
Chapter 2
Heuristic Methods

Abstract Since the linear ordering problem is NP-hard, we cannot expect to be
able to solve practical problem instances of arbitrary size to optimality. Depending
on the size of an instance or depending on the available CPU time we will often
have to be satisfied with computing approximate solutions. In addition, under such
circumstances, it might be impossible to assess the real quality of approximate so-
lutions. In this and in the following chapter we will deal with the question of how
to find very good solutions for the LOP in short or reasonable time. The methods
described in this chapter are called heuristic algorithms or simply heuristics. This
term stems from the Greek word heuriskein which means to find or discover. It is
used in the field of optimization to characterize a certain kind of problem-solving
methods. There are a great number and variety of difficult problems, which come up
in practice and need to be solved efficiently, and this has promoted the development
of efficient procedures in an attempt to find good solutions, even if they are not op-
timal. These methods, in which the process speed is as important as the quality of
the solution obtained, are called heuristics or approximative algorithms.

2.1 Introduction

As opposed to exact methods, which guarantee to give an optimum solution of the
problem, heuristic methods only attempt to yield a good, but not necessarily opti-
mum solution. Nevertheless, the time taken by an exact method to find an optimum
solution to a difficult problem, if indeed such a method exists, is in a much greater
order of magnitude than the heuristic one (sometimes taking so long that in many
cases it is inapplicable). Thus we often resort to heuristic methods to solve real
optimization problems.

Perhaps the following comment by Onwubolu and Babu [105] is a little far-
fetched: “The days when researchers emphasized using deterministic search tech-
niques to find optimal solutions are gone.”. But it is true that in practice an engineer,

R. Martı́ and G. Reinelt, The Linear Ordering Problem, Exact and Heuristic Methods
in Combinatorial Optimization 175, DOI: 10.1007/978-3-642-16729-4 2,
c© Springer-Verlag Berlin Heidelberg 2011

17

18 2 Heuristic Methods

an analyst or a manager sometimes might have to make a decision as soon as possi-
ble in order to achieve desirable results.

Recent years have witnessed a spectacular growth in the development of heuris-
tic procedures to solve optimization problems. This fact is clearly reflected in the
large number of articles published in specialized journals. 1995 saw the first issue
of the Journal of Heuristics, dedicated solely to the publication of heuristic proce-
dures. In the same year the first international congress dealing with these methods,
called the Metaheuristic International Conference (MIC), was held in Breckenridge,
Colorado (USA).

In addition to the need to find good solutions of difficult problems in reasonable
time, there are other reasons for using heuristic methods, among which we want to
highlight:

– No method for solving the problem to optimality is known.
– Although there is an exact method to solve the problem, it cannot be used on

the available hardware.
– The heuristic method is more flexible than the exact method, allowing, for

example, the incorporation of conditions that are difficult to model.
– The heuristic method is used as part of a global procedure that guarantees to

find the optimum solution of a problem.

A good heuristic algorithm should fulfil the following properties:

– A solution can be obtained with reasonable computational effort.
– The solution should be near optimal (with high probability).
– The likelihood for obtaining a bad solution (far from optimal) should be low.

There are many heuristic methods that are very different in nature. Therefore, it
is difficult to supply a full classification. Furthermore, many of them have been
designed to solve a specific problem without the possibility of generalization or
application to other similar problems. The following outline attempts to give wide,
non-excluding categories, under which to place the better-known heuristics:

Decomposition Methods

The original problem is broken down into sub-problems that are simpler to solve,
bearing in mind, be it in a general way, that subproblems belong to the same problem
class.

Inductive Methods

The idea behind these methods is to generalize the smaller or simpler versions to the
whole case. Properties or techniques that have been identified in these cases which
are easier to analyze, can be applied to the whole problem.

2.1 Introduction 19

Reduction Methods

These involve identifying properties that are mainly fulfilled by the good solutions
and introduce them as boundaries to the problem. The objective is to restrict the
space of the solutions by simplifying the problem. The obvious risk is that the opti-
mum solutions of the original problem may be left out.

Constructive Methods

These involve building a solution to the problem literally step by step from scratch.
Usually they are deterministic methods and tend to be based on the best choice
in each iteration. These methods have been widely used in classic combinatorial
optimization.

Local Search Methods

In contrast to the methods previously mentioned, local improvement or local search
starts with some feasible solution of the problem and tries to progressively improve
it. Each step of the procedure carries out a movement from one solution to another
one with a better value. The method terminates when, for a solution, there is no
other accessible solution that improves it.

Even though all these methods have contributed to expanding our knowledge of
solving real problems, the constructive and local search methods form the foun-
dations of the meta-heuristic procedures [4], which will be described in the next
chapter.

2.1.1 Assessing the Quality of Heuristics

There are diverse possibilities for measuring the quality of a heuristic, among which
we find the following.

Comparison with the Optimum Solution

Although one normally resorts to an approximative algorithm, because no exact
method exists to obtain an optimum solution or it is too time-consuming, sometimes
a procedure is available that provides an optimum for a limited set of examples
(usually small sized instances). This set of examples can be used to assess the quality
of the heuristic method.

Normally, for each example, the following are measured: the percentaged devi-
ation of the heuristic solution value as compared to the optimum one and the mean

20 2 Heuristic Methods

of these deviations. If we denote by cA the value of the solution delivered by heuris-
tic A and by copt the optimum value of a given example, in a maximization problem
like the LOP, the percentaged deviation, PerDev, is given by the expression

PerDev = 100 · copt − cA

copt
.

