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Basic Analysis

This chapter is devoted to the presentation of a few basic tools which will
be used throughout this book. In the first section we state the Hölder and
Minkowski inequalities. Next, we prove convolution inequalities in the general
context of locally compact groups equipped with left-invariant Haar measures.
The adoption of this rather general framework is motivated by the fact that
these inequalities may be used not only in the R

d and Z
d cases, but also

in other groups such as the Heisenberg group H
d. Both Lebesgue and weak

Lebesgue spaces are used. In the latter case, we introduce an atomic decompo-
sition which will help us to establish a bilinear interpolation-type inequality.
Finally, we give a few properties of the Hardy–Littlewood maximal operator.

The second section is devoted to a short presentation on the Fourier trans-
form in R

d. The third section is dedicated to homogeneous Sobolev spaces
in R

d. There, we state basic topological properties, consider embedding in
Lebesgue, bounded mean oscillation, and Hölder spaces, and prove refined
Sobolev inequalities. The classical Sobolev inequalities are of course invariant
by translation and dilation. The refined versions of the Sobolev inequalities
which we prove are, in addition, invariant by translation in the Fourier space.
We also present some classes of examples to show that these inequalities are in
some sense optimal. In the last section of this chapter, we focus on nonhomo-
geneous Sobolev spaces, with a special emphasis on trace theorems, compact
embedding, and Moser–Trudinger and Hardy inequalities.

1.1 Basic Real Analysis

1.1.1 Hölder and Convolution Inequalities

We begin by recalling the classical Hölder inequality.

Proposition 1.1. Let (X, μ) be a measure space and (p, q, r) in [1, ∞]3 be
such that
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2 1 Basic Analysis

1
p

+
1
q

=
1
r

·

If (f, g) belongs to Lp(X, μ) × Lq(X, μ), then fg belongs to Lr(X, μ) and

‖fg‖Lr ≤ ‖f ‖Lp ‖g‖Lq .

Proof. The cases where p = 1 or p = ∞ being trivial, we assume from now
on that p is a real number greater than 1. The concavity of the logarithm
function entails that for any positive real numbers a and b and any θ in [0, 1],

θ log a + (1 − θ) log b ≤ log(θa + (1 − θ)b),

which obviously implies that

aθb1−θ ≤ θa + (1 − θ)b.

Hence, assuming that ‖f ‖Lp = ‖g‖Lq = 1, we can write∫
X

|fg|r dμ =
∫

X

(|f |p)
r
p (|g|q)

r
q dμ

≤ r

p

∫
X

|f |p dμ +
r

q

∫
X

|g|q dμ

≤ r

p
+

r

q
= 1.

The proposition is thus proved. ��

The following lemma states that Hölder’s inequality is in some sense optimal.

Lemma 1.2. Let (X, μ) be a measure space and p ∈ [1, ∞]. Let f be a mea-
surable function. If

sup
‖g‖

Lp′ ≤1

∫
X

|f(x)g(x)| dμ(x) < ∞,

then f belongs to Lp and1

‖f ‖Lp = sup
‖g‖

Lp′ ≤1

∫
X

f(x)g(x) dμ(x).

Proof. Note that if f is in Lp, then Hölder’s inequality ensures that

sup
‖g‖

Lp′ ≤1

∫
X

f(x)g(x) dμ(x) ≤ ‖f ‖Lp

so that only the reverse inequality has to be proven.
1 Here, and throughout the book, p′ denotes the conjugate exponent of p, defined
by

1

p
+

1

p′ = 1, with the rule that
1

∞ = 0.
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We start with the case p = ∞. Let λ be a positive real number such

that μ(|f | ≥ λ) > 0. Writing Eλ
def= (|f | ≥ λ), we consider a nonnegative

function g0 in L1, supported in Eλ with integral 1. If we define

g(x) =
f(x)

|f(x)| g0,

then g is in L1 so that fg is integrable by assumption, and we have
∫

X

fg dμ(x) =
∫

X

|f |g0 dμ(x) ≥ λ

∫
X

g0 dμ(x) = λ.

The lemma is proved in this case. We now assume that p ∈ ]1, ∞[ and consider
a nondecreasing sequence (En)n∈N of subsets of finite measure of X, the union
of which is X. Let2

fn(x) = 1En ∩(|f |≤n)f and gn(x) =
fn(x)|fn(x)|p−1

|fn(x)| ‖fn‖
p
p′
Lp

·

It is obvious that fn belongs to L1 ∩ L∞ and thus to Lp for any p. Moreover,
we have

‖gn‖p′

Lp′ =
1

‖fn‖p
Lp

∫
X

|fn(x)|(p−1) p
p−1 dμ(x) = 1.

The definitions of the functions fn and gn ensure that
∫

X

f(x)1En ∩(|f |≤n)gn(x) dμ(x) =
∫

X

fn(x)gn(x) dμ(x)

=
(∫

X

|fn(x)|p dμ(x)
)

‖fn‖
− p

p′
Lp

= ‖fn‖Lp .

Thus, we have

‖fn‖Lp ≤ sup
‖g‖

Lp′ ≤1

∫
X

f(x)g(x) dμ(x).

The monotone convergence theorem immediately implies that

‖f ‖Lp ≤ sup
‖g‖

Lp′ ≤1

∫
X

f(x)g(x) dμ(x).

Finally, in order to treat the case where p = 1, we may consider the se-
quence (gn)n∈N defined by

gn(x) = 1(fn �=0)(x)
fn(x)

|fn(x)| ·

2 Throughout this book, the notation 1A, where A stands for any subset of X,
denotes the characteristic function of A.
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We obviously have ‖gn‖L∞ = 1 and
∫

X

f(x)gn(x) dμ(x) =
∫

X

|fn(x)| dμ(x).

Using the monotone convergence theorem, we get that
∫

X

|f(x)| dμ(x) < ∞ and
∫

X

|f(x)| dμ(x) = lim
n→∞

∫
X

|fn(x)| dμ(x),

which completes the proof of the proposition. ��

We now state Minkowski’s inequality.

Proposition 1.3. Let (X1, μ1) and (X2, μ2) be two measure spaces and f a
nonnegative measurable function over X1 × X2. For all 1 ≤ p ≤ q ≤ ∞, we
have ∥∥∥‖f(·, x2)‖Lp(X1,μ1)

∥∥∥
Lq(X2,μ2)

≤
∥∥∥‖f(x1, ·)‖Lq(X2,μ2)

∥∥∥
Lp(X1,μ1)

.

Proof. The result is obvious if q = ∞. If q is finite, then, using Fubini’s

theorem and r
def= (q/p)′, we have

∥∥∥‖f(·, x2)‖Lp(X1,μ1)

∥∥∥
Lq(X2,μ2)

=

(∫
X2

(∫
X1

fp(x1, x2) dμ1(x1)
) q

p

dμ2(x2)

) 1
q

=

(
sup

‖g‖Lr(X2,μ2)=1
g≥0

∫
X1×X2

fp(x1, x2)g(x2) dμ1(x1) dμ2(x2)

) 1
p

≤
(∫

X1

(
sup

‖g‖Lr(X2,μ2)=1
g≥0

∫
X2

fp(x1, x2)g(x2) dμ2(x2)
)

dμ1(x1)

) 1
p

.

Using Hölder’s inequality we may then infer that

∥∥∥‖f(·, x2)‖Lp(X1,μ1)

∥∥∥
Lq(X2,μ2)

≤
(∫

X1

(∫
X2

fq(x1, x2) dμ2(x2)
) p

q

dμ1(x1)
) 1

p

,

and the desired inequality follows. ��

The convolution between two functions will be used in various contexts in
this book. The reader is reminded that convolution makes sense for real- or
complex-valued measurable functions defined on some locally compact topo-
logical group G equipped with a left-invariant Haar measure3 μ. The (formal)
definition of convolution between two such functions f and g is as follows:
3 This means that μ is a Borel measure on G such that for any Borel set A and
element a of G, we have μ(a · A) = μ(A).
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f � g(x) =
∫

G

f(y) g(y−1 · x) dμ(y).

We can now state Young’s inequality for the convolution of two functions.

Lemma 1.4. Let G be a locally compact topological group endowed with a
left-invariant Haar measure μ. If μ satisfies

μ(A−1) = μ(A) for any Borel set A, (1.1)

then for all (p, q, r) in [1, ∞]3 such that

1
p

+
1
q

= 1 +
1
r

(1.2)

and any (f, g) in Lp(G, μ) × Lq(G, μ), we have

f � g ∈ Lr(G, μ) and ‖f � g‖Lr(G,μ) ≤ ‖f ‖Lp(G,μ)‖g‖Lq(G,μ).

Proof. We first note that, owing to the left invariance and (1.1), for all x ∈ G
and any measurable function h on G, we have

∫
G

h(y) dμ(y) =
∫

G

h(y−1 · x) dμ(y).

Therefore, the case r = ∞ reduces to the Hölder inequality which was proven
above.

We now consider the case r < ∞. Obviously, one can assume without loss
of generality that f and g are nonnegative and nonzero. We write

(f � g)(x) =
∫

G

f
r

r+1 (y) g
1

r+1 (y−1 · x) f
1

r+1 (y) g
r

r+1 (y−1 · x) dμ(y).

Observing that (1.2) can be written
r

r + 1

(1
p

+
1
q

)
= 1, Hölder’s inequality

implies that

(f � g)(x) ≤
(∫

G

fp(y)g
p
r (y−1·x) dμ(y)

) r
(r+1)p
(∫

G

f
q
r (y)gq(y−1·x) dμ(y)

) r
(r+1)q

.

Applying Hölder’s inequality with α = rq/p (resp., β = rp/q) and the mea-
sure fp(y) dμ(y) [resp., gq(y−1· x) dμ(y)], and using the invariance of the mea-
sure μ by the transform y 
→ y−1 · x, we get

(f � g)(x) ≤
(∫

G

fp(y)gq(y−1 · x) dμ(y)
) 1

r+1 ( 1
p+

1
q )

‖f ‖
r

r+1

(
1− p

qr

)
Lp(G,μ) ‖g‖

r
r+1

(
1− q

pr

)
Lq(G,μ) .

Hence, raising the above inequality to the power r yields
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∣∣∣∣
(

f

‖f ‖Lp

�
g

‖g‖Lq

)
(x)
∣∣∣∣
r

≤
(

|f |p
‖f ‖p

Lp

�
|g|q

‖g‖q
Lq

)
(x).

Since the left invariance of the measure μ combined with Fubini’s theorem
obviously implies that the convolution maps L1(G, μ)×L1(G, μ) into L1(G, μ)
with norm 1, this yields the desired result in the case r < ∞. ��

We now state a refined version of Young’s inequality.

Theorem 1.5. Let (G, μ) satisfy the same assumptions as in Lemma 1.4.
Let (p, q, r) be in ]1, ∞[3 and satisfy (1.2). A constant C exists such that, for
any f ∈ Lp(G, μ) and any measurable function g on G where

‖g‖q
Lq

w(G,μ)

def
= sup

λ>0
λqμ(|g| > λ) < ∞,

the function f � g belongs to Lr(G, μ), and

‖f � g‖Lr(G,μ) ≤ C‖f ‖Lp(G,μ)‖g‖Lq
w(G,μ).

Remark 1.6. One can define the weak Lq space as the space of measurable
functions g on G such that ‖g‖Lq

w(G,μ) is finite. We note that since

λqμ(|g| > λ) ≤
∫

(|g|>λ)

|g(x)|q dμ(x) ≤ ‖g‖q
Lq(G,μ), (1.3)

the above theorem leads back to the standard Young inequality (up to a
multiplicative constant).

We also that the weak Lq space belongs to the family of Lorentz spaces
Lq,r(G, μ), which may be defined by means of real interpolation:

Lq,r(G, μ) = [L∞(G, μ), L1(G, μ)]1/q,r for all 1 < q < ∞ and 1 ≤ r ≤ ∞.

It turns out that the weak Lq space coincides with Lq,∞(G, μ). From general
real interpolation theory, we can therefore deduce a plethora of Hölder and
convolution inequalities for Lorentz spaces (including, of course, the one which
was proven above).

We also stress that the above theorem implies the well-known Hardy–Little-
wood–Sobolev inequality on R

d, given as follows.

Theorem 1.7. Let α in ]0, d[ and (p, r) in ]1, ∞[2 satisfy

1
p

+
α

d
= 1 +

1
r

· (1.4)

A constant C then exists such that

‖ | · | −α � f ‖Lr(Rd) ≤ C‖f ‖Lp(Rd).

Our proof of Theorem 1.5 relies on the atomic decomposition that we intro-
duce in the next subsection.
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1.1.2 The Atomic Decomposition

The atomic decomposition of an Lp function is described by the following
proposition, which is valid for any measure space.

Proposition 1.8. Let (X, μ) be a measure space and p be in [1, ∞[. Let f be
a nonnegative function in Lp. A sequence of positive real numbers (ck)k∈Z and
a sequence of nonnegative functions (fk)k∈Z (the atoms) then exist such that

f =
∑
k∈Z

ckfk,

where the supports of the functions fk are pairwise disjoint and

μ(Supp fk) ≤ 2k+1, (1.5)

‖fk ‖L∞ ≤ 2− k
p , (1.6)

1
2

‖f ‖p
Lp ≤
∑
k∈Z

cp
k ≤ 2‖f ‖p

Lp . (1.7)

Remark 1.9. As implied by the definition given below, the sequence (ckfk)k∈Z

is independent of p and depends only on f .

Proof of Proposition 1.8. Define

λk
def= inf
{
λ /μ(f > λ) < 2k

}
, ck

def= 2
k
p λk, and fk

def= c−1
k 1(λk+1<f ≤λk)f.

It is obvious that ‖fk ‖L∞ ≤ 2− k
p . Moreover, (λk)k∈Z is a decreasing se-

quence which, owing to the fact that f is a nonnegative function in Lp, con-
verges to 0 when k tends to infinity.

By the definition of λk, we have μ(f > λk) ≤ 2k and thus μ(Supp fk) ≤
2k+1. This gives

∑
k∈Z

cp
k =
∑
k∈Z

2kλp
k

= p
∑
k∈Z

∫ ∞

0

2k1]0,λk[(λ)λp−1 dλ.

