
2. Advanced Counting

When properly applied, the (double) counting argument can lead to more
subtle results than those discussed in the previous chapter.

2.1 Bounds on intersection size

How many r-element subsets of an n-element set can we choose under the
restriction that no two of them share more than k elements? Intuitively, the
smaller k is, the fewer sets we can choose. This intuition can be made precise
as follows. (We address the optimality of this bound in Exercise 2.5.)

Lemma 2.1 (Corrádi 1969). Let A1, . . . , AN be r-element sets and X be their
union. If |Ai ∩ Aj | ≤ k for all i �= j, then

|X | ≥ r2N

r + (N − 1)k . (2.1)

Proof. Just count. By (1.11), we have for each i = 1, . . . , N ,

∑
x∈Ai

d(x) =
N∑
j=1

|Ai ∩ Aj | = |Ai|+
∑
j �=i

|Ai ∩ Aj | ≤ r + (N − 1)k . (2.2)

Summing over all sets Ai and using Jensen’s inequality (1.15) we get

N∑
i=1

∑
x∈Ai

d(x) =
∑
x∈X

d(x)2 ≥ 1
n

(∑
x∈X

d(x)
)2
= 1

n

( n∑
i=1

|Ai|
)2
= (Nr)2

n
.

Using (2.2) we obtain (Nr)2 ≤ N · |X | (r + (N − 1)k), which gives the desired
lower bound on |X |. ��
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2 Advanced Counting

Given a family of sets A1, . . . , AN , their average size is

1
N

N∑
i=1

|Ai|.

The following lemma says that, if the average size of sets is large, then some
two of them must share many elements.

Lemma 2.2. Let X be a set of n elements, and let A1, . . . , AN be subsets of
X of average size at least n/w. If N ≥ 2w2, then there exist i �= j such that

|Ai ∩ Aj | ≥ n

2w2 . (2.3)

Proof. Again, let us just count. On the one hand, using Jensen’s inequality
(1.15) and equality (1.10), we obtain that

∑
x∈X

d(x)2 ≥ 1
n

(∑
x∈X

d(x)
)2
= 1

n

( N∑
i=1

|Ai|
)2

≥ nN2

w2 .

On the other hand, assuming that (2.3) is false and using (1.11) and (1.12)
we would obtain

∑
x∈X

d(x)2 =
N∑
i=1

N∑
j=1

|Ai ∩ Aj | =
∑
i

|Ai|+
∑
i�=j

|Ai ∩ Aj |

< nN + nN(N − 1)
2w2 = nN2

2w2

(
1 + 2w

2

N
− 1

N

)
≤ nN2

w2 ,

a contradiction. ��
Lemma 2.2 is a very special (but still illustrative) case of the following

more general result.

Lemma 2.3 (Erdős 1964b). Let X be a set of n elements x1, . . . , xn, and let
A1, . . . , AN be N subsets of X of average size at least n/w. If N ≥ 2kwk,
then there exist Ai1 , . . . , Aik such that |Ai1 ∩ · · · ∩ Aik | ≥ n/(2wk).

The proof is a generalization of the one above and we leave it as an exercise
(see Exercises 2.8 and 2.9).

2.2 Graphs with no 4-cycles

Let H be a fixed graph. A graph is H-free if it does not contain H as a
subgraph. (Recall that a subgraph is obtained by deleting edges and vertices.)
A typical question in graph theory is the following one:
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2.2 Graphs with no 4-cycles

How many edges can a H-free graph with n vertices have?

