1

Basic Analysis

This chapter is devoted to the presentation of a few basic tools which will
be used throughout this book. In the first section we state the Holder and
Minkowski inequalities. Next, we prove convolution inequalities in the general
context of locally compact groups equipped with left-invariant Haar measures.
The adoption of this rather general framework is motivated by the fact that
these inequalities may be used not only in the R? and Z? cases, but also
in other groups such as the Heisenberg group H?. Both Lebesgue and weak
Lebesgue spaces are used. In the latter case, we introduce an atomic decompo-
sition which will help us to establish a bilinear interpolation-type inequality.
Finally, we give a few properties of the Hardy—-Littlewood maximal operator.

The second section is devoted to a short presentation on the Fourier trans-
form in RY. The third section is dedicated to homogeneous Sobolev spaces
in RY. There, we state basic topological properties, consider embedding in
Lebesgue, bounded mean oscillation, and Holder spaces, and prove refined
Sobolev inequalities. The classical Sobolev inequalities are of course invariant
by translation and dilation. The refined versions of the Sobolev inequalities
which we prove are, in addition, invariant by translation in the Fourier space.
We also present some classes of examples to show that these inequalities are in
some sense optimal. In the last section of this chapter, we focus on nonhomo-
geneous Sobolev spaces, with a special emphasis on trace theorems, compact
embedding, and Moser—Trudinger and Hardy inequalities.

1.1 Basic Real Analysis

1.1.1 Ho6lder and Convolution Inequalities

We begin by recalling the classical Holder inequality.

Proposition 1.1. Let (X, u) be a measure space and (p,q,r) in [1,00]> be
such that
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If (f,g) belongs to LP(X,u) x LY(X, u), then fg belongs to L"(X, ) and
1fgllzr < IIfllzellgllza-

Proof. The cases where p = 1 or p = oo being trivial, we assume from now
on that p is a real number greater than 1. The concavity of the logarithm
function entails that for any positive real numbers a and b and any 6 in [0, 1],

floga+ (1 —6)logb <log(fa+ (1 — 6)b),
which obviously implies that
a®v' =% < fa + (1 - 0)b.

Hence, assuming that || f||z» = ||gl|z« = 1, we can write

/ \fngdu:/(\flp)%(lglq)gdu

X X

C pd C Qd

p/le\ u+q/X|g| w
.

r
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P q
The proposition is thus proved. a

IN

The following lemma states that Holder’s inequality is in some sense optimal.

Lemma 1.2. Let (X, p) be a measure space and p € [1,00]. Let f be a mea-
surable function. If

sup /|f 2| du(z) < oo,

lgll, <1/ X

then f belongs to LP and"

£l = sup /f ().

llgll o <1JX

Proof. Note that if f is in LP, then Holder’s inequality ensures that

llgH <1/ f (@) < | fllew

LpP —
so that only the reverse inequality has to be proven.
! Here, and throughout the book, p’ denotes the conjugate exponent of p, defined
by

- =1, with the rule that S =0.
oo

1
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p
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1.1 Basic Real Analysis 3

We start with the case p = co. Let A be a positive real number such

that p(|f] > A) > 0. Writing E def (If] = A), we consider a nonnegative

function go in L', supported in E) with integral 1. If we define

f(x)
[F (@)

then ¢ is in L' so that fg is integrable by assumption, and we have

/fgdﬂ /Iflgodu >A/ go dp(z) = X

The lemma is proved in this case. We now assume that p € ]1, oo and consider
a nondecreasing sequence (E, )nen of subsets of finite measure of X, the union
of which is X. Let?

g(x) =

Fo(@)|fn(@)P~L
(@)1l 5

It is obvious that f,, belongs to L' N L> and thus to L for any p. Moreover,
we have

fn(®) =1p,Afj<n)f and  gn(x) =

. P’ - p Dyt g -1
lonll = e [ Vit (o) =

The definitions of the functions f,, and g, ensure that

/f ]-En (\f\<n)gn x) du(x /fn x)gn(x) dp(x)

B (/X | fu(@)” dﬂ(x)> e

= || fallLe-
Thus, we have

Ifulle < sup / F(@)g(x) du(z).

gl pr <1
The monotone convergence theorem immediately implies that

Ifle < sup / f(@)g(x) dps().

llgll, <1/ X

Finally, in order to treat the case where p = 1, we may consider the se-
quence (g )nen defined by

| fn(@)]

2 Throughout this book, the notation 14, where A stands for any subset of X,
denotes the characteristic function of A.

9n(7) = 1(5,20)(7)
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We obviously have ||gp||L~ =1 and

/f )9 (@) dulz /\fn )| dpz).

Using the monotone convergence theorem, we get that

| @ldute) <o and [ (f@dute) = i [ 15,0 dute).

which completes the proof of the proposition. O
We now state Minkowski’s inequality.

Proposition 1.3. Let (X1, 1) and (Xa, p2) be two measure spaces and | a
nonnegative measurable function over X1 X Xo. For all 1 < p < q < 00, we
have

< H”f(xlv ')||Lq(X27lt2)

17Co2)le 6,

La(X2,p2) LP(X1,p1)

Proof. The result is obvious if ¢ = oco. If ¢ is finite, then, using Fubini’s

theorem and r S (q/p)’, we have

Lo(Xaiz) </X2 < X, fp(zl’@)dm(fcl)) pd,u2(l'2)>

( - / fp<x1,x2>g<x2>dm(acl)dm(xz))
X1xXo

lgllLr(xg,ue)=1
920

17l

=

S

IA

( / ( sup fp(fvl»xz)g(wz)duz(x2)>dm(wl)>
X1 H9||LT'(X>26;L2):1 X2

9z

Using Holder’s inequality we may then infer that

L4(Xa,u2) < </Xl( . fUxy, z2) d/iz(xz)) Edm(m)) p,

and the desired inequality follows. a

1£C,22) 2o,

The convolution between two functions will be used in various contexts in
this book. The reader is reminded that convolution makes sense for real- or
complex-valued measurable functions defined on some locally compact topo-
logical group G equipped with a left-invariant Haar measure® y. The (formal)
definition of convolution between two such functions f and g is as follows:

3 This means that u is a Borel measure on G such that for any Borel set A and
element a of G, we have u(a - A) = p(A).
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frg(x /f “hox) du(y).

We can now state Young’s inequality for the convolution of two functions.

Lemma 1.4. Let G be a locally compact topological group endowed with a
left-invariant Haar measure p. If p satisfies

(A1) = pu(A) for any Borel set A, (1.1)

then for all (p,q,r) in [1,00]® such that
1
=+
p

and any (f,g) in LP(G, u) x LY(G, 1), we have

1
=1+- 1.2
+- (12)

| =

frgeL"(G,pu) and |f*glercpw < Ifllzr@mlglleGw-

Proof. We first note that, owing to the left invariance and (1.1), for all z € G
and any measurable function h on G, we have

/ h(y) du(y) = / Wy~ 2) duly).
G G

Therefore, the case r = co reduces to the Holder inequality which was proven
above.

We now consider the case r < co. Obviously, one can assume without loss
of generality that f and g are nonnegative and nonzero. We write

(fxg)(x /f Yoyt 2) R () g7 (e 1) dp(y).

Observing that (1.2) can be written :_
r
implies that

o < ([ 0 ylmdu(y))“ﬁ“’(/c fz(y)gq(yl-w)du(y)>m-

Applying Holder’s inequality with a = rq/p (resp., 8 = rp/q) and the mea-
sure fP(y)du(y) [resp., g?(y~* ) du(y)], and using the invariance of the mea-
sure 4 by the transform y — y~1 - 2, we get

4 (5+))
(/%9 ( | -w)du(y)> A .

Hence, raising the above inequality to the power r yields
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Gt )] = (o =t )

Since the left invariance of the measure p combined with Fubini’s theorem
obviously implies that the convolution maps L (G, ) x L' (G, ) into L' (G, p)
with norm 1, this yields the desired result in the case r < oc. O

We now state a refined version of Young’s inequality.

Theorem 1.5. Let (G, u) satisfy the same assumptions as in Lemma 1.4.
Let (p,q,7) be in]1,00[> and satisfy (1.2). A constant C exists such that, for
any f € LP(G, 1) and any measurable function g on G where

def
|mquH:=§%Awum>Aw<m
>

the function f % g belongs to L"(G, ), and

Hf*gHLT(G,u) < C”fHLP(G,,LL)||g||L%;(G,;L)'

Remark 1.6. One can define the weak LY space as the space of measurable
functions g on G such that ||g]|.4 (., is finite. We note that since

Nu(lg] > \) < /( o) < Lol (1.3)

the above theorem leads back to the standard Young inequality (up to a
multiplicative constant).

We also that the weak LY space belongs to the family of Lorentz spaces
L%" (G, ), which may be defined by means of real interpolation:

LY (G, p) = [LOO(G,M),Ll(G,,u)]l/W forall 1<g<oo and 1<7r <oo.

It turns out that the weak L7 space coincides with L9*°(G, ). From general
real interpolation theory, we can therefore deduce a plethora of Hoélder and
convolution inequalities for Lorentz spaces (including, of course, the one which
was proven above).

We also stress that the above theorem implies the well-known Hardy—Little-
wood—-Sobolev inequality on R?, given as follows.
Theorem 1.7. Let « in ]0,d[ and (p,r) in ]1,00[? satisfy
1 « 1
4T =14 = 1.4
p+d +o (1.4)

A constant C' then exists such that

- 17%* fllr ey < CllfllLowey-

Our proof of Theorem 1.5 relies on the atomic decomposition that we intro-
duce in the next subsection.
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1.1.2 The Atomic Decomposition

The atomic decomposition of an LP function is described by the following
proposition, which is valid for any measure space.

Proposition 1.8. Let (X, ) be a measure space and p be in [1,00[. Let f be
a nonnegative function in LP. A sequence of positive real numbers (ci)rez and
a sequence of nonnegative functions (fi)rez (the atoms) then exist such that

F=> ekt

keZ

where the supports of the functions fi are pairwise disjoint and

pu(Supp fi) < 28, (1.5)
Wellow <275, (6)
1
5\\f||1£p <> <215, (1.7)
kEZ

Remark 1.9. As implied by the definition given below, the sequence (ck fx)kez
is independent of p and depends only on f.

Proof of Proposition 1.8. Define

def . def & def _
e mf{)\ Ju(f > N) <2k}, o S 21;)%, and f% = ckl]‘()\k+1<f§>\k)f'

It is obvious that ||fx|L~ < 277 . Moreover, (Mk)kez is a decreasing se-
quence which, owing to the fact that f is a nonnegative function in LP, con-
verges to 0 when k tends to infinity.