(We assume that all feasible solutions have a positive value.)

Comparison with a Bound

There are situations when no optimum solution is available for a problem, not even
for a limited set of examples. An alternative evaluation method involves comparing
the value of the solution provided by the heuristic with a bound for the problem (a
lower bound if it is a minimization problem and an upper bound if it is a maximiza-
tion problem). Obviously the quality of fit will depend on the quality of the bound
(closeness to optimal). Thus we must somehow have information about the quality
of the aforementioned bound, otherwise the proposed comparison would not be of
much interest.

Comparison with a Truncated Exact Method

An enumerative method like branch-and-bound explores very many solutions, even
though this may be a fraction of the total, and therefore large-scale problems can be
computationally out of reach using these methods. Nevertheless, we can establish a
limit on the maximum number of iterations (or on the CPU time) to run the exact
algorithm. Moreover, we can modify the criteria to fathom a node in the search tree
by adding or subtracting (depending on whether it is a minimization or maximiza-
tion problem) a value Δ to the bound of the node thus fathoming a larger number
of nodes and speeding up the method. In this way it guarantees that the value of the
best solution provided by the procedure is no further than distance Δ from the opti-
mal value to the problem. In any case, the best solution found with these truncated
procedures establishes a bound against which the heuristic can be measured.

Comparison with Other Heuristics

This is one of the most commonly used methods for difficult problems which have
been worked on for a long time and for which some good heuristics are known.
Similarly to what happens with the bound comparisons, the conclusion of this com-
parison deals with the quality of fit of the chosen heuristic.

Given that the LOP has been studied in-depth from both the exact viewpoint
and that of a heuristic, we have a value of the optimum solution for small and

2.2 Construction Heuristics 21

medium-scale examples, which enables us to establish the optimal deviation in the
solution obtained by the heuristics. Furthermore, we can compare the values ob-
tained between the different heuristics to solve the same examples of any size.

Worst Case Analysis

One method that was well-accepted for a time concerns the behavioral analysis of
the heuristic algorithm in the worst case; i.e., consider the examples that most dis-
favor the algorithm and set analytical bounds to the maximal deviation in terms of
the optimum solution to the problem. The best aspect of this method is that it estab-
lished the limits of the algorithm’s results for any example. However, for the same
reason, the results tend not to be representative of the average behavior of the al-
gorithm. Furthermore, the analysis can be very complicated for more sophisticated
heuristics.

An algorithm A for dealing with a maximization problem is called ε-approxi-
mative if there is a constant ε > 0 such that for every problem instance the algorithm
guarantees that a feasible solution can be found with value cA and the property

cA ≥ (1− ε)copt.

The analogous definition for minimization problems is cA ≤ (1 + ε)copt.
Concerning the approximability of the LOP the following results are known. Sup-

pose that all objective function coefficients are nonnegative and take some arbitrary
ordering. Then either this ordering or its reverse version contains at least half of the
sum of all coefficients. So 1

2 -approximation of the LOP is trivial, but nothing better
is known.

2.2 Construction Heuristics

We will now review some of the construction heuristics, i.e., methods which follow
some principle for successively constructing a linear ordering. The principle should
somehow reflect that we are searching for an ordering with high value.

2.2.1 The Method of Chenery and Watanabe

One of the earliest heuristic methods was proposed by Chenery and Watanabe [32].
These authors did not formulate an algorithm, but just gave some ideas of how to
obtain plausible rankings of the sectors of an input-output table. Their suggestion
is to rank those sectors first which show a small share of inputs from other sectors
and of outputs to final demand. Sectors having a large share of inputs from other

22 2 Heuristic Methods

industries and of final demand output should be ranked last. Chenery and Watanabe
defined coefficients taking these ideas into account to find a preliminary ranking.
Then they try to improve this ranking in some heuristic way which is not specified
in their paper. The authors admit that their method does not necessarily lead to good
approximate solutions of the triangulation problem.

2.2.2 Heuristics of Aujac & Masson

This method [6] is based on so-called output coefficients. The output coefficient of
a sector i with respect to another sector j is defined as

bi j =
ci j

∑
k �=i

cik
.

Then it is intended to rank sector i before sector j whenever bi j > b ji (“better cus-
tomer principle”). This is impossible in general. So it is heuristically tried to find a
linear ordering with few contradictions to this principle. Subsequently local changes
are performed to achieve better triangulations. Similarly an input coefficient method
can be formulated based on the input coefficients

ai j =
ci j

∑
k �= j

ck j
.

2.2.3 Heuristics of Becker

In [8] two further methods are described. The first one is related to the previous
ones in that it calculates special quotients to rank the sectors. For each sector i the
number

qi =
∑

k �=i
cik

∑
k �=i

cki

is determined. The sector with the largest quotient qi is then ranked highest. Its
corresponding rows and columns are deleted from the matrix, and the procedure is
applied to the remaining sectors.

2.2 Construction Heuristics 23

Heuristic of Becker (1)

(1) Set S = {1,2, . . . ,n}.
(2) For k = 1,2, . . . ,n:

(2.1) For each i ∈ S compute qi =
∑

j∈S\{i}
ci j

∑
j∈S\{i}

c ji
.

(2.2) Let q j = max{qi | i ∈ S}.
(2.3) Set ik = j and S = S \ { j}.