That is, one is interested in the maximum number ex(n,H) of edges in a
H-free graph on n vertices. The graph H itself is then called a “forbidden
subgraph.”
Let us consider the case when forbidden subgraphs are cycles. Recall that

a cycle Ck of length k (or a k-cycle) is a sequence v0, v1, . . . , vk such that
vk = v0 and each subsequent pair vi and vi+1 is joined by an edge.
If H = C3, a triangle, then ex(n,C3) ≥ n2/4 for every even n ≥ 2: a

complete bipartite r × r graph Kr,r with r = n/2 has no triangles but has
r2 = n2/4 edges. We will show later that this is already optimal: any n-vertex
graph with more than n2/4 edges must contain a triangle (see Theorem 4.7).
Interestingly, ex(n,C4) is much smaller, smaller than n3/2.

Theorem 2.4 (Reiman 1958). If G = (V,E) on n vertices has no 4-cycles,
then

|E| ≤ n

4 (1 +
√
4n − 3) .

Proof. Let G = (V,E) be a C4-free graph with vertex-set V = {1, . . . , n}, and
d1, d2, . . . , dn be the degrees of its vertices. We now count in two ways the
number of elements in the following set S. The set S consists of all (ordered)
pairs (u, {v, w}) such that v �= w and u is adjacent to both v and w in G.
That is, we count all occurrences of “cherries”

w

u
v

in G. For each vertex u, we have
(
du
2
)
possibilities to choose a 2-element

subset of its du neighbors. Thus, summing over u, we find |S| = ∑nu=1
(
du
2
)
.

On the other hand, the C4-freeness of G implies that no pair of vertices v �= w
can have more than one common neighbor. Thus, summing over all pairs we
obtain that |S| ≤ (n2). Altogether this gives

n∑
i=1

(
di
2

)
≤
(
n

2

)

or
n∑
i=1

d2
i ≤ n(n − 1) +

n∑
i=1

di . (2.4)

Now, we use the Cauchy–Schwarz inequality
( n∑
i=1

xiyi

)2
≤
( n∑
i=1

x2
i

)( n∑
i=1

y2
i

)

with xi = di and yi = 1, and obtain
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2 Advanced Counting
( n∑
i=1

di

)2
≤ n

n∑
i=1

d2
i

and hence by (2.4)
( n∑
i=1

di

)2
≤ n2(n − 1) + n

n∑
i=1

di .

Euler’s theorem gives
∑n
i=1 di = 2|E|. Invoking this fact, we obtain

4|E|2 ≤ n2(n − 1) + 2n|E|

or
|E|2 − n

2 |E| − n2(n − 1)
4 ≤ 0 .

Solving the corresponding quadratic equation yields the desired upper bound
on |E|. ��
Example 2.5 (Construction of dense C4-free graphs). The following construc-
tion shows that the bound of Theorem 2.4 is optimal up to a constant factor.
Let p be a prime number and take V = (Zp \ {0})× Zp, that is, vertices

are pairs (a, b) of elements of a finite field with a �= 0. We define a graph G
on these vertices, where (a, b) and (c, d) are joined by an edge iff ac = b+ d
(all operations modulo p). For each vertex (a, b), there are p − 1 solutions of
the equation ax = b+ y: pick any x ∈ Zp \ {0}, and y is uniquely determined.
Thus, G is a (p − 1)-regular graph on n = p(p − 1) vertices (some edges are
loops). The number of edges in it is n(p − 1)/2 = Ω(n3/2).
To verify that the graph is C4-free, take any two its vertices (a, b) and

(c, d). The unique solution (x, y) of the system
{

ax = b+ y
cx = d+ y

is given by x = (b − d)(a − c)−1

2y = x(a+ c)− b − d

which is only defined when a �= c, and has x �= 0 only when b �= d. Hence, if
a �= c and b �= d, then the vertices (a, b) and (c, d) have precisely one common
neighbor, and have no common neighbors at all, if a = c or b = d.

