined by Φ(x) := ϕ(x) when x ∈ [0, a] and x ∈ [b, 1] and ϕ(x) := ∅ when

x ∈]a, b[, where a :=
1
2
−
√

5
10

and b :=
1
2

+
√

5
10

are the roots of the equation

ϕ(x) = 1.
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Fig. 2.7 Viability Kernel under the Quadratic Map.

The viability kernel of the interval [0, 1] under the quadratic map Φ associated
with the map ϕ(x) := {5x(1 − x)} is an uncountable, symmetric Cantor set.
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The interval [0, 1] is viable under the Verhulst logistic differential
equation x′(t) = rx(t)(1 − x(t)) whereas its viability kernel is a
Cantor set for its discrete counterpart xn+1 = rxn+1(1 − xn+1)
when r > 4.

Proof. Indeed, in this case, the inverse Φ−1 is defined by

Φ−1(y) :=
(
ω�(y), ω�(y)

)

where we set

ω�(y) :=
1
2
−

√
r2 − 4ry

2r
and ω�(y) :=

1
2

+

√
r2 − 4ry

2r

(see Sect. 2.3.1, p. 51). �


The intervals ω�(K) =
[
0,

(
1
2 −

√
r2−4r
2r

)]
and ω�(K) =

[(
1
2 +

√
r2−4r
2r

)
, 1

]
are disjoint intervals which do not cover [0, 1]. The maps ω� and ω� are
antiextensive and contractions.

We know that the interval [0, 1] is viable under the Verhulst logistic
equation, whereas for r > 4, we saw that the discrete viability kernel is a
Cantor subset of [0, 1]. But [0, 1] is still viable under the discretizations of
the Verhulst logistic equation:

Proposition 2.9.12 [Discretization of the Verhulst Logistic Equa-
tion] The interval [0, 1] is viable under the explicit discretization Φh of the
Verhulst logistic equation, defined by

Φh(x) := rhx

(
1 + rh

rh
− x

)

Proof. Indeed, Φh is surjective from [0, 1] to [0, 1], and thus, [0, 1] is viable
under Φh: Starting from x0 ∈ [0, 1], the discrete evolution −→x defined by

xn+1 = rhxn

(
1 + rh

rh
− xn

)

remains in K. �

This is an example illustrating the danger of using “discrete analogues”

of continuous time differential equations instead of their discretizations.
The latter share the same properties than the differential equation (under
adequate assumptions), whereas discrete analogues may not share them. This
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is the case for the quadratic map, the prototype of maps producing chaos,
analogues of the Verhulst logistic equation.

Example: Sierpinski Gasket

Fig. 2.8 The Sierpinski Gasket.

The Sierpinski Gasket is the viability kernel of the square [0, 1]2 under
the discrete map associating with each pair (x, y) the subset Φ(x, y) :={
(2x, 2y), (2x − 1, 2y), (2x − 1

2 , 2y − 1)
}

of 3 elements. Since this map is
disconnecting, the Sierpinski Gasket is a self similar, uncountable Cantor
set with fractal dimension log 3

log 2 ( left figure), named from Waclaw Sierpinski
(1882–1969) (right figure).

2.9.4.1 Fractal Dimension of Self-Similar Sets

Some viability kernels under discrete disconnecting maps have a fractal
dimension that we now define:

Definition 2.9.13 [Fractal Dimension] Let K ⊂ R
d be a subset of R

d

and νK(ε) the smallest number of ε-cubes ε[−1, +1]d needed to cover the
subset K. If the limit

dim(K) := lim
ε�→0+

log (νK(ε))
log

(
1
ε

)
exists and is not an integer, it is called the fractal dimension of K.
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To say that K has a fractal dimension δ := dim(K) means that the smallest
number νK(ε) of ε-cubes needed to cover K behaves like a

εδ for some constant
a > 0.

Actually, it is enough to take subsequences εn := λn where 0 < λ < 1
converging to 0 when n → +∞, so that

dim(K) := lim
n→+∞

log (νK(λn))
n log

(
1
λ

)

Definition 2.9.14 [Self-Similar Sets] Functions αi are called similari-
ties if

∀x, y ∈ K, d(αi(x), αi(y)) = λid(x, y)

Let Φ be a disconnecting map associated with p similarities αi.
A subset K∝ is said to be self-similar under Φ if

K∝ =
p⋃

i=1

αi(K∝) and the subsets αi(K∝) are pairwise disjoint.

For example,

1. the Cantor set is self-similar:

C = α1(C) ∪ α2(C)

It is the union of two similarities of constant 1
3 ,

2. the Sierpinski gasket is self-similar3:

S = Φ−1(S) =
3⋃

i=1

αi(S)

It is the union of three similarities of constant 1
2 .

