Chapter 2

Why such patterns? A few
motivation points

While getting familiar with results on patterns in later chapters, one not only has a
chance to appreciate the beauty of combinatorics of patterns on words and permu-
tations (which is interesting in its own right), but also to learn about connections of
the field to other branches of combinatorics, mathematics, and theoretical computer
science. The main application of patterns so far is that in many situations they
provide a convenient language for describing various (combinatorial) objects. Such
descriptions can be used in establishing properties (e.g., equidistribution results)
of objects related to words or permutations restricted somehow by patterns (e.g.,
avoiding certain patterns). However, in most of the cases considered in the litera-
ture, the prime interest in linking pattern-restricted permutations/words to other
objects is finding a bijection between the structures involved rather than also trying
to find immediate applications.

In either case, the current chapter contains several of the most striking con-
nections between patterns and other objects. Many more such connections will be
given in later chapters.

2.1 Sorting permutations with stacks and other
devices

There is a long line of papers in the computer science literature dedicated to problems
of sorting permutations (arranging permutations in increasing order) with different
devices, e.g., stacks, queues, and deques (see, for example, [18, 21, 33, 54, 56, 44, 45,
373, 52,49, 63, 35, 325, 351, 148, 256, 59, 136, 134, 133, 135, 157, 156, 206, 205, 339,
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423, 435, 441, 539, 658, 703, 705, 729, 716, 727, 762, 799, 801, 800, 813, 815, 774,
775]). We refer to [136] and [137, Chapter 8] by Béna for introductions to the area
of sorting we are interested in, and to [539] by Knuth for general sorting algorithms.
The original appearance of the theory of patterns was due to its connections to sort-
ing with stacks as discovered by Knuth [540, pp. 242-243] in 1968. Even these days,
one of the main applications of our patterns is providing a language for describing
sets of permutations sortable by given devices.

In this section we will illustrate how patterns can be used in the sorting in-
dustry. Notice that even though the results presented in this section on relations
between patterns and sorting are rather comprehensive, we still leave aside some of
them. For example, we do not discuss in any details the fact that the matrices cor-
responding to Av(3142,2413) are exactly those which do not fill up under “bootstrap
percolation” [716] (as we will see in Subsection 2.2.5, Av(3142,2413) is enumerated
by the large Schrider numbers; see Subsection A.2.1 for definitions).

2.1.1 Sorting with k stacks in series

A stack is a last-in first-out linear sorting device with push and pop operations (also
known as insert and remove operations). In other words, a stack is a container for
a linear sequence (in our case, for a permutation) that one is allowed to change by
inserting new items (one at a time) at its tail and by removing tail items (again, one
at a time). Initially the stack is empty and then a sequence of insertions interleaved
with removals is made. Thus an input permutation is transformed thereby into an
output permutation.

The greedy algorithm we are interested in for stack sorting a permutation
T = mTy - - m, works as follows. We start with pushing m; onto the stack. Next,
if m9 < m; then we push m onto the stack to be on top of m; on the other hand,
if my > m, we pop m off and let my enter the stack. More generally, suppose, at
some point, the letters 7y, mo, ..., m; have all been added to the stack (some of them
could be still in the stack, others have been popped off), so we are reading ;1.
We push 7;,1 onto the stack if and only if ;.4 is less than the top element of the
stack (which is easily seen to be ;). Otherwise, we pop elements off the stack, one
by one, until ;1 is less than the top remaining stack element and then we push
m;i+1 onto the stack. When no more elements remain to be pushed onto the stack,
we pop off all elements of the stack until it is empty. This produces a permutation
S(m) as output.

Definition 2.1.1. If S(7) is the identity permutation 12---n, we say that =« is
stack-sortable. More generally, if S¥(r) is the identity permutation (S* is the result
of application of S k times), we say that 7 is k-stack sortable (7 is sorted with k
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3214 214 4 12 4 123 4 123 1234
[(mput) ‘/ \ ‘/ \ (output)
3 4
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

Figure 2.1: Stack sorting the permutation 3214.

stacks in series). We let W, denote the set of all k-stack sortable n-permutations.

Remark 2.1.2. There are other notions of a “k-stack sortable permutation” in the
literature, which are different from that introduced in Definition 2.1.1 (see [54, 634]).
To distinguish the permutations in Definition 2.1.1, they are sometimes called West-
k-stack sortable permutations (West considered them in [799]). However, since we do
not discuss the other notions of k-stack sortable permutations in much detail in this
book, we omit “West-" in Definition 2.1.1, which should not cause any confusion.

3241 241 41 2 41 23 231 2314
\/(input) \/ R ‘/\ \

s T e

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

Figure 2.2: Stack sorting the permutation 3241.

Figure 2.1 shows an example of a stack-sortable permutation (3214), while
Figure 2.2 shows an example of a non-stack-sortable permutation (3241). As a mat-
ter of fact, the permutation 3241 is 3-stack sortable but not 2-stack sortable which
is illustrated in Figure 2.3 (a single adjacent transposition makes the permutation
3214 much harder to sort).

1234 2134 2314 3241

(output)m u u (input)

Figure 2.3: Sorting the permutation 3241 with 3 stacks in series.

It is clear that the set of stack-sortable permutations is closed under pattern
containment (meaning that any subsequence of a stack-sortable permutation in re-
duced form is stack-sortable), since removing a letter from the input and ignoring
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the insertion and removal operations on it gives a proper computation that applies
to the shorter input. However, before stating results on patterns related to stack
sorting, we would like to define the stack sorting procedure in an alternative (equiv-
alent) way (introducing relevant notions/notations), that is not only normally more
convenient to deal with, but also allows several modifications of the procedure, not
to be discussed here.

We define the stack sorting operator S recursively on an n-permutation as
follows. For the empty permutation e, S(¢) = e. If 7 # ¢ is an n-permutation,
decompose 7 as m = LnR, where L and R are, possibly empty, factors to the left
and to the right of n, respectively. Then

S(r) = S(L)S(R)n.

Going again through the examples above we see that using the new definition,
S5(3241) = 2314 and S(3214) = $3(3241) = 1234 which matches our previous com-
putations.

It is easy to see that W, ,—1 = S, = S,(0), that is, all n-permutations can
be sorted by n — 1 applications of the S operator, and this can be seen as avoid-
ance of the empty set of patterns. The first part of the following proposition, that
Knuth [540, pp. 242-243] left as an exercise to the reader, began the theory of
patterns in permutations, and it provides the first explicit application of patterns
in computer science. To give an idea of approaches to use, we will provide a proof
of Proposition 2.1.3. However, almost all of the upcoming propositions/theorems
in this section are stated without proofs (explicit references to the results are given
though).

Proposition 2.1.3. W, ; = §,(231). Moreover, |W, 1| = s,(231) = %H(Q:), the
n-th Catalan number.

Proof. Let us prove that W,,; = S,(231). Suppose m;m;m;, is an occurrence of the
pattern 231 in an n-permutation , that is, 7, < m; < ;. At some point m; will
enter the stack, and before 7; can do so, m; must leave the stack so 7, cannot be to
the left of it in S(7), so 7 is not stack-sortable.

Conversely, suppose 7 is not stack-sortable. Then S(7) contains a 2-letter
subsequence ;7 such that m; > m (w7, is an inversion in S(w)). Thus, m; left the
stack before m;, arrived there. This can only happen if there is a letter m; such that
™, is a subsequence in 7 and 7; > m;. But then, m;m;m;, is an occurrence of the
pattern 231 in 7.

To prove the second part of the proposition, decompose a 231-avoiding n-
permutation w as 7 = LnR, where L and R are the possibly empty factors of 7 to
the left and to the right of the largest letter n, respectively. To avoid 231 each letter
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of L must be smaller than any letter of R, and L and R in reduced form must be
231-avoiding permutations. This brings us to the following recursion in which ¢ can
be viewed as the length of L:

[

5n(231) = S 5:(231)s,_;_1(231).

i

Il
o

This recursion is a well-known recursion for the Catalan numbers and we are done.
O

In his PhD thesis West [799] proved the following theorem (notice the appear-
ance of a barred pattern).

Theorem 2.1.4. ([799]) W, = S, (2341, 35241).

West [799] conjectured the following formula for the number of 2-stack sortable
permutations

2(3n)!

(2.1) 5,(2341,35241) = m

which was first proved by Zeilberger [815], who found the functional equation
22G3(2) + 2(2 4+ 37)G2(2) + (1 — 142 + 32%)G () + 2° + 1z — 1 =0

for the generating function G(z) = >, -, 5,(2341,35241)2" and then used La-
grange’s inversion formula to solve it. Two bijective proofs [323, 423] of the con-
jecture by West appeared later and they connected together different combinatorial
objects involving several classes of pattern-restricted permutations. Both of the bi-
jective proofs rely on the known result on the number of rooted non-separable planar
maps [190, 191]. Some further details on the proofs and related things are to be
discussed in Section 2.11.

It should be mentioned that refinements for the number of stack-sortable and 2-
stack sortable permutations are know when descents (occurrences of the pattern 21)
are taken into account. In the first case, one gets the Narayana numbers (see [745]).
More precisely, the number of stack-sortable n-permutations with m descents is
shown to be equal to

For the number of 2-stack sortable n-permutations with m descents one gets the
following formula (see [135] by Béna and references therein):

(n+m)!(2n —m — 1)!
(m+ Dl(n—m)!l(2m+ 1)!(2n — 2m — 1)1

(2.3)
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Another refinement for counting 2-stack sortable permutations is the following
theorem by Dulucq et al [323].

Theorem 2.1.5. ([323]) The number of 2-stack sortable n-permutations having k
right-to-left mazima (see Definition A.1.1) is

min{n+1,2k+2}

Z Bk —27+2)(2j — k —1)(j 2)!(Bn—j—k+1)!
(n—J+DIG — k=D —k)N2k —j +2)!

kE+1
(2n—k+1)!

j=k+1

To complete the relevant enumeration story, one should mention a result of
Bousquet-Mélou [156] related to study of 2-stack sortable permutations subject to
five statistics (including permutation length and the number of descents). It was
shown that the five-variable generating function in question is algebraic of degree 20.

Coming back to using our patterns in describing sortable sets, West [799]
showed that W,, ,,_, are precisely those permutations that do not have suffix n1. We
state this as the following proposition that involves a bivincular pattern.

Proposition 2.1.6. ([799]) Wy = S.(51)).

It is straightforward to see from Proposition 2.1.6, that the number of n-
permutations sortable by applying the operator S n—2 times is sn(%_%l) = nl—(n—2)\.

To our best knowledge, there is no known “nice” pattern description of the set
W n—3, although the cardinality of this set is found by Claesson et al. [256]:

(n—3)!
2

(2.4) W3] = (2n® — 6n* — 5n + 16)

which holds for n > 4. Permutations from W,, ,,_4 that are sortable by n — 4 passes
through a stack are also studied in [256].

Regarding other ways to define the notion of a k-stack sortable permutation
(different from West-k-stack sortable permutations), Atkinson et al. [54] considered
permutations that can be sorted by two stacks in series with each stack remaining
sorted from top to bottom. This set of permutations, M, cannot be characterized by
a finite number of classical patterns, but it is given by avoiding the following infinite
set of patterns:

{2(2m — 1)416385 - - - (2m)(2m — 3) | m = 2,3,...}.

Further, Atkinson et al. [54] showed that M is equinumerous with Av(1342), which
was counted by Béna (see Table 6.2).
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Finally, Murphy [634] considered sorting with & stacks in series in more gener-
ality (many more operations are allowed) and proved that for k£ > 2 stacks, the set of
sortable permutations cannot be characterized by a finite set of forbidden classical
patterns.

2.1.2 Sorting with k£ stacks in parallel

Figure 2.4 shows an example of sorting the permutation 2341 with 2 stacks in par-
allel.

WDl L

2341 2134

T ]

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7  Stage 8 Stage 9

Figure 2.4: Sorting the permutation 2341 with 2 stacks in parallel.