Using Fubini’s theorem, we get

∑
k∈Z

cp
k = p

∫ ∞

0

λp−1

( ∑
k / λk>λ

2k

)
dλ.

By the definition of the sequence (λk)k∈Z, λ < λk implies that μ(f > λ) ≥ 2k.
We thus infer that
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∑
k∈Z

cp
k ≤ p

∫ ∞

0

λp−1

( ∑
k / 2k ≤μ(f>λ)

2k

)
dλ

≤ 2p

∫ ∞

0

λp−1μ(f > λ) dλ.

The right-hand inequality in (1.7) now follows from the fact that, by Fubini’s
theorem, we have

‖f ‖p
Lp = p

∫ ∞

0

λp−1μ(|f | > λ) dλ. (1.8)

In order to complete the proof of (1.7) it suffices to note that, because the
supports of the functions (fk)k∈Z are pairwise disjoint, we may write

‖f ‖p
Lp =
∑
k∈Z

cp
k ‖fk ‖p

Lp .

Taking advantage of inequalities (1.5) and (1.6), we find that

‖fk ‖p
Lp ≤ 2 for all k ∈ Z .

This yields the desired inequality. ��

1.1.3 Proof of Refined Young Inequality

Let f and g be nonnegative measurable functions on (G, μ). Consider a non-
negative function h in Lr′

and define

I(f, g, h) def=
∫

G2
f(y)g(y−1 · x)h(x) dμ(x) dμ(y).

Arguing by homogeneity, we can assume that ‖f ‖Lp = ‖g‖Lq
w

= ‖h‖Lr′ = 1.

Stating Cj
def= {y ∈ G , 2j ≤ g(y) < 2j+1}, we can write

I(f, g, h) ≤ 2
∑
j∈Z

2jIj(f, h) with

Ij(f, h) def=
∫

G2
f(y)h(x)1Cj (y

−1 · x) dμ(x) dμ(y).

Because ‖g‖Lq
w

= 1, we have ‖1Cj ‖Ls ≤ 2−j q
s for all s ∈ [1, ∞]. Thus, if we

directly apply Young’s inequality with p, q, and r, we find that Ij(f, h) ≤ 2−j ,
so the series

∑
2j+1Ij(f, h) has no reason to converge. In order to bypass this

difficulty, we may introduce the atomic decompositions of f and h, as given
by Proposition 1.8. We then write

Ij(f, h) =
∑
k,�

ckd�Ij(fk, h�).
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Using Young’s inequality, for any (a, b) ∈ [1, ∞]2 such that b ≤ a′ and for
any (f̃ , h̃) ∈ La × Lb, we get

Ij(f̃ , h̃) ≤ ‖f̃ ‖La ‖h̃‖Lb ‖1Cj ‖Lc′ with
1
a

+
1
b

= 1 +
1
c

·

This gives
Ij(f̃ , h̃) ≤ 2−jq(2− 1

a − 1
b )‖f̃ ‖La ‖h̃‖Lb .

Applying this for fk and h� and using Proposition 1.8 now yields

2jIj(fk, h�) ≤ 2jq( 1
q −2+ 1

a + 1
b )2k( 1

a − 1
p )2�( 1

b − 1
r′ ).

Using the condition (1.2) on (p, q, r) implies that

2jIj(fk, h�) ≤ 2(jq+k)( 1
a − 1

p )2(jq+�)( 1
b − 1

r′ ). (1.9)

Take a and b such that

1
a

def=
1
p

−2ε sg(jq+k) and
1
b

def=
1
r′ −2ε sg(jq+�) with ε

def=
1
4

(
1
p

− 1
r

)
,

where sg n = 1 if n ≥ 0, and sg n = −1 if n < 0.
As q > 1, the condition (1.2) implies that p < r. Thus, by the definitions

of ε, a, and b, we have b ≤ a′. With this choice of a and b, (1.9) then becomes,
using the triangle inequality,

2jIj(fk, h�) ≤ 2−2ε|jq+k|−2ε|jq+�|

≤ 2−ε|jq+k|−ε|jq+�|−ε|k−�|.

Using Young’s inequality for Z equipped with the counting measure, we may
now deduce that

I(f, g, h) ≤ C
∑
j,k,�

ckd�2−ε|jq+k|−ε|jq+�|−ε|k−�|

≤ C

ε

∑
k,�

ckd�2−ε|k−�|

≤ C

ε2
‖(ck)‖�p ‖ ‖(d�)‖�p′ .

The condition (1.2) implies that r′ ≤ p′ and thus

I(f, g, h) ≤ C

ε2
‖(ck)‖�p ‖ ‖(d�)‖�r′ .

The theorem is thus proved. ��
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1.1.4 A Bilinear Interpolation Theorem

The following interpolation lemma, which will be useful in Chapter 8, provides
another example of an application of atomic decomposition.

Proposition 1.10. Let (X1, μ1) and (X2, μ2) be two measure spaces. Let T
be a continuous bilinear functional on L2(X1; Lpj (X2)) × L2(X1; Lqj (X2))
for j in {0, 1}, where (pj , qj) is in [1, 2]2 and such that p0 �= p1 and q0 �=
q1. For any θ ∈ [0, 1], the bilinear functional T is then continuous on
L2(X1; Lpθ (X2)) × L2(X1; Lqθ (X2)) with

( 1
pθ

, 1
qθ

)
= (1 − θ)

( 1
p0

, 1
q0

)
+ θ
( 1

p1

, 1
q1

)
·

Proof. Let f ∈ L2(X1; Lpθ (X2)) and g ∈ L2(X1; Lqθ (X2)). As in the proof
of the refined Young’s inequality, we will use the atomic decompositions of f
and g. For any (t, x) ∈ X1 × X2, we have

f(t, x) =
∑
k∈Z

ck(t)fk(t, x) and g(t, x) =
∑
�∈Z

d�(t)g�(t, x).

Let us write that
T (f, g) =

∑
k,�

T (ckfk, d�g�).

Using the hypothesis on T and stating α
def=
( 1

p0
− 1

p1

)−1( 1
q0

− 1
q1

)
, we get

| T (ckfk, d�g�)| ≤ C min
j∈{0,1}

‖ckfk ‖L2(X1;L
pj (X2))‖d�g�‖L2(X1;L

qj (X2))

≤ C‖ck ‖L2(X1)‖d�‖L2(X1)

× min
{

2−θ
(

1
p0

− 1
p1

)
(k+α�)

, 2(1−θ)
(

1
p0

− 1
p1

)
(k+α�)
}

.

Setting ε
def=
∣∣∣ 1
p0

− 1
p1

∣∣∣× min{θ, (1 − θ)}, we deduce that

| T (ckfk, d�g�)| ≤ C‖ck ‖L2(X1)‖d�‖L2(X1)2
−ε|k+α�|.

Using a weighted Cauchy–Schwarz inequality, we then get

| T (f, g)| ≤ Cε

(∑
k

‖ck ‖2
L2(X1)

) 1
2
(∑

�

‖d�‖2
L2(X1)

) 1
2

≤ Cε

∥∥‖(ck)‖�2(Z)

∥∥
L2(X1)

∥∥‖(d�)‖�2(Z)

∥∥
L2(X1)

.

Using the fact that pθ and qθ are less than 2, we infer that

| T (f, g)| ≤ Cε

∥∥‖(ck)‖�pθ (Z)

∥∥
L2(X1)

∥∥‖(d�)‖�qθ (Z)

∥∥
L2(X1)

.

The inequality (1.7) from Proposition 1.8 then implies the proposition. ��
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1.1.5 A Linear Interpolation Result

We shall present here a basic result of linear complex interpolation theory
which will be useful, particularly in Chapter 8.

Lemma 1.11. Consider three measure spaces (Xk, μk)1≤k≤3 and two ele-
ments (pj , qj , rj)j∈{0,1} of [1, ∞]3. Further, consider an operator A which
continuously maps Lpj (X1; Lqj (X2)) into Lrj (X3) for j in {0, 1}. For any θ
in [0, 1], if

(
1
pθ

, 1
qθ

, 1
rθ

)
def
= (1 − θ)

(
1
p0

, 1
q0

, 1
r0

)
+ θ

(
1
p1

, 1
q1

, 1
r1

)
,

then A continuously maps Lpθ (X1; Lqθ (X2)) into Lrθ (X3) and

‖A‖ L(Lpθ (X1;Lqθ (X2));Lrθ (X3)) ≤ Aθ with

Aθ
def
= ‖A‖1−θ

L(Lp0 (X1;Lq0 (X2));Lr0 (X3))
‖A‖θ

L(Lp1 (X1;Lq1 (X2));Lr1 (X3))
.

Proof. Consider f in Lpθ (X1; Lqθ (X2)) and ϕ in Lrθ (X3).4 Using Lemma 1.2,
it is enough to prove that

∫
X3

(Af)(x3)ϕ(x3)dμ3(x3) ≤ Aθ ‖f ‖Lpθ (Lqθ )‖ϕ‖
Lr′

θ
. (1.10)

Let z be a complex number in the strip S of complex numbers whose real
parts are between 0 and 1. Define

fz(x1, x2)
def=

f(x1, x2)
|f(x1, x2)|

(
|f(x1, x2)|

‖f(x1, ·)‖Lqθ

)qθ

(
1−z
q0

+ z
q1

)

‖f(x1, ·)‖
pθ

(
1−z
p0

+ z
p1

)
Lqθ

and

ϕz(x3) =
ϕ(x3)

|ϕ(x3| |ϕ(x3)|
r′

θ

(
1−z
r′
0

+ z
r′
1

)
.

Obviously, we have fθ = f and ϕθ = ϕ. It can be checked that the function
defined by

F (z) def=
∫

X3

(Afz)(x3)ϕz(x3) dμ3(x3)

is holomorphic and bounded on S and continuous on the closure of S. From
the Phragmen–Lindelhöf principle, we infer that

F (θ) ≤ M1−θ
0 Mθ

1 with Mj
def= sup

t∈R

|F (j + it)|. (1.11)

4 Throughout this proof, we write Lpθ (X1; L
qθ (X2)) simply as Lpθ (Lqθ )

and Lrθ (X3) simply as Lrθ .
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We have

|fj+it(x1, x2)| =
(

|f(x1, x2)|
‖f(x1, ·)‖Lqθ

) qθ
qj

‖f(x1, ·)‖
pθ
pj

Lqθ .

Thus, we have that fj+it belongs to Lpj (Lqj ) and

‖fj+it‖Lpj (Lqj ) = ‖f ‖
pθ
pj

Lpθ (Lqθ ).

In the same way, we get that |ϕj+it(x3)| = |ϕ(x3)|
r′

θ
r′

j . Thus, thanks to Hölder’s
inequality, we get

Mj ≤ sup
t∈R

∣∣∣∣
∫

X3

(Afj+it)(x3)ϕj+it(x3) dμ3(x3)
∣∣∣∣

≤ ‖A‖θ
L(Lpj (X1;L

qj (X2));L
rj (X3))

‖f ‖
pθ
pj

Lpθ (Lq
θ)

| ‖ϕ‖
r′

θ
r′

j

Lr′
θ (Lr′

θ )
.

Using (1.11), we then deduce (1.10) and the lemma is proved. ��

From this lemma, taking X1 = {a} and then X3 = {a}, we can infer the
following two corollaries which will be used in Chapter 8.

Corollary 1.12. Let (Xk, μk)1≤k≤2 be two measure spaces and (pj , qj)j∈{0,1}
be two elements of [1, ∞]2. Consider a linear operator A which continuously
maps Lpj (X1) into Lqj (X2) for j ∈ {0, 1}. For any θ in [0, 1], if

(
1
pθ

, 1
qθ

)
def
= (1 − θ)

(
1
p0

, 1
q0

)
+ θ

(
1
p1

, 1
q1

)
,

then A continuously maps Lpθ (X1) into Lqθ (X2) and

‖A‖ L(Lpθ (X1);Lqθ (X2))≤ Aθ
def
= ‖A‖1−θ

L(Lp0 (X1);Lq0 (X2))
‖A‖θ

L(Lp1 (X1);Lq1 (X2))
.

Corollary 1.13. Let (X1, μ1), (X2, μ2) be two measure spaces and (p0, q0),
(p1, q1) be two elements of [1, ∞]2. Let A be a continuous linear functional
on Lpj (X1; Lqj (X2)) for j in {0, 1}. For any θ in [0, 1], if

(
1
pθ

, 1
qθ

)
def
= (1 − θ)

(
1
p0

, 1
q0

)
+ θ

(
1
p1

, 1
q1

)
,

then A is a continuous linear functional on Lpθ (X1; Lqθ (X2)) and

‖A‖L(Lpθ (X1;L
qθ (X2));C) ≤ Aθ with

Aθ
def
= ‖A‖1−θ

L(Lp0 (X1;Lq0 (X2));C)‖A‖θ
L(Lp1 (X1;Lq1 (X2));C).
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1.1.6 The Hardy–Littlewood Maximal Function

In this subsection, we state a few elementary properties of the maximal func-
tion, which will be needed for proving Gagliardo–Nirenberg inequalities on
the Euclidean space R

d.
We first recall that the maximal function may be defined on any metric

space (X, d) endowed with a Borel measure μ. More precisely, if f : X 
→ R

is in L1
loc(X, μ), then we define

∀x ∈ X, Mf(x) def= sup
r>0

1
μ(B(x, r))

∫
B(x,r)

|f(y)| dμ(y). (1.12)

The following well-known continuity result for the maximal function is fun-
damental in harmonic analysis.

Theorem 1.14. Assume that the measure metric space (X, d, μ) has the dou-
bling property.5 There then exists a constant C, depending only on the dou-
bling constant D, such that for all 1 < p ≤ ∞ and f ∈ Lp(X, μ), we have
Mf ∈ Lp(X, μ) and

‖Mf ‖Lp ≤ p

p − 1
C

1
p ‖f ‖Lp . (1.13)

Proof. First step: M maps L∞ into L∞. Indeed, we obviously have

‖Mf ‖L∞ ≤ ‖f ‖L∞ for all f ∈ L∞(X, μ). (1.14)

Second step: M maps L1 into L1
w. We claim that there exists some constant

C1, depending only on D, such that

‖Mf ‖L1
w

≤ C1‖f ‖L1 for all f ∈ L1(X, μ). (1.15)

This is a mere consequence of the following Vitali covering lemma that we
temporarily assume to hold.