The second method starts with an arbitrarily chosen linear ordering, w.l.o.g.
〈1,2, . . . ,n〉. Then for every m = 1,2, . . . ,n− 1 the objective function values of the
orderings 〈m+ 1,m+ 2, . . . ,n,1, . . . ,m〉 are evaluated. The best one among them is
chosen, and the procedure is repeated as long as improvements are possible.

Heuristic of Becker (2)

(1) Generate a random ordering.
(2) Let 〈i1, i2, . . . , in〉 denote the current ordering.
(3) Evaluate all of the orderings 〈im+1, im+2, . . . , in,1,2, . . . , im〉, for m =

1,2, . . . ,n−1.
(4) If the best one among these orderings is better than the current one,

take it as the new current ordering and goto (3).

2.2.4 Best Insertion

This is a simple heuristic which builds an ordering by inserting the next objects at
positions which are locally optimal.

Best Insertion

(1) Select an arbitrary object j and set S = {1,2, . . . ,n} \ { j}. Let 〈 j〉 be
the current ordering.

(2) For k = 1,2, . . . ,n−1:

(2.1) Let 〈i1, i2, . . . , ik〉 denote the current ordering and choose some
l ∈ S.

(2.2) For every t, 1 ≤ t ≤ k + 1, compute qt = ∑t−1
j=1 ci jl + ∑k

j=t cli j and
let qp = max{qt | 1 ≤ t ≤ k}.

(2.3) Insert l at position p in the current ordering and set S = S \ {l}.

24 2 Heuristic Methods

An alternative version of step (2.2) computes

qt =
t−1

∑
j=1

ci j l +
k

∑
j=t

cli j −
t−1

∑
j=1

cli j −
k

∑
j=t

ci jl

to account for the sum of entries which are “lost” when l is inserted at position t.

Table 2.1 Constructive methods on OPT-I instances

CW AM-O AM-I Bcq Bcr BI1 BI2

IO
Dev(%) 19.07 32.94 31.45 4.07 30.19 3.24 4.18

Score 231 291 266 101 289 89 104

#Opt 0 0 0 0 0 0 0

SGB
Dev(%) 12.83 26.15 26.15 3.57 31.56 3.89 3.03

Score 100 125 125 54 175 56 40

#Opt 0 0 0 0 0 0 0

RandomAII
Dev(%) 2.60 36.50 36.55 1.57 37.75 1.09 1.26

Score 100 135 136 68 162 34 48

#Opt 0 0 0 0 0 0 0

RandomB
Dev(%) 10.13 24.69 24.69 7.04 26.41 5.24 4.87

Score 276 368 368 194 454 124 106

#Opt 0 0 0 0 0 0 0

MB
Dev(%) 8.40 43.37 43.37 2.90 40.30 2.49 2.27

Score 120 178 178 80 154 52 48

#Opt 0 0 0 0 0 0 0

Special
Dev(%) 0.02 0.57 0.14 3.10 0.40 0.01 0.17

Score 64 178 113 210 149 41 83

#Opt 0 0 0 0 0 4 3

OPT-I
Avg. Dev(%) 10.85 32.97 32.55 3.95 32.35 3.49 3.50

Sum #Opt 0 0 0 0 0 4 3

Table 2.1 reports on our results for 7 constructive heuristics on the OPT-I set
(the set of 229 instances with optimum known). In this experiment we compute
for each instance and each method the relative deviation Dev (in percent) between
the best solution value Value obtained with the method and the optimal value for
that instance. For each method, we also report the number of instances #Opt for
which an optimum solution could be found. In addition, we calculate the so-called

2.3 Local Search 25

score statistic [114] associated with each method. For each instance, the nrank of
method M is defined as the number of methods that produce a better solution than
the one found by M. In the event of ties, the methods receive the same nrank, equal
to the number of methods strictly better than all of them. The value of Score is the
sum of the nrank values for all the instances in the experiment. Thus the lower the
Score the better the method. We do not report running times in this table because
these methods are very fast and their running times are extremely short (below 1
millisecond). Specifically, Table 2.1 shows results for:

– CW: Chenery and Watanabe algorithm
– AM-O: Aujac and Masson algorithm (output coefficients)
– AM-I: Aujac and Masson algorithm (input coefficients)
– Bcq: Becker algorithm (based on quotients)
– Bcr: Becker algorithm (based on rotations)
– BI1: Best Insertion algorithm (variant 1)
– BI2: Best Insertion algorithm (variant 2)

Results in Table 2.1 clearly indicate that OPT-I instances pose a challenge
for the simple heuristics with average percentage deviations ranging from 3.49%
to 32.97%. In most of the cases none of the methods is able to match the optimum
solution (with the exception of BI1 and BI2 with 4 and 3 optima respectively in
the Special instances). These results show that only Bcq, BI1 and BI2 can be con-
sidered reasonable construction heuristics (with an average percent deviation lower
than 5%).

2.3 Local Search

After having constructed some ordering with one of the heuristics above, it is rea-
sonable to look for improvement possibilities. In this section we will describe fairly
simple (deterministic) local improvement methods that are able to produce accept-
able solutions for the LOP. The basic philosophy that drives local search is that it
is often possible to find a good solution by repeatedly increasing the quality of a
given solution, making small changes at a time called moves. The different types of
possible moves characterize the various heuristics. Starting from a solution gener-
ated by a construction heuristic, a typical local search performs steps as long as the
objective function increases.

Local search can only be expected to obtain optimum or near-optimum solutions
for easy problems of medium size, but it is a very important and powerful concept
for the design of meta-heuristics, which are the topic of the next chapter.