By the definition of A, we have u(f > A\p) < 2F and thus p(Supp fi) <
2k+1 This gives

POEE LD

kEZ kEZ

= pZ/O 2k1]07)\k[(/\))\p71 dA.

kEZ
Using Fubini’s theorem, we get
oo
S :p/ )\p_1< > 2’“) .
kez 0 E/Ae>A

By the definition of the sequence (Ax)kez, A < A implies that u(f > ) > 2F,
We thus infer that
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Sa<p[ (¥ 2)a
kEZ 0 k/28<u(f>N)

< Qp/ NLu(f > N) d.
0

The right-hand inequality in (1.7) now follows from the fact that, by Fubini’s
theorem, we have

1712, = p / N L((f] > A)dA. (1.8)

In order to complete the proof of (1.7) it suffices to note that, because the
supports of the functions (fx)rez are pairwise disjoint, we may write

120 =D Rl fellZ

keZ
Taking advantage of inequalities (1.5) and (1.6), we find that
I fellh, <2 forall keZ.

This yields the desired inequality. O

1.1.3 Proof of Refined Young Inequality

Let f and g be nonnegative measurable functions on (G, u). Consider a non-
negative function A in L™ and define

1.0 % [ f@oly™ 2)h(e) dua) dn(y).

Arguing by homogeneity, we can assume that ||f|z» = ||g||ps, = [|h]

Stating C def {ye G, 2 <g(y) < 27T}, we can write

o= 1

I(f.g,h) < 2 27I;(f,h) with
JEL

LU = [ e, 2) du(e) duty)

Because [|g||zg, = 1, we have ||1¢;|[z: < 277% for all s € [1,00]. Thus, if we
directly apply Young’s inequality with p, ¢, and r, we find that I;(f,h) <277,
so the series > 23“*11}-(]‘7 h) has no reason to converge. In order to bypass this
difficulty, we may introduce the atomic decompositions of f and h, as given
by Proposition 1.8. We then write

Li(fh) =Y cuded;(fr, ).
k4
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Using Young’s inequality, for any (a,b) € [1,00]? such that b < a’ and for
any (f,h) € L® x L®, we get

-~ ~ ~ ) 1
LR < Iflee IRl te, e with — +

This gives
L(f ) < 2799273 | o |7 o

Applying this for fx and hy and using Proposition 1.8 now yields
29I (fr he) < 209G —2Hat3) ok (e —5) (b =)
Using the condition (1.2) on (p, ¢, r) implies that
VL (frrhe) < 9Uiat+k) (5 —3)9Uia+0 (57 ) (1.9)
Take a and b such that

1 1 1/1 1
dzef——2<€sg(jq+k) and d:ef—/—2ssg(jq+€) with adzef—<———>,
P r

1
b 4\p r

SHE

where sgn=11if n >0, and sgn = —1if n < 0.

As g > 1, the condition (1.2) implies that p < r. Thus, by the definitions
of €, a, and b, we have b < o’. With this choice of a and b, (1.9) then becomes,
using the triangle inequality,

1 —2e|jq+k|—2¢e|jq+£
2 1;(fr, he) < 2 lig+k|—2eljg+¢|
< 9—eligtkl—eljqgtt|—elk—L|

Using Young’s inequality for Z equipped with the counting measure, we may
now deduce that

I(f,g,h) < C Z crpdp2cliathl—eligttl—elk—L|
3okt

C Z
S _ de2276‘k:7a
€
k.l

C
< leller lli(de)llgor

The condition (1.2) implies that " < p’ and thus

|Q

I(f,9,h) < 5 li(ew)ller 11(de)

o'

[\

The theorem is thus proved. a



10 1 Basic Analysis

1.1.4 A Bilinear Interpolation Theorem

The following interpolation lemma, which will be useful in Chapter 8, provides
another example of an application of atomic decomposition.

Proposition 1.10. Let (X1, p1) and (Xo, u2) be two measure spaces. Let T
be a continuous bilinear functional on L*(X1;LPi(Xs)) x L?(Xy; L% (X5))
for j in {0,1}, where (pj,q;) is in [1,2]* and such that py # p1 and qo #
q1. For any 0 € [0,1], the bilinear functional T is then continuous on
L2(X1; L (X)) x L2(X1; L9 (X)) with

11 11 11
) =1-0(— =) +ro(— =)
(pe (Je) ( )(po QO) <p1 Q1)
Proof. Let f € L*(X1;LP?(X5)) and g € L?(Xy;L9%(X3)). As in the proof

of the refined Young’s inequality, we will use the atomic decompositions of f
and g. For any (¢,2) € X7 x X3, we have

[t z) = ch(t)fk(tvx) and g(t,z) = Zdz(t)gz(t@)
kEZ tez

Let us write that
T(fa g) = Z T(Ck?fk7 d@gé)-

k.0

1 1\"1/1 1
Using the hypothesis on 7 and stating a def (— — —) (— — —), we get
Po D1 do q1

|7 (ck.fr> dege)| < ng{l(i)l,ll} ek frll 2 (xsps (xap lldegell L2 (xy 5099 (x2))
< Cllexllzexnlldellzz(x,)
y min{z’e(%’ﬁ)(’“a@, 2(170)(%7ﬁ)(k+a£)}.
Setting & def ‘i 1 x min{#, (1 — )}, we deduce that
Po M
T (crfr, dege)| < Clickl|z o ldell 2 x,) 2~ F 4.

Using a weighted Cauchy—Schwarz inequality, we then get

7.0 < C (X lealaexy)* (X ldelan)
k 4

< Cellllem)llez@ || 2 x,y M@yl 2, -
Using the fact that py and gy are less than 2, we infer that
7(f:9)| < Ce[[lem)lers @l 2,y 11N oo @) | Lo, -

The inequality (1.7) from Proposition 1.8 then implies the proposition. O
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1.1.5 A Linear Interpolation Result

We shall present here a basic result of linear complex interpolation theory
which will be useful, particularly in Chapter 8.

Lemma 1.11. Consider three measure spaces (X, fix)1<k<3 and two ele-
ments (pj,q;5,7j)ief013 of [1,00]3. Further, consider an operator A which
continuously maps LPi (X1; L9 (X)) into L™ (X3) for j in {0,1}. For any 0

in [0,1], of
1 1 1 1 1 1 1 1 1
(77) def(10)<77> +0<77>!
Po qo To Po 4o To b1 g1 71

then A continuously maps LP? (X1; L9 (X3)) into L™ (X3) and

1Al £Lro (x1:090 (xX2)):L70 (X5)) < Ap  with

def
HAHg(Lpo(Xl ;L90 (X5));L70 X3))||A||,C(LP1(X1,L‘11 (X2));L™1(X3))"

Proof. Consider f in LP¢(Xy; L9 (X3)) and ¢ in L™ (X3).* Using Lemma 1.2,
it is enough to prove that

/X (Af)(@s)p(ws)dps(xs) < Agll fllLro ooyl g - (1.10)

Let z be a complex number in the strip S of complex numbers whose real
parts are between 0 and 1. Define

def f(w1,2) ( (@1, 22)] )qe(lq—ﬁﬁ)

le el )
) e e \ TG, M 1952, s

and

p(z3) ol ST
|¢(3||s0(x3)| ( >.

Obviously, we have fy = f and pg = ¢. It can be checked that the function
defined by

p.(w3) =

F(z) /X (AF.)(w3)ps (e3) diua ()

is holomorphic and bounded on S and continuous on the closure of S. From
the Phragmen—Lindelhof principle, we infer that

F(9) < MFoM? with M; sup |F(j +it)]. (1.11)
teR

* Throughout this proof, we write LP?(X1;L%(Xs)) simply as LP¢(L9)
and L™ (X3) simply as L.
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We have

(1, 22)] = (W) G

Thus, we have that f;1; belongs to LPi(L%) and

Po

I fjwitllzes pasy = 1 Fll oo ooy

’

26
7
J

In the same way, we get that (¢ i (23)| = |@(x3)| "7 . Thus, thanks to Holder’s

inequality, we get

M; < sup
teR

/X (Afsi0) (75) 0y 40 () dpis ()

P ki

S

e}

g

< ||A||L LPi(X1;L% (X2));L J(X3))||fHLp9(L‘1 (L70)
Using (1.11), we then deduce (1.10) and the lemma is proved. O

From this lemma, taking X; = {a} and then X5 = {a}, we can infer the
following two corollaries which will be used in Chapter 8.

Corollary 1.12. Let (Xy, pr)1<k<2 be two measure spaces and (p;, q;)jeq0,1}
be two elements of [1,00]%. Consider a linear operator A which continuously
maps LP3(Xy) into LY (Xs) for j € {0,1}. For any 0 in [0,1], if

(i,_> (3 e)(i,l) +9(i,i),
Po Qo Po 9o P q1

then A continuously maps LP¢(X7) into L9 (Xs3) and

1Al 2z (xayzn (xap < Ao HA”z:(mo(xl) o () AN Z Lo 6y (x0)-

Corollary 1.13. Let (X1, p1), (Xo,u2) be two measure spaces and (po,qo),
(p1,q1) be two elements of [1,00]%. Let A be a continuous linear functional
on LPi(Xy; L% (Xs)) for j in {0,1}. For any 0 in [0,1], if

1 11 11
(A 0o(id) o)
Do 4qe Po 9do0 1 q1
then A is a continuous linear functional on LP9(X1; L9 (X5)) and

Al 2(zrs (x1:090 (x2)):0) < Ap - with

def
”A”/;(Lpo X1;L90 (X3)) ”A”L(Ll’l(Xl ;L91(X2));C)"
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1.1.6 The Hardy—Littlewood Maximal Function

In this subsection, we state a few elementary properties of the maximal func-
tion, which will be needed for proving Gagliardo—Nirenberg inequalities on
the Euclidean space RY.

We first recall that the maximal function may be defined on any metric
space (X, d) endowed with a Borel measure u. More precisely, if f: X — R
is in L} (X, u), then we define

loc

def 1
voe X, M) Yoo [ pwlduty). (112
r>0 /J,(B(Z‘, T)) B(xz,r)
The following well-known continuity result for the maximal function is fun-
damental in harmonic analysis.

Theorem 1.14. Assume that the measure metric space (X, d, 1) has the dou-
bling property.® There then exists a constant C, depending only on the dou-
bling constant D, such that for all 1 < p < oo and f € LP(X,u), we have
MfeLP(X,u) and
P 1
[ M fllL» < pTlC”HfHLP- (1.13)

Proof. First step: M maps L> into L. Indeed, we obviously have

1M flloe < ||fllpe forall fe L®(X,pn). (1.14)

Second step: M maps L' into L. . We claim that there exists some constant
C1, depending only on D, such that

Ml < Cullfllys forall fe LY(X,p). (1.15)

This is a mere consequence of the following Vitali covering lemma that we
temporarily assume to hold.

Lemma 1.15. Let (X,d) be a metric space endowed with a Borel measure p
with the doubling property. There then exists a constant ¢ such that for any
family (B;)1<i<n of balls, there exists a subfamily (B;,)1<;<p of pairwise dis-
joint balls such that

(5. = el ).