As one sees, the permutation 2341 is not sortable this way, even though, of
course, the class of such sortable permutations is larger than the class of 1-stack
sortable permutations. We consider parallel sorting to give yet another example of
a negative result: it is shown in [373, 762] that for & > 2, no finite set of forbidden
classical patterns can characterize the set of permutations sortable with k stacks
in parallel. It is no surprise that the enumeration problem related to the sortable
permutations is unsolved for & > 2. What we do know [774, 775] is that for k£ < 3, the
permutations sortable with k stacks in parallel can be recognized in time O(nlogn)
while for larger k, that recognition is NP-complete.

2.1.3 Input-restricted and output-restricted deques

An input-restricted deque, introduced by Knuth [540] is similar to a stack in that
it has a push operation, but the pop operation can remove an element from either
end of the deque. A successful sorting of a permutation requires the existence of a
sequence involving the allowed operations that leads to the increasing permutation.
Of course, we now have more possibilities to sort a permutation. For example,
the reader may check that the permutation 2341 requires three stacks in series to
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be sorted while it can be sorted with a single input-restricted deque as shown in
Figure 2.5.

2341 341 41 1 1 12 123 1234
‘/(input) [ [ [ Rl (\ (output)

4 4 4 4 4
3 3 3 3 3
2 2 2 2 2
\ ~
Stage 1 Stage 2 Stage 3 Stage4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

Figure 2.5: Sorting the permutation 2341 with an input-restricted deque.

On the other hand, not all permutations can be sorted with an input-restricted
deque as shown in Figure 2.6.

4231 231 31 1 1 13 132 1324
[(input) ‘/ [ [ (\1 \ S S (output)

3 3 3
2 2 2 2 2
4 4 4 4 4 4 4
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

Figure 2.6: Sorting the permutation 4231 with an input-restricted deque.

Knuth [540] proved the following theorem where he used the so-called kernel
method for proving the second part.

Theorem 2.1.7. (/540]) The set of n-permutations that can be sorted by an input-
restricted deque is given by S,,(4231,3241). The number s, (4231, 3241) of the sortable
n-permutations is given by the (n — 1)-th Schroder number S,_1.

We refer to [540] and to Subsection A.2.1 for more information on Schréder
numbers. These numbers, no surprise, appear in the context of output-restricted
deques as well when we are allowed to push letters at either end, but to pop them
only from the top end. Knuth [540] show that the number of such permutations
is given by the Schroder numbers, while West [801] shows the relation of these
permutations to pattern-avoidance:

Theorem 2.1.8. ([801]) Av(2431,4231) is the set of all permutations that can be
sorted using the output-restricted deque. Consequently, by the corresponding result

of Knuth [540], s,(2431,4231) = S,,_1, the (n — 1)-th Schrider number.
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We note the the second part of Theorem 2.1.8 can be obtained from Theo-
rem 2.1.7 using the trivial bijections as discussed in the following remark.

Remark 2.1.9. Since 7.¢.i(4231) = 4231 and r.c.i(3241) = 2431, we have that a
permutation m avoids the patterns 4231 and 3241 if and only if the permutation
r.c.i(m) avoids the patterns 4231 and 2431, that is,

Av(2431,4231) = {r.c.i(r)|r € Av(4231,3241)}
and, in particular, s,(4231,3241) = s,(2431,4231) = S,,_1.

Definition 2.1.10. We call the sets Av(4231,3241) and Av(2431,4231) input-
restricted deque permutations and output-restricted deque permutations, respectively.

Nothing is known on enumeration of (general) deque-sortable permutations
(in such deques, we can push and pop letters at either end; Knuth posed the prob-
lem to study such permutations), although Pratt [658] proved that deque-sortable
permutations are characterized by avoiding a certain infinite set of patterns.

2.1.4 Sorting with pop-stacks

Avis and Newborn [63] defined the following (less powerful) modification of the stack
sorting procedure which they call “sorting with pop-stacks’. A pop-stack is similar to
a stack except that the pop operation unloads the entire stack (in the last-in, first-
out manner). Figure 2.7 gives an example of a pop-sortable permutation (32154),
while Figure 2.8 provides an example of a non-pop-sortable permutation (53412).

32154 2154 54 123 54 123 12345

U E

Stage 1 Stage 2 Stage 3  Stage 4 Stage 5 Stage 6 Stage 7 Stage 8

Figure 2.7: Pop-sorting the permutation 32154.

Definition 2.1.11. A permutation is called layered if it consists of a disjoint union
of factors (the layers) so that the letters decrease within each layer, and increase
between the layers. For example, 2136547 is a layered permutation with layers 21,
3, 654, and 7. It is an easy exercise to show that S,(231,312) is exactly the set of
layered permutations of length n.

Proposition 2.1.12. ([63]) The set of pop-sortable permutations of length n is
8,.(231,312). Thus, the number of such permutations is s,(231,312) = 2n~L,
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412 35 412 35 12 35 2 3514 2 35141/\ 35142

[(féggl%) [3 [ (output)
Nl E R R i

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9

Figure 2.8: Pop-sorting the permutation 53412.

Proof. Tt is straightforward to see that any layered permutation is sortable with a
pop-stack (the first layer of the form (i — 1)...1, 4 > 1, will be turned into 12...4
and the rest will be done by induction on length with the trivial base case — the
permutation 1).

Conversely, assuming a permutation 7 is not pop-stack sortable, the output
permutation must contain an inversion m;m; (m; > ;). Thinking on what could
make ; precede 7; in the output permutation, we can see that either 7 contains a
subsequence 7;m,m; with m, < 7;, or 7 contains a subsequence ;m,m; with m, > ;.
Thus, 7 either contains the pattern 312, or the pattern 231, or both, and thus
T & S,(231,312).

To enumerate S,,(231,312), think of creating a layered permutation of length
n by inserting the letters 1,2,...,n, one by one, starting with placing 1. Assuming
i — 1 letters have already been placed, 2 < ¢ < n, to avoid the patterns 231 and 312,
we have two choices for placing i: either immediately to the left of i — 1 or at the
rightmost end of the (i — 1)-permutation. Thus, s,(231,312) = 2"~1. O

Proposition 2.1.12 justifies the fact that the permutation 32154 is sortable this
way while 53412 is not.

Avis and Newborn [63] generalized Proposition 2.1.12 by enumerating those
permutations that can be sorted with k pop-stacks in series. We note that by
their interpretation, when the entire set of letters currently in the i-th pop-stack
is popped, it is pushed onto the (i + 1)-th pop-stack. To enumerate the objects,
Avis and Newborn [63] proved that the set of permutations sortable by k pop-
stacks in series can be characterized by a finite set of forbidden classical patterns.
Even though the obtained formulas are rather complex, it is interesting that such
enumeration can be done, taking into account the complexity of the case of (usual)
stacks in series. See [58] for more results in this direction.

To complete the story, the situation for pop-sorting in parallel is as follows.
Atkinson and Sack [56] proved that the set of permutations sortable with & pop-
stacks in parallel is also (like in the series case) characterized by a finite set of
forbidden classical patterns. For example, the following theorem holds.
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Theorem 2.1.13. (/56]) S,,(3214,2143,24135,41352, 14352, 13542, 13524) is the set
of permutations sortable with 2 pop-stacks in parallel. The number s, of such per-
mutations is defined by the conditions s1 = 1, s = 2, s3 = 6, and the recurrence
Sy = 68,1 — 10s8,,_o + 65,,_3.

Moreover, Atkinson and Sack [56] conjectured that for all k, these permutations
have a rational generating function. This conjecture was proved in [729] by Smith
and Vatter.

Finally, the n-permutations sortable with k pop-stacks in parallel can be rec-
ognized in linear time [56].

2.1.5 A generalization of stack sorting permutations

In an (r, s)-stack defined by Atkinson [44], one is allowed to push into any of the first
r positions and pop from any of the s positions at the top end of the stack. Notice
that a usual stack corresponds to the case r = s = 1. Figure 2.9 gives an example of
a (2,1)-stack sortable permutation (4231), which, by the way, is not stack sortable,
and Figure 2.10 gives an example of a permutation (2341) that is not sortable with
the (2,1)-stack. Notice that at Stage 3 in Figure 2.9 we intend to push 3 into the
second position from the top instead of popping 2 out taking advantage of the new
rules. Similarly, we used this trick (twice) at Stages 2 and 4 in Figure 2.10.

[ 4231 231 1234
(input) 1 (output)

2

3
Stage 1 Stage 2 Stdge 3 Stage 4 Stage 5 Stage 9

Figure 2.9: (2,1)-stack sorting the permutation 4231.

2341 341 41 41 l 2 2134
U[(mpm) U U Uf U U o U
Stage 1 Stage 2 Stage3  Stage4  Stage 5 Stage6 Stage 9

Figure 2.10: (2,1)-stack sorting the permutation 2341.

We conclude the section by stating several results (without proofs) on (r, s)-
stack sortable permutations.
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Proposition 2.1.14. ([44]) There is a one-to-one correspondence between (r,s)-
stack sortable permutations and (s, r)-stack sortable permutations.

Theorem 2.1.15. ([44]) A permutation is (r,1)-stack sortable if and only if it
avoids all r! patterns of the form pips---p.(r + 2)1. Also, a permutation is (1,s)-
stack sortable if and only if it avoids all s! patterns of the form 2pips - - - psl.

Notice that Theorem 2.1.15 is the reason for the permutation 4231 being (2,1)-
sortable in Figure 2.9, and for the permutation 2341 being not (2,1)-sortable in
Figure 2.10.

Proposition 2.1.16. ([/4]) The set of (r, 1)-stack sortable permutations, like the set
of sortable permutations, has a closure property: any subsequence of an (r,1)-stack
sortable permutation is (r,1)-stack sortable.

Theorem 2.1.17. ([{4]) If n < r then there are n! (r, 1)-stack sortable n-permutations,
while otherwise, this number is the coefficient of x""+2 in

(r—1)!
2
Theorem 2.1.18. ([/4]) Asymptotically, the number of (r,1)-stack sortable permu-

tations is .
§(r—1)! P12 ) (nd)(1 + /)22 s,

Theorem 2.1.19. ([44]) A permutation is (2,2)-stack sortable if and only if it
avoids all of the following 8 patterns: 23451, 23541, 32451, 32541, 245163, 246153,
425163, and 426153.

V=122 —2(r + 1)z + 1.

2.2 Planar maps, trees, bipolar orientations

In Section 2.1 we have already mentioned the fact that proving formula (2.1) for the
number of 2-stack sortable permutations combinatorially involved several objects.
In this section, we will learn more about these objects and see that they build a
layer in a hierarchy related to permutation patterns and studied in [260] in con-
nection with embeddings of certain structures into (0, 1)-trees (to be defined in
Subsection 2.2.2). The variety of different classical combinatorial objects related to
a single pattern class hierarchy is rather striking. Both the permutation patterns
theory and the other structures involved benefit from the connection: for example,
the number of 2-stack sortable permutations is obtained this way in a combinatorial
fashion; an equidistribution result on non-separable permutations is obtained, to be
discussed in Subsection 2.2.3; an alternative proof for the number of planar bipolar
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orientations defined in Subsection 2.2.1 is given via Bazter permutations discussed
in Subsection 2.2.4.

In Subsections 2.2.1-2.2.6 we provide definitions of our objects of interest and
their properties. Then we summarize all the connections in Subsection 2.2.7 (see
Figure 2.32).

2.2.1 Planar maps and plane bipolar orientations

Definition 2.2.1. A planar map is a connected graph embedded in the plane with
no edge-crossings. Such embeddings are considered up to continuous deformation.
A map has vertices (points), edges, and faces (disjoint simply connected domains).
The outer face is unbounded, the inner faces are bounded.