Lemma 1.15. Let (X, d) be a metric space endowed with a Borel measure μ
with the doubling property. There then exists a constant c such that for any
family (Bi)1≤i≤n of balls, there exists a subfamily (Bij )1≤j≤p of pairwise dis-
joint balls such that

μ
( p⋃

j=1

Bij

)
≥ c μ
( n⋃

i=1

Bi

)
.

Fix some f ∈ L1(X, μ) and some λ > 0. By definition of the function Mf, for

any x in the set Eλ
def= {Mf > λ}, we can find some rx > 0 such that
∫

B(x,rx)

|f | dμ > λμ(B(x, rx)). (1.16)

5 That is, there exists a positive constant D such that μ(B(x, 2r)) ≤ Dμ(B(x, r))
for all x ∈ X and r > 0.
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Therefore, if K is a compact subset of Eλ, then we can find a finite cov-
ering (Bi)1≤i≤n of K by such balls. Denoting by (Bij )1≤j≤p the subfamily
supplied by the Vitali lemma and using (1.16), we can thus write

λ |K| ≤ λ

c
μ
( p⋃

j=1

Bij

)
≤ 1

c

p∑
j=1

λμ(Bij ) ≤ 1
c

p∑
j=1

∫
Bij

|f | dμ ≤ 1
c

∫
X

|f | dμ,

which obviously leads to (1.15).
Third step: M maps Lp into Lp for all p ∈ ]1, ∞[. The proof relies on ar-
guments borrowed from real interpolation. Fix some function f in Lp and
α ∈ ]0, 1[. Since M |f | = Mf, we can assume that f ≥ 0. Now, for all λ > 0,
we may write

f = fλ + fλ with fλ def= (f − λα)1(f ≥λα).

Note that, thanks to (1.14), we have

(Mf > λ) ⊂ (Mfλ > (1 − α)λ).

Hence the equality (1.8) implies that

‖Mf ‖p
Lp ≤ p

∫ +∞

0

λp−1μ
(
Mfλ > (1 − α)λ

)
dλ.

According to the inequality (1.15), we have

μ
(
Mfλ > (1 − α)λ

)
≤ C1

(1 − α)λ
‖fλ‖L1 .

So, finally, using the definition of fλ and Fubini’s theorem, we get

‖Mf ‖p
Lp ≤ C1p

1−α

∫ +∞

0

λp−2

∫
(f ≥λα)

(
f(x) − λα

)
dμ(x)

≤ C1p

1−α

(∫
X

f(x)
∫ f(x)

α

0

λp−2 dλ dμ(x) − α

∫
X

∫ f(x)
α

0

λp−1 dλ dμ(x)
)

≤ C1

(p−1)(1−α)αp−1
‖f ‖p

Lp .

Choosing α = (p − 1)/p completes the proof of the inequality (1.13). ��

Proof of Lemma 1.15. Without loss of generality, we can assume that Bi =
B(xi, ri) with r1 ≥ · · · ≥ rn. We can now construct the desired subfamily
by induction. Indeed, for Bi1 , take the largest ball (i.e., B1). Then, assuming
that Bi1 , . . . , Bik

have been chosen, pick up the largest remaining ball which
does not intersect the balls which have been taken so far.
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Clearly, this process stops within a finite number of steps. In addition,
if i /∈ {i1, . . . , ip}, then there exists some index ij such that ij < i and Bi ∩ Bij

is not empty. Therefore, by virtue of the triangle inequality, Bi is included
in B(xij , 3rij ). This ensures that

n⋃
i=1

Bi ⊂
p⋃

j=1

B(xij , 3rij ).

As the measure μ has the doubling property, this yields the desired result. ��
The following result is of importance for proving Gagliardo–Nirenberg inequal-
ities.

Proposition 1.16. Let G be a locally compact group with neutral element e,
endowed with a distance d such that d(e, y−1 · x) = d(x, y) for all (x, y) ∈ G2

and a left-invariant Haar measure μ satisfying (1.1).
We assume, in addition, that for all r > 0 there exists a positive measure σr

on the sphere Σr
def
= {x ∈ G / d(e, x) = r} such that for any L1 function g on

G, we have ∫
G

g(z) dμ(z) =
∫ +∞

0

(∫
Σr

g(z) dσr(z)
)

dr.

For all measurable functions f and any L1 function K on G such that

∀x ∈ G, K(x) = k(d(e, x))

for some nonincreasing function k : R
+ 
→ R

+, we then have

∀x ∈ G,
∣∣K � f(x)

∣∣ ≤ ‖K‖L1(G,μ) Mf(x).

Proof. Obviously we can restrict the proof to nonnegative functions f. Arguing
by density we can also assume that k is C1 and compactly supported. Owing
to our assumptions on d and K, we have

K � f(x) =
∫

G

K(y)f(y−1 · x) dμ(y)

=
∫ +∞

0

k(r)
(∫

Σr

f(y−1 · x) dσr(y)
)

dr.

Therefore, integrating by parts with respect to r, we discover that

K � f(x) =
∫ +∞

0

(−k′(r))
(∫ r

0

∫
Σs

f(y−1 · x) dσs(y) ds

)
dr

=
∫ +∞

0

(−k′(r))
(∫

B(x,r)

f(y) dμ(y)
)

dr

≤ Mf(x)
∫ +∞

0

(−k′(r))μ(B(x, r)) dr.
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Finally, since

μ(B(x, r)) = μ(B(e, r)) =
∫ r

0

∫
Σr

1 dσr(y) dr,

performing another integration by parts, we can write that
∫ +∞

0

(−k′(r))μ(B(x, r)) dr =
∫ +∞

0

k(r)
(∫

Σr

1 dσr(y)
)

dr = ‖K‖L1(G,μ),

and the desired inequality follows. ��

Remark 1.17. All the assumptions of the above proposition are satisfied if we
take for G the group (Rd, +) endowed with the usual metric and the Lebesgue
measure, or the Heisenberg group (Hd, ·) endowed with the Heisenberg dis-
tance and the Lebesgue measure of R

2d+1.
We also note the following obvious generalization of the inequality stated

in the above proposition:

∀x ∈ G,
∣∣K � f(x)

∣∣ ≤
(∫

G

(
sup

d(e,y′)≥d(e,y)

|K(y′)|
)

dy

)
Mf(x),

which holds for any measurable function K on G. In fact, in Chapter 2 we
shall use the above inequality rather than the above proposition.

1.2 The Fourier Transform

This section is devoted to a short presentation on the Fourier transform, a key
tool in this monograph. In the first subsection we define the Fourier transform
of a smooth function with fast decay at infinity. In the second subsection we
then extend the definition (by duality) to tempered distributions. We conclude
this section with the calculation of the Fourier transforms of some functions
which play important roles in the following chapters.

1.2.1 Fourier Transforms of Functions and the Schwartz Space

The Fourier transform is defined on L1(Rd) by

F f(ξ) = f̂(ξ) =
∫

Rd

e−i(x|ξ)f(x) dx, (1.17)

where (x|ξ) denotes the inner product on R
d. It is a continuous linear map

from L1(Rd) into L∞(Rd) because, obviously, |f̂(ξ)| ≤ ‖f ‖L1 . It is also clear
that for any function φ ∈ L1 and automorphism L on R

d, we have

F (φ ◦ L) =
1

| det L| φ̂ ◦ L−1. (1.18)
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We now introduce the Schwartz space S(Rd) (also denoted by S when no
confusion is possible), which will be the basic tool for extending the Fourier
transform to a very large class of distributions over R

d. Let us first introduce
the following notation. If α is a multi-index (i.e., an element of N

d), x an
element of R

d, and f a smooth function of R
d, then the length |α| of α is

defined by |α| def= α1 + · · · +αd. We also define ∂αf
def= ∂α1

1 · · · ∂αd

d f and xα def=
xα1 · · · xαd .

Definition 1.18. The Schwartz space S(Rd) is the set of smooth functions u
on R

d such that for any k ∈ N we have

‖u‖k,S
def
= sup

|α|≤k

x∈R
d

(1 + |x|)k |∂αu(x)| < ∞.

It is an easy exercise (left to the reader) to prove that, equipped with the
family of seminorms (‖ · ‖k,S )k∈N, the set S(Rd) is a Fréchet space and that
the space D(Rd) of smooth compactly supported functions on R

d is dense
in S(Rd).

The way the Fourier transform F acts on the space S is described by the
following theorem.

Theorem 1.19. The Fourier transform continuously maps S into S: For any
integer k, there exist a constant C and an integer N such that

∀φ ∈ S , ‖φ̂‖k,S ≤ C‖φ‖N,S .

Moreover, the Fourier transform F is an automorphism of S, the inverse of
which is (2π)−dF̌ , where F̌ denotes the application f 
−→

{
ξ 
→ (F f)(−ξ)

}
.

Proof. Let k ∈ N and α ∈ N
d with length k. Using Lebesgue’s theorem and

integration by parts, we get that, for any φ in S,

(i∂)αf̂(ξ) = F (xαφ)(ξ) and (iξ)αφ̂(ξ) = F (∂αφ)(ξ). (1.19)

From this, we deduce that
∣∣∣ξβ∂αφ̂(ξ)

∣∣∣ ≤
∣∣F (∂β(xαφ))(ξ)

∣∣
≤ ‖∂β(xαφ)‖L1

≤ cd‖(1 + |x|)d+1∂β(xαφ)‖L∞ .

Hence, by the definition of the seminorms, we have ‖φ̂‖k,S ≤ C‖φ‖k+d+1,S .

We now prove the inverse formula, namely, F −1 = (2π)−dF̌ . The proof
is based on the computation of Fourier transforms of Gaussian functions.
If d = 1, we have, thanks to (1.19),
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d

dξ

(
F (e−x2

)
)

(ξ) = F (−ixe−x2
)(ξ)

= F
( i

2
d

dx
e−x2
)
(ξ)

= − ξ

2
F (e−x2

)(ξ).

As F
(
e−x2
)

(0) =
∫

e−x2
dx = π

1
2 , we get that F

(
e−x2)

(ξ) = π
1
2 e− ξ2

4 .

From this and Fubini’s theorem, we can now deduce that if d is any positive

integer, then F
(
e− |x|2
)

(ξ) = π
d
2 e− |ξ|2

4 . Using (1.18) we then infer that for
any positive real number a,

∫
Rd

e−i(x|ξ)e−a|x|2 dx =
(

π

a

) d
2

e− |ξ|2
4a . (1.20)

Let φ be a function in S(Rd) and ε any positive real number. Fubini’s theo-
rem applied to the function (2π)−dei(x−y|ξ)e−ε|ξ|2φ(y), together with (1.20),
implies that

(2π)−d

∫
Rd

ei(x|ξ)e−ε|ξ|2 φ̂(ξ) dξ =
(

1
4πε

) d
2

(e− | · |2
4ε � φ)(x).

On the one hand, owing to Lebesgue’s dominated convergence theorem, the
left-hand side tends to (2π)−dF̌ φ̂. On the other hand, the right-hand side is
the convolution of φ with an approximation of the identity. Letting ε tend
to 0 thus completes the proof of the theorem. ��

1.2.2 Tempered Distributions and the Fourier Transform

Definition 1.20. A tempered distribution on R
d is any continuous linear

functional6 on S(Rd). The set of tempered distributions is denoted by S ′(Rd).
A sequence (un)n∈N of tempered distributions is said to converge to u

in S ′(Rd) if
∀φ ∈ S(Rd) , lim

n→∞
〈un, φ〉 = 〈u, φ〉.

Remark 1.21. The link with distributions on R
d is as follows: If T is a distri-

bution on R
d such that for some integer k and positive real C we have

∀ϕ ∈ D(Rd) , | 〈T, ϕ〉| ≤ C‖ϕ‖k,S , (1.21)

then, as D(Rd) is dense in S(Rd), the linear functional T may be uniquely
extended to a continuous linear functional. Moreover, if T belongs to S ′(Rd),
6 That is, u is a tempered distribution if there exist a constant C and an integer k

such that |〈u, φ〉| ≤ C‖φ‖k,S for all φ ∈ S(Rd).
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then the restriction of T to D(Rd) defines a distribution on R
d because, for

any positive R and any function ϕ in D(B(0, R)),

| 〈T, ϕ〉| ≤ C‖ϕ‖k,S ≤ C(1 + R)k sup
|α|≤k

‖∂αϕ‖L∞ .

Thus, the set of distributions T on R
d which satisfy (1.21) may be identified

with S ′(Rd).

Example 1.22. – Let us denote by L1
M the space of locally integrable func-

tions f on R
d such that for some integer N , the function (1 + |x|)−Nf(x)

is integrable. For any f ∈ L1
M, we can then define the tempered distribu-

tion Tf by the formula

〈Tf , φ〉 =
∫

Rd

f(x)φ(x) dx.

In other words, we identify the function f with Tf .
– Any finite Borel measure may be seen as a tempered distribution. Indeed,

we may take k = 0 in (1.21).
– Any compactly supported distribution may be identified with an element

of S ′.

Let us use L. Schwartz’s idea of duality to define operators on the space of
tempered distributions. It is based on the following proposition.

Proposition 1.23. Let A be a linear continuous map from S into S.7 The
formula

〈tAu, φ〉 def
= 〈u, Aφ〉

then defines a tempered distribution. Moreover, tA is linear and continuous,
in the sense that if (un)n∈N is a sequence of distributions which converges to u
in S ′(Rd), then (tAun)n∈N converges to tAu.

Proof. By the definition of a tempered distribution, an integer k and a con-
stant C exist such that

∀θ ∈ S , | 〈u, θ〉| ≤ C‖θ‖k,S . (1.22)

The linear map A is assumed to be continuous, hence there exist a constant C ′

and an integer N such that

∀φ ∈ S , ‖Aφ‖k,S ≤ C ′ ‖φ‖N,S .

Applying (1.22) with θ = Aφ and the above inequality, we then get that tAu
is a tempered distribution. By the definition of the convergence of a sequence
of tempered distributions, we then write
7 That is, for any integer k, there exist a constant C and an integer N such that

‖Aφ‖k,S ≤ C‖φ‖N,S for all φ ∈ S(Rd).
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〈tAun, φ〉 = 〈un, Aφ〉 −→ 〈u, Aφ〉 = 〈tAu, φ〉.