1=
Fix some f € L'(X, 1) and some A > 0. By definition of the function M f, for

any x in the set E) def {Mf > A}, we can find some r, > 0 such that

/ Fldu > Mi(B(z,r2)). (1.16)
B(z,rz)

5 That is, there exists a positive constant D such that u(B(x,2r)) < Du(B(z,r))
for all z € X and r > 0.
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Therefore, if K is a compact subset of F), then we can find a finite cov-
ering (B;)1<i<n of K by such balls. Denoting by (B;,)i1<j<p the subfamily
supplied by the Vitali lemma and using (1.16), we can thus write

/\|K|<)‘<LPJB)<1P)\(B)<1ZI):/ £l <1/|f|d
S M iy )] = = H i) > > — oy
C =1 C ) cj:l Bij CJx

J

which obviously leads to (1.15).

Third step: M maps LP into LP for all p € |1,00[. The proof relies on ar-
guments borrowed from real interpolation. Fix some function f in LP and

€ 10,1[. Since M|f| = M f, we can assume that f > 0. Now, for all A > 0,
we may write

. def
f=hH+ with 2 E (f =) l(ysam)-
Note that, thanks to (1.14), we have
(Mf >N C(Mfr>(1—-a)).

Hence the equality (1.8) implies that

“+o0o
A <p [ TP > (- ) an

According to the inequality (1.15), we have

pOIP > (1= 0)) £ s P

So, finally, using the definition of f* and Fubini’s theorem, we get

P Clp Hoe p—2 .
IIMfHLpél_OK/O A /(f>/\a)(f(x) Aa) dp()

f(=) f(z)

< IC—”;(/X f(x)/OTAp_Qd)\du(x)—a/X/o : )\p_ld)\du(:c)>

Ch »
< oot

Choosing o = (p — 1)/p completes the proof of the inequality (1.13). O

Proof of Lemma 1.15. Without loss of generality, we can assume that B; =
B(z;,r;) with vy > -+ > r,. We can now construct the desired subfamily
by induction. Indeed, for B;,, take the largest ball (i.e., By). Then, assuming
that B;,,..., B;, have been chosen, pick up the largest remaining ball which
does not intersect the balls which have been taken so far.
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Clearly, this process stops within a finite number of steps. In addition,
ifi ¢ {i1,...,4,}, then there exists some index 7; such that i; < i and B; N B;,
is not empty. Therefore, by virtue of the triangle inequality, B; is included
in B(x;,,3r;;). This ensures that

n p

U B; C U B(:Uij,37"ij)-

i=1 j=1

As the measure p has the doubling property, this yields the desired result. O

The following result is of importance for proving Gagliardo—Nirenberg inequal-
ities.

Proposition 1.16. Let G be a locally compact group with neutral element e,
endowed with a distance d such that d(e,y~' - ) = d(x,y) for all (x,y) € G*
and a left-invariant Haar measure p satisfying (1.1).

We assume, in addition that for allr > 0 there exists a positive measure o,

on the sphere X, {:L‘ € G /d(e,z) =r} such that for any L' function g on

G, we have
/Gg(Z) du(z) = /;OO (/2 9(2) dar(z)> dr.

T

For all measurable functions f and any L' function K on G such that
Ve e G, K(z) = k(d(e,x))
for some nonincreasing function k : RT — R, we then have
Vo € G, |K*f(m)| <Kz M f(x).

Proof. Obviously we can restrict the proof to nonnegative functions f. Arguing
by density we can also assume that k is C' and compactly supported. Owing
to our assumptions on d and K, we have

Kx f(z) = / K)o ) du(y)

/ ( / Fly @) do(y )) dr.

Therefore, integrating by parts with respect to r, we discover that

K*f(x):/o <// fly das()ds>dr
:/0 (- <r>></3(“) ) duto) ) ar
) |

<Mf@) | (K ()u(B(a,r)) dr.
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Finally, since

(B, 1) = (e, ) = | ' | vaoyan

performing another integration by parts, we can write that

/0+°°(k’(r))u(B(x,r)) dr = /O+°° k(r) (/ ldar(y))dr = |K] L1 (6

r

and the desired inequality follows. a

Remark 1.17. All the assumptions of the above proposition are satisfied if we
take for G the group (Rd, +) endowed with the usual metric and the Lebesgue
measure, or the Heisenberg group (Hd, -) endowed with the Heisenberg dis-
tance and the Lebesgue measure of R4,

We also note the following obvious generalization of the inequality stated
in the above proposition:

Vr € G,

wes@l< ([ sw RG] )25,

d(e,y’)>d(e,y)

which holds for any measurable function K on G. In fact, in Chapter 2 we
shall use the above inequality rather than the above proposition.

1.2 The Fourier Transform

This section is devoted to a short presentation on the Fourier transform, a key
tool in this monograph. In the first subsection we define the Fourier transform
of a smooth function with fast decay at infinity. In the second subsection we
then extend the definition (by duality) to tempered distributions. We conclude
this section with the calculation of the Fourier transforms of some functions
which play important roles in the following chapters.

1.2.1 Fourier Transforms of Functions and the Schwartz Space

The Fourier transform is defined on L'(R%) by

o~

FIE) = 1) = [ e (@), (117)

where (z|¢) denotes the inner product on R%. It is a continuous linear map
from L'(R?) into L°(R?) because, obviously, | f(&)| < ||f||L:. It is also clear

that for any function ¢ € L' and automorphism L on Rd, we have

F(poL) oL . (1.18)

B | det L|
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We now introduce the Schwartz space S(R?) (also denoted by S when no
confusion is possible), which will be the basic tool for extending the Fourier
transform to a very large class of distributions over R?. Let us first introduce
the following notation. If « is a multi-index (i.e., an element of Nd), T an
element of R?, and f a smooth function of RY, then the length la of « is

defined by |o/ def o1+ -+ ag. We also define 0° f def ot --- 09 f and 2 def
. @,

Definition 1.18. The Schwartz space S(Rd) is the set of smooth functions u
on R? such that for any k € N we have

de
lullis % sup (1 + 2))¥10%u(z)] < .
|a|<k
xeRd

It is an easy exercise (left to the reader) to prove that, equipped with the
family of seminorms (|| - ||x,s)ken, the set S(R?) is a Fréchet space and that
the space D(Rd) of smooth compactly supported functions on R? is dense
in S(RY).

The way the Fourier transform F acts on the space S is described by the
following theorem.

Theorem 1.19. The Fourier transform continuously maps S into S: For any
integer k, there exist a constant C' and an integer N such that

V6 €S, |bllks < Clolln.s-

Moreover, the Fourier transform F is an automorphism of S, the inverse of
which is (2m)~4F, where F denotes the application f +—— {&— (Ff)(=€)}.

Proof. Let k € N and o € N? with length k. Using Lebesgue’s theorem and
integration by parts, we get that, for any ¢ in S,

o~

(i0)"f(£) = F(a¢)(€) and (i)“$(&) = F(9°¢)(€). (1.19)
From this, we deduce that
€°0°0()| < |F(@" = 6))(©)]
< |0%(z¢)| 1
< call(1+ |2)) 107 (2%9) | oo -

Hence, by the definition of the seminorms, we have H(EHks < C|lollk+d+1.s-

We now prove the inverse formula, namely, F~! = (27)~%F. The proof
is based on the computation of Fourier transforms of Gaussian functions.
If d = 1, we have, thanks to (1.19),
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& [Fe™) © = Fize )0
(5o
= SR,
As F (e*ﬁ) (0) = /e*””2 dz =77, we get that }_(67302)(5) = W%efé.
From this and Fubini’s theorem, we can now deduce that if d is any positive

2
integer, then F (eil‘ﬁ”ﬁ) (&) = rie Using (1.18) we then infer that for

any positive real number a,

d
) 2 2
/ o—ial) g—alal® gy _ <E> 5 (1.20)
Rd a

Let ¢ be a function in S(R?) and ¢ any positive real number. Fubini’s theo-

rem applied to the function (27r)_dei(w_y|5)e_5|5|2qb(y), together with (1.20),
implies that

@ﬂ‘{@dé““e*“ﬁ&@dfz(—L)g@fﬁé*¢xw.

4me

On the one hand, owing to Lebesgue’s dominated convergence theorem, the
left-hand side tends to (27)~%F. On the other hand, the right-hand side is
the convolution of ¢ with an approximation of the identity. Letting ¢ tend
to 0 thus completes the proof of the theorem. O

1.2.2 Tempered Distributions and the Fourier Transform

Definition 1.20. A tempered distribution on R? is any continuous linear
functional® on S(RY). The set of tempered distributions is denoted by S'(R?).
A sequence (up)nen of tempered distributions is said to converge to u
in &'(RY) if
¥ € S(RY), lim (un,d) = (u, ).

Remark 1.21. The link with distributions on R? is as follows: If 7" is a distri-
bution on R? such that for some integer k and positive real C' we have

Vo € DRY), T, 0)| < Cllelrs. (1.21)

then, as D(R?) is dense in S(R?), the linear functional 7' may be uniquely
extended to a continuous linear functional. Moreover, if T’ belongs to S'(R%),

% That is, u is a tempered distribution if there exist a constant C' and an integer k
such that |(u, ¢)| < C||¢||x,s for all ¢ € S(R?).
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then the restriction of 7' to D(R?) defines a distribution on R? because, for
any positive R and any function ¢ in D(B(0, R)),

(T, )| < Cllellk,s < C(1+ R)F e [0%@ll Lo

Thus, the set of distributions 7" on R? which satisfy (1.21) may be identified

with &’(R%).

Ezample 1.22. — Let us denote by L}Vl the space of locally integrable func-
tions f on R? such that for some integer N, the function (1 + |z|)~N f(x)

is integrable. For any f € L}M, we can then define the tempered distribu-
tion Ty by the formula

(Ty,¢) = /Rd f(z)p(x) da.

In other words, we identify the function f with 1.

— Any finite Borel measure may be seen as a tempered distribution. Indeed,
we may take k = 0 in (1.21).

— Any compactly supported distribution may be identified with an element

of §'.
Let us use L. Schwartz’s idea of duality to define operators on the space of

tempered distributions. It is based on the following proposition.

Proposition 1.23. Let A be a linear continuous map from S into S.” The
formula
def
(‘Au, ¢) = (u, Ag)
then defines a tempered distribution. Moreover, *A is linear and continuous,

in the sense that if (un)nen s a sequence of distributions which converges to u
in 8'(RY), then (*Auy)nen converges to *Au.

