Preface

Since the 1980s, Fourier analysis methods have become of ever greater interest
in the study of linear and nonlinear partial differential equations. In partic-
ular, techniques based on Littlewood—Paley decomposition have proven to be
very efficient in the study of evolution equations. Littlewood—Paley decom-
position originates with Littlewood and Paley’s works in the early 1930s and
provides an elementary device for splitting a (possibly rough) function into a
sequence of spectrally well localized smooth functions. In particular, differen-
tiation acts almost as a multiplication on each term of the sequence. However,
its systematic use for nonlinear partial differential equations is rather recent.
In this context, the main breakthrough was achieved after J.-M. Bony intro-
duced the paradifferential calculus in his pioneering 1981 paper (see [39]) and
its avatar, the paraproduct.

Surprisingly, despite the growing number of authors who now use such
techniques, to the best of our knowledge, there is no textbook presenting
Fourier analysis tools in such a way that they may be directly used for solving
nonlinear partial differential equations.

The aim of this book is threefold. First, we want to give a detailed presen-
tation of harmonic analysis tools that are of constant use for solving nonlinear
partial differential equations. Second, we want to convince the reader that the
rough frequency splitting supplied by Littlewood—Paley decomposition (which
turns out to be much simpler than, e.g., Calderon—Zygmund decomposition
or wavelet theory) may still provide elementary and elegant proofs of some
classical inequalities (such as Sobolev embedding and Gagliardo—Nirenberg or
Hardy inequalities). Third, we give a few examples of how to use these basic
Fourier analysis tools to solve linear or nonlinear evolution partial differential
equations. We have chosen to present the most popular evolution equations,
namely, transport and heat equations, (linear or quasilinear) symmetric hy-
perbolic systems, (linear, semilinear, or quasilinear) wave equations, and the
(linear or semilinear) Schrodinger equation. We place a special emphasis on
models coming from fluid mechanics (in particular, on the incompressible
Navier—Stokes and Euler equations) for which, historically, the Littlewood-
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Paley decomposition was first used. It goes without saying that our methods
are also relevant for solving a variety of other equations. In fact, there has been
a plethora of recent papers dedicated to more complicated nonlinear partial
differential equations in which Littlewood—Paley decomposition proves to be
a crucial tool.

This book is almost self-contained, inasmuch as having an undergraduate
level understanding of analysis is the only prerequisite. There are rare excep-
tions where we have had to admit nontrivial mathematical results, in which
case references are given. Apart from these, we have postponed references,
historical background, and discussion of possible future developments to the
end of each chapter. The book does not contain any definitively new results.
However, we have tried to provide an exhaustivity that cannot be found in any
single paper. Also, we have provided new proofs for some well-known results.

We have also decided not to discuss the theory of wavelets, even though this
would be the natural extension of Littlewood—Paley decomposition. Indeed, it
turns out that, to the best of our knowledge, there are almost no theoretical
results for nonlinear partial differential equations in which wavelets cannot be
replaced by a simple Littlewood—Paley decomposition.

When writing this book, we tried as much as possible to make a distinction
between what may be proven by means of classical analysis tools and what
really does require Littlewood—Paley decomposition (and the paraproduct).
In fact, with only a few exceptions, all the material concerning Littlewood—
Paley decomposition is contained in Chapter 2 so that the reader who is not
accustomed to (or who is afraid of) those techniques may still read a great deal
of the book. In fact, the whole of Chapter 1, the first section of Chapter 3, the
first half of Chapter 4, Chapter 5 (except for the last section), the first section
of Chapter 6, and the first two sections of Chapter 8 may be read completely
independently of Chapter 2. In most of the other parts of the book, Chapter 2
may be used freely as a “black box” that does not need to be opened.

Roughly speaking, the book may be divided into two principal parts: Tools
are developed in the first two chapters, then applied to a variety of linear and
nonlinear partial differential equations (Chapters 3-10). A detailed plan of
the book is as follows.

Chapter 1 is devoted to a self-contained elementary presentation of clas-
sical Fourier analysis results. Even though none of the results are new, some
of the proofs that we present are not the standard ones and are likely to be
useful in other contexts. We also pay attention to the construction of explicit
examples which illustrate the optimality of some refined estimates.