The two graphs below are the same as graphs, but they are different as planar
maps since no continuous deformation transforms the first graph to the second one:

The maps we are dealing with are classical planar maps considered, for exam-
ple, by Tutte [770] who founded the enumeration theory of planar maps in a series
of papers in the 1960s (see [273] for references).

Definition 2.2.2. A cut vertexr in a map is a vertex whose deletion disconnects the
map. A loop is an edge whose endpoints coincide. A map is non-separable if it has
no loops and no cut vertices.

The maps considered by us are rooted, meaning that a directed edge is dis-
tinguished as the root. Without loss of generality, we can assume that the root is
incident to the outer face, and the outer face lies on its right side while following
the root orientation. For such an orientation, the outer face will be the root-face.
In general, the root face of a planar map is the face adjacent to the root that lies
to the right of it while following the root direction. Also, the vertex from which the
root comes out is called the root-vertez.

All rooted non-separable planar maps on 4 edges are given in Figure 2.11.
The number of rooted non-separable planar maps on n + 1 edges was first
determined by Tutte [769] and it is given by
4(3n)!

23 2+ 27
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S

Figure 2.11: All rooted non-separable planar maps on 4 edges.

which was also proved differently by Brown [190].

Definition 2.2.3. A planar map is cubic if all its vertices are of degree 3. A cubic
planar map is bicubic if it is bipartite, that is, if its vertices can be colored using
two colors, say, black and white, so that each edge is incident to different colors.

The simplest cubic non-separable map is the map with two vertices and three
edges joining them. It is a well-known fact that the faces of a bicubic map can be
colored using three colors so that adjacent faces have distinct colors, say, colors 1,
2, and 3, in a counterclockwise order around white vertices. We can assume that
the root vertex is black and the root face has color 3. All bicubic planar maps on 6
edges are given in Figure 2.12.

)
)

2
3P 13 2 |3
1

Figure 2.12: All bicubic planar maps on 6 edges.

The number of bicubic planar maps with 3n edges was given by Tutte [769]:

n—1
(2.6) 3 -IQ (277/)!.
nl(n + 2)!
Definition 2.2.4. In a directed graph, a source is a vertex with no incoming edges
and a sink is a vertex with no outgoing edges. A plane bipolar orientation O is an
acyclic orientation of a planar map with a unique source s and a unique sink ¢, both
located on the outer face. One of the oriented paths going from s to ¢ has the outer
face on its right: this path is the right border of O, and its length (the number of
edges) is the right outer degree of O. The left outer degree can be defined similarly.
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See the rightmost picture in Figure 2.23 for an example of a plane bipolar
orientation with right degree 2 and left degree 3. The vertices s and t are called the
poles of O.

The coefficient of 2!y in the Tutte polynomial Ty(x,y) of a non-separable
planar map M having a fixed size, is the number of bipolar orientations of M [415,
431]. This number, up to a sign, is also the derivative of the chromatic polynomial
of M, evaluated at 1 [555].

2.2.2 Description trees and skew ternary trees

Definition 2.2.5. A §(1,0)-tree is a rooted plane tree labeled with positive integers
such that

1. Leaves have label 1.
2. The root has label equal to the sum of its children’s labels.

3. Any other node has a label no greater than the sum of its children’s labels.

All 5(1,0)-trees on 3 edges are presented in Figure 2.13.

! 2 1 2 2 :
: 2 1 1 11 1 1/I1\.1
! 1 1 1 1 1 1

Figure 2.13: All 8(1,0)-trees on 4 nodes.

To state some of the upcoming results, we first need to define several statistics
on ((1,0)-trees. These are given in Table 2.1.

For the 8(1,0)-tree T in Figure 2.14, the values of the statistics are as follows:
leaves(T) = 6, int(7") = 5, root(T) = 4, sub(T) = 3, Ipath(T") = rpath(T) = 2,
stem(7") = 1, lsub(T") = 2, and rsub(7T") = beta(T) = 1. For another example, the
tree second from the left in Figure 2.13 has leaves(T) = int(T) = root(T) = 2,
sub(T) = 1, Ipath(T") = rpath(7) = stem(7") = 2, lsub(T") = rsub(7T") = 1, and
beta(T") = 2.

A B(1,0)-tree T on at least two nodes is indecomposable if sub(T) = 1, that is,
if the root of T has exactly one child; otherwise, T is decomposable. A [(1,0)-tree
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Statistic | Description in a 3(1,0)-tree T'
leaves(T) | # leaves;

int(7) # internal nodes (or nonleaves);
root(T) | root’s label;
sub(7T) # children of (subtrees coming out from) the root;

Ipath(T") | # edges from the root to the leftmost leaf

= length of the leftmost path (left-path);

rpath(7") | # edges from the root to the rightmost leaf

= length of the rightmost path (right-path);

stem(7") | # internal nodes common to the left- and the right-paths;
Isub(T) | # 1’s below the root on the left-path;

rsub(7T) # 1’s below the root on the right-path;

beta(T) | Let ¢4,..., £, be the leaves from left to right. If no node on the
path from ¢; to the root, except for ¢, has label 1, reduce the
labels on all nodes on that path by 1. Now look at {5 and repeat
the process, until we come to a leaf ¢; whose path to the root has
a node (other than ¢;) that now has label 1. Then beta(T") = i.

Table 2.1: Statistics on (1, 0)-trees as described in [262].

Figure 2.14: A (1, 0)-tree.

T on at least two nodes is right-indecomposable if rsub(T") = 1, that is, if the right-
path has exactly one 1 below the root; otherwise, 1" is right-decomposable. The idea
of the involution called h on (1, 0)-trees, defined in [262], is to turn £(1,0)-tree
decompositions into right-decompositions, and vice versa. A recursive description
of h is shown schematically in Figure 2.15: as the base case, we map the 1 node
tree to itself. In the case of an indecomposable tree, we remove the top edge to get
A (the root may need to be adjusted), apply h recursively to get h(A), and adjoin
the removed edge to the proper place on the right path of h(A) (to make the rpath
statistic in the obtained tree equal to x, the value of the root statistic in the original
tree) increasing all the labels above the rightmost leaf by 1. One the other hand, if
our tree is decomposable, we locate its rightmost subtree B (which includes the root
of the original tree), apply h recursively on it to get h(B), and glue its rightmost
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leaf with the root of h(A) obtained recursively (the glue node will receive label 1).
See Figure 2.16 for an example of applying the involution h together with some of
the steps involved in the recursive procedure.

Base case:  |e g Lo Indecomposable case:

X x edges on right path

|
|
|
D bl . | X h Ve >1 /
ecomposable case: * edges on right path | N '! o
X, ¥ /
|
M LN
|
|
|
|

y edges on right path

» edges on right path

Figure 2.15: A schematic description of the involution h.

Some of the steps involved in the recursive calculations above:

1 3 2 2 3 1 2
3 h 1 h 2 2 h 3 hl 1
]./INI}% 3 ' , > 1 I
(I Nel 2 ’ 2 1 1 !
| 11 1 N1 1 1

1

Figure 2.16: An example of applying the involution h together with some of the
steps involved in the recursive procedure.

Theorem 2.2.6. (/262]) The map h is an involution (h? is the identity map) that
sends the first tuple of statistics below to the second one (we refer to [262] for the
definition of the gamma statistic; also, we can recall the notion of equidistribution
of statistics in Definition 1.0.34):

( leaves, int, root, rpath, sub, rsub, stem, gamma )
( int, leaves, rpath, root, rsub, sub, gamma, stem ).
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Another interesting property of h is that when restricted to 5(1,0)-trees with
all nodes labeled 1 (except for the root), which can be checked to be closed under
h, the involution induces an involution on unlabeled rooted plane trees, very classical
objects counted by the Catalan numbers (we can erase all labels from such 5(1,0)-
trees and reconstruct them, if needed). This involution is new and it is the subject
of current studies in [261] by Claesson et al. One of the results that is a direct
corollary to Theorem 2.2.6 is the following equidistribution fact; see Section 8.8 for
more information on the subject.

Theorem 2.2.7. ([261]) On (unlabeled) rooted plane trees there is an automorphism
(a bijection from the set of such trees to itself) that sends the first tuple of statistics
below to the second one (in this case, the statistic rpath is identical to rsub, and
root is identical to sub):

( leaves, int, rpath, sub )
( int, leaves, sub,  rpath ).

Definition 2.2.8. A (0, 1)-tree is defined on non-negative integers in a similar way
to (1, 0)-trees:

1. Leaves have label 0.
2. The root has label equal to 1 4 the sum of its children’s labels.

3. Any other node has label no greater than 1 + the sum of its children’s labels.

All 5(0,1)-trees on 3 edges are presented in Figure 2.17.

0 1 0 1 2
0 1 0 1 0 1 0
0 1 0 1 2
0 104 050 1 N0 0 g0 0 10,/Io\.0
0 1 1
0 1 0/ \o o 0 o 0 0 0
0 0 0 0 0

Figure 2.17: All 5(0, 1)-trees on 4 nodes.

Definition 2.2.9. A ternary tree is a rooted tree whose nodes have at most one son
of each of the following three types: left, middle, and right. Vertices of ternary trees
are labelled as follows: the root is labelled 0 and the non-root vertices take the label
of their father, to which is added +1, +0, —1 when they are left, middle, or right
sons, respectively. A ternary tree is skew if its labels are nonnegative.
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Figure 2.18: An example of a ternary tree and a skew ternary tree.

See Figure 2.18 for an example of a ternary tree and a skew ternary tree.

All but one statistics on skew ternary trees appearing below are straightforward
to define: “number of even labels’, “number of odd labels’, and “number of zeros”.
The non-straightforward statistic is called “number of first zeros’ in [476] and it is
defined as the maximum number of vertices in the sequence of middle sons with
label 0 starting from the root. For example, for the tree to the right in Figure 2.18,
the number of even labels is 7, the number of odd labels is 6, the number of zeros is
5, and the number of first zeros is 3.

2.2.3 Relevant pattern-avoidance

A combinatorial proof of West’s former conjecture (that the number of 2-stack
sortable permutations is given by (2.1)) presented in [324] connects rooted non-
separable planar maps with 2-stack sortable permutations through eight different
sets of permutations (see Figure 2.19). These sets are in bijection, either because
they have isomorphic generating trees (out of four generating trees involved only
two are identical) or because they can be obtained from each other by applying one
of the trivial bijections (r, ¢, or 7). Each of these eight permutation classes could
enter Table 2.3 below, and the more general picture in Figure 2.32. However, we
are including there only the set of permutations Av(2413,41352) = Av(2413,3142)
that is connected directly to rooted non-separable planar maps and is called the set
of mon-separable permutations. A special interest of this particular set is that the
reverse of these permutations was studied in [262] by Claesson et al. in connection
with rooted non-separable planar maps, where another bijection, preserving more
statistics, was found.

Theorem 2.2.10. ([262]) There is a bijection showing that the first tuple below has
the same distribution on B(1,0)-trees as the second tuple does on Av(3142,2413)
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Av(2413,45312)

isomorphic generating trees Av(2413,2 654)

‘Av(2413,413752)=Av(2413,31_42) ‘

isomorphic generating trees

ﬂsomorphic generating trees Av(2413 5T32 4)

‘ rooted non—separable planar maps ‘

r.i

‘ 2-stack sortable permutations ‘
Av(2413,42315)

r.i

Av(3214,24135)
isomorphic generating trees Av(231442513)

isomorphic generating trees

Av(3241,24153)

Figure 2.19: A connection between rooted non-separable planar maps and 2-stack
sortable permutations through eight classes of pattern-restricted permutations.

(see Tables 2.1 and A.1 for definitions):

( sub, leaves, root, Ipath, rpath, lsub, beta )
( comp, 1+asc, lmax, lmin, rmax, Idr, lir ).

