Chapter 2

Maps on Linear Spaces

In this chapter various important classes of maps are considered for
which one obtains interesting results in vector optimization. We espe-
cially consider convex maps and their generalizations and also several
types of differentials. It is the aim of this chapter to present a brief
survey on these maps.

2.1 Convex Maps

The importance of convex maps is based on the fact that the image
set of such a map has useful properties. One of these properties is
also valid for so-called convex-like maps which are investigated in this
section as well.

First, recall the definition of a linear map.

Definition 2.1. Let X and Y be real linear spaces. A map T :
X — Y is called linear, if for all x,y € X and all A\, u € R

T(A\x + py) = NT'(z) + pI(y).

The set of continuous (bounded) linear maps between two real
normed spaces (X, || - ||x) and (Y, ]| - ||y) is a linear space as well and
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38 Chapter 2. Maps on Linear Spaces

it is denoted B(X,Y’). With the norm || - || : B(X,Y) — R given by

—————forall T € B(X,Y)
wrox [2llx

(B(X,Y), || -] is even a normed space.
A linear map defines also a corresponding map as it may be seen
in

Definition 2.2. Let X and Y be real separated locally convex
linear spaces, and let T': X — Y be a linear map. A map 7% : Y* —
X* given by

T*(y")(x) =y"(T(x)) for all z € X and all y* € Y~
is called the adjoint (or conjugate and dual, respectively) of T

It is obvious that the adjoint 7™ is also a linear map. One can show
that it is uniquely determined. Adjoints are useful for the solution of
linear functional equations.

Theorem 2.3. Let X and Y be real separated locally convex linear
spaces, and let the elements v € X, v* € X*, y €Y and y* € Y be
given.

(a) If there is a linear map T : X — Y with y = T(z) and z* =
T*(y"), then y*(y) = =" (x).

(b) If x # Ox, y* # Oy« and y*(y) = x*(x), then there is a continu-
ous linear map T : X — Y with y = T(x) and z* = T*(y*).

Proof.

(a) Let a linear map 7' : X — Y with y = T'(x) and z* = T*(y*)
be given. Then we get

y'(y) =y (T(x) = T"(y")(x) = 2" (x)

which completes the proof.
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(b) Assume that for x # 0x and y* # Oy« the functional equation

y*(y) = 2" (x) (2.1)

is satisfied. In the following we consider the two cases z*(x) # 0
and z*(z) = 0.

(i) First assume that z*(x) # 0. Then we define a map T :
X —=Y by

T(z) = i:g;; y for all z € X. (2.2)

Evidently, T is linear and continuous. From (2.1) and (2.2)
we conclude T'(z) = y and

y'(T(2)) = vy (y) =2"(2) for all z € X

which means x* = T*(y*).

(ii) Now assume that z*(z) = 0. Because of y* # 0Oy~ there
is a g # 0y with y*(g) = 1. Since in a separated locally
convex space X* separates elements of X, x # Oy implies
the existence of some 7* € X* with 7*(x) = 1. Then we
define the map T : X — Y as follows

T(z) =a"(2)y + 2" (2)y for all z € X. (2.3)

It is obvious that 7" is a continuous linear map. With (2.3)
we conclude

T(x) =" (x)y+ 7" (2)y = y.
Furthermore, we obtain with (2.3) and (2.1)
y (T(2)) = 27(2)y"(9) + T°(2)y"(y) = 2" (2) for all z € X

which implies z* = T*(y*). O
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The class of linear maps is contained in the class of convex maps.

Definition 2.4. Let X and Y be real linear spaces, Cy be a
convex cone in Y, and let S be a nonempty convex subset of X. A

map f:S — Y is called conver (or Cy-convez), if for all z,y € S and
all \ € [0, 1]

M@)+ 1 =Nf(y) = fz+ (1= Ay) € Cy (2.4)

(see Fig. 2.1 and 2.2). A map f : S — Y is called concave (or

fOr+(1=Ny):
x Ar+ (1 =Ny Yy

Figure 2.1: Convex functional.

Cy-concave), if —f is convex (see Fig. 2.3).