Proof. By the definition of a tempered distribution, an integer k£ and a con-
stant C' exist such that

VoS, |(u,0)] < Cllo.s. (1.22)

The linear map A is assumed to be continuous, hence there exist a constant C”
and an integer N such that

Vo e S, |Adllrs < C'9llns-

Applying (1.22) with # = A¢ and the above inequality, we then get that ‘Au
is a tempered distribution. By the definition of the convergence of a sequence
of tempered distributions, we then write

" That is, for any integer k, there exist a constant C' and an integer N such that
1Allk.s < Cllg|lv.s for all p € S(RT).
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("Aup, d) = (un, Ap) — (u, Ap) = ("Au, ¢).
The proposition is thus proved. a

We now list a few important examples to which Proposition 1.23 applies:

— We may take for A any operator (—9)® or % — z%u with @ € N . Indeed,
we have, for all ¢ in S,

1(=0)*¢|

ks < llktials and  [[2%@lles < |Dllktials-
— Let L be a linear automorphism of R? and define

def 1 —1
App = —— o L™,
e
It is clear that A satisfies the hypothesis of Proposition 1.23.
— If we denote by O, the space of smooth functions on R such that, for
any integer k, an integer N exists such that

sup (1 +[|*) ™" sup |9° f(x)| < oo,
zeR? la| <k

then the operator A; of multiplication by f satisfies the hypothesis of the
proposition.

— If 6 is a function of S, it is left as an exercise for the reader to check that,
for any ¢ € S,

def ~

| A90|lks < Crllfllktar1,slollrs with Agp = 0% ¢.

— Theorem 1.19 guarantees, in particular, that the Fourier transform F sat-
isfies the hypothesis of Proposition 1.23.

For all the above operators, we can apply Proposition 1.23. We now check
briefly that this is a generalization of classical operations on functions. If w is
an L}, function which is also C', then we have

Vi €S, ((=0ud) = (u.~0;0) = | ula)(=0y0)(e) e

An integration by parts ensures that *(—9;)u = d;u, in the classical sense.
Next, we claim that ‘Ay, f(y) = f(Ly) for all f € L},. Indeed, a straight-
forward change of variables ensures that for all ¢ € S we have

t _ 1 —1 _
(4150 =ty [ A@o 0 de = [ o) dy

In the particular case where Lz = Az, we denote tArf by f, and when \ =
—1, the distribution Ay f is denoted by f. In passing, let us recall that a
tempered distribution f is said to be homogeneous of degree m if
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H=A"f forall A>0.

It is obvious that the operator Af generalizes the classical multiplication of
functions by f.
Finally, for any L! function f, we have, according to Fubini’s theorem,

(‘Ao f,d) = (f.0 )
- / F@)8(y — 2)(y) dy da
R4 x R4
— (f%0,0).

Thus, the notion of convolution between a tempered distribution and a func-
tion of S coincides with the classical definition when the tempered distribution
is an L' function.

In order to extend the definition of the Fourier transform to tempered
distributions, we consider an L' function f. By Fubini’s theorem and by def-
inition of the Fourier transform on L', we have, for all ¢ € S,

(F1.0) = [ f@dte) ds

- / F(@)e O 3(¢) du de
R x R4
= (f,9).

In other words, the operator !F restricted to L! functions coincides with the
Fourier transform of functions. Thus, it will also be denoted by F in all that
follows.

Proposition 1.24. For any (u,0) in S’ xS, A € R\{0} and (a,w) € R x R?,
we have®

(i0)*0 = F(z®u), (i6)*0 = F(0*u), e “Oa = F(7.f),
rof = FECF) XA = F(f(Ax), and Fux0) =04.

Proof. The first five equalities readily follow from (1.19) or direct computation
once we observe that ‘(AB) = 'B'A. In order to prove the last identity,
it suffices to use the fact that, by definition of the Fourier transform and
convolution, we have

(Fuxb),0) = (uxb,6) = (u,0% ).
Fubini’s theorem implies that

8 Below, the notation 7, stands for the translation operator 7, : f — f(- — a).
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@+ = [oe-n) ( J dx) i
— /e*i(zlﬁ) (/ e*l’(ﬂﬂlﬁ*&)g(n _ E)dn) o(x) dz
= F(09).
We infer that (F(ux 0),$) = (u, F(0¢)) = (@,0¢) = (0, ¢). The proposition
is thus proved. O

Theorem 1.25 (Fourier—Plancherel formula). The Fourier transform is

an automorphism of S' with inverse (2m)~?F. Moreover, F is also an au-

tomorphism of L*(RY) which satisfies, for any function f in L2, ||f]lL> =
d

2m)2 [/l 22

Proof. On the space S, we have FF = FF = (2r)¢1d. Arguing by transposi-
tion, we discover that these two identities remain valid on S’. Next, using the
fact that for any function ¢ in & we have F¢ = F(¢) and taking advantage
of the inverse Fourier formula (see Theorem 1.19), we get, for any function ¢
inS,

1Flz: = (Fo. Fo) = (6. FFd) = (2m)7(|¢][ =

Combining the Riesz representation theorem with the density of S in L2
enables us to complete the proof. a

Finally, let us define a subspace of &’ (Rd) which will play an important role
in the following chapters.

Definition 1.26. We denote by Sj, (Rd) the space of tempered distributions u
such that’
Alim |0(AD)ul[p~ =0 for any 6 in D(R?).
— 00

Remark 1.27. 1t is clear that whether or not a tempered distribution u belongs
to S; depends only on low frequencies. As a matter of fact, it is not hard to
check that u belongs to S;L(Rd) if and only if one can find some smooth
compactly supported function 6 satisfying the above equality and such that

6(0) # 0.
Examples

— If a tempered distribution u is such that its Fourier transform u is locally
integrable near 0, then u belongs to S;. In particular, the space £ of
compactly supported distributions is included in Sj,.

— If u is a tempered distribution such that 6(D)u € LP for some p € [1, 00|
and some function # in D(R?) with (0) # 0, then u belongs to Sj.

9 We agree that if f is a measurable function on R? with at most polynomial growth

at infinity, then the operator f(D) is defined by f(D)a def FYfFa).
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— A nonzero polynomial P does not belong to S;, because for any 6 € D(Rd)
with value 1 at 0 and any A > 0, we may write §(A\D)P = P. However,
if 7 is in R\{0}, then I P belongs to S; because the support of its
Fourier transform is {n}. We note that this example implies that Sj, is
not a closed subspace of &’ for the topology of weak-x convergence, a fact
which must be kept in mind in the applications.

1.2.3 A Few Calculations of Fourier Transforms

This subsection is devoted to the computation of the Fourier transforms of
some functions which are definitely not in L®.

Proposition 1.28. Let z be a nonzero complex number with nonnegative real

part. Then,
d
~ ) (g) = ()7 e 5L
A= ()"
with 2~ 2 d:ef|z|_%e_i%9 if 2 = |z|e®® with 0 € [—-7/2,7/2].

Proof. Let us remark that for any ¢ in R?, the functions

da
—i —2|z|? T\ 2 _lel?
z T @Oe=2l2 g and 2z — (—) e i
R< z

are holomorphic on the domain D of complex numbers with positive real part.
Formula (1.20) states that these two functions coincide on the intersection of
the real line with D. Thus, they also coincide on the whole domain D. Now,
let (2, )nen be a sequence of elements of D which converges to it for ¢ # 0. For
any function ¢ in S, we have, by virtue of Lebesgue’s dominated convergence
theorem,

lim e*Z’”l"’”Pd)(x) dx :/ e*“mz(i)(x) dxr and
R4

n—oo [pd

im [ e imae)de= [ e g) de.

n—oo [pd R

As we have .

TNz _l&?
f(e_z"|“2> _ (_) e*4zn’
Zn
passing to the limit in S’ (Rd) when n tends to oo gives the result, thanks to
Proposition 1.23. a

Proposition 1.29. If o € ]0,d], then F(|-|7%) = cao| - |7~ for some con-
stant cq,, depending only on d and s.
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Proof. We only treat the case d > 2. The (easier) case d = 1 is left to the
reader. Defining

d
R d:ef ijaj and Zj’k d:ef {I?jak - :Ekaj s
=1

we have R(]-|77) = —o|-| 77 and Z, x(|-|~7) = 0. Then, using Proposition 1.24,
we infer that Z; ;. F|- |77 =0 and

d
RF|-|77 =Y 0i(&F|-177) —dF|- |77 = (0 — d)F|-|7°.

j=1
By restricting to R\ {0}, we then see that
R(I- 1771 177) = Zia(1-177F - 177) =0 in D/RT\{0)).

We note that for any k,
d d
2|20, = Zx?@k =R+ ijZj)k.
j=1 j=1

Therefore, V(| - [*F| - |77) is supported in R%\{0}. Because d > 2, we
deduce that there exists some constant ¢4, such that |- [279F|- |77 — g, is
also supported in R\ {0} and, owing to o > 0, so is F|-|~7 = ¢qo|-[7~% The
conclusion then follows easily from the following lemma. O

Lemma 1.30. Let T be a distribution on R supported in {0} and such
that RT = sT for some real number s.

— If s is not an integer less than or equal to —d, then T = 0.
— If s is an integer less than or equal to —d, then there exist some real
numbers a,, such that

T= > aad.
|a|=—s—d

Proof. We first observe that a distribution supported in {0} is of the form T' =

Z a0,0%0g. We thus have
la|<N

d
RT = Z Z aaxjajaado

i=1]a]<N

= _ Z (d+ |a])aa0%dp.

la|<N

As (0%00)pene is a family of linearly independent distributions, the fact
that RT = sT implies that (d+|a|)aq = —saq. The lemma is thus proved. O
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1.3 Homogeneous Sobolev Spaces

This section is concerned with homogeneous Sobolev spaces. We first establish
classical properties for these spaces, then we focus on embedding in Lebesgue,
BMO and Holder spaces.

1.3.1 Definition and Basic Properties

Definition 1.31. Let s be in R. The homogeneous Sobolev space H*(R?) (also
denoted by H?) is the space of tempered distributions u over R, the Fourier
transform of which belongs to L} (R?) and satisfies

loc
def ~
Jully. [l de < o.
Rd
We note that the spaces H* and H ' cannot be compared for the inclusion.
Nevertheless, we have the following proposition.

Proposition 1.32. Let sg < s < s1. Then, H% N H% is included in HS,
and we have

ull%., with s=(1—0)so+0si.

el 7. < Null g

Proof. Tt suffices to apply Holder’s inequality with p =1/(1 —0) and ¢ = 1/6
to the functions ¢ — |¢|2(1=)%0 ¢ s |£]2951 and the Borel measure |@(€)|? dé.
O

Using the Fourier-Plancherel formula, we observe that L2 = H° and that
if s is a positive integer, then H* is the subset of tempered distributions with
locally integrable Fourier transforms and such that 9%u belongs to L? for all o
in N? of length s.

In the case where s is a negative integer, the Sobolev space H? is described
by the following proposition.

Proposition 1.33. Let k be a positive integer. The space H‘k(Rd) consists of
distributions which are the sums of derivatives of order k of L? (Rd) functions.