The idea of the bijection proving Theorem 2.2.10 is close to the idea of gen-
erating trees: one wants to show that the objects in question can be generated in
similar ways. More precisely, irreducible (1, 0)-trees (having the statistic sub equal
to 1) are mapped into irreducible permutations avoiding the patterns (that have
the statistic comp equal to 1). To achieve this a non-trivial procedure was found
on permutations based on inserting the new maximum letter in proper places of
smaller permutations and rearranging the parts to the left and to the right of this
letter keeping the same relative orders (see [262] for the actual construction). As
a matter of fact, two procedures to do the task may be found in [262], but one of
them preserves more statistics of interest than the second one.

Using Theorem 2.2.6 together with the bijection proving Theorem 2.2.10, the
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following two equidistribution results were obtained (in proving the second equidis-
tribution result the mirror image on (1, 0)-trees is involved as well).

Theorem 2.2.11. (/262]) The following pairs of tuples of statistics are equidis-
tributed on the set Av(3142,2413), that is, there is a bijection (automorphism) from
Av(3142,2413) to itself sending the first tuple of statistics to the second one in each
pair:

( asc, lmax, rmax )

( des, rmax, lmax )

and
( asc, lmax, lmin, comp, ldr )
( des, lmin, Ilmax, Idr, comp ).

Note that the first equidistribution result in Theorem 2.2.11, unlike the second
one, is trivial on the set of all permutations: all one needs to do is to apply the
reverse operation to the set of permutations. However, proving the same result
on Av(3142,2413) was unsuccessful for a long time before the involution h was
invented. A direct (combinatorial) proof of results in Theorem 2.2.11 would be
desirable. The diagrams in Figure 2.20 created by Anders Claesson may be of some
help in solving the problem, though it is definitely not sufficient just to use them.
The diagrams show translations of relevant statistics under compositions of two
trivial bijections. We can use the fact that i.r = c.i, which is rather easy to prove,
to obtain translations under compositions that are not present in the diagrams. The
idea to approach finding a combinatorial proof of Theorem 2.2.11 is to use the fact
that the set Av(3142,2413) is closed under compositions of two trivial bijections,
although it is not closed under any single such bijection.

i.c

)
. ic
e Dt
Figure 2.20: Translation of the statistics lmax, rmax, lmin, rmin, asc, and des under

compositions involving two trivial bijections. To complete the picture, we can use
1.7 = C.1.

i.c r.c r.

9

ic
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If one wishes to code rooted non-separable planar maps (equivalently, 5(1,0)-
trees) by permutations, it seems that the set Av(3142,2413) (equivalently for non-
separable permutations, Av(2413,3142)) is a better choice than 2-stack sortable
permutations. Indeed, Av(3142,2413) is more symmetric (it is closed under com-
positions of two trivial bijections while the set of 2-stack sortable permutations is
not closed under any combination of trivial bijections), and Av(3142,2413), under
known bijections, captures better the structure of rooted non-separable planar maps
by keeping track of more statistics than in the case of 2-stack sortable permutations.
In either case, the following conjecture appears in [262] by Claesson et al. on rela-
tions between Av(3142,2413) and 2-stack sortable permutations.

Conjecture 2.2.12. ([262]) The quadruple (comp,asc,ldr,rmax) has the same
distribution on §,,(3142,2413) as it has on 2-stack sortable permutations of length
n.

Remark 2.2.13. It is known [323] that the pair of statistics (asc,lmaz) on the
class Av(3142,2413) is equidistributed with the pair (des, rmax) on 2-stack sortable
permutations; this fact also follows from Table 2.3 below. If Conjecture 2.2.12 is
true, then it would strengthen the result in [323].

In discussing the coding of planar maps/description trees by permutations, we
would like to mention [127] by Béna who enumerated Av(1342) (see Table 6.2). This
was the first case of enumeration of non-monotonic patterns of length more than 3
and this result is relevant to the hierarchy we will discuss in Subsection 2.2.7 (see
Figure 2.32).

Theorem 2.2.14. ([127]) The following three sets of objects are in one-to-one cor-
respondence:

o Av(1342);
e Plane forests of 5(0,1)-trees;

e Ordered collections of (rooted) bicubic planar maps.

Using Theorem 2.2.14 and a known enumerative result from [769], the following
theorem was proved.

Theorem 2.2.15. ([127]) One has the following enumeration results for Av(1342):

e The generating function for s,(1342) is

> sn(1342)a" =

n>0

32z )
—8x2 + 12z + 1 — (1 — 8x)3/%’




2.2 Planar maps, trees, bipolar orientations 51

o The exact formula for s,(1342) is

n

2-3n-2 2= A n—i+2
(71)"_1u+3Z(71)n—z2z+1( 4 ) <TL (e )’

(1 — 2)!
2 prs il(i —2)! 2

o {/s,(1342) converges to 8 when n — co.

We conclude this subsection with another result relevant to the hierarchy to
be discussed in Subsection 2.2.7.

Theorem 2.2.16. (/260]) For n > 0, s,(2413) = s,(3412). Moreover, there is a
bijection between the sets that sends a permutation in S, (2413) with k occurrences
of 3412 to a permutation in S, (3412) with k occurrences of 2413.

Proof. For this proof, we let P, = 2413 and P, = 3412.
If a permutation avoids P; and P, we map it to itself.

Now suppose that an n-permutation 7 avoids P; and it contains at least one
occurrence of P,. We consider the leftmost pair, say zy, of consecutive letters,
depicted in Figure 2.21 by the solid circles, that play the role of 4 and 1 in an
occurrence of the pattern Ps; notice that this pair is well-defined.

|
e o
' ffffffff
ffffffff z
. e ]| _F |

Figure 2.21: Sending a permutation from S, (P;) to a permutation in S, (P).

One immediately realizes that if we restrict ourselves to the values of 7 between
x and y, then in order to avoid P, everything to the left of xy must be larger
than everything to the right of zy, which is shown schematically by the non-empty
rectangles A and B in Figure 2.21. Notice that zy contributes |A| - | B| occurrences
of Py, where |X| denotes the number of letters in X. The letters in A, C' and E
can be shuffled somehow, but they (together) do not contain an occurrence of P
or a pair of consecutive letters having the properties that xy above has (zy is the
leftmost one with such properties). Also, D, B and F' can be shuffled somehow in
such a way that they (together) do not contain P;.
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We now decrease each letter of A by |B| and increase each letter of B by |A]
thus turning each occurrence of P, involving xy into an occurrence of P; involving
zy. We denote the resulting permutation 7’.

Our claim is that no new occurrences of P, are introduced and no (new) occur-
rences of P;, beyond those involving zy, are introduced after the described procedure
is done. This follows easily from the fact that the elements of A (resp., B) do not
change their relative position with respect to the elements of C' and E (resp., D and

F).

We can now proceed with 7’ and find z'y/, if there is one (otherwise we do
not need to do anything), having the properties of zy. One then changes all the
occurrences of P, involving 2’y into occurrences of P; involving x'y/, in the way we
did it above. There is only one difference between considering 7 and 7: 7 contains
no P, whereas 7’ does. However, the occurrences of P; in «’ will not be affected
by the procedure, again, because of the properties of A, C, and E. Indeed, either
such an occurrence of P; is entirely in A, or in C'| or in F, in which case it cannot
disappear, or the occurrence has the letters corresponding to 2, 4, and 1 in P, either
in C' or in E, which, again, cannot cause the occurrence to disappear.

Thus we can go through all pairs xy from left to right and change all occur-
rences of P, to occurrences of P;. The process terminates because of the fact that
2'y/ is strictly to the right of zy. The map is easily seen to be injective and reversible,
and it is easy to see that it sends a permutation in S,,(P;) with k occurrences of P,
to a permutation in S, (FP) with k occurrences of P. O

Remark 2.2.17. It is straightforward to see from the proof of Theorem 2.2.16
that the bijection there preserves (sends to themselves) an enormous number of
permutation statistics, which includes (but is not limited to!) the following statistics
(see Table A.1 for definitions): maj, Imax, lmin, rmax, rmin, des, peak, last .7,
head .7, Idr, lir, rdr, rir, comp, ddes, and dasc.

Remark 2.2.18. It follows from Proposition 1.3.7 and Theorem 2.2.16 that

$n(2413) = 5,,(3412) = 5,(21354).

2.2.4 Baxter permutations

In 1964, Glen Baxter [98] introduced the following class of permutations that now
bears his name.

Definition 2.2.19. A permutation m = w7y ... m, is a Baxter permutation if there
are no four indices ¢ < 7 < k < ¢ such that



2.2 Planar maps, trees, bipolar orientations 53

e k=j+1

o m;m;m,7y is an occurrence of the pattern 2413 or 3142.

In the language of vincular patterns, Av(2413,3142) is the set of Baxter permuta-
tions.

Example 2.2.20. 25314 is a Baxter permutation, whereas 5327146 is not a Baxter
permutation as it contains an occurrence of the pattern 3142 (the subsequence 5274).

Gire [325, 419] showed that Av(25314,41352) is exactly the set of Baxter
permutations. The motivation for introducing the permutations defined in Defi-
nition 2.2.19 was the following problem in analysis on commuting continuous func-
tions.

Suppose [ and g are continuous functions from [0, 1] to [0, 1] that commute,

that it, g(f(x)) = f(g(x)). We let h(x) denote g(f(z)) = f(g(x)). Suppose h has
finitely many fixed points z; < x3 < -+ < x,. A fixed point x; of h(z) may have

one of the following three types:

1. x; is up-crossing if the sign of h(x) — x changes from negative to positive in
the neighborhood of x;;

2. x; is down-crossing if the sign of h(x) — x changes from positive to negative in
the neighborhood of x;;

3. x; is touching if h(x) — x does not change sign in the neighborhood of x;.
Example 2.2.21. In Figure 2.22, d is an up-crossing fixed point, b and f are down-

crossing fixed points, and a, ¢, and e are touching fixed points.

Theorem 2.2.22. (/98, 167]) For the objects defined above, we have the following
facts (f(x) can be substituted by g(x) throughout):

e The function f maps the fized points x1, s, ..., x, of h bijectively onto them-
selves;

e The fived point f(x;) has the same type as x; has;

e The permutation of the up-crossing fized points is determined by the permuta-
tion of the down-crossing fized points;

e The permutation of the down-crossing fixed points is a Bazter permutation.
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0 a b ¢ d e f1 Ty

Figure 2.22: Fixed points of different types.

Baxter permutations are a widely studied class of permutations (see, for ex-
ample, [98, 151, 167, 158, 272, 221, 257, 250, 379, 326, 419, 436, 620, 581, 787]).
It is known that Baxter permutations of length n are equinumerous with several
combinatorial objects, for example, with certain rectangulations with n points on
the diagonal ([4, 379]) and with plane bipolar orientations with n edges (discussed
in Subsection 2.2.1). Since the last set of objects is connected to maps, which is
of special interest to us, we would like to sketch the idea of the bijection in [151]
between Baxter permutations and plane bipolar orientations. We will explain the
idea on the example in Figure 2.23 (we refer to [151] for a detailed description of
the bijection).

Given a Baxter permutation, we start by drawing its permutation matrix using
black circles. Next we add two white rectangles representing the poles, and we
add white circles in certain places right after each ascent position (whenever we are
coming from a smaller letter to a larger one while going from left to right) as shown in
Figure 2.23. Then, starting from the source rectangle, we connect rectangles/circles
(referred to as nodes in what follows) in the following way. Given a node x, draw an
arrow from it to each node that is visible directly from z in the North-East direction.
For example, from the leftmost white circle in Figure 2.23 we can see directly three
black circles corresponding to the letters 7, 5, and 4 in the permutation 37568412.
Thus, each directed path from the source to the sink is an alternation of black and
white circles starting and ending with black circles. As the final step, we remove
the black circles making the arrows going through them continuous as shown in
Figure 2.23. The resulting object is a plane bipolar orientation.
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Figure 2.23: The Baxter permutation 37568412 and its transformation into a plane
bipolar orientation under the bijection given in [151].