3 Actually, the subsets are not pairwise disjoint, but the above results hold true when the
intersections αi(C)∩αj (C) are manifolds of dimension strictly smaller than the dimension
of the vector space.
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Lemma 2.9.15 [Fractal Dimension of Self-Similar Sets] If the p
similarities αi have the same contraction rate λ < 1, then the fractal
dimension of a self-similar set K∝ =

⋃p
i=1 αi(K∝) is equal to

dim(K∝) =
log(p)
log

(
1
λ

)

Consequently,

1. The fractal dimension of the Cantor set is equal to log 2
log 3 : p = 2 and λ = 1

3 ,
2. The fractal dimension of the Sierpinski gasket is equal to log 3

log 2 : p = 3 and
λ = 1

2 .

2.10 Viability Kernels and Capture Basins
for Continuous Time Systems

Let S : X � C(0,∞; X) denote the evolutionary system associated with
parameterized dynamical system (2.10) and H ⊂ C(0,∞; X) be a subset of
evolutions sharing a given set of properties.

2.10.1 Definitions

When the parameterized system is regarded as a control system, we single out
the inverse image (see Definition 18.3.3, p. 720) of H under the evolutionary
system:

Definition 2.10.1 [Inverse Image under an Evolutionary System]
Let S : X � C(0,∞; X) denote an evolutionary system and H ⊂ C(0,∞; X)
a subset of evolutions sharing a given set of properties. The set

S−1(H) := {x ∈ X | S(x) ∩H �= ∅} (2.22)

of initial states x ∈ X from which starts at least one evolution x(·) ∈
S(x) satisfying the property H is the inverse image of H under S.

For instance, taking for set H := X defined as the set of stationary
evolutions, we obtain the set of all equilibria x of the evolutionary system: at
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least one evolution x(·) ∈ S(x) remains constant and equal to x. In the same
way, taking for set H := PT (X) the set of T -periodic evolutions, we obtain
the set of points through which passes at least one T -periodic evolution of
the evolutionary system.

When we take H := V(K, C) to be the set of evolutions viable in a
constrained subset K ⊂ X outside a target C ⊂ K (see 2.5, p. 49), we
obtain the viability kernel ViabS(K, C) of K with target C:

Definition 2.10.2 [Viability Kernel and Capture Basin] Let K ⊂ X
be a environment and C ⊂ K be a target.

1. The subset ViabS(K, C) of initial states x0 ∈ K such that at least one
evolution x(·) ∈ S(x0) starting at x0 is viable in K for all t ≥ 0 or
viable in K until it reaches C in finite time is called the viability kernel
of K with target C under S.
When the target C = ∅ is the empty set, we say that ViabS(K) :=
ViabS(K, ∅) is the viability kernel of K. We set CaptS(K, ∅) = ∅.

2. The subset CaptS(K, C) of initial states x0 ∈ K such that at least one
evolution x(·) ∈ S(x0) starting at x0 is viable in K until it reaches C
in finite time is called the capture basin of C viable in K under S. When
K = X is the whole space, we say that CaptS(C) := CaptS(X, C) is the
capture basin of C. (see Figure 5.2, p. 182)

We say that

1. a subset K is viable under S if K = ViabS(K),
2. K is viable outside the target C ⊂ K under the evolutionary system S

if K = ViabS(K, C),
3. C is isolated in K if C = ViabS(K, C),
4. K is a repeller if ViabS(K) = ∅, i.e., if the empty set is isolated in K.

Remark: Trapping Set. A connected closed viable subset is sometimes
called a trapping set. In the framework of differential equations, Henri
Poincaré introduced the concept of shadow (in French, ombre) of K, which
is the set of initial points of K from which (all) evolutions leave K in finite
time. It is thus equal to the complement K\ViabS(K) of the viability kernel
of K in K. �


Remark. Theorem 9.3.13, p. 353 provides sufficient conditions (the
environment K is compact and backward viable, the evolutionary system
is upper semicompact) for the viability kernel to be nonempty.

Another interesting case is the one when the viability kernel ViabS(K) ⊂
Int(K) of K is contained in the interior of K (in this case, ViabS(K)) is said
to be source of K (see Definition 9.2.3, p. 323). �
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Fig. 2.9 Viability Outside a Target and Isolated Target.

If C is isolated, all evolutions starting in K outside of C are viable outside
C before leaving K in finite time.

2.10.2 Viability Kernels under the Lorenz System

We resume our study of the Lorenz system (2.6), p. 57 initiated in Sect. 2.4.2,
p. 56.

We provide the viability kernel of the cube [−α, +α]× [−β, +β]× [−γ, +γ]
under the Lorenz system (2.6), p. 57 and the backward Lorenz system

⎧⎨
⎩

(i) x′(t) = −σy(t) + σx(t)
(ii) y′(t) = −rx(t) + y(t) + x(t)z(t)
(iii) z′(t) = −x(t)y(t) + bz(t)

We call “backward viability kernel” the viability kernel under the backward
system.
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Fig. 2.10 Viability Kernels of a Cube K under Forward and Backward Lorenz
Systems.