Proof. Let u be in H—*(R?). Using the fact that for some integer constants
A, we have

K= Y 8 = ) Al (—ig)”, (1.23)
11,0 gk <d |a|=k
we get that

Q€)= Y (i) va(§) with va(€) def a(g—ﬁfﬂ@

|a|=k
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As u is in H~* the functions v, belong to L2. Defining uq def F 1o, we
then obtain
u= Z 0%, with u, € L2(RY).
lo|=k

This concludes the proof of the proposition. O
. d
Proposition 1.34. HS(Rd) is a Hilbert space if and only if s < 3

Proof. We first assume that s < d/2. Let (u,)nen be a Cauchy sequence
in H5(R%). Then, (T, )nen is a Cauchy sequence in the space L2(R% €] ).
Because |€]2% d¢ is a measure on R?, there exists a function f in L2(R%; |€]2% d¢)
such that (T )nen converges to f in L2(R?; |€]25 d€). Because s < d/2, we have

/B(O,l) IF(€)]de < (/Rd |§|2S|f(€)|2d§)% (/3(071) g2 dg)% -

This ensures that f’l(lB(Oyl)f) is a bounded function. Now, leg(g,1)f clearly
belongs to L2(R%; (1 + [£[2)% d¢) and thus to S'(R?), so f is a tempered dis-
tribution. Define u def FLf. It is then obvious that u belongs to H* and
that lim w, = w in the space H®.

n—oo

If s > d/2, observe that the function
N wr— (Ul L so,0) + lull g

is a norm over H%(R?) and that (H*(R%), N) is a Banach space.

Now, if H* (Rd) endowed with ||-|| ;. were also complete, then, according to
Banach’s theorem, there would exist a constant C' such that N(u) < C|lul| ..
Of course, this would imply that

@l (B0,1)) < Cllull g (1.24)

This inequality is violated by the following example. Let C be an annulus
included in the unit ball B(0,1) and such that C N 2C = (). Define

n d

24(s+3)
5, def g1 1y e
q=1 q
We have
- " 9q(s—%) " q
X0l (B0,1)) = CZ and || X, ]|%, < OZ 2 <Ch.
qg=1 q=1

As s > d/2, we deduce that ||§n||L1(B(071)) tends to infinity when n goes to
infinity. Hence, the inequality (1.24) is false. O
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Proposition 1.35. If s < d/2, then the space So(R?) of functions of.S(]Rd),
the Fourier transform of which vanishes near the origin, is dense in H®.

Proof. Consider u in H* such that
Vo € SR, (ulo) = [ IEFACIE) de =

This implies that the L}, function @ vanishes on R* \{0}. Thus, @ = 0. Thanks
to Theorem 1.25, we infer that u = 0. As we are considering the case where H*
is a Hilbert space, we deduce that So(R?) is dense in H°. O

S

The following proposition explains how the space H~ can be considered

as the dual space of H®.
Proposition 1.36. If |s| < d/2, then the bilinear functional

SQXSQ—)(C

B 0o = [ olapta) ds

can be extended to a continuous bilinear functional on H~% x H*. Moreover,
if L is a continuous linear functional on H®, then a unique tempered distri-
bution w exists in H™° such that

Vo€ H*, (L,¢) = B(u,¢) and ||L[| gy = [Jullg-..
Proof. Let ¢ and ¢ be in Sy. We can write

[ o@pta s

[ oo ds]

27r

[ tea-olerae de

< 2m) "Nl g Nl gy
As Sy is dense in H” when |o| < d/2, we can extend B to H—* x H*. Of
course, if (u,d) € H % x S, then B(u, ¢) = (u, ¢).

Let L be a linear functional on H*. Consider the linear functional L

defined by
I .{L?(R% —C
. foo—=LF )

It is obvious that

sup (Lo, f)l = sup [(L,FH(]-|7°f))]
112 =1 £l 2 =1

= sup (L, 9)]
191l zrs =1

= Ll ey
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The Riesz representation theorem implies that a function ¢ exists in L? such
that

Vhe L2, (Lo, h) = /R g(©(E) de.

We obviously have | - |°g € L2(R%;|£|72% d€). Now, as |s| < d/2, this implies

that | - |%¢ is in S’(R?) and thus we can define u def F(| - |°g). For any ¢

in S(R?), we then have

(wd) = [ a©IE(E) & = (L] D)

By the definition of Ly, we have (u,$) = (L, $) and the proposition is thus
proved. a

For s in the interval ]0, 1], the space H® can be described in terms of finite
differences.

Proposition 1.37. Let s be a real number in the interval ]0,1] and u be in
HS(Rd). Then,

_ 2
we L2 (RY)  and / fule + y21+2€u(x)| dx dy < oo.
R4 x R4 |y |2

Moreover, a constant Cy exists such that for any function u in HS(]Rd), we
have )
ulr +vy) —ulx
lull, = ¢, uz 1) — @)l g, g,
R? x R? |yl

Proof. Tn order to see that u is in L7, (R?), it suffices to write

u=F" (13(01 )+.7: (1CB01) )

The rest of the proof relies on the Fourier—Plancherel formula (see Theo-
rem 1.25), which implies that

lu(z +y) —u(@))® / 1iWIE) 12 ,
/Rd |y[d+2s dr = (27)~ we |y|arEs [a(é)|” d¢.

Therefore,

et y) —u@P .
[, e ey = e [ POROR

def le? W& — 12 dy
F(g) :e / 2s d’
R Yl |yl

It may be easily checked that F' is a radial and homogeneous function of
degree 2s. This implies that the function F(¢) is proportional to |£|** and
thus completes the proof. a

with
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1.3.2 Sobolev Embedding in Lebesgue Spaces

In this subsection, we investigate the embedding of H*(R?) spaces in L?(R?)
spaces. We begin with a classical result.

Theorem 1.38. If s is in [0,d/2[, then the space H*(R?) is continuously em-
bedded in L7 (RY).

Proof. First, let us note that the critical index p = 2d/(d — 2s) may be found
by using a scaling argument. Indeed, if v is a function on R? and vy stands

for the function vy (x) def v(Az), then we have
_d _d
loalle = A7 [lolle and [loall g = X757 o]l ..

If an inequality of the type ||v||z» < C|jv]| . is true for any smooth function v,
then it is also true for vy for any A. Hence, we must have p = 2d/(d — 2s).

Consider a function ¢ in Sy(R?). Defining ¢ (€) def €1°6(€) and using

Propositions 1.24 and 1.29, we get that

2T _dcds . -4
0= ()|TS’ *x s with H(bs”L2 = (271—) 2 H(ZS”H*

Theorem 1.7 thus implies that [|¢||r» < C||@s|z2. Now, according to Propo-
sition 1.35, the space So(Rd) is dense in H*®. The proof is therefore complete.
O

Corollary 1.39. If p belongs to |1,2], then LP(RY) embeds continuously in

. d d
H5(RY) with s = = — —
2 p

Proof. We use the duality between H* and H~* described by Proposition 1.36.
Write

lall - = sup {a, ).
lellz—s <1
1 1
Ass=d 5 o) by Theorem 1.38 we have ||¢||,,» < C||¢l|lz-- and thus
p
lallg. <C  sup  (a,¢) < CllalLr.
lell ,pr <1
The corollary is thus proved. a

According to Proposition 1.24, the Fourier transform changes dilation into
reciprocal dilation and translation into multiplication by a character e*(®«)
(and vice versa). Obviously, the inequality

lull oty < Clull oy with p = 2d/(d - 25)
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provided by Theorem 1.38 is invariant under translation and dilation.

We claim, however, that it is not invariant under multiplication by a char-
acter. Indeed, consider a function ¢ in S(R?) such that ¢ belongs to D(R?).
For all positive ¢, define the function

de(z) = < (). (1.25)

By the definition of || - || ., we have

oy = [ leP]3(e - 2| ae

%1 1012 de with e, %

f(1,0,...,0).

Hence, ||¢c|| . is equivalent to e~* when € tends to 0, while ||¢.||z» does not
depend on €.

In what follows, we want to improve the estimate of Theorem 1.38 so that
it becomes also invariant if u is multiplied by any character e!(*1«). In fact, we
shall construct a family of Banach spaces Es, the norm of which is invariant
under translation, satisfying

_d
laA e, ~ A= lalle, ,  flla(A)le, < Cs,

and, for some real number § € 0, 1],

1—
lallzr < Ciallall;.”
In order to do this, we introduce the following definition.

Definition 1.40. Let § be a function in S(Rd) such that 0 is compactly sup-
ported, has value 1 near 0, and satisfies 0 < 0 < 1. For u in S'(R%) and o > 0,
we set

de, e
lull - " sup AT 04 ]
A>0

It is left to the reader to check that the space B~ of tempered distributions u
such that ||u ;- is finite is a Banach space. It is also clear that changing
the function @ gives the same space with the equivalent norm. These spaces
come up in the next chapter in a more general context. We shall see that B~
coincides with the homogeneous Besov space BZ,,

For the time being, we will compare B~ with Sobolev spaces.

Proposition 1.41. For any s less than d/2, the space H* s contmuously

embedded in B5=% and there exists a constant C, depending only on Supp )
and d, such that

C
lull .y <

Bs‘f—(%_—s)%”uHHs for all we H®.
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o~

Proof. Asislocally in L', the function §(A~1-)u is in L*. The inverse Fourier
theorem implies that

IA%0(A) x ul| e < (2m)~4|O(A™ )| 11
< (2m) / BAE) e el a(e)] de.
Rd

Using the fact that 0 is compactly supported, the Cauchy—Schwarz inequality

implies that
C

(5 5)

and the proposition is thus proved. a

1A%0(A) * ullz~ < A2 ul| s

Nl=

The difference between the H* norm the B*~% norm is emphasized by the
following proposition.

Proposition 1.42. Let ¢ € ]0,d] and let (¢p:)e=0 be defined according
to (1.25). There then exists a constant C such that ||¢c|| 53— < Ce? for all
e>0.

Proof. By Holder’s inequality, we have
AYO(A) % el <10l (S]] Lo
From this we deduce that if Ae > 1, then we have
AV O(A) * belpoe < )0 L1 ]| Lo (1.26)

If Ae < 1, then we perform integration by parts. More precisely, using the
fact that . ‘
(—icdy)%e’s = e’

and the Leibniz formula, we get

Ad(a(A) *¢5)($) = (iAg)d » 851 (H(A(l‘ _ y))¢(y)) ei? dy

Using Holder’s inequality, we get that
L

A|(= a0t o)a) = (e aira) | < lokel, ot el

Thus, we get A%||0(A-) x ¢-||~ < C(Ae)?. As we are considering the case
where Ae < 1, we get, for any o < d,

AYO(A) * ¢ellz < C(Ae).

Together with (1.26), this concludes the proof of the proposition. O
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We can now state the so-called refined Sobolev inequalities.

