Chapter 2
Basic Notions

This chapter provides a brief introduction to basic notions and definitions from
algebra and predicate logic. For further discussion, examples, and presentation
of concepts see e.g. [55, 22, 169, 106].

2.1 Signatures and Y-structures

A signature constitutes the syntax of a language, i.e. the symbols used to
compose language expressions like terms and constraints. Their interpretation
or semantics is defined by means of an appropriate structure.

Definition 1 (signature) A (many-sorted) signature X = (S, F, R) is de-
fined by a set S of sorts, a set F' of function symbols, and a set R of predicate
symbols. The sets S, F', and R are mutually disjoint.

Every function symbol f € F' and every predicate symbol r € R is associ-
ated with a declaration f :s1...8, =~ sand r:81...8y, 8,8 €5, n,m >0,
and thus with an arity n or m, resp. A symbol f with n = 0 is a constant
symbol.

Let X*® be a set of variables of sort s € S. A set of YX-variables is a set
X = U,cg X?, where the sets X* are non-empty and mutually disjoint. <

A Y-structure builds on a signature X' and defines the semantics of the
symbols of X.

Definition 2 (X-structure) Let X' = (S, F, R) be a signature. A X-struc-
ture D = ({D* | s€ S}, {fP | f € F}, {rP | r € R}) consists of an S-sorted
set of non-empty carrier sets D® with s € S, a set of functions fP with f € F,
and a set of predicates r¥ with r € R.

For a function symbol f € F with f : s1...s, — s let fP be an n-ary
function, such that fP : D x ... x D% — D* holds.

For a predicate symbol r» € R with r : 51 ... s,, let P be a m-ary predicate,
such that 7P C D51 x ... x D™ holds. <

P. Hofstedt (ed.), Multiparadigm Constraint Programming Languages, Cognitive Technologies, 9
DOI 10.1007/978-3-642-17330-1_2, © Springer-Verlag Berlin Heidelberg 2011

10 2 Basic Notions

The following example illustrates these definitions and will be used in the
subsequent sections.

Example 1 Let Xy = (S, F, R) be a signature consisting of the set of sorts
S = {nat}, the set F = {succ, plus,mul,0,1,2,...} of function and con-
stant symbols and the predicate symbols R = {eq, geq} with the following
declarations:

succ : nat — nat

plus, mul : nat nat — nat
0,1,2,...: nat

eq, geq : nat nat

We define a Xy-structure Dy by Dy = ({N}, {fN| f € F},{rV | r € R}),
where the carrier-set N is the set of natural numbers on which the functions
N and predicates N apply, e.g.

succ: N — N and for every = € N holds: succ™(z) = (x + 1),
plus™: N x N — N, and for every z,y € N holds: plus™(x,y) = (z +y),

0N: N with 0N = 0,
1N N with 1N =1,

eq¥ C N x N, where for all z,y € N holds: eq"(z,y) iff z =1y,
ged" C N x N, where for all z,y € N holds: geq"(x,y) iff x > y. O

2.2 Terms, formulae, and validity

Based on the notion of a signature, we define terms and formulae. We provide
these syntactic elements with a meaning, i.e. a semantics, and determine the
validity of formulae with the help of the corresponding X-structure.

In the following, let X = (S, F,R) be a signature, let X be a set of
Y -variables, and let D be a X-structure.

Terms are built from the symbols of X'. They are defined inductively. Besides
variables and constant symbols, there are terms composed of subterms based
on the declarations of the involved function symbols.

Definition 3 (term, ground term) The set 7 (F, X) of terms over X and X
is defined as follows: T(F, X) = [J,cq T (¥, X)?, where for every sort s € S
the set T (F, X)® of terms of sort s is the smallest set containing

1. every variable z € X*® (of sort s),
2. every O-ary function symbol f € F' with f : s, i.e. every constant symbol,
and

2.2 Terms, formulae, and validity 11

3. every expression f(t1,...,t,),n > 1, where f € F is a function symbol with
declaration f : s1...s, — s and every ¢;,i € {1,...,n}, is a (composite)
term of T(F, X)®i.

Terms without variables are ground terms. <

A position p in a term t is represented by a sequence of natural numbers.
The empty sequence is denoted by e. We recursively define ¢|,, to denote the
subterm of ¢ at position p as t|e =t and f(t1,...,tn)|ip = tilp. By t[r], we
denote the term which is obtained from ¢ as the result of the replacement of
the subterm ¢|, with the term r.