The proposition is thus proved. ��

We now list a few important examples to which Proposition 1.23 applies:

– We may take for A any operator (−∂)α or xα 
→ xαu with α ∈ N
d . Indeed,

we have, for all φ in S,

‖(−∂)αφ‖k,S ≤ ‖φ‖k+|α|,S and ‖xαφ‖k,S ≤ ‖φ‖k+|α|,S .

– Let L be a linear automorphism of R
d and define

ALφ
def=

1
det L

φ ◦ L−1.

It is clear that AL satisfies the hypothesis of Proposition 1.23.
– If we denote by ΘM the space of smooth functions on R

d such that, for
any integer k, an integer N exists such that

sup
x∈Rd

(1 + |x|k)−N sup
|α|≤k

|∂αf(x)| < ∞,

then the operator Af of multiplication by f satisfies the hypothesis of the
proposition.

– If θ is a function of S, it is left as an exercise for the reader to check that,
for any φ ∈ S,

‖Aθφ‖k,S ≤ Ck ‖θ‖k+d+1,S ‖φ‖k,S with Aθφ
def= θ̌ � φ.

– Theorem 1.19 guarantees, in particular, that the Fourier transform F sat-
isfies the hypothesis of Proposition 1.23.

For all the above operators, we can apply Proposition 1.23. We now check
briefly that this is a generalization of classical operations on functions. If u is
an L1

M function which is also C1, then we have

∀φ ∈ S , 〈t(−∂j)u, φ〉 = 〈u, −∂jφ〉 =
∫

Rd

u(x)(−∂jφ)(x) dx.

An integration by parts ensures that t(−∂j)u = ∂ju, in the classical sense.
Next, we claim that tALf(y) = f(Ly) for all f ∈ L1

M. Indeed, a straight-
forward change of variables ensures that for all φ ∈ S we have

〈tALf, φ〉 =
1

| det L|

∫
Rd

f(x)φ(L−1x) dx =
∫

Rd

f(Ly)φ(y) dy.

In the particular case where Lx = λx, we denote tALf by fλ, and when λ =
−1, the distribution tALf is denoted by f̌ . In passing, let us recall that a
tempered distribution f is said to be homogeneous of degree m if
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fλ = λmf for all λ > 0.

It is obvious that the operator Af generalizes the classical multiplication of
functions by f.

Finally, for any L1 function f, we have, according to Fubini’s theorem,

〈tAθf, φ〉 = 〈f, θ̌ � φ〉

=
∫

Rd × Rd

f(x)θ(y − x)φ(y) dy dx

= 〈f � θ, φ〉.

Thus, the notion of convolution between a tempered distribution and a func-
tion of S coincides with the classical definition when the tempered distribution
is an L1 function.

In order to extend the definition of the Fourier transform to tempered
distributions, we consider an L1 function f . By Fubini’s theorem and by def-
inition of the Fourier transform on L1, we have, for all φ ∈ S,

〈tF f, φ〉 =
∫

Rd

f(x)φ̂(x) dx

=
∫

Rd × Rd

f(x)e−i(x|ξ)φ(ξ) dx dξ

= 〈f̂ , φ〉.

In other words, the operator tF restricted to L1 functions coincides with the
Fourier transform of functions. Thus, it will also be denoted by F in all that
follows.

Proposition 1.24. For any (u, θ) in S ′ × S, λ ∈ R \{0} and (a, ω) ∈ R
d × R

d,
we have8

(i∂)αû = F (xαu) , (iξ)αû = F (∂αu) , e−i(a|ξ)û = F (τaf) ,

τω f̂ = F (ei(x|ω)f) , λ−df̂(λ−1ξ) = F (f(λx)), and F (u � θ) = θ̂ û.

Proof. The first five equalities readily follow from (1.19) or direct computation
once we observe that t(AB) = tBtA. In order to prove the last identity,
it suffices to use the fact that, by definition of the Fourier transform and
convolution, we have

〈F (u � θ), φ〉 = 〈u � θ, φ̂〉 = 〈u, θ̌ � φ̂〉.

Fubini’s theorem implies that
8 Below, the notation τa stands for the translation operator τa : f 	→ f(· − a).
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(θ̌ � φ̂)(ξ) =
∫

θ̌(ξ − η)
(∫

e−i(x|η)φ(x) dx

)
dη

=
∫

e−i(x|ξ)
(∫

e−i(x|η−ξ)θ(η − ξ)dη

)
φ(x) dx

= F (θ̂φ).

We infer that 〈F (u � θ), φ〉 = 〈u, F (θ̂φ)〉 = 〈û, θ̂φ〉 = 〈θ̂û, φ〉. The proposition
is thus proved. ��

Theorem 1.25 (Fourier–Plancherel formula). The Fourier transform is
an automorphism of S ′ with inverse (2π)−dF̌ . Moreover, F is also an au-
tomorphism of L2(Rd) which satisfies, for any function f in L2, ‖f̂ ‖L2 =
(2π)

d
2 ‖f ‖L2 .

Proof. On the space S, we have F F̌ = F̌ F = (2π)d Id. Arguing by transposi-
tion, we discover that these two identities remain valid on S ′. Next, using the
fact that for any function φ in S we have F φ = F̌ (φ) and taking advantage
of the inverse Fourier formula (see Theorem 1.19), we get, for any function φ
in S,

‖F φ‖2
L2 = 〈F φ, F φ〉 = 〈φ, F F̌ φ〉 = (2π)d‖φ‖2

L2 .

Combining the Riesz representation theorem with the density of S in L2

enables us to complete the proof. ��

Finally, let us define a subspace of S ′(Rd) which will play an important role
in the following chapters.

Definition 1.26. We denote by S ′
h(Rd) the space of tempered distributions u

such that9

lim
λ→∞

‖θ(λD)u‖L∞ = 0 for any θ in D(Rd).

Remark 1.27. It is clear that whether or not a tempered distribution u belongs
to S ′

h depends only on low frequencies. As a matter of fact, it is not hard to
check that u belongs to S ′

h(Rd) if and only if one can find some smooth
compactly supported function θ satisfying the above equality and such that
θ(0) �= 0.

Examples

– If a tempered distribution u is such that its Fourier transform û is locally
integrable near 0, then u belongs to S ′

h. In particular, the space E ′ of
compactly supported distributions is included in S ′

h.
– If u is a tempered distribution such that θ(D)u ∈ Lp for some p ∈ [1, ∞[

and some function θ in D(Rd) with θ(0) �= 0, then u belongs to S ′
h.

9 We agree that if f is a measurable function on R
d with at most polynomial growth

at infinity, then the operator f(D) is defined by f(D)a
def
= F −1(f F a).
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– A nonzero polynomial P does not belong to S ′
h because for any θ ∈ D(Rd)

with value 1 at 0 and any λ > 0, we may write θ(λD)P = P . However,
if η is in R

d \{0}, then ei(·|η)P belongs to S ′
h because the support of its

Fourier transform is {η}. We note that this example implies that S ′
h is

not a closed subspace of S ′ for the topology of weak-� convergence, a fact
which must be kept in mind in the applications.

1.2.3 A Few Calculations of Fourier Transforms

This subsection is devoted to the computation of the Fourier transforms of
some functions which are definitely not in L1.

Proposition 1.28. Let z be a nonzero complex number with nonnegative real
part. Then,

F
(
e−z|·|2
)
(ξ) =
(π

z

) d
2
e− |ξ|2

4z

with z− d
2

def
= |z| − d

2 e−i d
2 θ if z = |z|eiθ with θ ∈ [−π/2, π/2].

Proof. Let us remark that for any ξ in R
d, the functions

z 
−→
∫

Rd

e−i(x|ξ)e−z|x|2 dx and z 
−→
(π

z

) d
2
e− |ξ|2

4z

are holomorphic on the domain D of complex numbers with positive real part.
Formula (1.20) states that these two functions coincide on the intersection of
the real line with D. Thus, they also coincide on the whole domain D. Now,
let (zn)n∈N be a sequence of elements of D which converges to it for t �= 0. For
any function φ in S, we have, by virtue of Lebesgue’s dominated convergence
theorem,

lim
n→∞

∫
Rd

e−zn |x|2φ(x) dx =
∫

Rd

e−it|x|2φ(x) dx and

lim
n→∞

∫
Rd

e− |ξ|2
4zn φ(ξ) dξ =

∫
Rd

e− |ξ|2
4it φ(ξ) dξ.

As we have

F
(
e−zn |·|2

)
=
( π

zn

) d
2
e− |ξ|2

4zn ,

passing to the limit in S ′(Rd) when n tends to ∞ gives the result, thanks to
Proposition 1.23. ��

Proposition 1.29. If σ ∈ ]0, d[, then F (| · | −σ) = cd,σ | · |σ−d for some con-
stant cd,σ depending only on d and s.



24 1 Basic Analysis

Proof. We only treat the case d ≥ 2. The (easier) case d = 1 is left to the
reader. Defining

R
def=

d∑
j=1

xj∂j and Zj,k
def= xj∂k − xk∂j ,

we have R(| · | −σ) = −σ| · | −σ and Zj,k(| · | −σ) = 0. Then, using Proposition 1.24,
we infer that Zj,k F | · | −σ = 0 and

RF | · | −σ =
d∑

j=1

∂j

(
ξj F | · | −σ

)
− dF | · | −σ = (σ − d)F | · | −σ.

By restricting to R
d \ {0}, we then see that

R
(

| · |d−σ F | · | −σ
)

= Zj,k

(
| · |d−σ F | · | −σ

)
= 0 in D ′(Rd \{0}).

We note that for any k,

|x|2∂k =
d∑

j=1

x2
j∂k = xkR +

d∑
j=1

xjZj,k.

Therefore, ∇
(

| · |d−σ F | · | −σ
)

is supported in R
d \{0}. Because d ≥ 2, we

deduce that there exists some constant cd,σ such that | · |d−σ F | · | −σ − cd,σ is
also supported in R

d \ {0} and, owing to σ > 0, so is F | · | −σ − cd,σ | · |σ−d. The
conclusion then follows easily from the following lemma. ��
Lemma 1.30. Let T be a distribution on R

d supported in {0} and such
that RT = sT for some real number s.

– If s is not an integer less than or equal to −d, then T = 0.
– If s is an integer less than or equal to −d, then there exist some real

numbers aα such that

T =
∑

|α|=−s−d

aα∂αδ0.

Proof. We first observe that a distribution supported in {0} is of the form T =∑
|α|≤N

aα∂αδ0. We thus have

RT =
d∑

j=1

∑
|α|≤N

aαxj∂j∂
αδ0

= −
∑

|α|≤N

(d + |α|)aα∂αδ0.

As (∂αδ0)α∈Nd is a family of linearly independent distributions, the fact
that RT = sT implies that (d+|α|)aα = −saα. The lemma is thus proved. ��
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1.3 Homogeneous Sobolev Spaces

This section is concerned with homogeneous Sobolev spaces. We first establish
classical properties for these spaces, then we focus on embedding in Lebesgue,
BMO and Hölder spaces.

1.3.1 Definition and Basic Properties

Definition 1.31. Let s be in R. The homogeneous Sobolev space Ḣs(Rd) (also
denoted by Ḣs) is the space of tempered distributions u over R

d, the Fourier
transform of which belongs to L1

loc(R
d) and satisfies

‖u‖2
Ḣs

def
=
∫

Rd

|ξ|2s|û(ξ)|2 dξ < ∞.

We note that the spaces Ḣs and Ḣs′
cannot be compared for the inclusion.

Nevertheless, we have the following proposition.

Proposition 1.32. Let s0 ≤ s ≤ s1. Then, Ḣs0 ∩ Ḣs1 is included in Ḣs,
and we have

‖u‖Ḣs ≤ ‖u‖1−θ

Ḣs0
‖u‖θ

Ḣs1
with s = (1 − θ)s0 + θs1.

Proof. It suffices to apply Hölder’s inequality with p = 1/(1 − θ) and q = 1/θ
to the functions ξ 
→ |ξ|2(1−θ)s0 , ξ 
→ |ξ|2θs1 and the Borel measure |û(ξ)|2 dξ.

��

Using the Fourier–Plancherel formula, we observe that L2 = Ḣ0 and that
if s is a positive integer, then Ḣs is the subset of tempered distributions with
locally integrable Fourier transforms and such that ∂αu belongs to L2 for all α
in N

d of length s.
In the case where s is a negative integer, the Sobolev space Ḣs is described

by the following proposition.

Proposition 1.33. Let k be a positive integer. The space Ḣ−k(Rd) consists of
distributions which are the sums of derivatives of order k of L2(Rd) functions.

Proof. Let u be in Ḣ−k(Rd). Using the fact that for some integer constants
Aα, we have

|ξ|2k =
∑

1≤j1,...,jk ≤d

ξ2
j1 · · · ξ2

jk
=
∑

|α|=k

Aα(iξ)α(−iξ)α, (1.23)

we get that

û(ξ) =
∑

|α|=k

(iξ)αvα(ξ) with vα(ξ) def= Aα
(−iξ)α

|ξ|2k
û(ξ).
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As u is in Ḣ−k, the functions vα belong to L2. Defining uα
def= F −1vα, we

then obtain
u =
∑

|α|=k

∂αuα with uα ∈ L2(Rd).

This concludes the proof of the proposition. ��

Proposition 1.34. Ḣs(Rd) is a Hilbert space if and only if s <
d

2
·

Proof. We first assume that s < d/2. Let (un)n∈N be a Cauchy sequence
in Ḣs(Rd). Then, (ûn)n∈N is a Cauchy sequence in the space L2(Rd; |ξ|2s dξ).
Because |ξ|2s dξ is a measure on R

d, there exists a function f in L2(Rd; |ξ|2s dξ)
such that (ûn)n∈N converges to f in L2(Rd; |ξ|2s dξ). Because s < d/2, we have
∫

B(0,1)

|f(ξ)| dξ ≤
(∫

Rd

|ξ|2s|f(ξ)|2 dξ
) 1

2
(∫

B(0,1)

|ξ| −2s dξ
) 1

2
< ∞.

This ensures that F −1(1B(0,1)f) is a bounded function. Now, 1cB(0,1)f clearly
belongs to L2(Rd; (1 + |ξ|2)s dξ) and thus to S ′(Rd), so f is a tempered dis-

tribution. Define u
def= F −1f . It is then obvious that u belongs to Ḣs and

that lim
n→∞

un = u in the space Ḣs.