Theorem 1.43. Let s be in ]0,d/2[. There exists a constant C, depending
only on d and 6, such that

1—2
P

2
allullfy.  with p=
2

el 7

C
luller < ——— 71— 25
(p—2)» -8

Proof. Without loss of generality, we can assume that ||uHB

s—

4 = 1. As will
be done quite often in this book, we shall decompose the function into low
and high frequencies. More precisely, we write

u=1ups+upa with wups=F HO(A1)7), (1.27)

where 6 is the function from Definition 1.40. The triangle inequality implies
that
(|’UJ‘ > )\) C (|ug,,4| > )\/2) U (|uh7A\ > /\/2)

By the definition of ||- HBS*% we have [|ug 4]z~ < A%~*. From this we deduce

that

A ya
A= T (5)" = nllueal > A/2) =o.

From the identity (1.8) we deduce that
l[ull7, Sp/ N (lu,ay | > A/2) dA.
0
Using the fact that

N

,u(|uh7,4x| > /\/2) <4 2

we get
o0
Julfs <4p [ 2 a3 A
0
Because the Fourier transform is (up to a constant) an isometry on L?(R?)

and the function 0 has value 1 near 0, we thus get, for some ¢ > 0 depending
only on 6,

ul?, <dp@m)~t [ A3 u(€)* dg dA. 1.28
” ”Lp = p( ) f f
0 (I€]>cAx)
Now, by definition of Ay, we have
d
> ey = ) < G o (181,
€] 3 .

Fubini’s theorem thus implies that
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lull2, < 4p (2m)~ / (/ - m) () de

<2 [ () aerae

p—2 c
1 1 .
As s = d(§ — —), the theorem is proved. a
p

Remark 1.44. Combining Proposition 1.41 and Theorem 1.43, we see that if
0 < s < d/2, then we have, for all u € H*,

lullr < Ca with p= (1.29)

p
7oz Il T2
Of course, since we have ||ul|;2 = (27)"2 |lw|| 70, we do not expect the constant
to blow up when p goes to 2. In fact, combining this latter inequality with the
inequality (1.29) (with, say, p = 4) and resorting to a complex interpolation
argument, we get

2d
d—2s

lullr < Cav/pllullg.  with p= (1.30)
By taking advantage of Proposition 1.42 and the computations that fol-
low (1.25), it is not difficult to check that the inequality stated in Theorem 1.43
is indeed invariant (up to an irrelevant constant) under multiplication by a
character. We now want to consider whether our refined inequalities are sharp.
Obviously, according to Proposition 1.42, we have

|I¢allm
o0l

B9

lim =400 forany S>1-—2/p.
=0 [|gc |

Therefore, the exponent 1 — 2/p cannot be improved. We claim that even
under a sign assumption, the above refined Sobolev inequalities are sharp.
More precisely, we shall exhibit a sequence (fy,)nen of nonnegative functions
such that

o 1£all,
e IIntIﬂ g ||fn||

s— ¢

=400 forany §>1-2/p. (1.31)

Constructing such a family may be done by means of an iterative process. At
each step of the process, we use a linear transform 7' (defined below) which
duplicates any function f into 2¢ copies of the same function, at the scale 1/4.

Definition 1.45. Define Q def [~1/2,1/2]% and let x; = 3/8J for any ele-
ment J of {—1,1}1. We then define the transform T by
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D(Q) — D(Q) def
T:8 5 oy ooy with Tif(z) = fldz - 2J)).
Je{—-1,1}d
For B C Q, we define Ty(B) W st iB, T(B) def U 7s(B) and
Je{—1,1}4

denote Ty (Q) by Q.

Using the fact that for any f € D(Q), the support of T;f is included in @
and the fact that if J # J’, then Q; N Q; = (), we immediately get

1T Fl oo = 2203 £]l o (1.32)

For the sake of simplicity we restrict our attention here to the case where s is
an integer.!? Then, observing that

O;(TH) =21 Y 49;/)(Ax — ) = 4T(9;f)(x)

Je{-1,1}4

and using (1.32), we get
d
T fll 7 = 222011l 7+ (1.33)

The estimate of 7'f in terms of the B~ norm is described by the following
proposition.

Proposition 1.46. For o € ]0,d], a constant C' exists such that
ITfll -0 <2772 fll e + ClLf Nz
Proof. Since, thanks to (1.32), we have
MO % (Th)llze < X0l | Tl < A0 Lo 1 £l 22,
we get

sup AN % (T )|l < 10l oI ]l 21- (1.34)

The case where A is large (which corresponds to high frequencies) is more
intricate. We first estimate A%(6(\-)x(Tf))(x) when z is not too close to T(Q),

namely, = € Q° def {r € Q/ d(z,T(Q)) > 1/8}. As the function 6 belongs
to S(R?), we have, for any positive integer N,

1
N0 = @)@ < X0ls [ o TSl dy

< ClOll s AN f o

10 The general case follows by interpolation.
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This gives, for sufficiently large N,

sup ATTIXON) % (Tl oo ey < ClIONINIIF Il (1.35)

We now investigate the case where =z € @ By definition, an element J,
of {—1,1}4 and a point y of Q 5, exist such that d(z,y) < 1/8. For any J' # J,,
we have

d(x,QJ’) > d(yaQJ/) - d(it,y) > -
We now write
IXON) * (T )] () <27 [XO(N) * (T, f)] ()
+ > 24 [A9(\-) % (T f)] ().

JE{-11}\ (.}

Again using the fact that the function 6 belongs to S (Rd), we have, for any
positive integer N and any J' # J,,

N« (T )@ < 0w || S T f )y

< ClO| v sA NN T £l 1
Using (1.32), we infer that, for A > 1 and N sufficiently large,

S )« (@) (@) < CloIvs Y. TSl
Jle{flxl}d\{']w} J’e{fl’l}d\{J&L_}
< CllOllwsllfllLr- (1.36)

For any J, we have, by definition of T,

A\ A
sup AN\ + (T o <sup X (Z) 0(Z.) % H < 92 -
sup X=X« (T )l < sup A || () ()« 7] <2711

Together with (1.34), (1.35), and (1.36), this gives
iinA_UIIAW()\') (Tl < 27| fll g0 + Cllf 22

This completes the proof. a

We can now construct a sequence (fy,)nen of functions satisfying (1.31). For
that purpose, we consider a smooth nonnegative function fy, supported in @,
and define f,, = T" fy. Iterating the inequality from Proposition 1.46 yields

n—1
1falle <22 foll g0 + O3 2792 o1

m=0
Taking o = d/2 — s with s €]0,d/2[, we deduce that
an”Bs—% < Cfo22ns'

Using (1.32) and (1.33), we can now conclude that (1.31) is satisfied.
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1.3.3 The Limit Case H%

The space H % (R?) is not included in L>(R?). We give an explicit counterex-
ample in dimension two. Let the function u be defined by

u(z) = p(x)log(—log|z])

for some smooth function ¢ supported in B(0,1) with value 1 near 0. On the
one hand, u is not bounded. On the other hand, we have, near the origin,

C
Oju(e)] < T
’ || [ log ||
so that u belongs to H'(R?).
This motivates the following definition.

Definition 1.47. The space BMO(R?) of bounded mean oscillations is the
set of locally integrable functions f such that

e
|B|/|f fBldr < oo with fp = |B|/dex.

The above supremum is taken over the set of Fuclidean balls.

de
||f||BMo = bup

We point out that the seminorm || - |[ppmo vanishes on constant functions.
Therefore, this is not a norm. We now state the critical theorem for Sobolev
embedding.

Theorem 1.48. The space L}, (R?) N HE(RY) is included in BMO(R?).
Moreover, there exists a constant C' such that

Jullzao < Clull 4

for all functions u € L}, (R*) N H (RY).

Proof. We use the decomposition (1.27) into low and high frequencies. For
any Euclidean ball B we have

2
< — .
s < s — e sl gy + 7 o al

Let R be the radius of the ball B. We have
[ue.a = (ue.a)BllL2 (s, gy < BIVueallL=
<CR [ 1€ 48 ana©) de
< CRA|u| .4
We infer that

dx —d di~
/B‘u_u3|® < CRA|ull 4 + C(AR) (/WA iy Iu(£)|2d£>

Choosing A = R~! then completes the proof. a

1
2
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1.3.4 The Embedding Theorem in Holder Spaces

Definition 1.49. Let (k,p) be in N x]0,1]. The Holder space C**(R?) (or
Ck* if no confusion is possible) is the space of C* functions u on R? such

that
|0%u(x) — 0%u(y)|
|z —yl°

[ul|crs = sup (Haaunm + sup ) < .
al<k TH#y

| <

Proving that the sets C** are Banach spaces is left as an exercise. We point
out that C%! is the space of bounded Lipschitz functions.

Theorem 1.50. If s > % and s — g is not an integer, then the space H®(R?)
is included in the Holder space of index

ko= (o 2o~ 4~ 4])

and we have, for all u € H*(R?),

up sup 127(E) = °u(y)

la|=k z#y |.%‘ - ylp = Cd,SHu”HS.

Proof. We prove the theorem only in the case where the integer part of s—d/2
is 0. As s is greater than d/2, writing
u=1ponu+ (1 —1p@1))u,

we get that U belongs to L* (Rd), and thus u is a bounded continuous function.
We again use the decomposition (1.27) into low and high frequencies. The low-
frequency part of u is of course smooth. By Taylor’s inequality, we have

[ug,a(x) — uga(y)| < |VugallL=lz —yl.

Using the Fourier inversion formula and the Cauchy—Schwarz inequality, we
get

IVueallie <€ [ 16l fea)]de

C 2—28d S
< </£§0A|5| 6) lull i

C
< ———F A" Plull . with p=s—d/2.
(1=p)2

Reasoning along exactly the same lines, we also have that

[N
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= < [ [ana©)lde

—25d -
g(/mm 5) ol

c _
< <A |ullge-
p2

It is then obvious that

lu(z) — u(y)| < [[Vugallzesle =yl + 2llun,al| L
< Cs (lz—ylA"P + A7) |Jull ..

Choosing A = |z — y|~! then completes the proof of the theorem. O

1.4 Nonhomogeneous Sobolev Spaces on R¢

In this section, we focus on nonhomogeneous Sobolev spaces. As in the previ-
ous section, the emphasis is on embedding properties in Lebesgue and Hélder
spaces. We also establish a trace theorem and provide an elementary proof for
a Hardy inequality.

1.4.1 Definition and Basic Properties

Definition 1.51. Let s be a real number. The Sobolev space H® (Rd) consists
of tempered distributions u such that u € L2 (R?) and

loc
lull%. & / (1+ [€2)° [a()? dé < oc.
Rd

As the Fourier transform is an isometric linear operator from the space H*(R?)
onto the space L2(R%; (1 + [€]2)% d€), the space H®(R?) equipped with the
scalar product

def
(u|v)me =

[+ iepraeie ae (137
R
is a Hilbert space.