Example 2 Let z,y,z € X. For our signature Xy from above, z, 2, succ(z),
plus(2, suce(3)), and plus(suce(x), mul(2, succ(y))) are terms.

For a term ¢t = plus(z, mul(2, succ(y))) examples of subterms are t|. = ¢,
tl1 = x, tlo = mul(2, succ(y)), tlee1 = y, and replacements are given by e.g.
tfmul(2, z)]a = plus(x, mul(2, z)) and t[1]221 = plus(z, mul(2, succ(1))). O

Terms represent elements or objects of the corresponding domain. For exam-
ple, terms over Yy are arithmetic expressions. Similarly, boolean expressions
can be built over an appropriate signature Xy.

To determine the semantics of terms w.r.t. a X-structure D we must assign
values to the variables of the terms. This is done by means of a valuation.

Definition 4 (valuation) An S-sorted family of mappings ¢: X — D = (¢ :
X* — D*)%€5 which assigns each variable z € X* an element of the carrier
set D%, s € S, is a valuation. <

Now, we can evaluate terms w.r.t. a structure D and a valuation g.

Definition 5 (evaluation of terms) Let ¢: X — D be a valuation. The eval-
uation ¢: T(F,X) — D of a term w.r.t. the structure D and the valuation
¢ is a family of mappings (¢*: T (F, X)® — D*)*€% with:

e *(x) = ¢*(x) for every variable z of sort s,

o &(f) = fP for every constant symbol f € F with f : s, and

o S(f(ty,... tn)) = fP(S1(t1),. .., S5 (t,)) for every function symbol f € F
with f:s1...s, = s and every sort si,...,8,,s € S and all terms
t e T(F, X)%, ie{l,...,n}. <

The evaluation of a variable is just its valuation, the evaluation of a constant
symbol is the corresponding constant from the structure. For a composite
term we evaluate its subterms and apply the corresponding function from the
structure.

The set Formulae(X, X) of formulae of (first-order) predicate logic deter-
mines the syntax of predicate logic.

Definition 6 (formulae of predicate logic) The set of formulae of pre-
dicate logic over a signature Y and a set of variables X, denoted by
Formulae(X, X), is inductively defined as follows:

12 2 Basic Notions

1. For all predicate symbols r : s1...8, and all terms t; € T(F, X)%,
i€{1,...,m}, the expression 7(t1,...,ty) is a (atomic) formula.

2. true and false are (atomic) formulae.

3. For every formula ¢ the expression —¢ is a formula.

4. For all formulae ¢ and 1 the following expressions are formulae too:
(pV), (AY), (¢ — ¢), and (¢ <— V).

5. If ¢ is a formula and 2 € X is a variable, then (Vx.¢) and (3x.¢) are
formulae. <

We denote the set of variables occurring in a term or formula F', resp., by
var(F). The quantifiers V and 3 bind variables in formulae. We introduce
certain notions concerning quantifiers.

Definition 7 (bound and free variable, open and closed formula) An occur-
rence of a variable z in a formula ¢ € Formulae(X, X) is called bound, if x
appears in a subformula of ¢ in the form 3z.¢ or Vz.1. Otherwise z is a free
variable. A formula ¢ without occurrences of free variables is called a closed
formula, otherwise ¢ is open. <

Definition 8 (universal and existential closure) Let {z1,...,z,} € X be
the set of free variables of a predicate logic formula ¢ € Formulae(X, X).
The universal closure V¢ and the existential closure 3¢ of ¢ are defined
by

Vo =Vri...Vo,. ¢ and d¢=dxy...dz,. ¢, resp.

The expression Y with ¥ C X denotes a (arbitrary) sequence of the
variables of the set Y. By 31 we denote the existential closure of the
formula 1 except for the variables of Y. <

In the following, we write Vz,y.¢ instead of Vx.Vy.¢ and Jz,y.¢ instead of
Jx.Jy.¢ as is usually done.

Example 3 Consider the signature X'y and the structure Dy from Example 1
and the variables {z,y, 2z} C X.

The following formulae are elements of Formulae(Xy, X):
true, false, geq(2,), eq(mul(2,2),4), geq(2, x)V-geq(z,2), true — false,
eq(2,z) +— eq(succ(2), succ(x)), Va, y. eq(z, plus(x, y)), V. Jy. eq(x, succ(y)),
geq(x,2) — Jx.eq(x,2).

