
Foreword

"Modeling" has become one of the primary concerns in modern Software
Engineering. The reason is simple: starting development processes from clear
and succinct models has proven to foster not only quality but also productivity.
With the advance of modeling there also came a desire for automatic code
generation from models. This way, the costly and error-prone implementation
in terms of low-level languages should be saved. To this end, the models need
to be "executable" in the widest sense.

In this general picture the concepts of constraint programming obtain
a new and economically important role. Even though they are not in the
current mainstream of UML-style graphical languages, they are extremely
well suited for describing models. This is evident by considering the very
nature of constraints: one formulates the properties that a software system
shall fulfill; the implementation is done automatically by the constraint solver.
So the time is ripe for constraint-based programming to come out of the more
academic world, to which it still is constrained to a large extent, and show its
potential for modeling real-world applications.

However, there is no silver bullet. Classical constraint systems in their pure
forms are not expressive enough to be used in a large variety of application
domains. Therefore they need to be augmented by other styles and concepts
for programming and modeling. This leads into the realm of so-called "multi-
paradigm languages". There have been all kinds of approaches in Computer
Science to address the "no-silver-bullet" issue. Examples range from volumi-
nous languages such as PL/1 or Ada (which failed miserably), huge libraries
(which are non-standardized and thus lead to severe problems in the long run),
or Microsoft’s .Net approach (which solves the problem at least on the low
level of machine code). The keyword DSLs (domain-specific languages) can
be viewed as the general circumscription for all kinds of attempts to address
the multiparadigm idea. By contrast to .Net the emphasis here is on the
integration at the level at which the users formulate their intentions.

vii



viii

In this dynamic evolution of ideas, concepts and efforts, the book by Petra
Hofstedt provides a valuable snapshot and assessment of the state of the art
and the future directions for potential evolutions. The first part of the book
gives an overview of paradigms, languages and compilers that are currently
available both for academic experiments and for practical applications. Based
on a sound description of the mathematical foundations, the general concepts
of multiparadigm constraint languages are explained and the technical means
for their implementation in the form of efficient solvers are presented. Of
particular interest is the classification of the interplay of the different styles
of programming, such as constraint logic programming, constraint imperative
programming, constraint object programming, et cetera.

The second part of the book complements this overview of languages and
concepts by looking at the application domains. However, the word "case
studies" does not refer here to a collection of selected examples. Rather it refers
to the techniques that are needed to realize some of the multi-paradigmatic
compositions. This is done on two orthogonal dimensions: First, one of the
most complex combinations of paradigms is presented quite concretely, namely
concurrent constraint-functional programming. Second, a generic framework
is elaborated, which shall make it relatively easy to compose all kinds of
paradigms within new language shells. This is best expressed by the catch-
phrase "from solver cooperation to language integration".

The book by Petra Hofstedt comes at a time of highly dynamic evolutions
in Software and System Engineering, in particular with respect to modeling,
specification and high-level problem description. It provides a valuable insight
into one important aspect of this field, namely the activities centered around
the declarative description of systems by way of their properties, that is, by
way of constraints. It will help the reader to understand the foundations of
the approach and to get a better judgement of the future perspectives.

Berlin, December 2010 Peter Pepper



http://www.springer.com/978-3-642-17329-5


	Foreword