It is a funny coincidence, pointed out by Bonichon et al. in [151], that another
Baxter, the physicist Rodney Baxter, in his studies [99] came across objects equinu-
merous with Baxter permutations without realizing the fact that the numbers he
was dealing with are known and moreover, they bear his name! Baxter, the physi-
cist, studied the sum of the Tutte polynomials Ty (x,y) of non-separable planar
maps M having a fixed size (see [99]). He found the coefficient of x'y® in Ty (z,y),
summed over all rooted non-separable planar maps A having n + 1 edges, m + 2
vertices, root-face of degree i + 1 and a root-vertex of degree j + 1. As was already
mentioned in Subsection 2.2.1, this coefficient counts plane bipolar orientations of
M (equivalently, Baxter permutations).

We will close our discussion of Baxter permutations for now by stating a few
enumerative results on them. However, we will see Baxter permutations later in the
book, in connection with pattern-avoidance in so-called partial permutations.

Theorem 2.2.23. ([250]) The number of Baxter permutations of length n is given
by

— (G0 ()
= (0
While the proof of Theorem 2.2.23 given by Chung et al. [250] is analytical,

Viennot [787] provided a bijective proof of formula (2.8). The following theorem is
a refinement of Theorem 2.2.23.

2.7)

Theorem 2.2.24. ([581]) The number of Baxter permutations of length n having
m ascents, i left-to-right mazima and j right-to-left mazima (see Definition A.1.1)
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s given by
(2.8)

o) |G (05 -G ()]

Review Definition 1.0.18 for the notion of alternating permutations.

Definition 2.2.25. A permutation is doubly alternating if it is alternating and its
inverse is alternating.

Example 2.2.26. 13254 and 354612 are examples of doubly alternating (in fact,
Baxter) permutations, whereas the permutation 24153 is not doubly alternating, as
its inverse, i(24153) = 31524, is not alternating (it starts with a descent, not an
ascent).

Theorem 2.2.27. ([272]) The number of alternating Bazter permutations of length
2n and 2n + 1 is given by C? and C,,C, 11, respectively, where C,, = n+_1(2:) is the
n-th Catalan number.

Theorem 2.2.28. ([/36]) The number of doubly alternating Baxter permutations
of length 2n or 2n + 1 is given by C, = %H(?), the n-th Catalan number.

The research done in [620] by Mansour and Vajnovszki is of the type discussed
in Problem 1.7.13, namely, one restricts the set of objects (Baxter permutations in
our case) by some conditions (in this case, the permutations must avoid the pattern
123) and then additional avoidance or containment constraints are considered. We
provide here just two theorems proved in [620]. For more results of this type see
Subsections 6.1.5 and 7.1.4.

Theorem 2.2.29. ([620]) The generating function for the number of 123-avoiding
Baxter permutations is given by
(1-a)?
1— 3w+ 222 — a3

In other words, the number of 123-avoiding n-permutations is given by the (3n-+3)-th
Padovan number.

Theorem 2.2.30. (/620]) The number of 123-avoiding Baxter permutations con-
taining exactly r occurrences of the vincular pattern 132 (or 213) is given by

n—3r

22"_3T_i i+r—2\/n—-3r—i+r
— r—2 r '
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Finally, another result related to Problem 1.7.13 is the following theorem
dealing with Baxter involutions, that is, Baxter permutations whose (usual group-
theoretical) square is the identity permutation.

Theorem 2.2.31. ([151]) The number of fized-point-free Baater involutions of length
2n 1s
3201 (2n)
(n+D(n+2)\n/
2.2.5 Separable permutations
Definition 2.2.32. Suppose 7 = mmy ... T, € Sy and 0 = 0105...0, € S,. We

define the direct sum (or simply, sum) @, and the skew sum © by building the
permutations 7 @ o and ™ & o as follows:

(r@o) = T if1<i<m,
t Oicm+m fm+1<i<m-+n,
- m4+n if1<i<m,
(m& o) = {O’im ifm+1<i<m-+n.

Example 2.2.33. For example, 14325 @ 4231 = 143259786 and 14325 © 4231 =
587694231. This example is best understood by looking at the permutation matrices
in Figure 2.24 of the permutations involved.

D o[ | — o
© e

* 1o

Figure 2.24: Permutation matrices illustration of the fact that 14325 @ 4231 =
143259786 and 14325 @ 4231 = 587694231.

Definition 2.2.34. The separable permutations are those which can be built from
the permutation 1 by repeatedly applying the @ and © operations.
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0|

o = ~$~~@!t?_ =

o 17
<@@'- @@@(@egﬁe@)
<@@<@@@@@>@@>@<@@<@@@>@@>

Figure 2.25: Decomposition of 143259786 using @ and © operations.

Example 2.2.35. The permutations 143259786 and 587694231 appearing in Fig-
ure 2.24 are both separable. Figure 2.25 illustrates a step-by-step procedure to see
that 143259786 is separable. All permutations of length 3 are separable, and only
two permutations of length 4, 2413 and 3142, are not separable.

Bose et al. [155] introduced the notion of separable permutation in 1998, but
the following well-known result is folkloric.

Theorem 2.2.36. (folklore) Av(2413,3142) is the set of all separable permutations.

Remark 2.2.37. So far we introduced, in Definition 2.2.34, the class of sepa-
rable permutations, Av(2413,3142), and the class of non-separable permutations,
Av(3142,2413), in Subsection 2.2.3. We note that Av(2413,3142) C Av(3142,2413)
and thus each separable permutation is a non-separable one in our definitions (which
sounds contradictory, but this is just a matter of names) but not vice versa. The
word “separable” in the case of separable permutations came from the “process of
separation,” or decomposing permutations, whereas the word “non-separable” in
the case of non-separable permutations came from a plain connection of the per-
mutations to rooted non-separable planar maps, which has nothing to do with any
separability on permutations themselves.

Throughout this book, by a “permutation class” we simply mean a set of
permutations. In several places, however, to be mentioned explicitly, this expression
has a stronger sense.

Definition 2.2.38. For permutations ¢ and 7, we write ¢ < 7 if ¢ occurs in
m as a pattern (there exits a subsequence in 7 of the same length as o that is
order-isomorphic to ). Thus we can define the containment order on the set of all
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permutations. Sets of permutations which are closed downward under this order are
called permutation classes (or just classes). In other words, C is a class if for any
m € C and any o < 7, we have o € C.

Example 2.2.39. Tt is easy to see that for any set P of classical patterns, Av(P)
is a (permutation) class, whereas if other patterns are involved, that does not have
to be the case. Indeed, consider the permutation 23154 € Av(1243). red(2354) =
1243 < 23154 and 1243 ¢ Av(1243). Thus, Av(1243) is not a permutation class.

Definition 2.2.40. For two sets (classes) of permutations C and D we let

CoD = {rdorel,oecD},
CoD = {noo|reC,ocD}

We would like to discuss just a couple of results on separable permutations.
For more results on them, consult [27, 338, 546, 734].

Proposition 2.2.41. (/27]) The class of separable permutations Av(2413,3142) is
the smallest nonempty class C which satisfies both C HC C C and C S C C C.

Since each of the patterns 2413 and 3142 contains every length 3 non-monotone
pattern, all four of the classes Av(132), Av(213), Av(132) and Av(312) are contained
in Av(2413,3142), and each of these has a characterization similar to one given by
the following proposition.

Proposition 2.2.42. (/27]) The class Av(231) is the smallest nonempty class C
which satisfies both C HC CC and 16 C C C.

One more similar result deals with so-called skew-merged permutations defined
below in Definition 6.1.7.

Proposition 2.2.43. (/27]) The class Av(2143,2413,3142,3412) of separable skew-
merged permutations is the smallest nonempty class C which contains C® 1, 1 ®C,
Celand16C.

The following theorem is the main result in [27] by Albert et al.

Theorem 2.2.44. ([27]) If C is a subclass of the separable permutations that does
not contain any of Av(132), Av(213), Av(231) or Av(312) then C has a rational
generating function.
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It was conjectured by Shapiro and Getu and, for the first time, proved by
West [801] that the set of separable permutations of length n, S,(3142,2413), is
counted by the (n — 1)-th Schréder number. The proof involves studying the gener-
ating tree for the restricted permutations and it uses a well-known relation between
the Schroder numbers S,, and the Catalan numbers C,,:

" (20—
(2.9) S, = Z < . >C

=0
Theorem 2.2.45. ([/801, 734, 27, 260]) The set of separable permutations of length
n, S,(3142,2413), is counted by the (n — 1)-th Schroder number.

West asked for a more natural proof of the enumerative result, which was pro-
vided by Stankova [734]. In a recent paper, Albert et al. [27] provided a rather
simple proof of the same result using decompositions involving the & and & oper-
ations. Using the same approach, the authors also gave an alternative proof of the
fact that Av(231) is counted by the Catalan numbers. Two other proofs of the same
result are presented in [260] by Claesson et al. In those bijective proofs, the Schroder
paths (counted by the Schroder numbers) are mapped bijectively to plane rooted
trees where some of the leaves may be marked, and then two bijections are found
between the marked trees and Av(3142,2413), simply by showing how to generate
the permutations using relation (A.4) in two different ways.

The presentation in the rest of the subsection is based on [260].

Formula (2.9) is a standard one for calculating the Schréder numbers, but we
can use another formula, which appears in [679]:

(2.10) Sp=>_ 2Cpy,
k=0

where C,,, is the number of Dyck paths of length 2n with & peaks (see Subsec-
tion A.2.2 for definitions). Indeed, if one takes a Dyck path of length 2n with k
peaks then there are 2F ways to decide which of the peaks will be turned into a
double horizontal step, hh, thus ending up with a Schroder path of length 2n. This
procedure is obviously reversible.

There is an easy and standard correspondence between plane rooted trees with
k leaves and Dyck paths with k peaks: one traverses a tree from the root (located,
say, on top) using the leftmost depth first algorithm, and each step down in the
tree corresponds to an up step in the Dyck path, whereas each step up in the tree
corresponds to a down step in the Dyck path. See Figure 2.26 for an example of
this correspondence.
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root = starting point

corresponding Dyck path

N

Figure 2.26: An example of a correspondence between plane rooted trees and Dyck
paths.

To adapt the correspondence above for Schroder paths, we mark some of the
leaves (maybe none, or all) in a tree with a star, which, once a marked leaf is reached,
will instruct us to make a double horizontal step instead of creating a peak in the
corresponding Schroder path. We call such trees marked trees. See Figure 2.27 for
an example of the correspondence between Schroder paths and marked trees.

root = starting point

corresponding Schréder path

/N

Figure 2.27: An example of a correspondence between plane rooted trees with
marked leaves and Schroder paths.

We now interpret formula (A.4) (S = 1+hhS+uSdS) generating the Schroder
paths, as a generating relation for marked trees. Indeed, either a tree has one node
(which cannot be marked by definition), or its root r has as its leftmost child a
marked leaf (giving term hhS), or the leftmost child of r is the root of a tree
(possibly a single node tree) and removing this tree leaves a tree with root r (this
corresponds to the term uSdS in (A.4)).

Using the interpretation above, we can easily see that all marked trees on n
nodes can be generated from smaller marked trees using two operations: ~;(7") which
adjoins to the tree T' a marked leaf as the leftmost child of the root, and the &,
operation taking two trees as arguments and making the root of the left tree be the
leftmost child of the root of the right tree (this adds an extra edge). In Figure 2.28,
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we show how to generate all marked trees on 3 nodes using the operations @; and
V-

I
D D

I
o<
=%
P PR
* O—@ o—o
~—_ ~
*
*

*

el

~

*
*

Figure 2.28: Generating all marked trees on 3 nodes.

The induced operation v*(P) on Schréder paths corresponding to v (T") adjoins
hh to the left of P. The operation 6, on paths corresponding to &; on trees is defined
as follows: for paths Py and Py, P; @, P, is the Schroder path obtained by beginning
with an up-step, then following P;, then making a down-step and, finally, following
Pz.