It is obvious that the family of H® spaces is decreasing with respect to s.
Moreover, we have the following proposition, the proof of which is strictly
analogous to that of Proposition 1.32.

Proposition 1.52. If sy < s < s1, then we have

lullze < llullfo lullfre  with s = (1~ 6)so +bs1.
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When s is a nonnegative integer, the Fourier—Plancherel formula ensures that
the space H® coincides with the set of L? functions u such that 0“u belongs
to L? for any « in N with |a| < s. In the case where s is a negative integer,
the space H*® is described by the following proposition, the proof of which is
analogous to that of Proposition 1.33.

Proposition 1.53. Let k be a positive integer. The space H‘k(Rd) consists of
distributions which are sums of an LQ(Rd) function and derivatives of order k
of L2(R%) functions.

Remark 1.54. The Dirac mass d§p belongs to H=%-¢ for any positive € but
" .
does not belong to H~ 2. Moreover, Jg is not in H® for any s.

It is obvious that when s is nonnegative, H?® is included in H s and that the
opposite happens when s is negative. Further, H* # H? for s # 0. In the
following proposition, we state that the two spaces coincide for compactly
supported distributions and nonnegative s.

Proposition 1.55. Let s be a nonnegative real number and K a compact
subset of R, Let Hj (R) be the space of those distributions of H®(R®) which
are supported in K. There then exists a positive constant C' such that

1
s d
Vu € Hig(RY), Sllullzs < fullg. < llulla:

Proof. We simply have to prove that ||u|| 2 < Ck||u|| ;.. Using the Fourier—
Plancherel formula and the inverse formula, we have!'l

(&) < flullpr < VK ull < (2m) 72 VK] [ 22

For any positive ¢ we then get

[allz: < @2m)~|K|lalZ. B0, e)| +/Rd\ )Ifl’QSISIQS\G(g)ng

s

_ ~ 1
< (2m)~eqe? | K[| + sl

Taking e such that (27)~%cse? |K| = 1/2, we see that

N V2 s
ul|z2 < W(QCHKD”\UHHM (1.38)

and the result follows. O

From the above proposition, we can infer the following Poincaré-type inequal-
ity, which is relevant for functions supported in small balls.

11 From now on, we agree that |K| denotes the Lebesgue measure of the set K.
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Corollary 1.56. Let 0 <t < s. A constant C exists such that for any posi-
tive d and any function u € Hs(Rd) supported in a ball of radius §, we have

lull ge < CO* Ml and ullae < CO*lullae.

Proof. Using the fact that the || - || 7= norm is invariant under translation, we
can suppose that the ball is centered at the origin. If we set v(z) = u(dx),
then v is supported in the unit ball and obviously satisfies ||v||g: < C||v| g-,
hence also ||v]| e < C||v|| ., due to the previous proposition.

Using the fact that 9(¢) = 6*dﬂ(§>, we thus get [Jul| 7. < CO*ul 4.
Using (1.38) we then get the inequality pertaining to nonhomogeneous norms.

O
We have the following density result, strictly analogous to Proposition 1.35.
Proposition 1.57. The space S is dense in H®.

The duality between H® and H~* is described by the following proposition,
the proof of which is analogous to that of Proposition 1.36.

Proposition 1.58. For any real s, the bilinear functional

SxS§—-C

B 00 = [ et da

can be extended to a continuous bilinear functional on H~° x H®. Moreover,
if L is a continuous linear functional on H®, a unique tempered distribution u
exists in H—° such that

VoS, (L,¢) =B(u,9).
In addition, we have ||L||gsy = |lul| g
The following proposition can be very easily deduced from Proposition 1.37.
Proposition 1.59. Let s = m + o with m € N and o € ]0,1[. We then have
H*(RY) = {u € L*(R?Y) / Ya e N / |a] <m, 0% € L*(R?)

|0%u(x+y) — 0%u(x)|?

and, for a/ |a|=m dzx dy < +oo},

Rd x R4 |y|dt2e
and there exists a constant C such that
0%u(z +5y) — 0%u(x)|?
s X[ ey
d x R4 |y‘

+ D 110%ullZe < CllullF..

lo|<m
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The above characterization of Sobolev spaces is suitable for establishing invari-
ance under diffeomorphism. In what follows, it is understood that a global k-
diffeomorphism on R? is any C* diffeomorphism @ from R? onto R? whose
derivatives of order less than or equal to k are bounded and which satisfies,
for some constant C',

V(z,y) e R* xR, |p(x) — o(y)| > Clz —y|.

Corollary 1.60. Let ¢ be a global k-diffeomorphism on Rd, 0<s<k, and
w e H*(RY). Then, uop e H*(R?).

Proof. By virtue of the chain rule, it is enough to consider the case where s
is in [0, 1[. The result follows easily from the identity

af [ lule(e) ~u(eW)P
R I

- /R x R |w|<uw(>x )L?ﬁlz | det(Dy(x))| ™| det(Dip(y))| " da dy

_ 2
B N VO S0
RdxRd [T —y|THE
where it is understood that 1 = ¢ ~!. This proves the corollary. a

The following density theorem will be useful.

Theorem 1.61. For any real s, the space D(R?) is dense in H*(R?).

Proof. In order to prove this theorem, we consider a distribution u in H*(R?)
such that for any test function ¢ in D(R?), we have

[ B0 +1ep) e i ~o.

Knowing that D(Rd) is dense in & (Rd) and that the Fourier transform is an
automorphism of S(R?), we have, for any function f in S(R?),

[, s+ i@ e = o.

This implies that (14 |-|?)*u = 0 as a tempered distribution. Thus, 7 = 0,
and then v = 0. a
The Sobolev spaces are not stable under multiplication by C°° functions;
nevertheless, they are local. This is a consequence of the following result.

Theorem 1.62. Multiplication by a function of S(Rd) is a continuous map
from H*(RY) into itself.
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Proof. As we know that gu = (27)~9% 4, the proof of Theorem 1.62 is
reduced to the estimate of the L?(R%) norm of the function U, defined by

U,(6) L (1 4 |2

)% [ 18t =) x [t dn.

We will temporarily assume that

(L+[EP)F <27 (1+[€—n2) ' (1+ )5, (1.39)

We then infer that
sl lsl )~ 5~
Us(&)| <2 /Rd(l 1€ —nl?) = [B(E — I+ [n[*)2 [a(n)| dn.
Using Young’s inequality, we get

Ll sl .
lpullzs <221+ )= Sl ulla,

and the desired result follows.

For the sake of completeness, we now prove the inequality (1.39). Inter-
changing £ and 7, we see that it suffices to consider the case s > 0. We have

(L+1€*)? < (42018 —n* + n*)*
<251+ E—n)E(+ )5,

This completes the proof of the theorem. a

We will now consider the problem of trace and trace lifting operators for
the Sobolev spaces. Consider the hyperplane x; = 0 in R?. Because this has
measure zero, we cannot give any reasonable sense to the trace operator
formally defined by yu(z’) = w(0,2’) if u belongs to a Lebesgue space. For
instance, there exist elements of LQ(Rd) which are continuous for x; # 0 and
tend to infinity when x; goes to 0. This obviously precludes us from defining
the trace of a general L? function.

The following theorem shows that defining yu makes sense for u € H* (Rd)
with s greater than 1/2. Extending the usual trace operator by continuity
provides us with the relevant definition.

Theorem 1.63. Let s be a real number strictly larger than 1/2. The restric-
tion map v defined by

i {S(Rd) — SR
¢ — (@) (2, .., xq) — 40, 22,...,24q)

can be continuously extended from H*(R?) onto H*~ = (R4™1).
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Proof. We first prove the existence of . Arguing by density, it suffices to find
a constant C' such that

VoeS, VDl -1 < Cliollme. (1.40)

H*"2
To achieve the above inequality, we may rewrite the trace operator in terms
of a Fourier transform:

9(0,2") = (2m)~* / 056, € dey e

R
= (27)1—d i€ (901 [ & N des ) de'
ntt [ @0 (en)t [ Blene) der) ae
‘We thus have -
€)= em [ a6 der

By multiplication and division by (1+ |¢;]?4]¢|)2 and the Cauchy—Schwarz
inequality, we have

O < e ( [ar@rierrda ) ( [aa0ra -+ as )

Having s > % ensures that the first integral is finite. In order to compute it,
we make the change of variables & = (14 |¢/|2)2zA. We obtain

/ L+ + [P de = C,(1+ €172 with C, = / (14 A%)~%d\.

We deduce that HV(QZ))HZS*% < Cs||@||%-, which completes the proof of the

first part of the theorem.

We now define the trace lifting operator. Let x be a function in D(R) such
that x(0) = 1. We define

Ru(z) % (o) i+ / I (@ (€))D(€T) dE' with (€)= /11 €.
Rd—l

It is clear that
FRu(€) = / eHE N (H(EN)D(E) dt

= "% 7©).

Taking N sufficiently large, we deduce that
S e —2] ~ - 2~
IRolly: = [ (+16P +1€7)€) 2 R1) ™) el ds

<on [ ([(+80) e s ) eprteer

<l

Of course, we have yRv = v. This completes the proof of the theorem. ad
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We infer the following corollary.
Corollary 1.64. Let s > m + % with m € N. The map
H¥(RY) — P H 2 (RI?
. @ )
(%( )o<j<m
with v;(u) = v(8%,u) is then continuous and onto.

Remark 1.65. More generally, the trace operator s may be defined for any
smooth hypersurface X' of R?. Indeed, according to Theorem 1.62 and Corol-
lary 1.60, the spaces H*(R?) are local and invariant under the action of dif-
feomorphism, so localizing and straightening X' reduces the problem to the
study of the trace operator defined in Theorem 1.63.

1.4.2 Embedding

In this subsection, we present a few properties concerning embedding in
Lebesgue spaces. First, from Theorems 1.38 and 1.50 we can easily deduce
the following result.

Theorem 1.66. The space H5(R?) embeds continuously in:

— the Lebesgue space LP(]Rd)7 if0<s<d/2and2<p<2d/(d-2s)
~ the Holder space C**(RY), if s > d/2+k+p for some k € N and p € 10, 1].

As in the homogeneous case, the space H % fails to be embedded in L.
However, the following Moser—Trudinger inequality holds.

Theorem 1.67. There exist two constants, ¢ and C, depending only on the
dimension d, such that for any function u € H? (Rd), we have

/JRd (eXp(c(”';ﬁz)g )) - 1) da < C.