The figure displays the forward viability kernel of the cube K (left), the
backward viability kernel (center) and the superposition of the two (right).
We take σ > b + 1, Proposition 8.3.3, p. 282 implies that whenever the
viability kernel of the backward system is contained in the interior of K,
the backward viability kernel is contained in the forward viability kernel.
Proposition 9.3.11, p. 351 implies that the famous Lorenz attractors (see
Definition 9.3.8, p. 349) is contained in the backward viability kernel.

Fig. 2.11 Backward Viability Kernel and Viable Evolution.

This figure displays another view of the backward viability kernel and a
viable evolution. They are computed with the viability kernel algorithm.

2.11 Invariance Kernel under a Tychastic System

The questions involved in the concepts of viability kernels and capture
basins ask only of the existence of an evolution satisfying the viability or
the viability/capturability issue. In the case of parameterized systems, this
lead to the interpretation of the parameter as a control or a regulon. When
the parameters are regarded as tyches, disturbances, perturbations, etc., the
questions are dual: they require that all evolutions satisfy the viability or the
viability/capturability issue.

We then introduce the “dual” concept of invariance kernel and absorption
basin:

Here, we regard the parameterized system
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x′(t) = f(x(t), v(t)) where v(t) ∈ V (x(t)) (2.23)

where v(t) is no longer a control or a regulon, but a tyche, where the set of
tyches is V and where V : X � V is a tychastic map as a tychastic system.
Although this system is formally the same that control system (1.1), p. 14

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

the questions asked are different: We no longer check whether a given property
is satisfied by at least one evolution governed by the control or regulated
system, but by all evolutions governed by the tychastic system.

When the parameterized system is regarded as a tychastic system, it is
natural to consider the core (see Definition 18.3.3, p. 720) of a set of evolutions
under a tychastic system:

Definition 2.11.1 [Core under an Evolutionary System] Let S :
X � C(0,∞; X) denote an evolutionary system and H ⊂ C(0,∞; X) a
subset of evolutions sharing a given property. The set

S�1(H) := {x ∈ X | S(x) ⊂ H} (2.24)

of initial states x ∈ X from which all evolutions x(·) ∈ S(x) satisfy the
property H is called the core of H under S.

Taking H := V(K, C), we obtain the invariance kernel InvS(K, C) of K
with target C:

Definition 2.11.2 [Invariance Kernel and Absorption Basin] Let
K ⊂ X be a environment and C ⊂ K be a target.

1. The subset InvS(K, C) of initial states x0 ∈ K such that all evolutions
x(·) ∈ S(x0) starting at x0 are viable in K for all t ≥ 0 or viable in K
until they reach C in finite time is called the invariance kernel of K with
target C under S.
When the target C = ∅ is the empty set, we say that InvS(K) :=
InvS(K, ∅) is the invariance kernel of K.

2. The subset AbsS(K, C) of initial states x0 ∈ K such that all evolutions
x(·) ∈ S(x0) starting at x0 are viable in K until they reach C in finite
time is called the absorption basin of C invariant in K under S.
When K = X is the whole space, we say that AbsS(X, C) is
the absorption basin of C.
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We say that

1. a subset K is invariant under S if K = InvS(K),
2. K is invariant outside a target C ⊂ K under the evolutionary system S

if K = InvS(K, C),
3. C is separated in K if C = InvS(K, C).

K

x0

x1 x2
x(t)

CK

K

ViabF (K)

InvF (K)

ViabF(K)

Invariance kernel

Fig. 2.12 Figure of an Invariance Kernel.

A state x2 belongs to the invariance kernel of the environment K under an
evolutionary system if all the evolutions starting from it are viable in K
forever. Starting from a state x1 ∈ K outside the invariance kernel, at least
one evolution leaves the environment in finite time.

K

x0

x1

x4
x3

x2
x(t)

CK

K

ViabF (K)

CaptF (K,C)

C

AbsF (K,C)

InvF (K)

Invariance kernelAbsorption Basin

Target

Fig. 2.13 Figure of an Absorption Basin.

All evolutions starting from a state x4 in the absorption basin of the target
C invariant in the environment K are viable in K until they reach C in finite
time. At least one evolution starting from x3 ∈ K outside the absorption
basin remains viable outside the target C forever or until it leaves K.
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These are four of the main concepts used by viability theory. Other
definitions, motivations and comments are given in Chap. 2, p. 43, their
general properties in Chap. 10, p. 375, whereas their characterization in
terms of tangential conditions are presented in Chap. 11, p. 437. Many
other subsets of interest of initial conditions from which at least one or all
evolution(s) satisfies(y) more and more complicated interesting properties
will be introduced all along the book. They all are combinations in various
ways of these basic kernels and basins.

For instance, tychastic control systems (or dynamical games) involve both
regulons and tyches in the dynamics. Tyches describe uncertainties played
by an indifferent, maybe hostile, Nature. Regulons are chosen among the
available ones by the system in order to adapt its evolutions regardless of the
tyches. We introduce the concept of tychastic (or guaranteed) viability kernel,
which is the subset of initial states from which there exists a regulon such
that, for all tyches, the associated evolutions are viable in the environment
forever.