If s ≥ d/2, observe that the function

N : u 
−→ ‖û‖L1(B(0,1)) + ‖u‖Ḣs

is a norm over Ḣs(Rd) and that (Ḣs(Rd), N) is a Banach space.
Now, if Ḣs(Rd) endowed with ‖ · ‖Ḣs were also complete, then, according to

Banach’s theorem, there would exist a constant C such that N(u) ≤ C‖u‖Ḣs .
Of course, this would imply that

‖û‖L1(B(0,1)) ≤ C‖u‖Ḣs . (1.24)

This inequality is violated by the following example. Let C be an annulus
included in the unit ball B(0, 1) and such that C ∩ 2C = ∅. Define

Σn
def= F −1

n∑
q=1

2q(s+ d
2 )

q
12−q C .

We have

‖Σ̂n‖L1(B(0,1)) = C

n∑
q=1

2q(s− d
2 )

q
and ‖Σn‖2

Ḣs ≤ C

n∑
q=1

1
q2

≤ C1.

As s ≥ d/2, we deduce that ‖Σ̂n‖L1(B(0,1)) tends to infinity when n goes to
infinity. Hence, the inequality (1.24) is false. ��
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Proposition 1.35. If s < d/2, then the space S0(Rd) of functions of S(Rd),
the Fourier transform of which vanishes near the origin, is dense in Ḣs.

Proof. Consider u in Ḣs such that

∀φ ∈ S0(Rd) , (u|φ)Hs =
∫

Rd

|ξ|2sû(ξ)φ̂(ξ) dξ = 0.

This implies that the L1
loc function û vanishes on R

d \{0}. Thus, û = 0. Thanks
to Theorem 1.25, we infer that u = 0. As we are considering the case where Ḣs

is a Hilbert space, we deduce that S0(Rd) is dense in Ḣs. ��

The following proposition explains how the space Ḣ−s can be considered
as the dual space of Ḣs.

Proposition 1.36. If |s| < d/2, then the bilinear functional

B :

⎧⎨
⎩

S0 × S0 → C

(φ, ϕ) 
→
∫

Rd

φ(x)ϕ(x) dx

can be extended to a continuous bilinear functional on Ḣ−s × Ḣs. Moreover,
if L is a continuous linear functional on Ḣs, then a unique tempered distri-
bution u exists in Ḣ−s such that

∀φ ∈ Ḣs , 〈L, φ〉 = B(u, φ) and ‖L‖(Ḣs)′ = ‖u‖Ḣ−s .

Proof. Let φ and ϕ be in S0. We can write∣∣∣∣
∫

Rd

φ(x)ϕ(x) dx

∣∣∣∣ =
∣∣∣∣
∫

Rd

(F −1φ)(ξ)(F ϕ)(ξ) dξ

∣∣∣∣
= (2π)−d

∣∣∣∣
∫

Rd

|ξ| −sφ̂(−ξ)|ξ|sϕ̂(ξ) dξ

∣∣∣∣
≤ (2π)−d‖φ‖Ḣ−s ‖ϕ‖Ḣs .

As S0 is dense in Ḣσ when |σ| < d/2, we can extend B to Ḣ−s × Ḣs. Of
course, if (u, φ) ∈ Ḣ−s × S, then B(u, φ) = 〈u, φ〉.

Let L be a linear functional on Ḣs. Consider the linear functional Ls

defined by

Ls :
{

L2(Rd) −→ C

f 
−→ 〈L, F −1(| · | −sf)〉.
It is obvious that

sup
‖f ‖L2=1

| 〈Ls, f 〉| = sup
‖f ‖L2=1

| 〈L, F −1(| · | −sf)〉 |

= sup
‖φ‖Ḣs=1

| 〈L, φ〉 |

= ‖L‖(Ḣs)′ .
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The Riesz representation theorem implies that a function g exists in L2 such
that

∀h ∈ L2 , 〈Ls, h〉 =
∫

Rd

g(ξ)h(ξ) dξ.

We obviously have | · |sg ∈ L2(Rd; |ξ| −2s dξ). Now, as |s| < d/2, this implies

that | · |sg is in S ′(Rd) and thus we can define u
def= F (| · |sg). For any φ

in S(Rd), we then have

〈u, φ〉 =
∫

Rd

g(ξ)|ξ|sφ̂(ξ) dξ = 〈Ls, | · |sφ̂〉.

By the definition of Ls, we have 〈u, φ〉 = 〈L, φ〉 and the proposition is thus
proved. ��

For s in the interval ]0, 1[, the space Ḣs can be described in terms of finite
differences.

Proposition 1.37. Let s be a real number in the interval ]0, 1[ and u be in
Ḣs(Rd). Then,

u ∈ L2
loc(R

d) and
∫

Rd × Rd

|u(x + y) − u(x)|2
|y|d+2s

dx dy < ∞.

Moreover, a constant Cs exists such that for any function u in Ḣs(Rd), we
have

‖u‖2
Ḣs = Cs

∫
Rd × Rd

|u(x + y) − u(x)|2
|y|d+2s

dx dy.

Proof. In order to see that u is in L2
loc(R

d), it suffices to write

u = F −1
(
1B(0,1)û

)
+ F −1

(
1cB(0,1)û

)
.

The rest of the proof relies on the Fourier–Plancherel formula (see Theo-
rem 1.25), which implies that

∫
Rd

|u(x + y) − u(x)|2
|y|d+2s

dx = (2π)−d

∫
Rd

|ei(y|ξ) − 1|2
|y|d+2s

|û(ξ)|2 dξ.

Therefore,
∫

Rd × Rd

|u(x + y) − u(x)|2
|y|d+2s

dx dy = (2π)−d

∫
Rd

F (ξ)|û(ξ)|2 dξ

with

F (ξ) def=
∫

Rd

|ei(y|ξ) − 1|2
|y|2s

dy

|y|d ·

It may be easily checked that F is a radial and homogeneous function of
degree 2s. This implies that the function F (ξ) is proportional to |ξ|2s and
thus completes the proof. ��
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1.3.2 Sobolev Embedding in Lebesgue Spaces

In this subsection, we investigate the embedding of Ḣs(Rd) spaces in Lp(Rd)
spaces. We begin with a classical result.

Theorem 1.38. If s is in [0, d/2[, then the space Ḣs(Rd) is continuously em-
bedded in L

2d
d−2s (Rd).

Proof. First, let us note that the critical index p = 2d/(d − 2s) may be found
by using a scaling argument. Indeed, if v is a function on R

d and vλ stands

for the function vλ(x) def= v(λx), then we have

‖vλ‖Lp = λ− d
p ‖v‖Lp and ‖vλ‖Ḣs = λ− d

2 +s‖v‖Ḣs .

If an inequality of the type ‖v‖Lp ≤ C‖v‖Ḣs is true for any smooth function v,
then it is also true for vλ for any λ. Hence, we must have p = 2d/(d − 2s).

Consider a function φ in S0(Rd). Defining φ̂s(ξ)
def= |ξ|sφ̂(ξ) and using

Propositions 1.24 and 1.29, we get that

φ =
(2π)−dcd,s

| · |d−s
� φs with ‖φs‖L2 = (2π)− d

2 ‖φ‖Ḣs .

Theorem 1.7 thus implies that ‖φ‖Lp ≤ C‖φs‖L2 . Now, according to Propo-
sition 1.35, the space S0(Rd) is dense in Ḣs. The proof is therefore complete.

��

Corollary 1.39. If p belongs to ]1, 2], then Lp(Rd) embeds continuously in

Ḣs(Rd) with s =
d

2
− d

p
·

Proof. We use the duality between Ḣs and Ḣ−s described by Proposition 1.36.
Write

‖a‖Ḣs = sup
‖ϕ‖Ḣ−s ≤1

〈a, ϕ〉.

As s = d

(
1
2

− 1
p

)
, by Theorem 1.38 we have ‖ϕ‖Lp′ ≤ C‖ϕ‖Ḣ−s and thus

‖a‖Ḣs ≤ C sup
‖ϕ‖

Lp′ ≤1

〈a, ϕ〉 ≤ C‖a‖Lp .

The corollary is thus proved. ��

According to Proposition 1.24, the Fourier transform changes dilation into
reciprocal dilation and translation into multiplication by a character ei(x|ω)

(and vice versa). Obviously, the inequality

‖u‖Lp(Rd) ≤ C‖u‖Ḣs(Rd) with p = 2d/(d − 2s)
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provided by Theorem 1.38 is invariant under translation and dilation.
We claim, however, that it is not invariant under multiplication by a char-

acter. Indeed, consider a function φ in S(Rd) such that φ̂ belongs to D(Rd).
For all positive ε, define the function

φε(x) = ei
x1
ε φ(x). (1.25)

By the definition of ‖ · ‖Ḣs , we have

‖φε‖2
Ḣs =
∫

Rd

|ξ|2s
∣∣∣φ̂
(
ξ − e1

ε

)∣∣∣2 dξ

=
∫

Rd

∣∣∣ξ +
e1

ε

∣∣∣2s

|φ̂(ξ)|2 dξ with e1
def= (1, 0, . . . , 0).

Hence, ‖φε‖Ḣs is equivalent to ε−s when ε tends to 0, while ‖φε‖Lp does not
depend on ε.

In what follows, we want to improve the estimate of Theorem 1.38 so that
it becomes also invariant if u is multiplied by any character ei(x|ω). In fact, we
shall construct a family of Banach spaces Es, the norm of which is invariant
under translation, satisfying

‖a(λ·)‖Es ∼ λs− d
2 ‖a‖Es , f ‖a(λ·)‖Es ≤ Cs,d‖a‖Ḣs ,

and, for some real number β ∈ ]0, 1[,

‖a‖Lp ≤ Cs,d‖a‖1−β

Ḣs
‖a‖β

Es
.

In order to do this, we introduce the following definition.

Definition 1.40. Let θ be a function in S(Rd) such that θ̂ is compactly sup-
ported, has value 1 near 0, and satisfies 0 ≤ θ̂ ≤ 1. For u in S ′(Rd) and σ > 0,
we set

‖u‖Ḃ−σ

def
= sup

A>0
Ad−σ ‖θ(A·) � u‖L∞ .

It is left to the reader to check that the space Ḃ−σ of tempered distributions u
such that ‖u‖Ḃ−σ is finite is a Banach space. It is also clear that changing
the function θ gives the same space with the equivalent norm. These spaces
come up in the next chapter in a more general context. We shall see that Ḃ−σ

coincides with the homogeneous Besov space Ḃ−σ
∞,∞.

For the time being, we will compare Ḃ−σ with Sobolev spaces.

Proposition 1.41. For any s less than d/2, the space Ḣs is continuously
embedded in Ḃs− d

2 and there exists a constant C, depending only on Supp θ̂
and d, such that

‖u‖
Ḃs− d

2
≤ C(

d
2 − s)

1
2

‖u‖Ḣs for all u ∈ Ḣs.
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Proof. As û is locally in L1, the function θ̂(A−1·)û is in L1. The inverse Fourier
theorem implies that

‖Adθ(A·) � u‖L∞ ≤ (2π)−d‖θ̂(A−1·)û‖L1

≤ (2π)−d

∫
Rd

θ̂(A−1ξ)|ξ| −s|ξ|s|û(ξ)| dξ.

Using the fact that θ̂ is compactly supported, the Cauchy–Schwarz inequality
implies that

‖Adθ(A·) � u‖L∞ ≤ C(
d
2 − s)

1
2
A

d
2 −s‖u‖Ḣs

and the proposition is thus proved. ��

The difference between the Ḣs norm the Ḃs− d
2 norm is emphasized by the

following proposition.

Proposition 1.42. Let σ ∈ ]0, d] and let (φε)ε>0 be defined according
to (1.25). There then exists a constant C such that ‖φε‖Ḃ−σ ≤ Cεσ for all
ε > 0.

Proof. By Hölder’s inequality, we have

Ad‖θ(A·) � φε‖L∞ ≤ ‖θ‖L1 ‖φ‖L∞ .

From this we deduce that if Aε ≥ 1, then we have

Ad−σ ‖θ(A·) � φε‖L∞ ≤ εσ ‖θ‖L1 ‖φ‖L∞ . (1.26)

If Aε ≤ 1, then we perform integration by parts. More precisely, using the
fact that

(−iε∂1)dei
x1
ε = ei

x1
ε

and the Leibniz formula, we get

Ad(θ(A·) � φε)(x) = (iAε)d

∫
Rd

∂d
y1

(θ(A(x − y))φ(y)) ei
y1
ε dy

= (iAε)d
∑
k≤d

(
d

k

)
Ak((−∂1)kθ)(A·) � (ei

y1
ε ∂d−k

1 φ)(x).

Using Hölder’s inequality, we get that

Ak
∥∥∥((−∂1)kθ)(A·) � (ei

y1
ε ∂d−k

1 φ)
∥∥∥

L∞
≤ ‖∂k

1 θ‖
L

d
k

‖∂d−k
1 φ‖

L( d
k

)′ .

Thus, we get Ad‖θ(A·) � φε‖L∞ ≤ C(Aε)d. As we are considering the case
where Aε ≤ 1, we get, for any σ ≤ d,

Ad‖θ(A·) � φε‖L∞ ≤ C(Aε)σ.

Together with (1.26), this concludes the proof of the proposition. ��
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We can now state the so-called refined Sobolev inequalities.

Theorem 1.43. Let s be in ]0, d/2[. There exists a constant C, depending
only on d and θ̂, such that

‖u‖Lp ≤ C

(p − 2)
1
p

‖u‖1− 2
p

Ḃs− d
2

‖u‖
2
p

Ḣs
with p =

2d

d − 2s
·

Proof. Without loss of generality, we can assume that ‖u‖
Ḃs− d

2
= 1. As will

be done quite often in this book, we shall decompose the function into low
and high frequencies. More precisely, we write

u = u�,A + uh,A with u�,A = F −1(θ̂(A−1·)û), (1.27)

where θ is the function from Definition 1.40. The triangle inequality implies
that (

|u| > λ
)

⊂
(

|u�,A| > λ/2
)

∪
(

|uh,A| > λ/2
)

·

By the definition of ‖ · ‖
Ḃs− d

2
we have ‖u�,A‖L∞ ≤ A

d
2 −s. From this we deduce

that

A = Aλ
def=
(λ

2

) p
d

=⇒ μ
(

|u�,A| > λ/2
)

= 0.