We distinguish two types of marked trees: trees of type 1 have the leftmost
leaf marked, and all other trees are of type 2. Clearly, v; produces type 1 trees,
while the type of T} @, T3 is determined by T7. Note that the induced definition
for the Schroder paths is that if the leftmost increasing run of up-steps ends with
a horizontal step (in particular, if a path begins with a horizontal step) then we
have a type 1 Schroder path; otherwise we deal with a type 2 Schroder path. The
number of type 1 trees/paths is easily seen to be the same as the number of type 2
trees/paths through a trivial bijection (involution) removing/adding a mark on the
leftmost leaf for trees, and changing the leftmost peak to a double horizontal step
and vice versa for paths. Thus the number of objects of each type is given by the
small Schroder numbers (see Subsection A.2.1 for definition).

The statistic lpath(T), the length of the leftmost path, for a plane rooted tree
T is defined as for the 5(1,0)-trees (see Table 2.1). We slightly change this definition
for marked trees to define the statistic Ipath*(T), the number of non-marked nodes
on the leftmost path of a marked tree T below the root. Note that this statistic
corresponds to the length of the leftmost increasing run, lirun, on the Schroder paths,
that is, to the maximal number of the consecutive up-steps beginning a path. For the
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tree T in Figure 2.27, Ipath*(T) = 3 which matches the value lirun(P) = 3 for the
corresponding Schroder path P, whereas in Figure 2.29, Ipath*(T') = lirun(P) = 2.

corresponding Schroder path

*

Figure 2.29: A marked tree and the Schroder path corresponding to it.

Another statistic of interest is 1 plus the number of marked leaves directly con-
nected to the root in a marked tree, which we call comp;, the number of components.
This statistic obviously corresponds to 1 plus the number of hh steps on the ground
level (z-axis) on the Schroder paths, which we call comp,. For the tree T and the
corresponding Schroder path P in Figure 2.27, we have comp,(T) = comp,(P) = 1,
whereas in Figure 2.29, comp,(T) = comps(P) = 2.

We can see that any 7 € S,(2413,3142) has the following structure (see also
Figure 2.30 for a schematic view of corresponding permutation matrices):

(211) ™= L1L2 T LmanRmfl te Rl

where

e for 1 <i < m, L; and R; are non-empty, with a possible exception for L; and
R,,, separable permutations which are intervals in m;

e 1 <R <Ly<Ry<---<L,, <R, where A < B, for two permutations A
and B, means that each letter of A is less than every letter of B. In particular,
Ly, if it is not empty, contains 1.

For example, if 7 = 215643 then L; = 21, Ly, = 5, Ry = 43 and Ry, = ().

If 7 € §,(2413,3142) and m = LiLy -+ - Lyyn Ry Ry - - - Ry, then the number
of left components lcomp(w) = comp(red(LiLs - -+ Ly,n)), that is, lcomp gives the
number of components to the left of the largest letter in a separable permutation. For
example, lecomp(21376854) = 3 which is the number of components in red(21376) =
21354 = 21 — 3 — 54. Note that if the largest letter is the leftmost letter in a
permutation, then lcomp is 0. In the bijection we will describe below, lcomp will
correspond to lpath™ and to lirun.
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can be empty

i/

c§n be empty

Figure 2.30: Schematic view of permutation matrices corresponding to separable
permutations. Each L; and R; is a separable permutation.

We say that a separable permutation is of type 1 if Ly = ) in its decomposi-
tion (2.11), and it is of type 2 otherwise. Clearly, by applying the reverse operation
r, we see that the number of separable permutations of type 1 is the same as that
of type 2 and is thus given by the small Schréder numbers.

Theorem 2.2.46. (/260]) There is a bijection between the separable permutations
in 8,11(2413,3142) and the Schrdder paths of length 2n (resp. plane rooted marked
trees with n edges) such that the statistic lcomp on permutations corresponds to lirun
on paths (resp., Ipath® on trees).

Proof. We follow formula (A.4) to show a way to generate all separable permutations
so that type 1 and type 2 permutations will correspond to type 1 and type 2 trees and
paths, respectively. Also, from the generation it will be clear that lcomp on separable
permutations will correspond to Ipath™ on marked trees and lirun on paths.

For separable permutations an analogue of the operations 7; /v* on trees/paths,
denoted 75, inserts the new largest letter in front of a given separable permutation.
For example, 77(21543) = 621543. Clearly, this operation does not introduce any of
the prohibited patterns. Also, it turns any permutation into a type 1 permutation.
Finally, lcomp(~; (7)) = 0 for any permutation 7 which agrees well with the behavior
of lpath™ and lirun under ~; and ~¥, respectively.

We now introduce @, an analogue of the &,/@, operations, on separable
permutations. Suppose m = KnP and ¢ = LR are two separable permutations
where n is the largest letter in 7 and L # 0 is the leftmost irreducible component
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of o (it is possible that R = ()). Then, by definition,
T®,0=KL™n"R'P,

where LT and R* are obtained from L and R, respectively, by increasing all of their
letters by |w| — 1 and n™ = |r| + |o|. For example, 23154 @, 21543 = 23165(10)9874.

We now make a few remarks. First of all, the operation @, on separable
permutations does not introduce occurrences of the prohibited patterns since the
resulting permutation has structure (2.11). Second, the operation is proper with
respect to lengths. Indeed, we would like permutations of length (n+1) to correspond
to trees with n edges; if 7} and Tb are trees corresponding to permutations 7 and
o, respectively, then 77 @; T has one more edge than the number of edges in T}
and T5, which is consistent with the fact that |7 @, o| = || + |o| (7 (resp., o) has
one more element than the number of edges in T} (resp., T5)). Moreover, obviously
lcomp(m &, 0) = lcomp(m) + 1 which agrees well with the 9, operation on trees
and @, on paths: for instance, for trees, this operation applied to trees T} and T5
produces a tree with Ipath™ statistic one more than lpath™(7}). Finally, it is not hard
to see that @, is reversible like ®; and @, are on trees and paths, respectively. O

Remark 2.2.47. Based on computer experiments, we get that the result in The-
orem 2.2.46 is maximal with respect to statistics, in the sense that no additional
statistics from Table A.1, and their variations under trivial bijections, can be pre-
served if we require the statistics lcomp, lpath®, and lirun to correspond to each
other. However, we can modify the bijection in Theorem 2.2.46 by generating the
separable permutations differently, to prove Theorem 2.2.48 dealing with other, even
more natural statistics, and again, providing a maximal result with respect to statis-
tics in Table A.1.

Theorem 2.2.48. ([260]) There is a bijection between the separable permutations
in 8,11(2413,3142) and the Schrioder paths of length 2n (resp. plane rooted marked
trees with n edges) such that the statistic comp on permutations corresponds to
comp, on paths (resp., comp, on trees).

Proof. Notice how the statistics comp,/comp, on the Schréder paths/marked trees
(counting hh steps on the ground level /marked leaves directly connected to the root)
change while generating the objects: comp,(y*(P)) = 1 + comp,(P), comp,(P; &
Py) = comp,(P,), comp,(v;(T)) = 1+ comp,(T'), and comp,(T; &; T) = comp,(13).

We now introduce the following modifications to 7, and &, defined in the
proof of Theorem 2.2.46 which we will call 7;* and ;,, respectively. The operation
7, inserts the new largest letter at the end of a given separable permutation. For

example, 7,%(21543) = 215436. Notice that ~,* increases the number of components
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by 1 (the largest letter is a component by itself) as it is supposed to mimic the
behavior of comp, and comp,.

Next, for two separable permutations 7 # @) and ¢ = LnR # 0 (n is the
maximum letter in o) we define

T o — Lrtn™R if (n—1) € R,
P77 LntntR otherwise,

where 7 is obtained from 7 by increasing each of its letters by |LR|, while n* =
1+ |L7R|. In particular, if o = 1, we use the second line in the definition. For
example,

312 @), 1423 = 1645723 and 312 @), 3412 = 3764512.

The outcome of the 69]’[, operation for two separable permutations is a separable
permutation (which is easy to see since the structure is proper) with at least one
letter to the right of the largest letter. Moreover, if n — 1 was to the right of n in o
then the next largest letter is to the left of the largest letter in 7 @}, o, and it is to
the right of the largest letter in the sum otherwise. Thus, given 7 € Av(2413,3142),
we can either conclude that it was obtained using 7," if the largest element is the
rightmost letter, or, depending on the position of the next largest letter we can
easily find 7 and o such that 7 @, o = 7.

Finally, we can see that comp(m &}, o) = comp(c) as desired. O

2.2.6 Schroder permutations

Kremer [546] showed that s,,(1243,2143) is given by the (n—1)-th Schréder number.
For this reason, Egge and Mansour [338] called the set Av(1243,2143) the Schrider
permutations. However, Kremer [546] actually proved that ten inequivalent (modulo
trivial bijections) classes of permutations are counted by the Schréder numbers.
Representatives from these classes are given in Table 2.2.

Since we have
Av(1324,2314) = ¢(Av(4231,3241)) and Av(1324,2314) = i.r(Av(4231,2431)),

we can see that class II contains the input- and output-restricted deque permuta-
tions introduced in Definition 2.1.10. Thus, one could call class II deque-restricted
permutations. Class X represents the separable permutations. However, it is not
so clear why class I should be called the Schréder permutations (class I is not any
better than any other of the not yet mentioned classes counted by the Schréder
numbers). In either case, since in the literature only classes I, II, and X seem to be
studied, the following definition is justified.
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I Av(1234,2134) | 11 Av(1324,2314) | III. Av(1342,2341)
IV. Av(3124,3214) | V. Av(3142,3214) | VL. Av(3412,3421)
VIL. Av(1324,2134) | VIIL. Av(3124,2314) | IX. Av(2134, 3124)
X. Av(2413,3142)

Table 2.2: Classes of permutations counted by the Schroder numbers.

Definition 2.2.49. A permutation is a Schrdoder permutation if it avoids the pat-
terns 1243 and 2143. Thus, Av(1243,2143) is the class of all Schroder permutations.

Example 2.2.50. The permutation 264315 is a Schroder permutation, whereas
263514 is not as it contains an occurrence of the pattern 1243 (the subsequence

2354).

Remark 2.2.51. Once it comes to considering other, not yet studied classes of
permutations counted by the Schroder numbers, one could invent something like
the Schrider permutation of the i-th kind, where i is the class number in Table 2.2;
following this scenario, for example, the Schrider permutations of the first kind
would be simply the Schrider permutations.

Let us state a couple of results related to Schroder permutations coming
from [338] by Egge and Mansour. Some of the open questions related to work
in [338] are answered by Reifegerste [679] using so-called essential sets in permuta-
tion diagrams. We refer to [338, 679] for more results/details on that.

Recall from Chapter 1 that, for a pattern p, p(mw) denotes the number of oc-
currences of p in 7. In particular, 12---k(r) denotes the number of increasing
subsequences of length k in 7.

Theorem 2.2.52. (/338])

> a7 =1+ o

mEeAv(1243,2143) k>1 11—z —

1T

Ill’%Ig
l—mzy - ——F——
1 —x2503 —---

One of the specializations of the variables x; leads to the following result.

Theorem 2.2.53. ([338]) For k > 1,

> 5,(1243,2143,12- - k)a" = 1 + :

n>0

l—2—
z

l—-2— ————
1_.1‘_...
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where the continued fraction has k — 1 denominators.

Example 2.2.54. If £ = 2 in Theorem 2.2.53 then we get

) sn(1243,2143,12)x”=1+1i:1—|—as+x2—|—ac3+‘..
— X
n>0

which makes sense as for each n there is only one permutation, the decreasing
permutation n(n — 1)...1, that avoids the pattern 12 (the other two prohibited
patterns will be avoided automatically).

The formal power series in Theorem 2.2.53 admits another expression, in terms
of the Chebyshev polynomials of the second kind (see Definition B.2.1), as shown in
the following theorem.