The set of initial states from which there exists a regulon such that, for all
tyches, the associated evolutions reach the target in finite time before possibly
violating the constraints is called the tychastic (or guaranteed) absorption
basin of the target invariant in the environment.

Remark: Semi-permeability. We deduce from the definitions that from
any x ∈ ViabS(K, C) \ InvS(K, C),

1. there exists at least one evolution which is viable in ViabS(K, C) until it
may reach the target C,

2. there exists at least one evolution which leaves ViabS(K, C) in finite time,
and is viable in K \ C until it leaves K in finite time.

The latter property is a semi-permeability property:

1. the boundary of the invariance kernel separates the set of initial states
from which all evolutions are viable in K until they may reach the target
from the set of initial states satisfying the above property,

2. the boundary of the viability kernel separates the set of initial states from
which there exists at least two different evolutions satisfying the above
property from the set of initial states from which all evolutions are viable
in K \ C as long as it is viable in K.

Therefore x ∈ ViabS(K, C) \ InvS(K, C) is the set where some uncertainty
about viability prevails, Outside the viability kernel, only one property is
shared by all evolutions starting from an initial state: either they are viable
in K until they may reach the target, or they leave C in finite time and are
viable in K \ C until they leave K in finite time.
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The Quincampoix Barrier Theorems 10.5.19, p. 409 and 10.6.4, p. 413
provide precise statements of the properties of the boundaries of the viability
and invariance kernels. �


2.12 Links between Kernels and Basins

Viability kernels and absorption basins are linked to each other by comple-
mentarity, as well as invariance kernels and capture basins:

Definition 2.12.1 [Complement of a Subset] The complement of the
subset C ⊂ K in K is the set K\C := K ∩ �C of elements x ∈ K not
belonging to C. When K := X is the whole space, we set � C := X\C.
Observe that

K\C = �C\�K and �(K \ C) = C ∪ �K

The following useful consequences relating the kernels and basins follow
readily from the definitions:

Lemma 2.12.2 [Complements of Kernels and Basins] Kernels and
Basins are exchanged by complementarity:

{
(i) �ViabS(K, C) = AbsS(�C, �K)
(ii) �CaptS(K, C) = InvS(�C, �K) (2.25)

Remark. This would suggest that only two of these four concepts would
suffice. However, we would like these kernels and basins to be closed under
adequate assumption, and for that purpose, we need the four concepts, since
the complement of a closed subset is open. But every statement related to the
closedness property of these kernels and basins provide corresponding results
on openness properties of their complements, as we shall see in Sect. 10.3.2
p. 387. �


The next result concerns the a priori futile or subtle differences between
viability kernels with targets (concept proposed by Marc Quincampoix) and
capture basins:
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Lemma 2.12.3 [Comparison between Viability Kernels with Tar-
gets and Capture Basins] The viability kernel of K with target C and
the capture basin of C viable in K are related by formulas

ViabS(K, C) = ViabS(K \ C) ∪ CaptS(K, C) (2.26)

Hence the viability kernel with target C coincides with the capture basin
of C viable in K if ViabS(K\C) = ∅, i.e., if K\C is a repeller. This is
particularly the case when the viability kernel ViabS(K) of K is contained
in the target C, and more so, when K itself is a repeller.

Proof. Actually, we shall prove that
{

(i) ViabS(K, C) \ CaptS(K, C) ⊂ ViabS(K \ C)
(ii) ViabS(K, C) \ ViabS(K \ C) ⊂ CaptS(K, C)

Indeed, inclusion ViabS(K \ C) ∪ CaptS(K, C) ⊂ ViabS(K, C) being
obvious, the opposite inclusion is implied by, for instance,

ViabS(K, C) \ CaptS(K, C) ⊂ ViabS(K \ C) (2.27)

because

{
ViabS(K, C) = CaptS(K, C) ∪ (ViabS(K, C) \ CaptS(K, C))
⊂ ViabS(K \ C) ∪ CaptS(K, C)

For proving the first formula

ViabS(K, C) \ CaptS(K, C) ⊂ ViabS(K \ C) (2.28)

we observe that Lemma 2.12.2, p. 92 implies that ViabS(K, C) \
CaptS(K, C) = ViabS(K, C) ∩ InvS(�C, �K) by formula (2.25)(i). Take any
x ∈ ViabS(K, C)∩InvS(�C, �K). Since x ∈ ViabS(K, C), there exists at least
one evolution x(·) ∈ S(x) either viable in K forever or reaching C in finite
time. But since x ∈ InvS(�C, �K), all evolutions starting from x are viable
in �C forever or until they leave K in finite time. Hence the evolution x(·)
cannot reach C in finite time, and thus, is viable in K forever, hence cannot
leave K in finite time, and thus is viable in �C, and consequently, in K \ C.