From the identity (1.8) we deduce that

‖u‖p
Lp ≤ p

∫ ∞

0

λp−1μ
(

|uh,Aλ
| > λ/2

)
dλ.

Using the fact that

μ
(

|uh,Aλ
| > λ/2

)
≤ 4

‖uh,Aλ
‖2

L2

λ2
,

we get

‖u‖p
Lp ≤ 4p

∫ ∞

0

λp−3‖uh,Aλ
‖2

L2 dλ.

Because the Fourier transform is (up to a constant) an isometry on L2(Rd)
and the function θ̂ has value 1 near 0, we thus get, for some c > 0 depending
only on θ̂,

‖u‖p
Lp ≤ 4p (2π)−d

∫ ∞

0

λp−3

∫
(|ξ|≥cAλ)

|û(ξ)|2 dξ dλ. (1.28)

Now, by definition of Aλ, we have

|ξ| ≥ cAλ ⇐⇒ λ ≤ Cξ
def= 2
( |ξ|

c

) d
p ·

Fubini’s theorem thus implies that
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‖u‖p
Lp ≤ 4p (2π)−d

∫
Rd

(∫ Cξ

0

λp−3dλ

)
|û(ξ)|2 dξ

≤ (2π)−d p2p

p − 2

∫
Rd

( |ξ|
c

) d(p−2)
p |û(ξ)|2 dξ.

As s = d
(1

2
− 1

p

)
, the theorem is proved. ��

Remark 1.44. Combining Proposition 1.41 and Theorem 1.43, we see that if
0 < s < d/2, then we have, for all u ∈ Ḣs,

‖u‖Lp ≤ Cd
p√

p − 2
‖u‖Ḣs with p =

2d

d − 2s
· (1.29)

Of course, since we have ‖u‖L2 = (2π)− d
2 ‖u‖Ḣ0 , we do not expect the constant

to blow up when p goes to 2. In fact, combining this latter inequality with the
inequality (1.29) (with, say, p = 4) and resorting to a complex interpolation
argument, we get

‖u‖Lp ≤ Cd
√

p ‖u‖Ḣs with p =
2d

d − 2s
· (1.30)

By taking advantage of Proposition 1.42 and the computations that fol-
low (1.25), it is not difficult to check that the inequality stated in Theorem 1.43
is indeed invariant (up to an irrelevant constant) under multiplication by a
character. We now want to consider whether our refined inequalities are sharp.
Obviously, according to Proposition 1.42, we have

lim
ε→0

‖φε‖Lp

‖φε‖β

Ḃs− d
2

‖φε‖1−β

Ḣs

= +∞ for any β > 1 − 2/p.

Therefore, the exponent 1 − 2/p cannot be improved. We claim that even
under a sign assumption, the above refined Sobolev inequalities are sharp.
More precisely, we shall exhibit a sequence (fn)n∈N of nonnegative functions
such that

lim
n→∞

‖fn‖
L

2d
d−2s

‖fn‖β

Ḃs− d
2

‖fn‖1−β

Ḣs

= +∞ for any β > 1 − 2/p. (1.31)

Constructing such a family may be done by means of an iterative process. At
each step of the process, we use a linear transform T (defined below) which
duplicates any function f into 2d copies of the same function, at the scale 1/4.

Definition 1.45. Define Q
def
= [−1/2, 1/2]d and let xJ = 3/8 J for any ele-

ment J of {−1, 1}d. We then define the transform T by
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T :

⎧⎪⎨
⎪⎩

D(Q) −→ D(Q)

f 
−→ Tf
def
= 2d

∑
J ∈ { −1,1}d

TJf with TJf(x)
def
= f(4(x − xJ )).

For B ⊂ Q, we define TJ (B)
def
= xJ + 1

4B, T (B)
def
=
⋃

J ∈ { −1,1}d

TJ (B) and

denote TJ(Q) by QJ .

Using the fact that for any f ∈ D(Q), the support of TJf is included in QJ

and the fact that if J �= J ′, then QJ ∩ QJ ′ = ∅, we immediately get

‖Tf ‖Lp = 2d(1− 1
p )‖f ‖Lp . (1.32)

For the sake of simplicity we restrict our attention here to the case where s is
an integer.10 Then, observing that

∂j(Tf)(x) = 2d
∑

J ∈ { −1,1}d

4(∂jf)(4(x − xJ )) = 4T (∂jf)(x)

and using (1.32), we get

‖Tf ‖Ḣs = 2
d
2 +2s‖f ‖Ḣs . (1.33)

The estimate of Tf in terms of the Ḃ−σ norm is described by the following
proposition.

Proposition 1.46. For σ ∈ ]0, d], a constant C exists such that

‖Tf ‖Ḃ−σ ≤ 2d−2σ ‖f ‖Ḃ−σ + C‖f ‖L1 .

Proof. Since, thanks to (1.32), we have

λd−σ ‖θ(λ·) � (Tf)‖L∞ ≤ λd−σ ‖θ‖L∞ ‖Tf ‖L1 ≤ λd−σ ‖θ‖L∞ ‖f ‖L1 ,

we get

sup
λ≤1

λ−σ ‖λdθ(λ·) � (Tf)‖L∞ ≤ ‖θ‖L∞ ‖f ‖L1 . (1.34)

The case where λ is large (which corresponds to high frequencies) is more
intricate. We first estimate λd(θ(λ·)�(Tf))(x) when x is not too close to T (Q),

namely, x ∈ Q̃c def= {x ∈ Q / d(x, T (Q)) ≥ 1/8}. As the function θ belongs
to S(Rd), we have, for any positive integer N ,

∣∣λd(θ(λ·) � (Tf))(x)
∣∣ ≤ λd‖θ‖N,S

∫
Rd

1
λN |x − y|N |Tf(y)| dy

≤ C‖θ‖N,S λd−N ‖f ‖L1 .

10 The general case follows by interpolation.
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This gives, for sufficiently large N ,

sup
λ≥1

λ−σ ‖λdθ(λ·) � (Tf)‖L∞(Q̃c) ≤ C‖θ‖N,S ‖f ‖L1 . (1.35)

We now investigate the case where x ∈ Q̃. By definition, an element Jx

of {−1, 1}d and a point y of QJx exist such that d(x, y) ≤ 1/8. For any J ′ �= Jx,
we have

d(x, QJ ′ ) ≥ d(y, QJ ′ ) − d(x, y) ≥ 1
2

− 1
8

≥ 3
8

·

We now write∣∣λdθ(λ·) � (Tf)
∣∣ (x) ≤ 2d

∣∣λdθ(λ·) � (TJxf)
∣∣ (x)

+
∑

J ′ ∈ { −1,1}d \ {Jx }

2d
∣∣λdθ(λ·) � (TJ ′ f)

∣∣ (x).

Again using the fact that the function θ belongs to S(Rd), we have, for any
positive integer N and any J ′ �= Jx,

∣∣λd(θ(λ·) � (TJ ′ f))(x)
∣∣ ≤ ‖θ‖N,S λd

∫
Rd

1
λN |x − y|N |TJ ′ f(y)| dy

≤ C‖θ‖N,S λd−N ‖TJ ′ f ‖L1 .

Using (1.32), we infer that, for λ ≥ 1 and N sufficiently large,∑
J ′ ∈ { −1,1}d \ {Jx }

∣∣λdθ(λ·) � (TJ ′ f)
∣∣ (x) ≤ C‖θ‖N,S

∑
J ′ ∈ { −1,1}d \ {Jx }

‖TJ ′ f ‖L1

≤ C‖θ‖N,S ‖f ‖L1 . (1.36)

For any J , we have, by definition of TJ ,

sup
λ>0

λ−σ ‖λdθ(λ·) � (TJf)‖L∞ ≤ sup
λ>0

λ−σ
∥∥∥
(λ

4

)d
θ
(λ

4
·
)

� f
∥∥∥

L∞
≤ 2−2σ ‖f ‖Ḃ−σ .

Together with (1.34), (1.35), and (1.36), this gives

sup
λ≥1

λ−σ ‖λdθ(λ·) � (Tf)‖L∞ ≤ 2d−2σ ‖f ‖Ḃ−σ + C‖f ‖L1 .

This completes the proof. ��
We can now construct a sequence (fn)n∈N of functions satisfying (1.31). For
that purpose, we consider a smooth nonnegative function f0, supported in Q,
and define fn = Tnf0. Iterating the inequality from Proposition 1.46 yields

‖fn‖Ḃ−σ ≤ 2n(d−2σ)‖f0‖Ḃ−σ + C
(n−1∑

m=0

2m(d−2σ)
)

‖f0‖L1 .

Taking σ = d/2 − s with s ∈]0, d/2[, we deduce that

‖fn‖
Ḃs− d

2
≤ Cf02

2ns.

Using (1.32) and (1.33), we can now conclude that (1.31) is satisfied.
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1.3.3 The Limit Case Ḣ
d
2

The space Ḣ
d
2 (Rd) is not included in L∞(Rd). We give an explicit counterex-

ample in dimension two. Let the function u be defined by

u(x) = ϕ(x) log(− log |x|)
for some smooth function ϕ supported in B(0, 1) with value 1 near 0. On the
one hand, u is not bounded. On the other hand, we have, near the origin,

|∂ju(x)| ≤ C

|x| | log |x| |

so that u belongs to Ḣ1(R2).
This motivates the following definition.

Definition 1.47. The space BMO(Rd) of bounded mean oscillations is the
set of locally integrable functions f such that

‖f ‖BMO
def
= sup

B

1
|B|

∫
B

|f − fB | dx < ∞ with fB
def
=

1
|B|

∫
B

f dx.

The above supremum is taken over the set of Euclidean balls.

We point out that the seminorm ‖ · ‖BMO vanishes on constant functions.
Therefore, this is not a norm. We now state the critical theorem for Sobolev
embedding.

Theorem 1.48. The space L1
loc(R

d) ∩ Ḣ
d
2 (Rd) is included in BMO(Rd).

Moreover, there exists a constant C such that

‖u‖BMO ≤ C‖u‖
Ḣ

d
2

for all functions u ∈ L1
loc(R

d) ∩ Ḣ
d
2 (Rd).

Proof. We use the decomposition (1.27) into low and high frequencies. For
any Euclidean ball B we have∫

B

|u − uB | dx

|B| ≤ ‖u�,A − (u�,A)B ‖L2(B, dx
|B| ) +

2
|B| 1

2
‖uh,A‖L2 .

Let R be the radius of the ball B. We have

‖u�,A − (u�,A)B ‖L2(B, dx
|B| ) ≤ R‖ ∇u�,A‖L∞

≤ CR

∫
Rd

|ξ|1− d
2 |ξ| d

2 |û�,A(ξ)| dξ

≤ CRA‖u‖
Ḣ

d
2
.

We infer that
∫

B

|u − uB | dx

|B| ≤ CRA‖u‖
Ḣ

d
2

+ C(AR)− d
2

(∫
|ξ|≥A

|ξ|d|û(ξ)|2 dξ

) 1
2

.

Choosing A = R−1 then completes the proof. ��
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1.3.4 The Embedding Theorem in Hölder Spaces

Definition 1.49. Let (k, ρ) be in N ×]0, 1]. The Hölder space Ck,ρ(Rd) (or
Ck,ρ, if no confusion is possible) is the space of Ck functions u on R

d such
that

‖u‖Ck,ρ = sup
|α|≤k

(
‖∂αu‖L∞ + sup

x �=y

|∂αu(x) − ∂αu(y)|
|x − y|ρ

)
< ∞.

Proving that the sets Ck,ρ are Banach spaces is left as an exercise. We point
out that C0,1 is the space of bounded Lipschitz functions.

Theorem 1.50. If s > d
2 and s − d

2 is not an integer, then the space Ḣs(Rd)
is included in the Hölder space of index

(k, ρ) =
([

s − d

2

]
, s − d

2
−
[
s − d

2

])
,

and we have, for all u ∈ Ḣs(Rd),

sup
|α|=k

sup
x �=y

|∂αu(x) − ∂αu(y)|
|x − y|ρ ≤ Cd,s‖u‖Ḣs .

Proof. We prove the theorem only in the case where the integer part of s−d/2
is 0. As s is greater than d/2, writing

û = 1B(0,1)û + (1 − 1B(0,1))û,

we get that û belongs to L1(Rd), and thus u is a bounded continuous function.
We again use the decomposition (1.27) into low and high frequencies. The low-
frequency part of u is of course smooth. By Taylor’s inequality, we have

|u�,A(x) − u�,A(y)| ≤ ‖ ∇u�,A‖L∞ |x − y|.

Using the Fourier inversion formula and the Cauchy–Schwarz inequality, we
get

‖∇u�,A‖L∞ ≤ C

∫
Rd

|ξ| |û�,A(ξ)| dξ

≤ C

(∫
|ξ|≤CA

|ξ|2−2s dξ

) 1
2

‖u‖Ḣs

≤ C

(1 − ρ)
1
2
A1−ρ‖u‖Ḣs with ρ = s − d/2.

Reasoning along exactly the same lines, we also have that
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‖uh,A‖L∞ ≤
∫

Rd

|ûh,A(ξ)| dξ

≤
(∫

|ξ|≥A

|ξ| −2s dξ

) 1
2

‖u‖Ḣs

≤ C

ρ
1
2
A−ρ‖u‖Ḣs .

It is then obvious that

|u(x) − u(y)| ≤ ‖ ∇u�,A‖L∞ |x − y| + 2‖uh,A‖L∞

≤ Cs

(
|x − y|A1−ρ + A−ρ

)
‖u‖Ḣs .

Choosing A = |x − y| −1 then completes the proof of the theorem. ��

1.4 Nonhomogeneous Sobolev Spaces on R
d

In this section, we focus on nonhomogeneous Sobolev spaces. As in the previ-
ous section, the emphasis is on embedding properties in Lebesgue and Hölder
spaces. We also establish a trace theorem and provide an elementary proof for
a Hardy inequality.

1.4.1 Definition and Basic Properties

Definition 1.51. Let s be a real number. The Sobolev space Hs(Rd) consists
of tempered distributions u such that û ∈ L2

loc(R
d) and

‖u‖2
Hs

def
=
∫

Rd

(1 + |ξ|2)s|û(ξ)|2 dξ < ∞.