Consider p = Vx,y. eq(z, plus(z,y)) and ¢ = geq(z,2) — x. eq(x,2). The
variables x and y are bound in formula p, while the variable z is free. In the
formula ¢ the first occurrence of variable x is free, while its second occurrence
is bound by the existential quantifier 3.

The formulae true, false, eq(mul(2,2),4), Va.3y.eq(x, suce(y)), and
true — false are closed, all other formulae given above are open.

Let Y = {z,y} C {x,y,2} C X. The following holds:
3y eq(z,plus(z,y)) = 3_o,y eq(z,plus(z,y)) = 3z. eq(z,plus(z,y)). O

2.2 Terms, formulae, and validity 13

The semantics of predicate logic is determined by the assignment of a
meaning to every formula w.r.t. the associated structure. We define the
validity relation between structures and formulae (see e.g. [55]).

Definition 9 (validity, F, model) Let ¢,v € Formulae(X, X) be formulae
of predicate logic. Let ¢ : X — D be a valuation. A valuation which maps
the variable z € X to a € D and all other variables y to ¢(y) is denoted by
slzfa] : X — D, i.e.

cle/al(y) = {c(y) ify #

a otherwise.

The relation F is defined as follows:

(D,¢) Er(ty, ... ty) iff (S(t1),...,S(tm)) € 7P,

(D, <) E true,

(D, <) ¥ false,

(D,s) E—9 ift (D,<) ¥ ¢,

(D,s)Ep AP iff (D,<)FE ¢ and (D,s) F 1,

(D,q)E oV ift (D,s)E ¢ or (D,g) F 1,

(D,s)E¢p— 1 iff (D,s) ¥ ¢ or (D,<)E 1,

(D,s)Fp«+— o iff (D,¢)E ¢ — ¢ and (D,<) Fp — ¢,

(D) EVx.9 ift (D,s[x/a]) F ¢ for every a € D*,s € S, x € X*,

(D,s) Edx.0 iff (D,<[xz/a]) E ¢ for at least one a € D%, s € S, x € X°*.

A formula ¢ is walid in D, i.e. it holds D E ¢, if for every valuation
¢: X — D holds: (D,<) E ¢. In this case, we call D a model of ¢. <

Example 4 Consider the signature Xy and the structure Dy of Example 1.
Let ¢ be a valuation with ¢(x) = 1, ¢(y) = 2, and ¢(2) = 3. We study the
validity of various formulae:

Dy, <) E true and (Dy,) ¥ false.

(Dn

(D, <) F geq(2,), because 28 =2 > 1 = 1N,
(D, <) F eq(plus(2,2),4), because plus™(2,2) = 4.
(DN7 g) F —\geq(2, 'T) \ _‘geQ(x7 2)a

because the validity of one subformula ¢ or ¢ of a formula ¢ V v is
sufficient and (1,2) & geq" resp. 1 # 2.
(Dn,) ¥ true — false
according to the definition of validity of formulae of the form ¢ —
(see above).
(D, <) E (eq(2, 2) +— eq(succ(2), suce(x))),
because (2,1) € eq" resp. 2 # 1 and (3,2) & eq" resp. 3 # 2.
(Dn, s) B Va,y.eq(z, plus(x,y)),
because there are valuations ¢’ of z and y such that 3 # ¢'(z) +<¢'(y).
(Dn,s) ¥ Va. Jy. eq(z, suce(y)),

14 2 Basic Notions

because when x has the value 0 there is no value for y such that
r=y-+1.
(D, <) F geq(x,2) — Fz.eq(x,2), because (1,2) & geq".

Of the above formulae the following are valid in Dy, i.e. they hold in Dy
for every valuation: true, eq(plus(2,2),4), eq(2, x) +— eq(succ(2), suce(x)),
and geq(x,2) — Jx. eq(z, 2).

2.3 Substitutions and unifiers

When defining operational principles of programming languages later on in
this book, we will need certain notions concerning substitutions.

A substitution applied to a term or atomic formula replaces variables by
terms.

Definition 10 (substitution) A substitution o is a function o : X —
T(F,X) with o(x) € T(F,X)® for all x € X°.