Next, let us prove inclusion ViabS(K, C) \ ViabS(K \ C) ⊂ CaptS(K, C).
Lemma 2.12.2, p. 92 implies that �ViabS(K \ C) = AbsS(X, C ∪ �K).
Therefore, for any x ∈ ViabS(K, C) \ ViabS(K \ C) = ViabS(K, C) ∩
AbsS(X, C ∪ �K), there exists an evolution x(·) ∈ S(x) viable in K forever
or until a time t� < +∞ when x(t�) ∈ C, and all evolutions starting at x
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either leave K in finite time or reach C in finite time. Hence, x(·) being
forbidden to leave K in finite time, must reach the target in finite time. �


Lemma 2.12.4 [Partition of the Viability Kernel with Targets] The
following equalities hold true:

CaptS(K, C) ∩ InvS(K \ C) = AbsS(K, C) ∩ ViabS(K \ C) = ∅

Therefore, equality ViabS(K\C) = InvS(K\C) implies that ViabS(K \
C) and CaptS(K, C) form a partition of ViabS(K, C).

For invariance kernels, we obtain:

Lemma 2.12.5 [Comparison between Invariance Kernels with
Targets and Absorption Basins] The invariance kernel of K with target
C and the absorption basin of C viable in K coincide whenever K \ C is a
repeller.

Proof. We still observe that the invariance kernel InvS(K, C) of K with
target C coincides with the absorption basin AbsS(K, C) of C invariant in
K whenever the viability kernel ViabS(K\C) is empty. �


Therefore, the concepts of viability and of invariance kernels with a target
allow us to study both the viability and invariance kernels of a closed subset
and the capture and absorption basins of a target.

Remark: Stochastic and Tychastic Properties. There are natural
and deeper mathematical links between viability and capturability properties
under stochastic and tychastic systems. A whole book could be devoted to
this topic. We just develop in this one few remarks in Sect. 10.10, p. 433. �


2.13 Local Viability and Invariance

We introduce the weaker concepts of local viability and invariance:

Definition 2.13.1 [Local Viability and Invariance]
Let S : X � C(0,∞; X) be an evolutionary system and a subset K ⊂ X.
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1. A subset K is said to be locally viable under S if from any initial state
x ∈ K there exists at least one evolution x(·) ∈ S(x) and a strictly
positive time Tx(·) > 0 such that x(·) is viable in K on the nonempty
interval [0, Tx(·)[ (it is thus viable if Tx(·) = +∞),

2. A subset K is said to be locally invariant under S if from any initial
state x ∈ K and for any evolution x(·) ∈ S(x), there exists a strictly
positive Tx(·) > 0 such that x(·) is viable in K on the nonempty interval
[0, Tx(·)[ (it is thus invariant if Tx(·) = +∞).

The (local) viability property of viability kernels and invariance property of
invariance kernels are particular cases of viability property of inverse images
of sets of evolutions and invariance property of their cores when the sets of
evolutions are (locally) stable under translations. Local viability kernels are
studied in Sect. 10.4.3, p. 396. For the time, we provide a family of examples of
subsets (locally) viable and invariant subsets built from subsets of evolutions
stable (or invariant) under translation.

Definition 2.13.2 [Stability Under Translation] A subset H ⊂
C(0,∞; X) of evolutions is locally stable under translation if for every
x(·) ∈ H, there exists Tx(·) > 0 such that for every t ∈ [0, Tx(·)[,
the translation κ(−t)(x(·))(·) belongs to H. It is said to be stable under
translation if we can always take Tx(·) = +∞.

Inverse images (resp. cores) of subsets of evolutions stable under transla-
tion (resp. concatenation) are viable (resp. invariant) subsets:

Proposition 2.13.3 [Viability of Inverse Images and Invariance
of Cores] Let S : X � C(0,∞; X) be an evolutionary system and
H ⊂ C(0,∞; X) be a subset of evolutions. If H is (locally) stable under
translation, then

1. its inverse image S−1(H) := {x ∈ X | S(x) ∩ H} under S is (locally)
viable,

2. its core S�1(H) := {x ∈ X | S(x) ⊂ H} under S is (locally) invariant.

(See Definition 18.3.3, p. 720).

Proof. 1. The (local) translation property of S implies the (local) viability
of the inverse image S−1(H). Take x0 ∈ S−1(H) and prove that there
exists an evolution x(·) ∈ S(x0) starting at x0 viable in S−1(H) on some
interval [0, Tx(·)]. Indeed, there exists an evolution x(·) ∈ S(x0) ∩ H and
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Tx(·) > 0 such that for every t ∈ [0, Tx(·)[, the translation κ(−t)(x(·))(·)
belongs to H. It also belongs to S(x(t)) thanks to the translation property
of evolutionary systems. Therefore x(t) does belong to S−1(H) for every
t ∈ [0, Tx(·)[.