26 2 Heuristic Methods

2.3.1 Insertion

This heuristic checks whether the objective function can be improved if the position
of an object in the current ordering is changed. All possibilities for altering the po-
sition of an object are checked and the method stops when no further improvement
is possible this way.

In problems where solutions are represented as permutations, insertions are prob-
ably the most direct and efficient way to modify a solution. Note that other move-
ments, such as swaps, can be obtained by composition of two or more insertions. We
define move(O j, i) as the modification which deletes O j from its current position j
in permutation O and inserts it at position i (i.e., between the objects currently in
positions i−1 and i).

Now, the insertion heuristic tries to find improving moves examining eventually
all possible new positions for all objects O j in the current permutation O. There are
several ways for organizing the search for improving moves. For our experiments
we proceeded as follows:

Insertion

(1) Compute an initial permutation O = 〈O1,O2, . . . ,On〉.
(2) For j = 1,2, . . . ,n:

(2.1) Evaluate all possible insertions move(O j, i).
(2.2) Let move(Ok, i∗) be the best of these moves.
(2.3) If move(Ok, i∗) is improving then perform it and update O.

(3) If some improving move was found, then goto (2).

In [86] two neighborhoods are studied in the context of local search methods for
the LOP. The first one consists of permutations obtained by switching the positions
of contiguous objects O j and O j+1. The second one involves all permutations result-
ing from executing general insertion moves, as defined above. The conclusion from
the experiments is that the second neighborhood clearly outperforms the first one,
which is much more limited. Furthermore two strategies for exploring the neighbor-
hood of a solution were studied. The best strategy selects the move with the largest
move value among all the moves in the neighborhood. The first strategy, on the
other hand, scans the list of objects (in the order given by the current permutation)
searching for the first object whose movement gives a strictly positive move value.
The computations revealed that both strategies provide similar results but the first
involved lower running times.

2.3 Local Search 27

2.3.2 The Heuristic of Chanas & Kobylanski

The method developed by Chanas and Kobylanski [32], referred to as the CK method
in the following, is based on the following symmetry property of the LOP. If the per-
mutation O = 〈O1,O2, . . . ,On〉 is an optimum solution to the maximization problem,
then an optimum solution to the minimization problem is O∗ = 〈On,On−1, . . . ,O1〉.
In other words, when the sum of the elements above the main diagonal is maxi-
mized, the sum of the elements below the diagonal is minimized. The CK method
utilizes this property to escape local optimality. In particular, once a local optimum
solution O is found, the process is re-started from the permutation O∗. This is called
the REVERSE operation.

In a global iteration, the CK method performs insertions as long as the solution
improves. Given a solution, the algorithm explores the insertion move move(O j, i)
of each element O j in all the positions i in O, and performs the best one. When
no further improvement is possible, it generates a new solution by applying the
REVERSE operation from the last solution obtained, and performs a new global
iteration. The method finishes when the best solution found cannot be improved
upon in the current global iteration.

It should be noted that the CK method can be considered to be a generalization
of the second heuristic of Becker described above. The latter evaluates the orderings
that can be obtained by rotations of a solution, while the CK method evaluates all
insertions. Since these rotations are basically insertions of the first elements to the
last positions, we can conclude that Becker’s method explores only a fraction of the
solutions explored by CK.

2.3.3 k-opt

The k-opt improvement follows a principle that can be applied to many combinato-
rial optimization problems. Basically, it selects k elements of a solution and locally
optimizes with respect to these elements. For the LOP, a possible k-opt heuristic
would be to consider all subsets of k objects Oi1 , . . . ,Oik in the current permuta-
tion and find the best assignment of these objects to the positions i1, . . . , ik. Since
the number of possible new assignments grows exponentially with k, we have only
implemented 2-opt and 3-opt.

2.3.4 Kernighan-Lin Type Improvement

The main problem with local improvement heuristics is that they very quickly get
trapped in a local optimum. Kernighan and Lin proposed the idea (originally in [78]
for a partitioning problem) of looking for more complicated moves that are com-
posed of simpler moves. In contrast to pure improvement heuristics, it allows that

28 2 Heuristic Methods

some of the simple moves are not improving. In this way the objective can decrease
locally, but new possibilities arise for escaping from the local optimum. This type
of heuristic proved particularly effective for the traveling salesman problem (where
it is usually named Lin-Kernighan heuristic).

We only describe the principle of the Kernighan-Lin approach. For practical ap-
plications on large problems, it has to be implemented carefully with appropriate
data structures and further enhancements like restricted search or limited length of
combined moves to speed up the search for improving moves. We do not elaborate
on this here.

We devised two heuristics of this type for the LOP. In the first version, the basic
move consists of interchanging two objects in the current permutation.

Kernighan-Lin 1

(1) Compute some linear ordering O.
(2) Let m = 1, Sm = {1,2, . . . ,n}.
(3) Determine objects s,t ∈ Sm, s �= t, the interchange of which in the cur-

rent ordering leads to the largest increase gm of the objective function
(increase may be negative).

(4) Interchange s and t in the current ordering. Set sm = s and tm = t.
(5) If m < 	n/2
, set Sm+1 = Sm \ {s,t} and m = m+ 1. Goto (3).
(6) Determine 1 ≤ k ≤ m, such G = ∑k

i=1 gi is maximum.
(7) If G ≤ 0 then Stop, otherwise, starting from the original ordering O,

successively interchange si and ti, for i = 1,2, . . . ,k. Let O denote the
new ordering and goto (2).

The second version builds upon insertion moves.