We extend the function o to 6 : T(F,X) — T (F, X), i.e. for application
on terms by

o G(x) = o(z) for all variables x € X,
o (f(t1,...,tn)) = f(6(t1),...,0(t,)) for all terms f(t1,...,tn).

Analogously, o is extended for application on atomic formulae. In the following,
we identify a substitution o with its extension & and write ¢ instead of . <

In this book, we deal with finite substitutions o in the sense that for only
finitely many variables x holds: o(z) # z. A substitution ¢ can, thus, be rep-
resented in the form o = {z/o(x) | o(x) # x}, where we explicitly enumerate
all its elements. We denote the identity substitution by d.

The composition of substitutions describes the sequential application of
substitutions on a term or formulae.

Definition 11 (composition of substitutions) The composition of substi-
tutions o and ¢ is defined by (¢ o o)(e) = ¢(o(e)) for all terms and atomic
formulae e. <

Example 5 Consider a set X of variables with {x,y,z} C X and the signa-
ture Yy from Example 1.

Let o and ¢ be substitutions with o = {x/4,y/plus(3,2)} and ¢ = {z/1}.
The following holds:
o(suce(2)) = succ(o(2)) = suce(2)
o(succ(z)) = suce(o(x)) = succ(4)

o(mul(3, plus(z, suce(y)))) = mul(3, plus(4, suce(plus(3, 2))))

2.3 Substitutions and unifiers 15

)
2)))))
) 0

Unifiers are substitutions which allow one to identify certain terms or
formulae.

(¢ o o)(mul(3, plus(z, succ(y)))) = ¢(o(mul(3, plus(z, succ(y))))
= ¢(mul(3, plus(4, succ(plus(3,
= mul (3, plus(4, succ(plus(3,1)

Definition 12 (unifier, most general unifier, mgu) Let s and t be terms or
atoms. A substitution o with o(s) = o(t) is a unifier of s and ¢t. A unifier o
of s and t is a most general unifier (we write 0 = mgu(s,t)) if for every
unifier ¢ of s and t there exists a substitution such that ¢ = 1 o ¢ holds.<

For algorithms to compute most general unifiers we refer to [194, 106]. If two
terms or atoms s and ¢ are not unifiable, we write mgu(s,t) = 0.1

Example 6 Consider the signature Xy and the set {z,y,z} C X. The
terms s = mul(z, succ(z)) and t = mul(2,y) are unifiable with substitution
o ={x/2,y/succ(z)}, i.e. o is a unifier of s and :

o(s) = mul(2, suce(z)) = o(t)
The substitution ¢ = {x/2,y/succ(3), z/3} is a unifier of s and ¢ too:

¢(s) = mul(2, succ(3)) = o(t)

The substitution ¢ is a most general unifier of s and ¢. For o and ¢ there
is a substitution ¢ = {z/3} such that ¢ =1 o o holds. ¢

Let the parallel composition of idempotent substitutions be defined as
n [175]. We compute the parallel composition (o 1 ¢) of two idempotent
substitutions ¢ and ¢ as follows:

(J T (b) = mgu(f(xh cees Tns Yty e 7ym)7f(0($1)7 te 7J(xn)7¢(y1)a s ~7¢(ym)))ﬂ

where z;, i € {1,...,n}, and y;, j € {1,...,m}, are the domain variables of
o and ¢, resp.

Example 7 Given Yy, a set X of variables with {w, x,y, 2} C X, and the sub-
stitutions o = {z/0,y/z}, ¢ = {w/succ(x),y/0}, and ¢ = {y/0, z/succ(0)},
we build their parallel compositions:
(01 ¢) = mgu(f(z,y,w,y), f(0,z, succ(z),0))
= {z/0,y/0,2/0,w/succ(0)}
(0 1 ¢) = mgu(f(z,y,9,2), f(0, 2,0, succ(0))) = 0
(¢ 1 ¢) = mgu(f(w,y,y, 2), f(succ(x),0,0, succ(0)))
{w/suce(x),y/0, z/succ(0)} O

! Note that @) has a completely different meaning than the identity substitution id.

2 Springer
http://www.springer.com/978-3-642-17329-5

Multiparadigm Constraint Programming Languages
Hofstedt, P.

2011, Xll, 180 p., Hardcover

ISBM: 978-3-642-17329-5

	Chapter 2 Basic Notions
	2.1 Signatures and -structures
	2.2 Terms, formulae, and validity
	2.3 Substitutions and unifiers