If <¢, is the partial ordering in Y induced by Cy, then the con-
dition (2.4) can also be written as

Oz + (1= Ny) <cy Af(z) + (1= A)f(y).

If f is a linear map, then f and —f are convex maps.

Definition 2.5. Let X and Y be real linear spaces, let Cy be a
convex cone in Y, let S be a nonempty subset of X, andlet f: § — Y
be a given map. The set

epi(f) = {(z,y) |z €S, y e {(f(x)} + Cv} (2.5)
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Figure 2.2: Non-convex functional.

Figure 2.3: Concave functional.

is called the epigraph of f (see Fig. 2.4).
Notice that the epigraph in (2.5) can also be written as
epl(f) = {(1'72/) ‘ x €5, f(ZE) <oy y}

It turns out that a convex map can be characterized by its epi-
graph.

Theorem 2.6. Let X and Y be real linear spaces, let Cy be a
convex cone in'Y , let S be a nonempty subset of X and let f: S —Y

be a given map. Then f is convez if and only if epi(f) is a convex
set.
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Figure 2.4: Epigraph of a functional.

Proof.

(a) Let f be a convex map (then S is a convex set). For arbitrary
21 = (21,11), 22 = (22,92) € epi(f) and A € [0,1] we obtain
Azy+ (1= N)zy € S and
M+ (1=Ng € AM{f(x)} +Cr) + (1= N({f(22)} + Cy)

= {Af() + (1 =N f(x2)} + Oy
C {f()\$1 + (1 — /\)ZL‘Q)} + Cy.

Consequently, we have Az + (1 — X)zy € epi(f). Thus, epi(f) is
a convex set.

m

(b) If epi(f) is a convex set, then S is convex as well. For arbi-
trary z1,22 € S and A € [0,1] we obtain A(xy, f(z1)) + (1 —
A)(x2, f(2)) € epi(f) and

fQz1+ (1= Nxa) <oy Af(z1) + (1= A) f(2).

Hence, f is a convex map. O

Next, we list some other properties of convex maps.

Lemma 2.7. Let X, Y and Z be real linear spaces, let Cy and
Cy be convex cones in'Y and Z, respectively, and let S be a nonempty
conver subset of X.
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(a) If g - S — Y s an affine linear map (i.e. there is a b €Y and
a linear map L : S — Y with g(x) = b+ L(x) for all x € S)
and f Y — Z is a convex map, then the composition f o g is
a conver map.

(b) If g : S — Y is a convex map and f :Y — Z is a conver and
monotonically increasing map (that is: y1 <cy y2 = f(n1) <¢,
f(y2)), then the composition f o g is a convexr map.

Proof. Take arbitrary z1,22 € S and A € [0,1]. Then we get for
part (a)

A(fog)(z) + (1 =A)(fog)(z2) = (f o g)(Az1 + (1 = A)zs)
= AM(g(z1) + (1 = N f(g(x2)) — flg(Azy + (1 = N)z2))
= Af(g(z1)) + (1= N f(g(x2)) = f(Ag(z1) + (1 = A)g(x2))

e Cy.

For the proof of part (b) we obtain with the convexity of g
Ag(z1) + (1 = AN)g(z2) — g(Az1 + (1 — A)z2) € Cy

and with the monotonicity of f

fAg(z1) + (1= A)g(22)) — f(g(Az1 + (1 = A)z2)) € Cy.
Since f is also convex, we get

Af(g(@1)) + (1 = A) f(g(x2)) = f(Ag(z1) + (1 = A)g(a2)) € Cz.

Consequently, we conclude

Af(g(z1)) + (1 = A) fg(x2)) — flg(Az1 + (1 = M)x2)) € C
and

A(feg)@r) + (1= N(fog)(xa) = (fog)her + (1 = Naz) € Oz,

O
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In vector optimization one is often merely concerned with the
convexity of the set f(.5)4CYy instead of epi(f). In this case the notion
of convexity of f can be relaxed because the convexity of f(S) + Cy
depends only on a property of the convex hull of f(5).