Kernighan-Lin 2

(1) Compute some linear ordering O.
(2) Let m = 1, Sm = {1,2, . . . ,n}.
(3) Among all possibilities for inserting an object of Sm at a new position

determine the one leading to the largest increase gp of the objective
function (increase may be negative). Let s be this object and p the new
position.

(4) Move s to position p in the current ordering. Set sm = s and pm = p.
(5) If m < n, set Sm+1 = Sm \ {s} and m = m+ 1. Goto (3).
(6) Determine 1 ≤ k ≤ m, such G = ∑k

i=1 gi is maximum.
(7) If G ≤ 0 then Stop, otherwise, starting from the original ordering O,

successively move si to position pi, for i = 1,2, . . . ,k. Let O denote
the new ordering and goto (2).

2.3 Local Search 29

2.3.5 Local Enumeration

This heuristic chooses windows 〈ik, ik+1, . . . , ik+L−1〉 of a given length L of the cur-
rent ordering 〈i1, i2, . . . , in〉 and determines the optimum subsequence of the respec-
tive objects by enumerating all possible orderings. The window is moved along the
complete sequence until no more improvements can be found. Of course, L cannot
be chosen too large because the enumeration needs time O(L!).

Local Enumeration

(1) Compute some linear ordering O.
(2) For i = 1, . . . ,n−L+ 1:

(2.1) Find the best possible rearrangement of the objects at positions
i, i+ 1, . . . , i+ L−1.

(3) If an improving move has been found in the previous loop, then
goto (2).

Table 2.2 reports on our results for 7 improving heuristics on the OPT-I set of
instances. As in the construction heuristics, we report, for each instance and each
method, the relative percent deviation Dev, the number of instances #Opt for which
an optimum solution is found, and the score statistic. Similarly, we do not report
running times in this table because these methods are fairly fast. Specifically, the
results obtained with the following improvement methods (started with a random
initial solution) are given:

– LSi: Local Search based on insertions
– 2opt: Local Search based on 2-opt
– 3opt: Local Search based on 3-opt
– LSe: Local Search based on exchanges
– KL1: Kernighan-Lin based on exchanges
– KL2: Kernighan-Lin based on insertions
– LE: Local enumeration

As expected, the improvement methods are able to obtain better solutions than
the construction heuristics, with average percentage deviations (shown in Table 2.2)
ranging from 0.57% to 2.30% (the average percentage deviations of the construc-
tion heuristics range from 3.49% to 32.97% as reported in Table 2.1). We have not
observed significant differences when applying the improvement method from dif-
ferent initial solutions. For example, as shown in Table 2.2 the LSi method exhibits
a Dev value of 0.16% on the RandomAII instances when it is started from random
solutions. When it is run from the CW or the Bcr solutions, it obtains a Dev value
of 0.17% and 0.18% respectively.

30 2 Heuristic Methods

Table 2.2 Improvement methods on OPT-I instances

LSi 2opt 3opt LSe KL1 KL2 LE

IO
Dev(%) 1.08 0.64 0.23 1.73 1.35 4.24 0.01
Score 243 181 125 295 239 232 49
#Opt 0 1 4 0 1 0 43

SGB
Dev(%) 0.16 0.81 0.53 1.35 0.63 0.28 1.09
Score 42 122 84 154 100 63 135
#Opt 1 0 0 0 0 0

RandomAII
Dev(%) 0.16 0.77 0.38 0.62 0.61 0.09 0.54
Score 46 161 81 134 134 29 112
#Opt 0 0 0 0 0 0 0

RandomB
Dev(%) 0.79 4.04 2.13 3.78 3.51 0.61 3.56
Score 124 400 232 387 359 95 362
#Opt 1 0 0 0 0 1 0

MB
Dev(%) 0.02 0.57 0.14 3.10 0.40 0.01 0.17
Score 64 178 113 210 149 41 83
#Opt 0 0 0 0 0 4 3

Special
Dev(%) 1.19 3.30 2.05 3.21 2.40 0.89 3.52
Score 69 144 82 138 120 49 156
#Opt 4 2 2 2 3 3 3

OPT-I
Avg. Dev(%) 0.57 1.69 0.91 2.30 1.49 1.02 1.48
Sum #Opt 5 3 6 2 4 8 49

2.4 Multi-Start Procedures

Multi-start procedures were originally conceived as a way of exploiting a local or
neighborhood search procedure, by simply applying it from multiple random initial
solutions. It is well known that search methods based on local optimization, aspiring
to find global optima, usually require certain diversification to overcome local op-
timality. Without this diversification, such methods can become reduced to tracing
paths that are confined to a small area of the solution space, making it impossible
to find a global optimum. Multi-start algorithms can be considered to be a bridge
between simple (classical) heuristics and complex (modern) meta-heuristics. The
re-start mechanism of multi-start methods can be super-imposed on many different
search methods. Once a new solution has been generated, a variety of options can
be used to improve it, ranging from a simple greedy routine to a complex meta-
heuristic. This section focuses on the different strategies and methods that can be

2.4 Multi-Start Procedures 31

used to generate solutions to launch a succession of new searches for a global opti-
mum.

The principle layout of a multi-start procedure is the following.