Proof. As usual, arguing by density and homogeneity, it suffices to consider
the case where f is in S and satisfies Hf||H% =1

Now, the proof is based on the fact that, according to the inequality (1.30)
and the definition of nonhomogeneous Sobolev spaces, there exists some con-
stant Cy (depending only on the dimension d) such that

lflleze < Cyqy/p forall p>1. (1.41)

For all z € RY, we may write

exp(elf(@)2) - 1= 5

p>1

| @),
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Integrating over R? and using the inequality (1.41) yields
) _1)de =S 0@l

exp(c|f(z)]?) x—Zc e

R4 o1 p:

The theorem then follows from our choosing the constant ¢ sufficiently small.
O

As stated before, the space H*(R?) is included in H*(R?) whenever ¢ < s. If
the inequality is strict, then the following statement ensures that the embed-
ding is locally compact.

Theorem 1.68. Fort < s, multiplication by a function in S(Rd) is a compact
operator from H®(R?) in H'(R?).

Proof. Let ¢ be a function in S. We have to prove that for any sequence (u,,)
in H*(R?) satisfying sup,, ||un|zs < 1, we can extract a subsequence (uy, )
such that (puy,, ) converges in H*(R?).

As H S(Rd) is a Hilbert space, the weak compactness theorem ensures
that the sequence (up),en converges weakly, up to extraction, to an ele-
ment v of H*(R?) with [|ul|zs < 1. We continue to denote this subsequence
by (tn)nen and set v, = u, —u. Thanks to Theorem 1.62, sup,, ||ovn|gs < C.
Our task is thus reduced to proving that the sequence (pv,)nen tends to 0
in Ht (Rd). We now have, for any positive real number R,

/(1+ [€1%)11F (pvn) ()17 d€ S/ (1 + [€1)"1F (pvn) (€[ de

[§I<R

+ / (L€ (14 E2)° | F (o) ()] de
¢I>R

2)t 2 g o llevnllzr

< [ O F @ P + et

As (v )nen is bounded in H®(R?), for a given positive real number &, we can
choose R such that
vl < 5
(1 + R2)s—t 1¥0nllHe =5
On the other hand, as the function ¢ defined by

def

ve(n) € @m)~1F (1 + 1025~ )

belongs to S(RY), we can write
Fleoa)(©) = 2m)* [ 3~ n)ato) d

_ /(1 + [nl?) e (n)om (n) dy
= (7/15 | Un)HS'
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As (vp)nen converges weakly to 0 in H*(R?), we can thus conclude that
Ve e R, lim F(pv,)(€) = 0.
n—00
Let us temporarily assume that

sup |F(pvn)(€)] < M < oo. (1.42)

[€I<R
neN

Lebesgue’s theorem then implies that

lim (L+ €12 |F (pvn)(E)[* dé = 0,
o0 JIEI<R

which leads to the convergence of the sequence (¢v,)nen to 0 in H* (Rd).

To complete the proof of the theorem, let us prove (1.42). It is clear that

Fern)(@) < ) [ 186 =)l 5l an
< @) oalln ([ 4+ 1)l ~ )l an)
Now, as @ belongs to S(R?), a constant C' exists such that

Cn,

d
- ith Ny=— 1.
T gpie Wit No=g+lsls

D6 —n)| <
We thus obtain

/<1+|n|> B(E— 77)|2d77</||<2R1+|77|) (€ — )P di
1 2\=8| (¢ 2d
+ /|n|zzR( 1)~ 1@ — n)l? dn

<C (L+ In[*) dn
n<2R

Lo, / 1+ ) (1 + [e—n[2) ™ d.
n>2R

Finally, since || < R, we always have | — | > @ in the last integral, so we

eventually get

/(1+|nl2) BE—n)Pdy < C+ R '“*C/W'

This yields (1.42) and completes the proof of the theorem. O
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From the above theorem, we can deduce the following compactness result.

Theorem 1.69. For any compact subset K of RY and s' < s, the embedding
of Hi(RY) into Hj-(R?) is a compact linear operator-

Proof. Tt suffices to consider a function ¢ in S(R?) which is identically equal
to 1 in a neighborhood of the compact K and then to apply Theorem 1.68. O

1.4.3 A Density Theorem

In this subsection we investigate the density of the space D(R\{0}) in
Sobolev spaces. This result is useful for proving Hardy inequalities and is
related to the problem of the pointwise value of a function in H*(R?). Indeed,
having D(R?\{0}) dense in H*(R?) precludes any reasonable definition of the
“value at 07 of an element of H*(R?%). We now state the result.

Theorem 1.70. If s < d/2 (resp., < d/2), then the space D(R\{0})
is dense in H*(RY) [resp., in H*(R?)]. If s > d/2, then the closure of
the space D(RU\{0}) in H*(R?) is the set of functions u in H*(R®) such
that 9*u(0) = 0 for any o € N such that |o| < s — d/2.

Proof. As H S(Rd) is a Hilbert space it is enough to study the orthogonal
complement of D(R?\{0}) in H*(R?). For u in H® we define

us & F1(1 1 g2) ).

If u belongs to the orthogonal complement of D(R?\{0}), then we have

/R (OB dE = {ugyp) =0 forany ¢ in DRI\{0}).

This implies that the support of wug is included in {0}. We infer that a se-
quence (aq)|o|<n exists such that

us = Y aa0"%. (1.43)

la|<N

As u, belongs to H~®, Remark 1.54 implies that a, = 0 for |a] > s — d/2.
Thus, if s < d/2, then us = u = 0 and the density is proved in that case. The
proof of the density in the homogeneous case follows the same lines and is left
to the reader as an exercise.

When s is greater than d/2, the orthogonal complement of the space
D(RY\{0}) is exactly the finite-dimensional vector space Vs spanned by the
functions (uq)|a|<[s—d/2] defined by

un~lax dﬁf T —d e"(zlg) (Zf)a d
o) ) | s e
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However, thanks to the relation (1.43), if the partial derivatives of order less
than or equal to s — d/2 of a function v in H® vanish at 0, then we have

(v|ua)ms = (v,0%) = 0.

Thus, the function v belongs to the orthogonal complement of V,, which is
the closure of D(R?\{0}). O

Remark 1.71. If d = 1, then the above result means that the map u — u(0)
cannot be extended to H %(R) functions. More generally, arguing as above,

we can prove that the restriction map v on the hyperplane x; = 0 cannot be
1 .
extended to Hz(R?) functions.?

1.4.4 Hardy Inequality

This brief subsection is devoted to proving a fundamental inequality with
singular weight in Sobolev spaces: the so-called Hardy inequality. More general
Hardy inequalities will be established in the next chapter (see Theorem 2.57).

Theorem 1.72. If d > 3, then

(/ ‘f(x)|2 d.%‘)z < L”VfHLQ forany f in Hl(Rd). (1.44)
R d—2

||
Proof. Arguing by density, it suffices to prove the inequality for fe D(R? \{0}).
d
Let R be the radial vector field R = Zzz&m Because R|z|™2 = —2|z| 72,

i=1
integrating by parts yields

S@P 1 [ 2A@RI@) [ @R
Ad dr = Ad dz + Ad dr.

|z[? 2 |z[? 2 |z[?

Thus, we have, by the Cauchy—Schwarz inequality,

[YOE,_ 2 [ foRfE,
R4

2T 2=d Jae [z
2 F@P NP ([ IRF@P  \?
§d2(/w ]2 dx) </ 22 d””) ’

12 Tn fact, yu makes sense whenever u belongs to the smaller space

which implies that

HE (R 4 {u cHARY) [ " e LQ(Rd)}.

|z1]2
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(Lt s sl foorora)

Remark 1.73. Let us note that using Lorentz spaces provides an elementary
proof of more general Hardy inequalities, namely,

I
jz]°

Indeed, using real interpolation we can show that H* not only embeds in the
space LP with 1/p = 1/2 — s/d, but also in the Lorentz space LP'?>. Now, it

is clear that the function x +— |-|~® belongs to the space qu/ % so applying
generalized Holder inequalities in Lorentz spaces, we get

f

|z[*

d
<Clfllge for 05 <5

L2

1

|- 1°

<¢]

e < Clf e
L2 Ly *

1.5 References and Remarks

The Hoélder and Young inequalities belong to mathematical folklore. Refined Young
inequalities are special cases of convolution inequalities in Lorentz spaces. An ex-
haustive list of such inequalities can be found in [171] or the book by P.-G. Lemarié-
Rieusset [205]. More about atomic decomposition and bilinear interpolation can be
found in the book by L. Grafakos [150].

In the present chapter, we restricted ourselves to the very basic properties of the
Fourier transform. For a more complete study of the Fourier transform of harmonic
analysis methods for partial differential equations, the reader may refer to the text-
books [40] by J.-M. Bony, [122] by L.C. Evans, [275] by E.M. Stein, [167, vol. 1] by
L. Hormander and [282, 283] by M.E. Taylor.

The Sobolev embedding in Lebesgue spaces was first stated by S. Sobolev him-
self in [270, 271]. There is now a plethora of generalizations (W*? spaces, metric
spaces, etc.) Basic references for Sobolev spaces may be found in the books [3] by
R. Adams and [146] by D. Gilbarg and N. Trudinger. Refined Sobolev inequalities
were discovered by P. Gérard, Y. Meyer, and F. Oru in [140]. The proof which
has been proposed here is borrowed from [77]. The fractal counterexample comes
from [22]. The study of embedding of Sobolev spaces in Holder spaces goes back
to C. Morrey’s work in [235]. The BMO space was first introduced by F. John and
L. Nirenberg in [174].

Most of the results concerning nonhomogeneous Sobolev spaces are classical.
Hardy inequalities go back to the pioneering work by G.H. Hardy in [153, 154]. In
the next chapter, we shall state more general Hardy inequalities in Sobolev spaces
with fractional indices of regularity.

For more details on the Moser—Trudinger inequality, see the pioneering works by
J. Moser in [236] and N.S. Trudinger in [290]. For recent developments, see [2].

Note that combining the Sobolev embedding theorem with Theorem 1.68 ensures
that the embedding of HS(Rd) in LP(R%) is locally compact whenever 2 < p < oo
and s > d/2 — d/p. In contrast, due to the scaling invariance of the critical Sobolev
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embedding,'® the fact that H*(RY) < LPs(R%) when 0 < s < d/2, and that fact that
ps = 2d/(d — 2s), no compactness properties may be expected in this case. Indeed,
if u € H*\ {0}, then for any sequence (y,) of points in R? tending to infinity
and for any sequence (h,) of positive real numbers tending to 0 or to infinity, the
sequences (7, u) and (8, u) converge weakly to 0 in H*® but are not relatively
compact in L since |7y, u|lr = ||ul|zr and ||0n, ul|zr = ||u|lzr. The study of this
defect of compactness was initiated by P.-L. Lions in [212] (see also the paper by
P. Gérard [139)]). In short, it has been shown that translational and scaling invariance
are the only features responsible for the defect of compactness of the embedding
of H*® into LP.

13 Throughout this book, we agree that whenever X and Y are Banach spaces, the
notation X < Y means that X C Y and that the canonical injection from X to Y
is continuous.
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