Lemma 2.8. Let X andY be real linear spaces, let Cy be a convex
cone in'Y, let S be a nonempty subset of X and let f : S —Y be a
given map. Then the set f(S) + Cy is convex if and only if

co(f(S)) C f(S)+ Cy. (2.6)

Proof.
(a) If the set f(S)+ Cy is convex, then with Remark 1.7
co(f(5)) C co(f(S)) + Cy = co(f(S) + Cy) = f(S) + Cy.
(b) If the inclusion (2.6) is true, then
co(f(S) + Cy) = co(f(5)) + Cy C f(S) + Cy

which implies that the set f(S) + Cy is convex. O

The inclusion (2.6) is used for the definition of convex-like maps.

Definition 2.9. Let X and Y be real linear spaces, let Cy be a
convex cone, let S be a nonempty subset of X and let f:.S — Y be
a given map. Then f is called convez-like, if for every z,y € S and
every A € [0, 1] there is an s € S with

M(x)+ (1 =N f(y) — f(s) € Oy
(or: f(s) <oy Af(x) +(1=A)f(y)).

Example 2.10.

(a) Obviously, every convex map is convex-like.
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(b) Let the map f : [r,00) — R? be given by
f(z) = (z,sinz) for all x € |7, 00)
where R? is partially ordered in the componentwise sense. The

map f is convex-like but it is not convex.

Example 2.10, (b) shows that the class of convex-like maps is even
much larger than the class of convex maps. With Lemma 2.8 we get
immediately the following

Theorem 2.11. Let X and Y be real linear spaces, let Cy be a
convexr cone in Y, let S be a nonempty set and let f : S — Y be
a giwen map. Then the map f is convex-like if and only if the set
f(S) + Cy is convex (see Fig. 2.5).

S C
o . f(S)+Cy

Figure 2.5: Convex-like map f.

2.2 Differentiable Maps

In the context with optimality conditions we have to work with gen-
eralized derivatives of maps. Therefore, we discuss various differen-
tiability notions and we investigate the relationships among them.
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Definition 2.12. Let X be a real linear space, let Y be a real
topological linear space, let S be a nonempty subset of X, and let
f S —Y be a given map.

(a) If for two elements z € S and h € X the limit

N PP _

P@E)) = m S (FE+ M) — (7))
—04

exists, then f’(z)(h) is called the directional derivative of f at

Z in the direction h. If this limit exists for all h € X, then f is

called directionally differentiable at T (see Fig. 2.6).

i
T T+ h T

Figure 2.6: Directionally differentiable function.

(b) If for some z € S and all h € X the limit

_ N _
F@EH) =l (7 + M) — (7))
exists and if f/(Z) is a continuous linear map from X to Y,
then f/(z) is called the Gateauzr derivative of f at & and f is
called Gateaux differentiable at T.
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Notice that for the limit defining the directional and Gateaux
derivative one considers arbitrary nets (\;);en converging to 0, A; > 0
for all i« € N in part (a), with the additional property that = + A\;h
belongs to the domain S for all ¢ € N. This restriction of the nets
converging to 0 can be dropped, for instance, if S equals the whole
space X.

Example 2.13. For the function f: R? — R with

2 1y s
i+ ) ifa #£0 9
flz1,20) = { 0 2T =0 for all (z1,22) € R

which is not continuous at Og2, we obtain the directional derivative

1 M i hy £ 0
"(Ogz)(h1, he) = lim —f(A(hi,hg)) =4 P 2
f'(Og2)(h1, ho) /\E& /\f( (ha, h2)) { 02 if 7y = 0
in the direction (hq, he) € R?. Notice that f/(Ogz) is neither continu-
ous nor linear.

Sometimes it is very useful to have a derivative notion which does
not require any topology in Y. A possible generalization of a direc-
tional derivative which will be used in the second part of this book is
given by

Definition 2.14. Let X and Y be real linear spaces, let S be a
nonempty subset of X and let 1" be a nonempty subset of Y. More-
over, let amap f: S — Y and an element ¥ € S be given. A map
f(z): S —A{x} — Y is called a directional variation of f at & with
respect to T, if the following holds: Whenever there is an element
x € S with 2 # 7 and f'(z)(x — z) € T, then there is a A > 0 with

T+ Mo —z) €S forall A€ (0,

and
i(f(x + A& — 1)) — f(z)) €T for all X € (0, N].
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Example 2.15. Let X be a real linear space, let Y be a real topo-
logical linear space, and let S be a nonempty subset of X. Further,
let f:S — Y bea given map, and let x,z € S with x # Z be fixed.
Assume that there is a A > 0 with

T+ MNx—1z) €S forall A€ (0, ).