Multi-Start

(1) Set i=1.
(2) While the stopping condition is not satisfied:

(2.1) Construct a solution xi. (Generation)
(2.2) Apply local search to improve xi and let x′i be the solution ob-

tained. (Improvement)
(2.3) If x′i improves the best solution, update it. Set i = i+ 1. (Test)

The computation of xi in (2.1) is typically performed with a constructive algo-
rithm. Step (2.2) tries to improve this solution, obtaining x′i. Here, a simple improve-
ment method can be applied. However, this second phase has recently become more
elaborate and, in some cases, is performed with a complex meta-heuristic that may
or may not improve the initial solution xi (in this latter case we set x′i = xi).

2.4.1 Variants of Multi-Start

We will first review some relevant contributions on multi-start procedures.
Early papers on multi-start methods are devoted to the Monte Carlo random re-

start in the context of nonlinear unconstrained optimization, where the method sim-
ply evaluates the objective function at randomly generated points. The probability
of success approaches 1 as the sample size tends to infinity under very mild assump-
tions about the objective function. Many algorithms have been proposed that com-
bine the Monte Carlo method with local search procedures [115]. The convergence
for random re-start methods is studied in [120], where the probability distribution
used to choose the next starting point can depend on how the search evolves. Some
extensions of these methods seek to reduce the number of complete local searches
that are performed and increase the probability that they start from points close to
the global optimum [96].

In [13] relationships among local minima from the perspective of the best local
minimum are analyzed, finding convex structures in the cost surfaces. Based on the
results of that study, they propose a multi-start method where starting points for
greedy descent are adaptively derived from the best previously found local minima.
In the first step, adaptive multi-start heuristics generate random starting solutions
and run a greedy descent method from each one to determine a set of correspond-
ing random local minima. In the second step, adaptive starting solutions are con-
structed based on the local minima obtained so far and improved with a greedy de-
scent method. This improvement is applied several times from each adaptive starting

32 2 Heuristic Methods

solution to yield corresponding adaptive local minima. The authors test this method
for the traveling salesman problem and obtain significant speedups over previous
multi-start implementations.

Simple forms of multi-start methods are often used to compare other methods
and measure their relative contribution. In [7] different genetic algorithms for six
sets of benchmark problems commonly found in the genetic algorithms literature
are compared: traveling salesman problem, job-shop scheduling, knapsack and bin
packing problem, neural network weight optimization, and numerical function op-
timization. The author uses the multi-start method (multiple restart stochastic hill-
climbing) as a basis for computational testing. Since solutions are represented with
strings, the improvement step consists of a local search based on random flipping of
bits. The results indicate that using genetic algorithms for the optimization of static
functions does not yield a benefit, in terms of the final answer obtained, over simpler
optimization heuristics.

One of the most well known multi-start methods is the greedy adaptive search
procedure (GRASP). The GRASP methodology was introduced by Feo and Re-
sende [45] and was first used to solve set covering problems [44]. We will devote a
section in the next chapter to describe this methodology in detail.

A multi-start algorithm for unconstrained global optimization based on quasi-
random samples is presented in [67]. Quasi-random samples are sets of determin-
istic points, as opposed to random, that are evenly distributed over a set. The al-
gorithm applies an inexpensive local search (steepest descent) on a set of quasi-
random points to concentrate the sample. The sample is reduced, replacing worse
points with new quasi-random points. Any point that is retained for a certain number
of iterations is used to start an efficient complete local search. The algorithm termi-
nates when no new local minimum is found after several iterations. An experimental
comparison shows that the method performs favorably with respect to other global
optimization procedures.

An open question in order to design a good search procedure is whether it is bet-
ter to implement a simple improving method that allows a great number of global
iterations or, alternatively, to apply a complex routine that significantly improves
a few generated solutions. A simple procedure depends heavily on the initial solu-
tion but a more elaborate method takes much more running time and therefore can
only be applied a few times, thus reducing the sampling of the solution space. Some
meta-heuristics, such as GRASP, launch limited local searches from numerous con-
structions (i.e., starting points). In other methods, such as tabu search, the search
starts from one initial point and, if a restarting procedure is also part of the method,
it is invoked only a limited number of times. In [94] the balance between restart-
ing and search-depth (i.e., the time spent searching from a single starting point)
is studied in the context of the matrix bandwidth problem. Both alternatives were
tested with the conclusion that it was better to invest the time searching from a few
starting points than re-starting the search more often. Although we cannot draw a
general conclusion from these experiments, the experience in the current context
and in previous projects indicates that some meta-heuristics, like tabu search, need

2.4 Multi-Start Procedures 33

to reach a critical search depth to be effective. If this search depth is not reached,
the effectiveness of the method is severely compromised.

2.4.2 Experiments with the LOP

In this section we will describe and compare 10 different constructive methods for
the LOP. It should be noted that, if a constructive method is completely determinis-
tic (with no random elements), its replication (running it several times) will always
produce the same solution. Therefore, we should add random selections in a con-
structive method to obtain different solutions when replicated. Alternatively, we can
modify selections from one construction to another in a deterministic way by record-
ing and using some frequency information. We will look at both approaches, which
will enable us to design constructive methods for the LOP that can be embedded in
a multi-start procedure.

Above we have described the construction heuristic of Becker [8] in which for
each object i the value qi is computed. Then, the objects are ranked according to the
q-values qi = ∑k �=i cik/∑k �=i cki.

We now compute two other values that can also be used to measure the attractive-
ness of an object to be ranked first. Specifically, ri and ci are, respectively, the sum
of the elements in the row corresponding to object i, and the sum of the elements in
the column of object i, i.e., ri = ∑k �=i cik and ci = ∑k �=i cki.