Theorem 2.2.55. ([358]) For k > 1,

U (=2
| VAUia(E)

(Uk—lé\_/;

> $,(1243,2143,12- - k)" = 1

n>0

A similar result is recorded in the following theorem.

Theorem 2.2.56. ([338]) For k > 1,

U-, 1—x
D 5,(1243,2143,2134 - k)2 =1+ ﬁ"—i(_”)
e Uk—l(m

From Theorems 2.2.55 and 2.2.56,
{1243,2143,12- - - k} ~ {1243,2143,2134 - - - k}

(these sets are Wilf-equivalent).

As particular cases of much more general theorems, the following theorem on
restricted Schroder permutations is obtained.

Theorem 2.2.57. ([358, 679]) Forn > 2,
5,(1243,2143,231) = (n + 2)2"3,

and forn > 1,
5,(1243,2143,321) = n + 2 <g’) .
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For a final example of results in [338], we state the following theorem.
Theorem 2.2.58. ([338])

leﬂl oI+ a)(1— x)?

1—z\)2
™ (Uk1(34))
where the sum on the left is over all permutations in Av(1243,2143) which contain
exactly one occurrence of the pattern 2134 - - - k.

We close the subsection by mentioning a result related to Class II in Ta-
ble 2.2. A reason to do this is that Bandlow et al. [73] define “A Schréder permu-
tation is a permutation that is both 4132- and 4231-avoiding”. As a matter of fact,
Av(4132,4231) = r.c(Av(4231,3241)), and Av(4231,3241) is defined by us as the
set of the input-restricted deque permutations (a particular case of deque-restricted
permutations); thus, in our terminology, Av(4132,4231) belongs to Class II, not to
Class I as the permutations’ name suggests in [73]. Keeping this little inconsistency
in mind, we now describe the result.

As it is defined in Table A.1, the inversion statistic for permutations, denoted
inv, is the number of pairs 7 < j such that m; > 7; in a permutation 7 = mmy ... m,.
For example, if 7 = 42513 then inv(7) = 6 since each of the 2-letter subsequences
42, 41, 43, 21, 51, and 53 contributes 1 to the total value of the statistic. Any
permutation statisic that is equidistributed with inv is said to be Mahonian. The
generating function for the inversion statistic on S, (4231, 4132) is defined as

L= > "%
TESH(4231,4132)

Given a Schroder path P, the area statistic, a(P), is the number of full squares and
“upper” triangles (equivalently, triangles whose sides do not coincide with a double
horizontal step in P) that lie below the path and above the z-axis. The definition
is best understood by looking at the path P in Figure 2.31 and convincing yourself

that a(P) = 27.

Figure 2.31: Illustration of the area statistic on a Schréder path.

Assuming S,, denotes the set of all Schroder paths on 2n steps, the generating
function for the area statistic on Schroder paths is given by

Z qa(P) = Su(q)

PesSy
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and is known as the Schrdder polynomial [152]. Specializing ¢ = 1 in the Schroder
polynomials gives usual Schroder numbers. Thus, the Schréoder polynomials is a
g-analogue to the Schroder numbers.

Using rather technical machinery, Barcucci et al. [81] show that

Iy ((]) =5, (Q)

Bandlow et al. [73] give a constructive bijection from Schroder paths to Av(4231,4132)
that takes the area statistic on Schroder paths to the inversion number on permu-
tations in A(4231,4132).

2.2.7 A hierarchy of permutation classes

Let us first summarize our knowledge of the following equinumerous objects: rooted
non-separable planar maps, 5(1, 0)-trees, skew ternary trees, 2-stack sortable permu-
tations, and non-separable permutations. Everything but the last row in Table 2.3
essentially came from the corresponding table in [476]: we refer to this paper and
references therein for further details (all but one of the statistics for objects involved
are defined above and in Table A.1). The last row came from [262] as a particu-
lar case of Theorem 2.2.10 stated in Subsection 2.2.3 when the reverse operation is
applied to get non-separable permutations from Av(3142,2413). Note that “nodes”
has the same meaning as “vertices” in Table 2.3 as opposed to the corresponding ta-
ble in [476] where “nodes” actually means “non-leaf vertices”. Finally, in Table 2.3,
there is dependence between n, i, and j: n =17+ j + 1.

We now let the equinumerous objects in Table 2.3 form a layer in a hierarchy
(by set inclusion) of sets of permutations avoiding vincular patterns based on the
permutations 2413 and 3142 (see Figure 2.32). This hierarchy is considered in [260]
by Claesson et al. and its basic idea is as follows. Consider the set of permutations
Av(3142). We can make the restriction 3142 stronger either by removing the under-
line thus arriving at the set Av(3142) C Av(3142), or by adding an extra pattern to
avoid, say, 2413 thus arriving at the set Av(2413,3142) C Av(3142). Then we can
build other sets of permutations shown in Figure 2.32 in the same way. We would
have a slightly different picture if instead of Av(3142) we started with Av(2413):
instead of the chain

Av(2413,3142) C Av(3142,2413) C Av(3142) C Av(3142)
presented in Figure 2.32, we would get the chain

Av(2413,3142) C Av(2413) C Av(2413).
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rooted non-sep. | # edges | # nodes # faces # cut-vert. | # edges on
planar maps | =n+1 | =i+2 =j+2 after remov. | outer face
root =m =k+1
B(1,0)-trees | # nodes | leaves int sub root
=n+1|=i+1 =j+1 =m+1 =k
skew ternary | # nodes | even labels | odd labels | first zeros Zeros
trees =n =i+1 =7 =m+1 =k
2-stack sort. | length | des=1 asc = j see [423] for | rmax
permutations | =n definition =k
non-separable | length des =i asc =j comp .r rmax
permutations | =n =m+1 =k

Table 2.3: Statistics translated under bijections between rooted non-separable planar
maps, ((1,0)-trees, skew ternary trees, 2-stack sortable permutations, and non-
separable permutations.

Once the hierarchy on sets of permutations is built, we can add to each layer
other combinatorial objects related to the pattern-restricted classes and discussed
in this section to see a “big” picture of relations between objects and to enjoy the
variety of structures involved. In Figure 2.32 we use “~” to show that one class of
objects is equinumerous with another one, while “=" is used to show that the ob-
jects are actually the same. Finally, note that Figure 2.32 could accommodate more
relevant objects, e.g. certain rectangulations equinumerous with the Baxter per-
mutations and studied in [4, 379] (not discussed in this book), the deque-restricted
permutations mentioned in Subsection 2.2.6, or any class of permutations, other

than I, I, and X, in Table 2.2.

2.3 Schubert varieties and Kazhdan-Lusztig poly-
nomials

We start by sketching several algebraic notions appearing in this section. However,
if needed, one should consult other sources for precise definitions, for example, the
book “Singular loci of Schubert varieties” by Billey and Lakshmibai [117].

A Kazhdan-Lusztig polynomial P, ., is a member of a family of integral poly-
nomials introduced by Kazhdan and Lusztig [497] in 1979 (see [180] by Brenti for an
introduction to the polynomials). These polynomials play an important role in Lie
theory. Kazhdan and Lusztig originally defined the polynomials in terms of a com-
plicated recurrence relation. While there are many uses for, and interpretations of,
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Av(3142) ~ Av(2143) ~ AV(21§54) = plane permutations

v

Av(3142) ~ Av(1342) ~ forests of B(0,1)—trees
~ ordered collections of rooted bicubic maps

Av(2413, 3142) = Baxter permutations ~ plane bipolar orientations ‘

I

Av(2413,3142) ~ Av(2413, 41552) = non-separable permutations ~ B(1,0)—trees
~ 2—stack sortable permutations ~ rooted non—separable planar maps ~ skew ternary trees

i

Av(2413,3142) = separable permutations ~ Schréder permutations

~ Schroder paths ~ plane rooted trees with marked leaves

Figure 2.32: A hierarchy of permutation classes and related combinatorial objects.

Kazhdan-Lusztig polynomials, their combinatorial structure is not yet understood;
in particular, there has been limited success in finding non-recursive formulas for
them. However, for particular x and w, explicit formulas for Kazhdan-Lusztig poly-
nomials can be obtained (see, e.g. [120] by Billey and Warrington for an overview
of relevant results). One such particular case related to our pattern-avoidance is
considered in Subsection 2.3.2.

An algebraic variety is the set of solutions of a system of polynomial equations.
More precisely an algebraic variety is a space that is locally a set of solutions of a
system of polynomial equations. Algebraic varieties are one of the central objects
of study in algebraic geometry.

A singularity is a point at which a given object, e.g. a function, is not defined.
Local rings are certain rings that are comparatively simple, and are used to describe
what is called “local behaviour”, in the sense of functions defined on varieties. The
notion of local rings was introduced by Wolfgang Krull in 1938 under the name
Stellenringe.

Below we will consider special subsets of the flag variety called Schubert vari-
eties. A flag in C" is an increasing sequence of subspaces in C",

FE={0}CchCFC---CF,,CF,=C",

such that dimF; = i. The flag variety F1,,(C) is the set of all such flags. There is
also an alternative description of this set which goes as follows: Consider the general
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linear group Gl,, consisting of all invertible n x n matrices and let B be the subset
of invertible upper triangular matrices. Then given a matrix M from Gl,, we can
construct a flag by letting F; be the span of the first ¢ columns. Two matrices M;
and M, will correspond to the same flag if and only if there is a matrix N € B such
that My = N - M;. Thus F1,(C) = Gl,,/B. For the next definition we assume we
have fixed a basis ey, es,..., e, of C" and fixed a reference flag F, such that E; is
the span of the first ¢ basis vectors.

Definition 2.3.1. For each permutation 7 € S,, we define a subset of flags
X ={F |dim(F,NE) > #{i <p|n(i) <gfor 1 <p<qg<n} Vp.q},
called a Schubert variety.

Example 2.3.2. Consider now the flag variety Fi3(C) and the Schubert variety
X531. The only non-trivial dimension condition becomes

dim(Fl M EQ) Z 1

Geometrically, this implies that the line F7 should lie in the plane F5. This implies
that Xo3; = C? and is therefore two-dimensional. Note that the permutation 231
has two inversions and it is a general fact that the number of inversions equals the
dimension of the corresponding variety.

Schubert varieties form one of the most important and best-studied classes of
algebraic varieties, and they are often used to test conjectures about more general
varieties. A certain measure of the singularity of Schubert varieties is provided
by Kazhdan-Lusztig polynomials, which encode their local Goresky-MacPherson
intersection cohomology. These varieties are indexed by permutations and many
properties of the varieties are encoded in the patterns that the permutations either
contain or avoid. We will discuss relevant results in the next subsection.

2.3.1 Schubert varieties

Theorem 2.3.3. ([706, 551, 807, 7}5]) For w € S,,, the variety X, is smooth (i.e.,
has no singularities) if and only if m € Av (4231, 3412).

Following [160] by Bousquet-Mélou and Butler, which is influenced by Theo-
rem 2.3.3, we give the following definition.

Definition 2.3.4. Any permutation in Av(4231,3412) is called a smooth permuta-
tion.
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A recurrence relation for counting smooth permutations is obtained by Stankova
in [734] and the corresponding generating function is given by the following theorem.

Theorem 2.3.5. ([130, 160, 444]) The g.f. for s,(4231,3412), the number of smooth
n-permutations, is given by

1 =5z + 322+ 221 — 4z
1 — 62+ 822 — 423

The following result was obtained by Béna [130].

Theorem 2.3.6. (/130]) One has the following equinumeration result for five in-
equivalent (modulo trivial bijections) classes for n > 0:

5n(4231,3412) = 5,,(2431, 1342) = s, (2431, 1423) = 5,,(2431,4132) = s,,(4231, 3142).

The generating function for these classes is given by Theorem 2.3.5 and there are
no other inequivalent pairs of patterns that are Wilf-equivalent to the five above.