(a) If f'(z) is the directional derivative of f at Z in the direction
xr —, then f'(Z) is a directional variation of f at T with respect
to all nonempty open subsets of Y.

(b) Let f be an affine linear map, i.e. there is a b € Y and a linear
map L : S — Y with

f(x) =b+ L(z) for all z € S.

If for some nonempty set T'C Y L(x — Z) € T, then

1 _
X(f(a‘: + Mz —17))— f(z)) = L(x — %) € T for all A € (0, \].
Consequently, L is the directional variation of f at z with re-

spect to all nonempty sets T' C Y.

A less general but more satisfying derivative notion may be ob-
tained in normed spaces.

Definition 2.16. Let (X, | - ||x) and (Y, || - ||y) be real normed
spaces, let S be a nonempty open subset of X, and let f: S — Y be
a given map. Furthermore let an element z € S be given. If there is
a continuous linear map f'(z) : X — Y with the property

i W@ +h) = f@) = F@) )y
1Al x—0 [7llx

then f/(z) is called the Fréchet derivative of f at  and f is called
Fréchet differentiable at .

=0,

According to this definition we obtain for Fréchet derivatives with
the notations used above

f@+h) = f@)+ f(@)(h) + o([|h]lx)
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where the expression o(||h||x) of this Taylor series has the property

ollhllx) _ .~ f@+h) — f(@) — f(2)(h)

1m = = Oy.
Inlix—o0 ||Rllx  IAlix—0 1Al x v

With the next three assertions we present some known results on
Fréchet differentiability.

Lemma 2.17. Let (X, ||-||x) and (Y, ||-|ly) be real normed spaces,
let S be a nonempty open subset of X, and let f : S — Y be a given
map. If the Fréchet derivative of f at some T € S exists, then the
Gateaur derivative of f at T exists as well and both are equal.

Proof. Let f/'(Z) denote the Fréchet derivative of f at z. Then
we have
_ T
L) — @)~ S @Oy

— 0 forall h e X\{0
o Ml or all 7 € X\{0x}

implying

lim ﬁnf(z Y AR — £(2) — F@)AR)ly =0 for all h € X\{0x}.

Because of the linearity of f/(Z) we obtain

lim %[f(:r +AR) — £(3)] = F/(#)(h) forall h € X.

—0

Corollary 2.18. Let (X,| - ||x) and (Y, - |ly) be real normed
spaces, let S be a nonempty open subset of X, and let f: S — Y be
a given map. If f is Fréchet differentiable at some T € S, then the
Fréchet derivative s uniquely determined.

Proof. With Lemma 2.17 the Fréchet derivative coincides with
the Gateaux derivative. Since the Gateaux derivative is as a limit
uniquely determined, the Fréchet derivative is also uniquely deter-
mined. ]
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The following lemma says that Fréchet differentiability implies
continuity as well.

Lemma 2.19. Let (X, ||-||x) and (Y, ||-||y) be real normed spaces,
let S be a monempty open subset of X, and let f : S — Y be a given
map. If f is Fréchet differentiable at some T € S, then f is continuous
at T.

Proof. To a sufficiently small € > 0 there is a ball around z so
that for all  + h of this ball

If(z+h) = f(x) = f(@)(R)lly <elhllx.

Then we conclude for some o > 0

If (@ +h) = f(@)y

1/ (@ +h) = f(@) = f(2)(h) + [(@)(h)]ly
1f(@+h) = f(@) = f@) M)y + 1 @) By
ellhllx + alln]lx

= (e+a)lhlx.

<
<

Consequently f is continuous at Z. O

The following theorem gives a characterization of a convex Fréchet
differentiable map.