Constructive Method G1

This method first computes the ri values for all objects. Then, instead of selecting
the object with the largest r-value, it creates a list with the most attractive objects,
according to the r-values, and randomly selects one among them. The selected ob-
ject is placed first and the process is repeated for n iterations. At each iteration the
r-values are updated to reflect previous selections (i.e., we sum the cik across the
unselected elements) and the candidate list for selection is computed with the high-
est evaluated objects. The method combines the random selection with the greedy
evaluation, and the size of the candidate list determines the relative contribution of
these two elements.

34 2 Heuristic Methods

Constructive method G1

(1) Set S = {1,2, . . . ,n}. Let α ∈ [0,1] be the percentage for selection and
O be the empty ordering.

(2) For t = 1,2, . . . ,n:

(2.1) Compute ri = ∑
k∈S,k �=i

cik for all i ∈ S.

(2.2) Let r∗ = max{ri | i ∈ S}.
(2.3) Compute the candidate list C = {i ∈ S | ri ≥ αr∗}.
(2.4) Randomly select j∗ ∈ C and place j∗ at position t in O and set

S = S \ { j∗}.

Constructive Methods G2 and G3

Method G2 is based on the ci-values computed above. It works in the same way as
G1 but the attractiveness of object i is now measured with ci instead of ri. Objects
with large c-values are placed now in the last positions.

Constructive method G2

(1) Set S = {1,2, . . . ,n}. Let α ∈ [0,1] be the percentage for selection and
O be the empty ordering.

(2) For t = n,n−1, . . . ,1:

(2.1) Compute ci = ∑
k∈S,k �=i

cki for all i ∈ S.

(2.2) Let c∗ = max{ci | i ∈ S}.
(2.3) Compute the candidate list C = {i ∈ S | ci ≥ αc∗}.
(2.4) Randomly select j∗ ∈ C and place j∗ in position t in O and set

S = S \ { j∗}.

In a similar way, constructive method G3 measures the attractiveness of object i
for selection with qi and performs the same steps as G1. Specifically, at each iter-
ation the q-values are computed with respect to the unselected objects, a restricted
candidate list is formed with the objects with largest q-values, and one of them is
randomly selected and placed first.

Constructive Methods G4, G5 and G6

These methods are designed analogously to G1–G3, except that the selection of
objects is from a candidate list of the least attractive and the solution is constructed
starting from the last position of the permutation. We give the specification of G6
which is modification of G3.

2.4 Multi-Start Procedures 35

Constructive method G6

(1) Set S = {1,2, . . . ,n}. Let α ≥ 0 be the percentage for selection and O
be the empty ordering.

(2) For t = 1,2, . . . ,n:

(2.1) For all i ∈ S, compute

qi =
∑

k∈S,k �=i
cik

∑
k∈S,k �=i

cki
.

(2.2) Let q∗ = min{qi | i ∈ S}.
(2.3) Compute the candidate list C = {i ∈ S | qi ≤ (1 + α)q∗}.
(2.4) Randomly select j∗ ∈C and place j∗ in position n− t +1 in O and

set S = S \ { j∗}.

Constructive Method MIX

This is a mixed procedure derived from the previous six. The procedure generates
a fraction of solutions from each of the previous six methods and combines these
solutions into a single set. That is, if n solutions are required, then each method Gi,
i = 1, . . . ,6, contributes n/6 solutions.

Constructive Method RND

This is a random generator. This method simply generates random permutations.
We use it as a basis for our comparisons.

Constructive Method DG

This is a general purpose diversification generator suggested in [55] which gener-
ates diversified permutations in a systematic way without reference to the objective
function.

Constructive Method FQ

This method implements an algorithm with frequency-based memory, as proposed
in tabu search [52] (we will see this methodology in the next chapter). It is based on
modifying a measure of attractiveness with a frequency measure that discourages

36 2 Heuristic Methods

objects from occupying positions that they have frequently occupied in previous
solution generations.

The constructive method FQ (proposed in [19]) is based on the notion of
constructing solutions employing modified frequenciesfrequency. The generator
exploits the permutation structure of a linear ordering. A frequency counter is
maintained to record the number of times an element i appears in position j. The
frequency counters are used to penalize the “attractiveness” of an element with re-
spect to a given position. To illustrate this, suppose that the generator has created
30 solutions. If 20 out of the 30 solutions have element 3 in position 5, then the
frequency counter freq(3,5) = 20. This frequency value is used to bias the potential
assignment of element 3 in position 5 during subsequent constructions, thus induc-
ing diversification with respect to the solutions already generated.

The attractiveness of assigning object i to position j is given by the greedy func-
tion fq(i, j), which modifies the value of qi to reflect previous assignments of object i
to position j, as follows:

fq(i, j) =
∑

k �=i
cik

∑
k �=i

cki
−β

maxq

max f
freq(i, j),

where max f = max{freq(i, j) | i = 1, . . . ,n, j = 1, . . . ,n} and maxq = max{qi | i =
1, . . . ,n}.

Constructive method FQ

(1) Set S = {1,2, . . . ,n}. Let β ∈ [0,1] be the percentage for diversifica-
tion and freq(i, j) be the number of times object i has been assigned
to position j in previous constructions.

(2) For t = 1,2, . . . ,n:

(2.1) For all i, j ∈ S compute fq(i, j) =
∑

k �=i
cik

∑
k �=i

cki
−β maxq

max f
freq(i, j).