2. The concatenation property of S implies the local invariance of the core
S�1(H). Take x0 ∈ S�1(H) and prove that for all evolutions x(·) ∈ S(x0)
starting at x0, there exists Tx(·) such that x(·) is viable in S�1(H) on
the interval [0, Tx(·)]. Indeed, take any such evolution x(·) ∈ S(x0) which
belongs to H by definition. Thus there exists Tx(·) > 0 such that for
every t ∈ [0, Tx(·)], the translation κ(−t)(x(·))(·) belongs to H. Take any
t ∈ [0, Tx(·)[ and any evolution y(·) ∈ S(x(t)). Hence the t-concatenation
(x�t y)(·) belongs to S(x0) by definition of evolutionary systems, and thus
to H because x0 ∈ S�1(H). Since H is locally stable under translation,
we deduce that y(·) = (κ(−t)((x �t y(·))))(·) also belongs to H. Since this
holds true for every any evolution y(·) ∈ S(x(t)), we infer that x(t) ∈
S�1(H). �

The study of local viability is continued in Sect. 10.4.3, p. 396.

2.14 Discretization Issues

The task for achieving this objective is divided in two different problems:

1. Approximate the continuous problem by discretized problem (in time) and
digitalized on a grid (in state) by difference inclusions on digitalized sets.
Most of the time, the real mathematical difficulties come from the proof
of the convergence theorems stating that the limits of the solutions to
the approximate discretized/digitalized problems converge (in an adequate
sense) to solutions to the original continuous-time problem.

2. Compute the viability kernel or the capture basin of the dis-
cretized/digitalized problem with a specific algorithm, also providing
the viable evolutions, as mentioned in Sect. 2.9.2, p. 74.

Let h denote the time discretization step. There are many more or less
sophisticated ways to discretize a continuous parameterized system (f, U) by
a discrete one (φh, U). The simplest way is to choose the explicit scheme
φh(x, u) := x + hf(x, u). Indeed, the discretized system can be written as

xj+1 − xj

h
= f(xj , uj) where uj ∈ U(xj)

The simplest way to digitalize a vector space X := R
d is to embed a

(regular) grid4 Xρ := ρZ
d in X . Points of the grid are of the form x :=

4 supplied with the metric d(x, y) equal to 0 if x = y and to 1 if x �= y.
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(ρni)i=1,...,n where for all i = 1, . . . , n, ni ranges over the set Z of positive or
negative integers.

We cannot define the above discrete system on the grid Xρ, because there
is no reason why for any x ∈ Xρ, φh(x, u) would belong to the grid Xρ.
Let us denote by B := [−1, +1]d the unit square ball of Xd. One way to
overcome this difficulty is to “add” the set ρB = [−ρ, +ρ]d to φh(x, u). Setting
λA+μB := {λx+μy}x∈A, y∈B when A ⊂ X and B ⊂ X are nonempty subsets
of a vector space X , we obtain the following example:

Definition 2.14.1 [Explicit Discrete/Digital Approxima-
tion] Parameterized control systems

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

can be approximated by discrete/digital parameterized systems

xj+1 − xj

h
∈ f(xj , uj) + ρB where uj ∈ U(xj)

which is a discrete system xj+1 ∈ Φh,ρ(xj) on Xρ where

Φh,ρ(x) := x + hf(x, U(x)) + ρhB

We can also use implicit difference schemes:

Definition 2.14.2 [Implicit Discrete/Digital Approximation]
Parameterized control systems

x′(t) = f(x(t), u(t)) where u(t) ∈ U(x(t))

can be approximated by discrete/digital parameterized systems

xj+1 − xj

h
∈ f(xj+1, uj+1) where uj+1 ∈ U(xj+1)

which is a discrete system xj+1 ∈ Ψh,ρ(xj) on Xρ where

Ψh,ρ(x) := (I − hf(·, U(·)))−1(x) + ρhB

Characterization Theorem 2.9.3, p. 72 of viability and invariance under
discrete systems, applied to the explicit discretization of control systems,
indicates how tangential conditions for characterizing viability and invariance
under control systems did emerge:
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Lemma 2.14.3 [Discretized Regulation Map] Let us introduce the
discretized regulation map RKh,ρ

defined by

∀x ∈ K, RKh,ρ
(x) :=

{
u ∈ U(x) such that f(x, u) ∈ K − x

h
+ ρB

}

(2.29)
Then K is viable (resp. invariant) under the discretized system if and only
if ∀ x ∈ K, RKh,ρ

(x) �= ∅ (resp. ∀ x ∈ K, RKh,ρ
(x) = U(x)).

For proving viability and invariance theorems in Chap. 11, p. 437, we shall
take the limit in the results of the above lemma, and in particular, for the

kind of “difference quotient”
K − x

h
, if one is allowed to say so.

14 [How Tangential Conditions Emerge] The Bouligand-Severi tan-
gent cone TK(x) (see Definition 11.2.1, p. 442) to K at x ∈ K is the upper
limit in the sense of Painlevé-Kuratowski of K−x

h when h → 0: f(x, u) is
the limit of elements vn such that x + hnvn ∈ K for some hn → 0+, i.e.,

of velocities vn ∈ K − x

hn
.

Consequently, “taking the limit”, formally (for the time), we obtain the
emergence of the (continuous-time) tangential condition

∀x ∈ K, RK(x) := {u ∈ U(x) such that f(x, u) ∈ TK(x)} (2.30)

where TK(x) is the Bouligand-Severi tangent cone to K at x ∈ K (see
Definition 11.2.1, p.442).