As the Fourier transform is an isometric linear operator from the space Hs(Rd)
onto the space L2(Rd; (1 + |ξ|2)s dξ), the space Hs(Rd) equipped with the
scalar product

(u | v)Hs
def=
∫

Rd

(1 + |ξ|2)sû(ξ)v̂(ξ) dξ (1.37)

is a Hilbert space.
It is obvious that the family of Hs spaces is decreasing with respect to s.

Moreover, we have the following proposition, the proof of which is strictly
analogous to that of Proposition 1.32.

Proposition 1.52. If s0 ≤ s ≤ s1, then we have

‖u‖Hs ≤ ‖u‖1−θ
Hs0 ‖u‖θ

Hs1 with s = (1 − θ)s0 + θs1.
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When s is a nonnegative integer, the Fourier–Plancherel formula ensures that
the space Hs coincides with the set of L2 functions u such that ∂αu belongs
to L2 for any α in N

d with |α| ≤ s. In the case where s is a negative integer,
the space Hs is described by the following proposition, the proof of which is
analogous to that of Proposition 1.33.

Proposition 1.53. Let k be a positive integer. The space H−k(Rd) consists of
distributions which are sums of an L2(Rd) function and derivatives of order k
of L2(Rd) functions.

Remark 1.54. The Dirac mass δ0 belongs to H− d
2 −ε for any positive ε but

does not belong to H− d
2 . Moreover, δ0 is not in Ḣs for any s.

It is obvious that when s is nonnegative, Hs is included in Ḣs, and that the
opposite happens when s is negative. Further, Ḣs �= Hs for s �= 0. In the
following proposition, we state that the two spaces coincide for compactly
supported distributions and nonnegative s.

Proposition 1.55. Let s be a nonnegative real number and K a compact
subset of R

d. Let Hs
K(Rd) be the space of those distributions of Hs(Rd) which

are supported in K. There then exists a positive constant C such that

∀u ∈ Hs
K(Rd) ,

1
C

‖u‖Hs ≤ ‖u‖Ḣs ≤ ‖u‖Hs .

Proof. We simply have to prove that ‖u‖L2 ≤ CK ‖u‖Ḣs . Using the Fourier–
Plancherel formula and the inverse formula, we have11

|û(ξ)| ≤ ‖u‖L1 ≤
√

|K| ‖u‖L2 ≤ (2π)− d
2
√

|K| ‖û‖L2 .

For any positive ε we then get

‖û‖2
L2 ≤ (2π)−d|K| ‖û‖2

L2

∣∣B(0, ε)
∣∣+
∫

Rd \B(0,ε)

|ξ| −2s|ξ|2s|û(ξ)|2 dξ

≤ (2π)−dcdε
d |K| ‖û‖2

L2 +
1

ε2s
‖u‖2

Ḣs .

Taking ε such that (2π)−dcdε
d |K| = 1/2, we see that

‖û‖L2 ≤
√

2
(2π)s

(
2cd|K|
) s

d ‖u‖Ḣs , (1.38)

and the result follows. ��

From the above proposition, we can infer the following Poincaré-type inequal-
ity, which is relevant for functions supported in small balls.
11 From now on, we agree that |K| denotes the Lebesgue measure of the set K.
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Corollary 1.56. Let 0 ≤ t ≤ s. A constant C exists such that for any posi-
tive δ and any function u ∈ Hs(Rd) supported in a ball of radius δ, we have

‖u‖Ḣt ≤ Cδs−t‖u‖Ḣs and ‖u‖Ht ≤ Cδs−t‖u‖Hs .

Proof. Using the fact that the ‖ · ‖Hs norm is invariant under translation, we
can suppose that the ball is centered at the origin. If we set v(x) = u(δx),
then v is supported in the unit ball and obviously satisfies ‖v‖Ht ≤ C‖v‖Hs ,
hence also ‖v‖Ḣt ≤ C‖v‖Ḣs , due to the previous proposition.

Using the fact that v̂(ξ) = δ−dû
(ξ

δ

)
, we thus get ‖u‖Ḣt ≤ Cδs−t‖u‖Ḣs .

Using (1.38) we then get the inequality pertaining to nonhomogeneous norms.
��

We have the following density result, strictly analogous to Proposition 1.35.

Proposition 1.57. The space S is dense in Hs.

The duality between Hs and H−s is described by the following proposition,
the proof of which is analogous to that of Proposition 1.36.

Proposition 1.58. For any real s, the bilinear functional

B :

⎧⎨
⎩

S × S → C

(φ, ϕ) 
→
∫

Rd

φ(x)ϕ(x) dx

can be extended to a continuous bilinear functional on H−s × Hs. Moreover,
if L is a continuous linear functional on Hs, a unique tempered distribution u
exists in H−s such that

∀φ ∈ S , 〈L, φ〉 = B(u, φ).

In addition, we have ‖L‖(Hs)′ = ‖u‖H−s .

The following proposition can be very easily deduced from Proposition 1.37.

Proposition 1.59. Let s = m + σ with m ∈ N and σ ∈ ]0, 1[. We then have

Hs(Rd) =
{

u ∈ L2(Rd) / ∀α ∈ N
d / |α| ≤ m, ∂αu ∈ L2(Rd)

and, for α / |α| = m,

∫
Rd ×Rd

|∂αu(x+y) − ∂αu(x)|2
|y|d+2σ

dx dy < +∞
}

,

and there exists a constant C such that

C−1‖u‖2
Hs ≤

∑
|α|=m

∫
Rd × Rd

|∂αu(x + y) − ∂αu(x)|2
|y|d+2σ

dx dy

+
∑

|α|≤m

‖∂αu‖2
L2 ≤ C‖u‖2

Hs .
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The above characterization of Sobolev spaces is suitable for establishing invari-
ance under diffeomorphism. In what follows, it is understood that a global k-
diffeomorphism on R

d is any Ck diffeomorphism ϕ from R
d onto R

d whose
derivatives of order less than or equal to k are bounded and which satisfies,
for some constant C,

∀(x, y) ∈ R
d × R

d , |ϕ(x) − ϕ(y)| ≥ C|x − y|.

Corollary 1.60. Let ϕ be a global k-diffeomorphism on R
d, 0 ≤ s < k, and

u ∈ Hs(Rd). Then, u ◦ ϕ ∈ Hs(Rd).

Proof. By virtue of the chain rule, it is enough to consider the case where s
is in [0, 1[. The result follows easily from the identity

J(u) def=
∫

Rd × Rd

|u(ϕ(x)) − u(ϕ(y))|2
|x − y|d+2s

dx dy

=
∫

Rd × Rd

|u(x) − u(y)|2
|ψ(x) − ψ(y)|d+2s

| det(Dψ(x))| −1| det(Dψ(y))| −1 dx dy

≤ C

∫
Rd × Rd

|u(x) − u(y)|2
|x − y|d+2s

dx dy,

where it is understood that ψ = ϕ−1. This proves the corollary. ��

The following density theorem will be useful.

Theorem 1.61. For any real s, the space D(Rd) is dense in Hs(Rd).

Proof. In order to prove this theorem, we consider a distribution u in Hs(Rd)
such that for any test function ϕ in D(Rd), we have

∫
Rd

ϕ̂(ξ)(1 + |ξ|2)sû(ξ) dξ = 0.

Knowing that D(Rd) is dense in S(Rd) and that the Fourier transform is an
automorphism of S(Rd), we have, for any function f in S(Rd),

∫
Rd

f(ξ)(1 + |ξ|2)sû(ξ) dξ = 0.

This implies that (1 + | · |2)sû = 0 as a tempered distribution. Thus, û = 0,
and then u = 0. ��

The Sobolev spaces are not stable under multiplication by C∞ functions;
nevertheless, they are local. This is a consequence of the following result.

Theorem 1.62. Multiplication by a function of S(Rd) is a continuous map
from Hs(Rd) into itself.
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Proof. As we know that ϕ̂u = (2π)−dϕ̂ � û, the proof of Theorem 1.62 is
reduced to the estimate of the L2(Rd) norm of the function Us defined by

Us(ξ)
def= (1 + |ξ2|) s

2

∫
Rd

|ϕ̂(ξ − η)| × |û(η)| dη.

We will temporarily assume that

(1 + |ξ|2) s
2 ≤ 2

|s|
2 (1 + |ξ − η|2)

|s|
2 (1 + |η|2) s

2 . (1.39)

We then infer that

|Us(ξ)| ≤ 2
|s|
2

∫
Rd

(1 + |ξ − η|2)
|s|
2 |ϕ̂(ξ − η)|(1 + |η|2) s

2 |û(η)| dη.

Using Young’s inequality, we get

‖ϕu‖Hs ≤ 2
|s|
2 ‖(1 + | · |2)

|s|
2 ϕ̂‖L1 ‖u‖Hs ,

and the desired result follows.
For the sake of completeness, we now prove the inequality (1.39). Inter-

changing ξ and η, we see that it suffices to consider the case s ≥ 0. We have

(1 + |ξ|2) s
2 ≤ (1 + 2(|ξ − η|2 + |η|2)) s

2

≤ 2
s
2 (1 + |ξ − η|2) s

2 (1 + |η|2) s
2 .

This completes the proof of the theorem. ��

We will now consider the problem of trace and trace lifting operators for
the Sobolev spaces. Consider the hyperplane x1 = 0 in R

d. Because this has
measure zero, we cannot give any reasonable sense to the trace operator γ
formally defined by γu(x′) = u(0, x′) if u belongs to a Lebesgue space. For
instance, there exist elements of L2(Rd) which are continuous for x1 �= 0 and
tend to infinity when x1 goes to 0. This obviously precludes us from defining
the trace of a general L2 function.

The following theorem shows that defining γu makes sense for u ∈ Hs(Rd)
with s greater than 1/2. Extending the usual trace operator by continuity
provides us with the relevant definition.

Theorem 1.63. Let s be a real number strictly larger than 1/2. The restric-
tion map γ defined by

γ :
{

S(Rd) −→ S(Rd−1)
φ 
−→ γ(φ) : (x2, . . . , xd) 
→ φ(0, x2, . . . , xd)

can be continuously extended from Hs(Rd) onto Hs− 1
2 (Rd−1).
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Proof. We first prove the existence of γ. Arguing by density, it suffices to find
a constant C such that

∀φ ∈ S , ‖γ(φ)‖
Hs− 1

2
≤ C‖φ‖Hs . (1.40)

To achieve the above inequality, we may rewrite the trace operator in terms
of a Fourier transform:

φ(0, x′) = (2π)−d

∫
Rd

ei(x′ |ξ′)φ̂(ξ1, ξ
′) dξ1 dξ′

= (2π)1−d

∫
Rd−1

ei(x′ |ξ′)
(
(2π)−1

∫
R

φ̂(ξ1, ξ
′) dξ1

)
dξ′.

We thus have
γ̂(φ)(ξ′) = (2π)−1

∫
R

φ̂(ξ1, ξ
′) dξ1.

By multiplication and division by (1+ |ξ1|2 + |ξ′ |2) s
2 and the Cauchy–Schwarz

inequality, we have

|γ̂(φ)(ξ′)|2 ≤ 1
4π2

(∫
R

(1 + ξ2
1 + |ξ′ |2)−s dξ1

)(∫
R

(|φ̂(ξ)|2(1 + |ξ|2)s dξ1

)
.

Having s > 1
2 ensures that the first integral is finite. In order to compute it,

we make the change of variables ξ1 = (1 + |ξ′ |2) 1
2 λ. We obtain∫

(1 + ξ2
1 + |ξ′ |2)−s dξ1 = Cs(1 + |ξ′ |2)−s+ 1

2 with Cs =
∫

(1 + λ2)−sdλ.

We deduce that ‖γ(φ)‖2

Hs− 1
2

≤ Cs‖φ‖2
Hs , which completes the proof of the

first part of the theorem.
We now define the trace lifting operator. Let χ be a function in D(R) such

that χ(0) = 1. We define

Rv(x) def= (2π)−d+1

∫
Rd−1

ei(x′ |ξ′)χ(x1〈ξ′ 〉)v̂(ξ′) dξ′ with 〈ξ′ 〉 =
√

1 + |ξ′ |2.

It is clear that

F Rv(ξ) =
∫

R

e−itξ1χ(t〈ξ′ 〉)v̂(ξ′) dt

= 〈ξ′ 〉 −1χ̂
( ξ1

〈ξ′ 〉

)
v̂(ξ′).

Taking N sufficiently large, we deduce that

‖Rv‖2
Hs =
∫

Rd

(1 + |ξ1|2 + |ξ′ |2)s〈ξ′ 〉 −2
∣∣χ̂(〈ξ′ 〉 −1

ξ1

)∣∣2|v̂(ξ′)|2 dξ

≤ CN

∫
Rd−1

(∫
R

(
1 +

|ξ1|2
〈ξ′ 〉2

)s−N

〈ξ′ 〉 −1 dξ1

)
(1 + |ξ′ |2)s− 1

2 |v̂(ξ′)|2 dξ′

≤ CN ‖v‖2

Hs− 1
2
.

Of course, we have γRv = v. This completes the proof of the theorem. ��
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We infer the following corollary.

Corollary 1.64. Let s > m + 1
2 with m ∈ N . The map

Γ :

⎧⎪⎨
⎪⎩

Hs(Rd) −→
m⊕

j=0

Hs−j− 1
2 (Rd−1)

u 
−→ (γj(u))0≤j≤m

with γj(u) = γ(∂j
x1

u) is then continuous and onto.

Remark 1.65. More generally, the trace operator γΣ may be defined for any
smooth hypersurface Σ of R

d . Indeed, according to Theorem 1.62 and Corol-
lary 1.60, the spaces Hs(Rd) are local and invariant under the action of dif-
feomorphism, so localizing and straightening Σ reduces the problem to the
study of the trace operator defined in Theorem 1.63.

1.4.2 Embedding

In this subsection, we present a few properties concerning embedding in
Lebesgue spaces. First, from Theorems 1.38 and 1.50 we can easily deduce
the following result.

Theorem 1.66. The space Hs(Rd) embeds continuously in:

– the Lebesgue space Lp(Rd), if 0 ≤ s < d/2 and 2 ≤ p ≤ 2d/(d − 2s)
– the Hölder space Ck,ρ(Rd), if s ≥ d/2+k+ρ for some k ∈ N and ρ ∈ ]0, 1[.