(2.2) Let i∗ and j∗ be such that fq(i∗, j∗) = max{fq(i, j) | i, j ∈ S}.
(2.3) Place i∗ at position j∗ in O and set S = S \ {i∗}.
(2.4) freq(i∗, j∗) = freq(i∗, j∗)+ 1.

It is important to point out that fq(i, j) is an adaptive function since its value
depends on attributes of the unassigned elements at each iteration of the construction
procedure.

In our first experiment we use the instance stabu75 from LOLIB. We have
generated a set of 100 solutions with each of the 10 generation methods. Figure 2.1
shows in a box-and-whisker-plot representation, the value of the 100 solutions gen-
erated with each method. Since the LOP is a maximization problem, it is clear that
the higher the value, the better the method. We can therefore say that constructive
method G3 obtains the best results. Other methods, such as FQ and MIX also obtain

2.4 Multi-Start Procedures 37

Fig. 2.1 Objective function value box-plot for each method

solutions with very good values, but their box-plot representation indicates that they
also produce lower quality solutions. However, if the construction is part of a global
method (as is the case in multi-start methods), we may prefer a constructive method
able to obtain solutions with different structures rather than a constructive method
that provides very similar solutions. Note that if every solution is subjected to lo-
cal search, then it is preferable to generate solutions scattered in the search space
as starting points for the local search phase rather than good solutions concentrated
in the same area of the solution space. Therefore, we need to establish a trade off
between quality and diversity when selecting our construction method.

Given a set of solutions P represented as permutations, in [95] a diversity mea-
sure d is proposed which consists of computing the distances between each solution
and a “center” of P. The sum (or alternatively the average) of these |P| distances
provides a measure of the diversity of P. The diversity measure d is calculated as
follows:

(1) Calculate the median position of each element i in the solutions in P.
(2) Calculate the dissimilarity (distance) of each solution in the population with

respect to the median solution. The dissimilarity is calculated as the sum of the
absolute difference between the position of the elements in the solution under
consideration and the median solution.

(3) Calculate d as the sum of all the individual dissimilarities.

For example, assume that P consists of the orderings 〈A,B,C,D〉, 〈B,D,C,A〉,
and 〈C,B,A,D〉. The median position of element A is therefore 3, since it occupies
positions 1, 3 and 4 in the given orderings. In the same way, the median positions
of B,C and D are 2, 3 and 4, respectively. Note that the median positions might not

38 2 Heuristic Methods

induce an ordering, as in the case of this example. The diversity value of the first
solution is then calculated as d1 = |1−3|+ |2−2|+ |3−3|+ |4−4|= 2.

In the same way, the diversity values of the other two solutions are obtained as
d2 = 4 and d3 = 2. The diversity measure d of P is then given by d = 2+4+2 = 8.

We then continue with our experiment to compare the different constructive
methods for the LOP. As described above, we have generated a set of 100 solutions
with each of the 10 generation methods. Figure 2.2 shows the box-and-whisker plot
of the diversity values of the solution set obtained with each method.

Fig. 2.2 Diversity value box-plot for each method

Figure 2.2 shows that MIX and FQ obtain the highest diversity values (but also
generate other solutions with low diversity values). As expected, the random con-
structive method RND consistently produces high diversity values (always generat-
ing solutions with an associated d-value over 800 in the diagram).

As mentioned, a good method must produce a set of solutions with high quality
and high diversity. If we compare, for example, generators MIX and G3 we observe
in Fig. 2.1 that G3 produces slightly better solutions in terms of solution quality, but
Fig. 2.2 shows that MIX outperforms G3 in terms of diversity. Therefore, we will
probably consider MIX as a better method than G3. In order to rank the methods we
have computed the average of both measures across each set.

Figure 2.3 shows the average of the diversity values on the x-axis and the average
of the quality on the y-axis. A point is plotted for each method.

As expected, the random generator RND produces a high diversity value (as mea-
sured by the dissimilarity) but a low quality value. DG matches the diversity of RND
using a systematic approach instead of randomness, but as it does not use the value
of solutions, it also presents a low quality score. The mixed method MIX provides a

2.4 Multi-Start Procedures 39

10008006004002000

600000

500000

400000

300000

DG

MIX

G3

G2

G1

G6

G5

G4

RND

FQ

Fig. 2.3 Quality and diversity for each method

good balance between dissimilarity and quality, by uniting solutions generated with
methods G1 to G6.

We think that quality and diversity are equally important, so we have added both
averages. To do so, we use two relative measures �C for quality, and �d for di-
versity. They are basically standardizations to translate the average of the objective
function values and diversity values respectively to the [0,1] interval. In this way we
can simply add both quantities.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

G5 G4 G2 G1 DG RND G6 G3 M IX FQ

ΔC

Δd

ΔC+Δd

Fig. 2.4 Quality and Diversity for each method

Figure 2.4 clearly shows the following ranking of the 10 methods, where the
overall best is the FQ generator: G5, G4, G2, G1, DG, RND, G6, G3, MIX and FQ.
These results are in line with previous works which show the inclusion of memory

40 2 Heuristic Methods

structures (frequency information) to be effective within the multi-start framework.
However, one should note that this method of ranking has been obtained considering
both quality and diversity with equal weight. If we vary this criterion, the ranking
would also change.

It should be noted that, unlike other well-known methods that we will review in
the next chapter, multi-start procedures have not yet become widely implemented
and tested as a meta-heuristic itself for solving complex optimization problems. We
have shown new ideas that have recently emerged within the multi-start area that
add a clear potential to this framework which has yet to be fully explored.

http://www.springer.com/978-3-642-16728-7