This tangential condition will play a crucial role for characterizing viability
and invariance properties for continuous-time systems in Chap. 11, p. 437.

2.15 A Viability Survival Kit

The mathematical properties of viability and invariance kernels and capture
and absorption basins are presented in detail in Chap. 10 p. 375 for
evolutionary systems and in Chap. 11, p. 437 for differential inclusions
and control systems, where we can take advantage of tangential conditions
involving tangent cones to the environments. This section presents few
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selected statements that are most often used, restricted to viability kernels
and capture basins only. Three categories of statements are presented:

• The first one provides characterizations of viability kernels and capture
bilateral fixed points, which are simple, important and are valid without
any assumption.

• The second one provides characterizations in terms of local viability
properties and backward invariance, involving topological assumptions on
the evolutionary systems.

• The third one characterizes viability kernels and capture basins under
differential inclusions in terms of tangential conditions, which furnishes the
regulation map allowing to pilot viable evolutions (and optimal evolutions
in the case of optimal control problems).

2.15.1 Bilateral Fixed Point Characterization

We consider the maps (K, C) �→ Viab(K, C) and (K, C) �→ Capt(K, C). The
properties of these maps provide fixed point characterizations of viability
kernels of the maps K �→ Viab(K, C) and C �→ Viab(K, C) and fixed point
characterizations of capture basins of the maps K �→ Capt(K, C) and C �→
Capt(K, C). We refer to Definition 2.10.2, p.86 for the definitions of viable
and isolated subsets.

Theorem 2.15.1 [The Fundamental Characterization of Viability
Kernels] Let S : X � C(0, +∞; X) be an evolutionary system and K ⊂
X be a environment. The viability kernel ViabS(K) := ViabS(K, ∅) of K
(see Definition 2.10.2, p. 86) is the unique subset D contained in K that
is both

1. viable in K (and is the largest viable subset D ⊂ K contained in K),
2. isolated in K (and is the smallest subset D ⊂ K isolated in K):

i.e., the bilateral fixed point

ViabS(ViabS(K)) = ViabS(K) = ViabS(K, ViabS(K)) (2.31)

For capture basins, we shall prove

Theorem 2.15.2 [The Fundamental Characterization of Capture
Basins] Let S : X � C(0,∞; X) be an evolutionary system, K ⊂ X
be an environment and C ⊂ K be a nonempty target. The capture basin
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CaptS(K, C) of C viable in K (see Definition 2.10.2, p. 86) is the unique
subset D between C and K that is both

1. viable outside C (and is the largest subset D ⊂ K viable outside C),
2. satisfying CaptS(K, C) = CaptS(K, CaptS(K, C)) (and is the smallest

subset D ⊃ C to do so):

i.e., the bilateral fixed point

CaptS(CaptS(K, C), C) = CaptS(K, C) = CaptS(K, CaptS(K, C))
(2.32)

2.15.2 Viability Characterization

However important Theorems 2.15.1, p. 99 and 2.15.2, p. 99 are, isolated
subsets are difficult to characterize, in contrast to viable or locally viable
subsets (see Definition 2.13.1, p. 94). It happens that isolated subsets are,
under adequate assumptions, backward invariant (see Sect. 10.5.2, p. 401).
Hence we shall introduce the concept of backward evolutionary system
(see Definition 8.2.1, p. 276) and the concept of backward invariance,
i.e., of invariance with respect to the backward evolutionary system (see
Definition 8.2.4, p. 278). Characterizing viability kernels and capture basins
in terms of forward viability and backward invariance allows us to use the
results on viability and invariance.

Definition 2.15.3 [Backward Relative Invariance] A subset C ⊂ K
is backward invariant relatively to K under S if for every x ∈ C, for every
t0 ∈]0, +∞[, for all evolutions x(·) arriving at x at time t0 such that there
exists s ∈ [0, t0[ such that x(·) is viable in K on the interval [s, t0], then
x(·) is viable in C on the same interval.

If K is itself backward invariant, any subset backward invariant relatively
to K is actually backward invariant.

Viability results hold true whenever the evolutionary system is upper
semicontinuous (see Definitions 18.4.3, p. 729).

Using the concept of backward invariance, we provide a further character-
ization of viability kernels and capture basins:
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Theorem 2.15.4 [Characterization of Viability Kernels] Let us
assume that S is upper semicompact and that the subset K is closed. The
viability kernel ViabS(K) of a subset K under S is the unique closed subset
D ⊂ K satisfying

⎧⎨
⎩

(i) D is viable under S
(ii) D is baclward invariant under S
(iii) K\D is a repeller under S.

(2.33)

For capture basins, we obtain

Theorem 2.15.5 [Characterization of Capture Basins] Let us
assume that S is upper semicompact, that the environment K ⊂ X and
the target C ⊂ K are closed subsets satisfying

1. K is backward invariant
2. K \ C is a repeller (ViabS(K \ C) = ∅)

Then the viable capture basin CaptS(K, C) is the unique closed subset
D satisfying C ⊂ D ⊂ K and

{
(i) D\C is locally viable under S
(ii) D is relatively baclward invariant with respect to K under S.