A weakening of smoothness is the notion of a factorial variety, which means
that the local rings are unique factorization domains. Bousquet-Mélou and But-
ler [160] proved a conjecture by Yong and Woo on a characterization of factorial va-
rieties. We state this result in the following theorem, where we use Proposition 1.3.7
to turn the barred pattern into the vincular one.

Theorem 2.3.7. ([160]) For 1 € S,, the Schubert variety X, is factorial if and
only if
7 € Av(4231,45312) = Av(4231,3412).

Remark 2.3.8. As it was remarked in [160] by Bousquet-Mélou and Butler, results
of Cortez [284], and independently of Manivel [583], show that avoidance of 4231 and
45312 characterizes generically locally factorial Schubert varieties, where generic has
the following meaning: The variety is smooth at almost all points but has a closed
subset Y where it is not smooth, and in that closed subset it is factorial at almost
all points.

Remark 2.3.9. Av(4231,45312) = Av(4231, 3412) coincides with the class of forest-
like permutations studied in [160]. We will not provide the original definition of
forest-like permutations here, just saying that the definition is based on permuta-
tion matrices and certain drawings on them. Looking at the prohibited patterns, one
sees that the class of smooth permutations is a subclass of the class of forest-like per-
mutations (which is reminiscent of relations between some of the objects considered
in Figure 2.32). However, there are three other subclasses of forest-like permu-
tations, namely, path-like permutations, tree-like permutations, and rooted tree-like
permutations (the last one is also a subclass of smooth permutations) all of which
were enumerated in [160].



2.3 Schubert varieties and Kazhdan-Lusztig polynomials 75

Theorem 2.3.10. ([160]) The g.f. for Av(4231,3412), the forest-like permutations,

is given by
(1—2)(1 -4z —22%) — (1 —5z)V/1 — 4z

Fz) =
(z) 2(1 — 5z + 222 — x3)

Gasharov and Reiner [414] defined a subclass of the factorial varieties that
they name defined by inclusions. They described these varieties with a geometric
condition and also with pattern-avoidance of four classical patterns (4231, 35142,
42513 and 351624). Ulfarsson and Woo [773] have shown that a relaxation of these
conditions gives the Schubert varieties that are local complete intersections.

A further weakening is to only require that the local rings of X, be Gorenstein
local rings, in which case we say that X is a Gorenstein variety. Woo and Yong [809]
gave a characterization of such varieties in terms of certain Bruhat restrictions with
additional constraints. They also gave a characterization in terms of the avoidance
of interval patterns [810]. However, Ulfarsson [772] provided a characterization of
Gorenstein varieties in terms of bivincular patterns. To state the respective result
(in Theorem 2.3.11), we need to define two infinite families, G; and G, of bivincular
patterns.

e The family G; is defined as

G = 12345 1234567 123456789
1 03241 7432651 954328761 - -

12
k:E--Q--K—i—llfv
where ¢ = (k — 3)/2.

e The family G, is defined as

where ¢ = (kK —1)/2.

Note that the two families are the reverse complement of each other.
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Theorem 2.3.11. ([772]) For m € S, the Schubert variety X, is Gorenstein if and
only if

o cach Grassmannian permutation associated with m (see [172] for definitions)
avoids every bivincular pattern in the families Gi and Gy defined above;

e 7 avoids the bivincular patterns %%%ﬁ%

2.3.2 Kazhdan-Lusztig polynomials

Definition 2.3.12. Permutations in
Av(321,46718235,46781235, 56718234, 56781234)

are called 321-hexagon-avoiding permutations. The reason for this name is that if
the heap of such a permutation is calculated, it does not contain a hexagon [120].

As we have already mentioned in the introduction to the section, the Kazhdan-
Lusztig polynomials P, ,, are defined in a complicated way, and finding explicit for-
mulas for these polynomials for various « and w is a challenging task. Deodhar [295]
proposes a combinatorial framework for determining the Kazhdan-Lusztig polyno-
mials for an arbitrary Cozeter group. However, the algorithm is impractical for
routine computations. On the other hand, the algorithm can be utilized efficiently
to calculate P,,, in some cases, in particular, in the case of 321-hexagon-avoiding
n-permutations w, as is shown in [120] by Billey and Warrington — an explicit de-
scription of the polynomials is obtained in these cases (we skip here most of the
definitions and related results instead referring to the original source, [120]):

Pz,w = Z qd(0)7

where w is 321-hexagon-avoiding, © < w, d(o) is the defect statistic, the sum is over
all masks o on a whose product is z, and a = s;,5;, - - - 5;, is a reduced expression
forw e S,,.

Definition 2.3.13. For the pattern 3412, the height of its occurrence in a permu-
tation is the difference between the first and the last letters.

Example 2.3.14. There are four occurrences of the pattern 3412 in the permutation
461523: 4612, 4613, 4623 and 4523 of heights 2, 1, 1 and 1, respectively.

As is shown by Deodhar [294], Py, = 1 (for S,; id denotes the identity
permutation) if and only if the Schubert variety X,, is smooth, and, more generally,
P,.w(q) = 1if and only if X, is smooth over the Schubert cell Xg. The following

theorem involving patterns was proved in [808] by Woo.
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Theorem 2.3.15. ([808]) The Kazhdan-Lusztig polynomial for w satisfies Pig,,(1) =
2 if and only if the following two conditions are both satisfied:

e The singular locus of X, has exactly one irreducible component;

e The permutation w avoids the patterns 653421, 632541, 463152, 526413, 546213
and 465132.

More precisely, when these conditions are satisfied, Piq.,(q) =1+ q" where h is the
minimum height of a 3412 occurrence, with h = 1 if no such occurrence exists.

Finally we note that Billey and Postnikov [118] showed that pattern-avoidance
can be extended to all Coxeter groups. This is done in terms of root subsystems
and flattening maps. See also [115] by Billey and Braden.

For other materials relevant to this subsection, see [115, 121, 284, 496, 584].

2.4 A link to computational biology

In the last few decades, much has been done in the study of genome evolution, a
research direction in computational biology. We refer to [164, 239] for some refer-
ences on the biological aspects related to this section; we provide here almost no
details on these. One of the many models for genome evolution, which take into ac-
count various biological phenomena, is the tandem duplication-random loss model,
or simply the duplication-loss model. In this model, genomes are represented by per-
mutations, that can evolve through duplication-loss steps representing the biological
phenomenon that duplicates fragments of genomes, and then loses one copy of every
duplicated gene. This model is well-studied in the biology literature, where it has
been shown to be perhaps the most important rearrangement process in the case of
animal mitochondrial genomes. For more on the biological motivation to study the
duplication-loss model see [239] by Chaudhuri et al.

In this model, permutations can be modified by duplication-loss steps. Each
of these steps is composed of two elementary operations, which are, for a given
permutation 7, as follows:

1. A factor (a fragment of consecutive letters) of 7 is duplicated, and the newly
created factor is inserted immediately after the original copy; this is tandem
duplication.

2. Random loss then takes place, which removes (exactly) one copy of every
duplicated letter, resulting in a permutation.
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For any duplication-loss step, the number of letters that are duplicated (the length
of the duplicated factor) is called the width of the step.

Example 2.4.1. One step of a tandem duplication-random loss of width 3 applied
to the permutation 123456 is as follows:

12 345 345 6 — 123453456 — 123546
S g

(tandem duplication) (random loss)

As is mentioned in [166, 164], the duplication-loss model can be viewed as
a particular case of permuting machines that sort and generate permutations, and
they are defined in [19] by Albert et al. We will consider permutations that are
obtained from the permutation 12---n after a given number r of duplication-loss
steps.

Various duplication-loss models can be defined depending on a given so-called
cost function c. Although it is intuitively clear that the cost of a duplication should
be some non-decreasing function of the length of the duplication, it is not clear what
exactly this function should be. We assume that the cost ¢(k) of a duplication-loss
step is dependent only on the width % of the step. In the original model of Chaudhuri
et al. [239], c(k) = o, for a parameter a > 1. In [166] by Bouvel and Rossin, the
cost function is defined by ¢(k) = 1 if k < K, ¢(k) = oo otherwise, for a parameter
K € N\{0,1}. In the model of [164] by Bouvel and Pergola, for all k, one has
c(k) = 1, which is a special case of both the model of [239] (the case o = 1) and
the model of [166] (the case K = o0). The model with ¢(k) = 1 is called the
whole genome duplication-random loss model, which is motivated by the following
argument: Since any step has cost 1, regardless of its width, we can, without loss of
generality, assume that the whole permutation is duplicated at any step.

Pattern-avoidance is used in [166] to describe the set of permutations ob-
tainable from an identity permutation after a number of duplication-loss steps
of bounded width and we discuss it briefly in the following subsection. On the
other hand, in the description of obtainable permutations in the whole genome
duplication-random loss model, descents in permutations are involved, which are
occurrences of the vincular (consecutive) pattern 21. Besides, consecutive 4-patterns
are involved in a characterization of minimal permutations with width d (see Def-
inition 2.4.7), objects involved in describing obtainable permutations in the whole
genome duplication-random loss model which we discuss in Subsection 2.4.2. We
refer to [239, 166] for algorithmic aspects related to the duplication-loss model. Fi-
nally, we refer to Definition 2.2.38 for the notion of a permutation class and to
Section 8.1 for the notion of the basis of a permutation class.
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2.4.1 Duplication-loss steps of bounded width

The main object of interest in [166] is given by the following definition.

Definition 2.4.2. Let C(K,r) denote the class of all permutations obtainable from
12---n (for any n) after r duplication-loss steps of width at most K, for some
constant parameters r and K.

Remark 2.4.3. Following remarks in [239, 166], the duplication-loss steps are not
reversible and thus C(K,r) is not the class of permutations that can be sorted to
12---n in r duplication-loss steps of width at most K.

Theorem 2.4.4. ([166]) C(K,1) is a class of pattern-avoiding permutations Av(B)
whose basis B is finite of size 2Kt +3. More precisely, B = {321,3142,2143} U D,
where D is the set of all permutations in Sk11 that do not start with 1 nor end with
K + 1, and contain exactly one descent.

In the general case, Bouvel and Rossin [166] obtained the following result for

C(K,r).

Theorem 2.4.5. ([166]) C(K,r) is a class of pattern-avoiding permutations whose
basis is finite and contains patterns of size at most (Kr + 2)* — 2.

2.4.2 The whole genome duplication-random loss model

Bouvel and Pergola [164] proved the following characterization theorem.

Theorem 2.4.6. ([164]) The permutations that can be obtained in at most r steps
in the whole genome duplication-random loss model are exactly those whose number
of descents is at most 2" — 1.

Definition 2.4.7. A permutation is minimal with d descents if removing any of its
letters and taking the reduced form gives a permutation with fewer descents.

Example 2.4.8. The permutation m = 31254 has 2 descents but it is not minimal
with 2 descents as we can remove the letter 2 obtaining the permutation 2143 still
having two descents. On the other hand, the permutation 642197385 is minimal
with 6 descents.

Theorem 2.4.9. ([166, 164]) The class of permutations obtainable in at most r steps
in the whole genome duplication-random loss model is a class of pattern-avoiding
permutations whose basis is finite and is composed of the minimal permutations
with 2" descents.
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Taking into account the importance of minimal permutations with a specified
number of descents in Theorem 2.4.9, we provide selected known facts on these
permutations (consult [164] for more facts). A characterization of such permutations
involving consecutive patterns is given in [164] by Bouvel and Pergola.

Theorem 2.4.10. ([164]) A permutation 7 is minimal with d descents if and only
if it has exactly d descents and its ascents w;miy1 are such that 2 < i < n — 2 and
1T T e1 o forms an occurrence of either the pattern 2143 or the pattern 3142.

Theorem 2.4.11. ([164]) The minimal permutations with d descents and of size

e 2d are enumerated by the d-th Catalan number Cy = #(zj) ;

e d+2 are enumerated by 2972 — (d + 1)(d + 2) — 2.

Further studies of minimal permutations with d descents are carried out in
[163] by Bouvel and Ferrari.
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