Theorem 2.20. Let (X,| - |x) and (Y,|| - |ly) be real normed
spaces, let S be a nonempty open convex subset of X, let Cy be a
closed convexr cone in'Y, and let a map f: S — Y be given which is
Fréchet differentiable at every x € S. Then the map f is convex if
and only if

f) + ['(y)(x —y) <c, flz) for allz,y €S

(see Fig. 2.7).
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Figure 2.7: Illustration of the result of Thm. 2.20.

Proof.

(a) First, we assume that the map f is convex. Then it follows for
all z,y € S and all A € (0, 1]

M@)+ 1 =Nf(y) = fOz+ (1= A)y) € Cy

and

£() = £) = 3y + Alw — ) = f(9)) € O

Since f is assumed to be Fréchet differentiable at y and Cy is
closed, we conclude

fx) = fly) = f(y)(x —y) € Cy

or alternatively
W)+ ')z —y) <cv f(2).
(b) Next, we assume that

fw)+ f(y)(x—y) <c, f(z) for all z,y € S.

S is convex and, therefore, we obtain for all .,y € S and all
A€ [0,1]

f@) = fz+(1=XNy) = f'(Qe+(1=Ny) (1 =) (z—y)) € Cy
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and

f) = fAr 4+ (1 =Ny) = f'(Az + (1 = Ny)(=Az —y)) € Cy.

Since Cy is a convex cone and Fréchet derivatives are linear
maps, we get

Af(x) = >\f§A$+(1—A)y)

A1 =N Az + (1= Ny)(z —y)
HI=Nf(y) = (1 =Nz + (1 =Ny
+(L = VA Az + (1= Ny)(z —y)

e Cy
which implies

M)+ @ =Nfly) = f(Az+ (1 = A)y) € Cy.

Hence, f is a convex map.

d

The characterization of convex Fréchet differentiable maps pre-
sented in Theorem 2.20 is very helpful for the investigation of op-
timality conditions in vector optimization. This result leads to a
generalization of the (Fréchet) derivative for convex maps which are
not (Fréchet) differentiable.

Definition 2.21. Let X and Y be real topological linear spaces,
let Cy be a convex cone in Y, and let f : X — Y be a given map.
For an arbitrary z € X the set

of (@) ={T e B(X,Y) | f(z+h)— f(z)—T(h) € Cy for all h € X}

(where B(X,Y) denotes the linear space of the continuous linear
maps from X to Y) is called the subdifferential of f at z. Every
T € 0f(x) is called a subgradient of f at z (see Fig. 2.8).

Example 2.22. Let X and Y be real topological linear spaces,
let Cy be a pointed convex cone in Y, and let || - || : X — Y be a
vectorial norm. Then we have for every z € X

Oz ={TeB(X,Y) | T(z) = |zl and T(z) <c, ||| for all z € X}.
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Y

Figure 2.8: Subgradients of a convex functional.

Proof.

(a)

(b)

First, choose an arbitrary 7' € B(X,Y) with T'(z) = ||z| and
|l = T'(x) € Cy for all z € X.
Then we obtain for all h € X
Iz + Al = Izl = T(h) = |z + 2l = T(@ + h) = ||zl + T(z)
€ Cy
which implies T € 9||Z||.
Next, assume that any 7' € 0| z|| is given. Then we get
Izl = T(z) = Iz + 2|l = ||zl - T'(z) € Cy
and
=Mzl +7(z) = |z = 2| - lzll - T(=7) € Cy-.
Since Cy is pointed, we conclude
Izl = T(z) € (=Cy) N Cy = {0y}
which means T'(Z) = ||z|. Finally, we obtain
ol = T(z) e {lle+z] - flz] - T(2)} + Cy
C Cy+Cy = Cy forall z e X.

This completes the proof. O
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The next example is a special case of Example 2.22.

Example 2.23. Let (X, ||-|[x) be a real normed space. Then we
have for every 7 € X

||z x = {27 € X | 2*(z) = ||| x and [[z~|
X {z* € X* | ||a*]|x- < 1} if Z = Ox

x-=1}if 7 # 0y }

Proof. The assertion follows directly from the preceding example
for Y =R and Cy = R, if we notice that

|lz*|x- <1 <= a"(z) <|z|x for all z € X.