As in the homogeneous case, the space H
d
2 fails to be embedded in L∞.

However, the following Moser–Trudinger inequality holds.

Theorem 1.67. There exist two constants, c and C, depending only on the
dimension d, such that for any function u ∈ H

d
2 (Rd), we have

∫
Rd

(
exp
(
c
( |f(x)|

‖f ‖
H

d
2

)2)
− 1
)

dx ≤ C.

Proof. As usual, arguing by density and homogeneity, it suffices to consider
the case where f is in S and satisfies ‖f ‖

H
d
2

= 1.

Now, the proof is based on the fact that, according to the inequality (1.30)
and the definition of nonhomogeneous Sobolev spaces, there exists some con-
stant Cd (depending only on the dimension d) such that

‖f ‖L2p ≤ Cd
√

p for all p ≥ 1. (1.41)

For all x ∈ R
d, we may write

exp
(
c|f(x)|2

)
− 1 =
∑
p≥1

cp

p!
|f(x)|2p.
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Integrating over R
d and using the inequality (1.41) yields∫
Rd

(
exp
(
c|f(x)|2

)
− 1
)

dx =
∑
p≥1

cpC2p
d

pp

p!
·

The theorem then follows from our choosing the constant c sufficiently small.
��

As stated before, the space Hs(Rd) is included in Ht(Rd) whenever t ≤ s. If
the inequality is strict, then the following statement ensures that the embed-
ding is locally compact.

Theorem 1.68. For t < s, multiplication by a function in S(Rd) is a compact
operator from Hs(Rd) in Ht(Rd).

Proof. Let ϕ be a function in S. We have to prove that for any sequence (un)
in Hs(Rd) satisfying supn ‖un‖Hs ≤ 1, we can extract a subsequence (unk

)
such that (ϕunk

) converges in Ht(Rd).
As Hs(Rd) is a Hilbert space, the weak compactness theorem ensures

that the sequence (un)n∈N converges weakly, up to extraction, to an ele-
ment u of Hs(Rd) with ‖u‖Hs ≤ 1. We continue to denote this subsequence
by (un)n∈N and set vn = un − u. Thanks to Theorem 1.62, supn ‖ϕvn‖Hs ≤ C.
Our task is thus reduced to proving that the sequence (ϕvn)n∈N tends to 0
in Ht(Rd). We now have, for any positive real number R,∫

(1 + |ξ|2)t| F (ϕvn)(ξ)|2 dξ ≤
∫

|ξ|≤R

(1 + |ξ|2)t| F (ϕvn)(ξ)|2 dξ

+
∫

|ξ|≥R

(1+|ξ|2)t−s(1+|ξ|2)s| F (ϕvn)(ξ)|2 dξ

≤
∫

|ξ|≤R

(1 + |ξ|2)t| F (ϕvn)(ξ)|2 dξ +
‖ϕvn‖2

Hs

(1+R2)s−t
·

As (ϕvn)n∈N is bounded in Hs(Rd), for a given positive real number ε, we can
choose R such that

1
(1 + R2)s−t

‖ϕvn‖2
Hs ≤ ε

2
·

On the other hand, as the function ψξ defined by

ψξ(η) def= (2π)−dF −1
(
(1 + |η|2)−sϕ̂(ξ − η)

)

belongs to S(Rd), we can write

F (ϕvn)(ξ) = (2π)−d

∫
ϕ̂(ξ − η)v̂n(η) dη

=
∫

(1 + |η|2)sψ̂ξ(η)v̂n(η) dη

= (ψξ | vn)Hs .
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As (vn)n∈N converges weakly to 0 in Hs(Rd), we can thus conclude that

∀ξ ∈ R
d , lim

n→∞
F (ϕvn)(ξ) = 0.

Let us temporarily assume that

sup
|ξ|≤R
n∈N

| F (ϕvn)(ξ)| ≤ M < ∞. (1.42)

Lebesgue’s theorem then implies that

lim
n→∞

∫
|ξ|≤R

(1 + |ξ|2)t| F (ϕvn)(ξ)|2 dξ = 0,

which leads to the convergence of the sequence (ϕvn)n∈N to 0 in Ht(Rd).
To complete the proof of the theorem, let us prove (1.42). It is clear that

| F (ϕvn)(ξ)| ≤ (2π)−d

∫
Rd

|ϕ̂(ξ − η)| |v̂n(η)| dη

≤ (2π)−d‖vn‖Hs

(∫
(1 + |η|2)−s|ϕ̂(ξ − η)|2 dη

) 1
2

.

Now, as ϕ̂ belongs to S(Rd), a constant C exists such that

|ϕ̂(ξ − η)| ≤ CN0

(1 + |ξ − η|2)N0
with N0 =

d

2
+ |s| + 1.

We thus obtain∫
(1 + |η|2)−s|ϕ̂(ξ −η)|2 dη ≤

∫
|η|≤2R

(1 + |η|2)−s|ϕ̂(ξ − η)|2 dη

+
∫

|η|≥2R

(1 + |η|2)−s|ϕ̂(ξ − η)|2 dη

≤ C

∫
|η|≤2R

(1 + |η|2)|s| dη

+CN0

∫
|η|≥2R

(1 + |η|2)|s|(1 + |ξ −η|2)−N0 dη.

Finally, since |ξ| ≤ R, we always have |ξ − η| ≥ |η|
2

in the last integral, so we
eventually get
∫

(1 + |η|2)−s|ϕ̂(ξ − η)|2 dη ≤ C(1 + R2)|s|+ d
2 + C

∫
dη

(1 + |η|2) d
2 +1

·

This yields (1.42) and completes the proof of the theorem. ��
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From the above theorem, we can deduce the following compactness result.

Theorem 1.69. For any compact subset K of R
d and s′ < s, the embedding

of Hs
K(Rd) into Hs′

K(Rd) is a compact linear operator.

Proof. It suffices to consider a function ϕ in S(Rd) which is identically equal
to 1 in a neighborhood of the compact K and then to apply Theorem 1.68. ��

1.4.3 A Density Theorem

In this subsection we investigate the density of the space D(Rd \{0}) in
Sobolev spaces. This result is useful for proving Hardy inequalities and is
related to the problem of the pointwise value of a function in Hs(Rd). Indeed,
having D(Rd \{0}) dense in Hs(Rd) precludes any reasonable definition of the
“value at 0” of an element of Hs(Rd). We now state the result.

Theorem 1.70. If s ≤ d/2 (resp., < d/2), then the space D(Rd \{0})
is dense in Hs(Rd) [resp., in Ḣs(Rd)]. If s > d/2, then the closure of
the space D(Rd \{0}) in Hs(Rd) is the set of functions u in Hs(Rd) such
that ∂αu(0) = 0 for any α ∈ N

d such that |α| < s − d/2.

Proof. As Hs(Rd) is a Hilbert space it is enough to study the orthogonal
complement of D(Rd \ {0}) in Hs(Rd). For u in Hs we define

us
def= F −1((1 + |ξ|2)sû).

If u belongs to the orthogonal complement of D(Rd \{0}), then we have
∫

Rd

ûs(ξ)ϕ̂(ξ) dξ = 〈us, ϕ〉 = 0 for any ϕ in D(Rd \{0}).

This implies that the support of us is included in {0}. We infer that a se-
quence (aα)|α|≤N exists such that

us =
∑

|α|≤N

aα∂αδ0. (1.43)

As us belongs to H−s, Remark 1.54 implies that aα = 0 for |α| ≥ s − d/2.
Thus, if s ≤ d/2, then us = u = 0 and the density is proved in that case. The
proof of the density in the homogeneous case follows the same lines and is left
to the reader as an exercise.

When s is greater than d/2, the orthogonal complement of the space
D(Rd \{0}) is exactly the finite-dimensional vector space Vs spanned by the
functions (uα)|α|≤[s−d/2] defined by

uα(x) def= (2π)−d

∫
Rd

ei(x|ξ) (iξ)α

(1 + |ξ|2)s
dξ.
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However, thanks to the relation (1.43), if the partial derivatives of order less
than or equal to s − d/2 of a function v in Hs vanish at 0, then we have

(v|uα)Hs = 〈v, ∂αδ0〉 = 0.

Thus, the function v belongs to the orthogonal complement of Vs, which is
the closure of D(Rd \ {0}). ��

Remark 1.71. If d = 1, then the above result means that the map u 
→ u(0)
cannot be extended to H

1
2 (R) functions. More generally, arguing as above,

we can prove that the restriction map γ on the hyperplane x1 = 0 cannot be
extended to H

1
2 (Rd) functions.12

1.4.4 Hardy Inequality

This brief subsection is devoted to proving a fundamental inequality with
singular weight in Sobolev spaces: the so-called Hardy inequality. More general
Hardy inequalities will be established in the next chapter (see Theorem 2.57).

Theorem 1.72. If d ≥ 3, then

(∫
Rd

|f(x)|2
|x|2 dx

) 1
2

≤ 2
d − 2

‖ ∇f ‖L2 for any f in Ḣ1(Rd). (1.44)

Proof. Arguing by density, it suffices to prove the inequality for f∈ D(Rd \{0}).

Let R be the radial vector field R =
d∑

i=1

xi∂xi . Because R|x| −2 = −2|x| −2,

integrating by parts yields
∫

Rd

|f(x)|2
|x|2 dx =

1
2

∫
Rd

2f(x)Rf(x)
|x|2 dx +

d

2

∫
Rd

|f(x)|2
|x|2 dx.

Thus, we have, by the Cauchy–Schwarz inequality,
∫

Rd

|f(x)|2
|x|2 dx =

2
2 − d

∫
Rd

f(x)Rf(x)
|x|2 dx

≤ 2
d − 2

(∫
Rd

|f(x)|2
|x|2 dx

) 1
2
(∫

Rd

| Rf(x)|2
|x|2 dx

) 1
2

,

which implies that
12 In fact, γu makes sense whenever u belongs to the smaller space

H
1
2
0,0(R

d)
def
=

{
u ∈ H

1
2 (Rd)
/ u

|x1| 1
2

∈ L2(Rd)

}
.
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(∫
Rd

|f(x)|2
|x|2 dx

) 1
2

≤ 2
d − 2

(∫
Rd

| ∇f(x)|2 dx

) 1
2

. ��

Remark 1.73. Let us note that using Lorentz spaces provides an elementary
proof of more general Hardy inequalities, namely,

∥∥∥∥ f

|x|s

∥∥∥∥
L2

≤ C‖f ‖Ḣs for 0 ≤ s <
d

2
·

Indeed, using real interpolation we can show that Ḣs not only embeds in the
space Lp with 1/p = 1/2 − s/d, but also in the Lorentz space Lp,2. Now, it
is clear that the function x 
→ | · |−s belongs to the space L

d/s
w , so applying

generalized Hölder inequalities in Lorentz spaces, we get
∥∥∥∥ f

|x|s

∥∥∥∥
L2

≤ C

∥∥∥∥ 1
| · |s

∥∥∥∥
L

d/s
w

‖f ‖Lp,2 ≤ C ′ ‖f ‖Ḣs .

1.5 References and Remarks

The Hölder and Young inequalities belong to mathematical folklore. Refined Young
inequalities are special cases of convolution inequalities in Lorentz spaces. An ex-
haustive list of such inequalities can be found in [171] or the book by P.-G. Lemarié-
Rieusset [205]. More about atomic decomposition and bilinear interpolation can be
found in the book by L. Grafakos [150].

In the present chapter, we restricted ourselves to the very basic properties of the
Fourier transform. For a more complete study of the Fourier transform of harmonic
analysis methods for partial differential equations, the reader may refer to the text-
books [40] by J.-M. Bony, [122] by L.C. Evans, [275] by E.M. Stein, [167, vol. 1] by
L. Hörmander and [282, 283] by M.E. Taylor.

The Sobolev embedding in Lebesgue spaces was first stated by S. Sobolev him-
self in [270, 271]. There is now a plethora of generalizations (W s,p spaces, metric
spaces, etc.) Basic references for Sobolev spaces may be found in the books [3] by
R. Adams and [146] by D. Gilbarg and N. Trudinger. Refined Sobolev inequalities
were discovered by P. Gérard, Y. Meyer, and F. Oru in [140]. The proof which
has been proposed here is borrowed from [77]. The fractal counterexample comes
from [22]. The study of embedding of Sobolev spaces in Hölder spaces goes back
to C. Morrey’s work in [235]. The BMO space was first introduced by F. John and
L. Nirenberg in [174].

Most of the results concerning nonhomogeneous Sobolev spaces are classical.
Hardy inequalities go back to the pioneering work by G.H. Hardy in [153, 154]. In
the next chapter, we shall state more general Hardy inequalities in Sobolev spaces
with fractional indices of regularity.

For more details on the Moser–Trudinger inequality, see the pioneering works by
J. Moser in [236] and N.S. Trudinger in [290]. For recent developments, see [2].

Note that combining the Sobolev embedding theorem with Theorem 1.68 ensures
that the embedding of Ḣs(Rd) in Lp(Rd) is locally compact whenever 2 ≤ p ≤ ∞
and s > d/2 − d/p. In contrast, due to the scaling invariance of the critical Sobolev
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embedding,13 the fact that Ḣs(Rd) ↪→ Lps(Rd) when 0 ≤ s < d/2, and that fact that
ps = 2d/(d − 2s), no compactness properties may be expected in this case. Indeed,
if u ∈ Ḣs \ {0}, then for any sequence (yn) of points in R

d tending to infinity
and for any sequence (hn) of positive real numbers tending to 0 or to infinity, the
sequences (τynu) and (δhnu) converge weakly to 0 in Ḣs but are not relatively
compact in Lp since ‖τynu‖Lp = ‖u‖Lp and ‖δhnu‖Lp = ‖u‖Lp . The study of this
defect of compactness was initiated by P.-L. Lions in [212] (see also the paper by
P. Gérard [139]). In short, it has been shown that translational and scaling invariance
are the only features responsible for the defect of compactness of the embedding
of Ḣs into Lp.

13 Throughout this book, we agree that whenever X and Y are Banach spaces, the
notation X ↪→ Y means that X ⊂ Y and that the canonical injection from X to Y
is continuous.
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