(2.34)

2.15.3 Tangential Characterization

These theorems, which are valid for any evolutionary system, paved the way
to go one step further when the evolutionary system is associated with a
differential inclusion (and control systems, as we shall see in Sect. 11.3.1,
p. 453). We mentioned, in the case of discrete systems, how tangential
conditions (2.30), p. 98 did emerge when we characterized viable and
invariance (see Box 14, p. 98). Actually, we shall use the closed convex hull
T ��

K (x) of the tangent cone TK(x) (see Definition 11.2.1, p. 442) for this
purpose.
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Fig. 2.14 Schematic Representation of Tangent Cones.

We represent the environment K, an element x ∈ K and the origin. Six
vectors v are depicted: one which points inward K, and thus tangent to K,
two tangent vectors which are not inward and three outward vectors. Their
translations at x belong to K for the inward vector, “almost” belong to K
for the two tangent and not inward vectors (see Definition 11.2.1, p. 442) and
belong to the complement of K for the three outward vectors.

Not only Viability and Invariance Theorems provide characterizations of
viability kernels and capture basins, but also the regulation map RD ⊂ F
which governs viable evolutions:

Definition 2.15.6 [Regulation Map] Let us consider three subsets C ⊂
D ⊂ K (where the target C may be empty) and a set-valued map F : X �
X.

The set-valued map RD : x ∈ D � F (x) ∩ T ��
D (x) ⊂ X is called the

regulation map of F on D \ C if

∀ x ∈ D \ C, RD(x) := F (x) ∩ T ��
D (x) �= ∅ (2.35)
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Fig. 2.15 Schematic Illustration of the Regulation Map.

In this scheme, we describe four situations at elements a0, b0, c0 and
d0 ∈ K. At a0 and b0, the right hand side of the differential inclusions contains
tangent velocities to K, so that we can expect an evolution to be viable. At
c0, this hope is even more justified because the velocity points in the interior
of K. Finally, at d0, all velocities point outward K, and it is intuitive that all
evolutions leave K instantaneously. The viability theorem states that these
intuition and hopes are correct for any closed subset K and for Marchaud
maps.

The Viability and Invariance Theorems imply that

Theorem 2.15.7 [Tangential Characterization of Viability Ker-
nels] Let us assume that F is Marchaud (see Definition 10.3.2, p. 384)
and that the subset K is closed. The viability kernel ViabS(K) of a subset
K under S is the largest closed subset D ⊂ K satisfying

∀x ∈ D, RD(x) := F (x) ∩ T ��
D (x) �= ∅ (2.36)

Furthermore, for every x ∈ D, there exists at least one evolution x(·) ∈ S(x)
viable in D and all evolutions x(·) ∈ S(x) viable in D are governed by the
differential inclusion

x′(t) ∈ RD(x(t))
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For capture basins, we obtain

Theorem 2.15.8 [Tangential Characterization of Capture Basins]
Let us assume that F is Marchaud, that the environment K ⊂ X and
the target C ⊂ K are closed subsets such that K \ C is a repeller
(ViabF (K\C) = ∅). Then the viable-capture basin CaptS(K, C) is the
largest closed subset D satisfying C ⊂ D ⊂ K and

∀x ∈ D\C, F (x) ∩ T ��
D (x) �= ∅

Furthermore, for every x ∈ D, there exists at least one evolution x(·) ∈ S(x)
viable in D until it reaches the target C and all evolutions x(·) ∈ S(x) viable
in D until they reach the target C are governed by the differential inclusion

x′(t) ∈ RD(x(t))

Further important properties hold true when the set-valued map F is
Lipschitz (see Definition 10.3.5, p. 385).

Theorem 2.15.9 [Characterization of Viability Kernels] Let us
assume that (f, U) is both Marchaud and Lipschitz and that the subset K is
closed. The viability kernel ViabF (K) of a subset K under S is the unique
closed subset D ⊂ K satisfying

• K \ D is a repeller;
• and the Frankowska property:

⎧⎨
⎩

(i) ∀ x ∈ D, F (x) ∩ T ��
D (x) �= ∅

(ii) ∀ x ∈ D ∩ Int(K), −F (x) ⊂ T ��
D (x)

(ii) ∀ x ∈ D ∩ ∂K, −F (x) ∩ T ��
K (x) = −F (x) ∩ T ��

D (x)
(2.37)

For capture basins, we obtain

Theorem 2.15.10 [Characterization of Capture Basins] Let us
assume that (f, U) is Marchaud and Lipschitz and that the environment
K ⊂ X and the target C ⊂ K are closed subsets such that K \ C is a
repeller (ViabF (K\C) = ∅). Then the viable-capture basin CaptF (K, C) is
the unique closed subset D satisfying

• C ⊂ D ⊂ K,
• and the Frankowska property (2.37), p. 104.
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