O

As a result of Example 2.23 the subdifferential of the norm at Ox
in a real normed space X coincides with the closed unit ball of the
dual space.

With the following sequence of assertions it can be shown under
appropriate assumptions that the subdifferential of a vectorial norm
can be used in order to characterize the directional derivative of such
a norm.

Lemma 2.24. Let X be a real linear space, let'Y be a real topolog-
cal linear space, let Cy be a convex cone in Y which is Daniell, and
let || : X =Y be a vectorial norm. Then the directional derivative
of the vectorial norm exists at every * € X and in every direction
heX.

Proof. Let f: X — Y be an arbitrary convex map with f(0x) =
Oy. Then we obtain for all x € X and all o, € R with 0 < a < j3

f—a f—a

(67
F(B)+ =51 (0x) = (G804

@
g

resulting in

(0}

f(Bz) = flax) = B

OX) e Cy

1 1
Bf(ﬁl’) - Ef(@fl?) € Cy.
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If we take especially

f(@) = ||z + ]| = ||z]| for all z € X,

then f is convex and f(0x) = Oy. Hence, the above result applies to
this special f, that is

1, _ 1. _
E(Illl‘ + Ball = lIzll) = = (I + az]l ~ Izll) € Cy
for all x € X and all real numbers o, 7 with 0 < o < 3.

(2.7)

Next, we show that the difference quotient which appears in the def-
inition of the directional derivative is bounded. Since the vectorial
norm is a convex map, we get for all z € X and all A > 0

1
A —zll —
ol + 2zl + il =l — izl
1 A
= T+ \ T —
el + ol el
[+ -0
— T+N)+ ——(T -2
1+ A I1+A
c Cy
implying
Lo _ _ _
Uz + 2zl =izl € Uzl = llz - <]} + Cv.
This condition means that ||z|| — ||z — z|| is, for every A > 0, a lower

1
bound of the difference quotient X(\Hf + Az|| — ||Z|). Since Cy is

assumed to be Daniell, we conclude with the condition (2.7) and the
boundedness property that the directional derivative of the vectorial
norm exists at every z € X and in every direction h € X. O

Lemma 2.25. Let (X, ||-||x) and (Y, ||-||y) be real reflexive Banach
spaces, and let C'y be a closed convex cone in'Y which is Daniell and
has a weakly compact base. If ||-|| : X — Y is a vectorial norm which
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15 continuous at an & € X, then we have for the directional derivative
at * € X in every direction h € X

T(h) <cy lZl'(h) for all T € O] ])-

Proof. Notice that with Lemma 2.24 the directional derivative
IZ|'(h) exists for all z,h € X. By a result of Zowe [370] the subdif-
ferential d||z|| is nonempty. For every z,h € X we get
Iz +Anll =Nzl e {T(z +Ah) = T(2)} + Cy

= {MT'(h)} +Cy for all A > 0 and all T' € 0| z|.

Consequently, we have

1
X(|||:E + An|| — ||z|)) € {T'(h)} + Cy for all A > 0 and all T" € 9| z||.

Since Cy is closed, we conclude
Izll'(h) € {T(h)} + Cy

which leads to the assertion. O

For the announced characterization result of the directional deriva-
tive of a vectorial norm we need a special lemma on subdifferentials.

Lemma 2.26. Let (X, ||-||x) and (Y, ||-|ly) be real reflexive Banach
spaces, and let Cy be a convex cone in'Y with a weakly compact base.
If f: X — Y s a convex map which is continuous at some T € X,
then

todf(x)=0(to f)(z) for allt € Cy-.

A proof of this lemma may be found in a paper of Zowe [370] even

in a more general form (compare also Valadier [336] and Borwein [40,
p. 437)).

Theorem 2.27. Let (X,| - ||lx) and (Y, - |lv) be real reflexive
Banach spaces, and let Cy be a closed convex cone in Y which is
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Daniell and has a weakly compact base. If ||-|| : X — Y is a vectorial
norm which is continuous at an T € X, then the directional derivative
of f at T in every direction h is given by
Izlf'(h) = max{T(h) [T € B(X,Y), T(z) = ||z
and ||z|| — T(x) € Cy for all x € X}

which means that there is a T € B(X,Y) with T(z) = ||z|| and
Izl = T(x) € Cy for allz € X

so that B
Izl (h) = T'(h)

and

Izll'(h) € {T'(h)} + Cy for all T € B(X,Y) with T(z) = ||z||
and ||z|| —T(z) € Cy for all x € X.