In Chapter 2 we give a detailed presentation on Littlewood—Paley de-
composition and define homogeneous and nonhomogeneous Besov spaces. We
should emphasize that we have replaced the usual definition of homogeneous
spaces (which are quotient distribution spaces modulo polynomials) by some-
thing better adapted to the study of partial differential equations (indeed,
dealing with distributions modulo polynomials is not appropriate in this con-
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text). We also establish technical results (commutator estimates and func-
tional inequalities, in particular) which will be used in the following chapters.

In Chapter 3 we give a very complete theory of strong solutions for trans-
port and transport-diffusion equations. In particular, we provide a priori es-
timates which are the key to solving nonlinear systems coming from fluid
mechanics. Chapter 4 is devoted to solving linear and quasilinear symmetric
systems with data in Sobolev spaces. Blow-up criteria and results concerning
the continuity of the flow map are also given. The case of data with critical
regularity (in a Besov space) is also investigated.

In Chapter 5 we take advantage of the tools introduced in the previous
chapters to establish most of the classical results concerning the well-posedness
of the incompressible Navier—Stokes system for data with critical regularity.
In order to emphasize the robustness of the tools that have been introduced
hitherto in this book, we present in Chapter 6 a nonlinear system of partial
differential equations with degenerate parabolicity. In fact, we show that some
of the classical results for the Navier—Stokes system may be extended to the
case where there is no vertical diffusion. Most of the results of this chapter
are based on the use of an anisotropic Littlewood—Paley decomposition.

Chapter 7 is the natural continuation of the previous chapter: The diffu-
sion term is removed, leading to the study of the Euler system for inviscid
incompressible fluids. Here, we state local (in dimension d > 3) and global
(in dimension two) well-posedness results for data in general Besov spaces.
In particular, we study the case where the data belong to Besov spaces for
which the embedding in the set of Lipschitz functions is critical. In the two-
dimensional case, we also give results concerning the inviscid limit. We stress
the case of data with (generalized) vortex patch structure.

Chapter 8 is devoted to Strichartz estimates for dispersive equations with a
focus on Schrodinger and wave equations. After proving a dispersive inequality
(i.e., decay in time of the L° norm in space) for these equations, we present,
in a self-contained way, the celebrated TT* argument based on a duality
method and on bilinear estimates. Some examples of applications to semilinear
Schréodinger and wave equations are given at the end of the chapter.

Chapter 9 is devoted to the study of a class of quasilinear wave equations
which can be seen as a toy model for the Einstein equations. First, by taking
advantage of energy methods in the spirit of those of Chapter 4, we establish
local well-posedness for “smooth” initial data (i.e., for data in Sobolev spaces
embedded in the set of Lipschitz functions). Next, we weaken our regularity
assumptions by taking advantage of the dispersive nature of the wave equa-
tion. The key to that improvement is a quasilinear Strichartz estimate and a
refinement of the paradifferential calculus. To prove the quasilinear Strichartz
estimate, we use a microlocal decomposition of the time interval (i.e., a de-
composition in some interval, the length of which depends on the size of the
frequency) and geometrical optics.

In Chapter 10 we present a more complicated system of partial differential
equations coming from fluid mechanics, the so-called barotropic compressible
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Navier—Stokes equations. Those equations are of mixed hyperbolic-parabolic
type. We show how we may take advantage of the results of Chapter 3 and the
techniques introduced in Chapter 2 so as to obtain local (or global) unique
solutions with critical regularity. The last part of this chapter is dedicated
to the study of the low Mach number limit for this system. It is shown that
under appropriate assumptions on the data, the limit solution satisfies the
incompressible Navier—Stokes system studied in Chapter 5.

In writing this book, we had help from many colleagues. We are particu-
larly indebted to F. Charve, B. Ducomet, C. Fermanian-Kammerer, F. Sueur,
B. Texier, and to the anonymous referees for pointing out numerous mistakes
and giving suggestions and advice. In addition to J.-M. Bony, our work was in-
spired by many collaborators and great mathematicians, among them B. Des-
jardins, I. Gallagher, P. Gérard, E. Grenier, T. Hmidi, D. Iftimie, H. Koch,
S. Klainerman, Y. Meyer, M. Paicu, D. Tataru, F. Vigneron, C.J. Xu, and
P. Zhang. We would like to express our gratitude to all of them.

Paris Hajer Bahouri
Jean-Yves Chemin
Raphaél Danchin
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