Proof. Take any direction h € X. From Example 2.22 and
Lemma 2.25 we obtain immediately

Izl (h) € {T'(h)} + Cy for all T € B(X,Y) with T'(z) = ||z||
and |z|| — T'(z) € Cy for all z € X.
Therefore, we have only to show that there is a T € 9||z| with
V2l (h) = 7(h).

With Corollary 3.19 (which will be stated later) there is a continuous
linear functional ¢t € C;i. Then we consider the functional f :=
tofl-|l: X — R. fis continuous at  and with Lemma 2.7, (b) it is
even convex. With Lemma 2.25 we conclude

f(@)(h) = sup{z"(h) | 2" € f ()},

and since 0f (%) is weak*-compact in X*, this supremum is actually
attained, that is

f(@)(h) =2 max{z"(h) | 2" € Of ()}.
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In order to prove the equality we assume that there is an o € R with
f'(Z)(h) > a > max{z*(h) | * € 0f(Z)}. (2.8)

If S denotes the linear hull of {h}, we define a linear functional [ :
S — R by
[(Ah) = Ao for all A € R.

Then we get
I(Ah) < Af(z)(h) = f'(Z)(Ah) for all X € R.
Since f'(Z) is sublinear, there is a continuous extension [ of [ on X

with

l(z) < f'(z)(z) for all z € X

which implies [ € 0f(z). But with I(h) = a we arrive at a contradic-
tion to (2.8).

Summarizing these results we obtain
f'(@)(h) = max {z"(h) | 2" € Of(2)}.
Consequently, there is an z* € 9f(Z) with
f'(@)(h) = 2" (h).
With Lemma 2.26 there is a T' € 9||z|| with 2* =t o T and we get
tollz]'(h) = (to ||zll)'(h) = t o T(h). (2.9)
Assume that ||Z]'(h) # T(h). Then we get from Lemma 2.25
Izll'(h) — T(h) € Cy\{Oy}

and, therefore, )

tol|lz](h) —toT(h) >0
which contradicts (2.9). Hence, ||Z]|'(h) = T'(h) and this completes
the proof. O

It should be noted that the assumptions of Theorem 2.27 are very
restrictive (they are fulfilled, for instance, for Y = R" and Cy = R7%).
The assertion remains valid under even weaker conditions and for
these investigations we refer to Borwein [40, p. 437].



Notes 59

Notes

A lot of material on convex functions may be found in the books
of Rockafellar [284] and Roberts-Varberg [282]. For investigations
on convex relations in analysis we refer to a paper of Borwein [37].
Convex-like maps were first introduced by Vogel [341, p. 165] who
also formulated Theorem 2.11. In connection with a minisup theorem
Aubin [10, § 13.3] presented a similar statement like Theorem 2.11
for so-called ~-convex functionals.

A survey on differentials in nonlinear functional analysis may be
found in the extensive paper of Nashed [255]. The so-called directional
variation was introduced by Kirsch-Warth-Werner [188, p. 33] in a
more general form; they called it “B-Variation”. The differentiability
concept used in this book is based on a paper of Jahn-Sachs [172]. For
a further generalized differentiability notion compare also the paper of
Sachs [293]. The results on Fréchet differentiation can also be found
in the books of Luenberger [238] and Jahn [164]. Subdifferentials
were introduced by Moreaux and Rockafellar. We restrict ourselves
to refer to the lecture notes of Rockafellar [286]. The books of Holmes
[140], Ekeland-Temam [101] and Ioffe-Tihomirov [144] also present an
interesting overview on subdifferentials and their use in optimization.
Theorems on subdifferentials in partially ordered linear spaces may be
found in the papers of Valadier [336], Zowe [370], Elster-Nehse [102],
Penot [271] and Borwein [40].

Much of the work on vectorial norms described in the second sec-
tion is based on various results of Holmes [140] and Borwein [40].
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