2.3 Graphs with no induced 4-cycles

Recall that an induced subgraph is obtained by deleting vertices together with
all the edges incident to them (see Fig. 2.1).
Theorem 2.4 says that a graph cannot have many edges, unless it contains

C4 as a (not necessarily induced) subgraph. But what about graphs that
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2.3 Graphs with no induced 4-cycles

G

Fig. 2.1 Graph G contains several copies of C4 as a subgraph, but none of them as an
induced subgraph.

do not contain C4 as an induced subgraph? Let us call such graphs weakly
C4-free.
Note that such graphs can already have many more edges. In particular,

the complete graphKn is weakly C4-free: in any 4-cycle there are edges in Kn
between non-neighboring vertices of C4. Interestingly, any(!) dense enough
weakly C4-free graph must contain large complete subgraphs.
Let ω(G) denote the maximum number of vertices in a complete subgraph

of G. In particular, ω(G) ≤ 3 for every C4-free graph. In contrast, for weakly
C4-free graphs we have the following result, due to Gyárfás, Hubenko and
Solymosi (2002).

Theorem 2.6. If an n-vertex graph G = (V,E) is weakly C4-free, then

ω(G) ≥ 0.4 |E|2
n3 .

The proof of Theorem 2.6 is based on a simple fact, relating the average
degree with the minimum degree, as well as on two facts concerning indepen-
dent sets in weakly C4-free graphs.
For a graph G = (V,E), let e(G) = |E| denote the number of its edges,

dmin(G) the smallest degree of its vertices, and dave(G) = 2e(G)/|V | the
average degree. Note that, by Euler’s theorem, dave(G) is indeed the sum of
all degrees divided by the total number of vertices.

Proposition 2.7. Every graph G has an induced subgraph H with

dave(H) ≥ dave(G) and dmin(H) ≥ 12 dave(G) .

Proof. We remove vertices one-by-one. To avoid the danger of ending up with
the empty graph, let us remove a vertex v ∈ V if this does not decrease the
average degree dave(G). Thus, we should have

dave(G − v) = 2(e(G)− d(v))
|V | − 1 ≥ dave(G) =

2e(G)
|V |

which is equivalent to d(v) ≤ dave(G)/2. So, when we stick, each vertex in
the resulting graph H has minimum degree at least dave(G)/2. ��
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2 Advanced Counting
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Fig. 2.2 (a) If u and v were non-adjacent, we would have an induced 4-cycle
{xi, xj , u, v}. (b) If y and z were non-adjacent, then (S \ {xi}) ∪ {y, z} would be a
larger independent set.

Recall that a set of vertices in a graph is independent if no two of its
vertices are adjacent. Let α(G) denote the largest number of vertices in such
a set.

Proposition 2.8. For every weakly C4-free graph G on n vertices, we have

ω(G) ≥ n(
α(G)+1

2
) .

Proof. Fix an independent set S = {x1, . . . , xα} with α = α(G). Let Ai be
the set of neighbors of xi in G, and Bi the set of vertices whose only neighbor
in S is xi. Consider the family F consisting of all α sets {xi} ∪ Bi and

(
α
2
)

sets Ai ∩ Aj . We claim that:

(i) each member of F forms a clique in G, and
(ii) the members of F cover all vertices of G.
The sets Ai ∩ Aj are cliques because G is weakly C4-free: Any two vertices
u �= v ∈ Ai ∩Aj must be joined by an edge, for otherwise {xi, xj , u, v} would
form a copy of C4 as an induced subgraph. The sets {xi} ∪ Bi are cliques
because S is a maximal independent set: Otherwise we could replace xi in
S by any two vertices from Bi. By the same reason (S being a maximal
independent set), the members of F must cover all vertices of G: If some
vertex v were not covered, then S ∪ {v} would be a larger independent set.
Claims (i) and (ii), together with the averaging principle, imply that

ω(G) ≥ n

|F| =
n

α+
(
α
2
) = n(

α+1
2
) . ��

Proposition 2.9. Let G be a weakly C4-free graph on n vertices, and d =
dmin(G). Then, for every t ≤ α(G),

ω(G) ≥ d · t − n(
t
2
) .
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2.4 Zarankiewicz’s problem

Proof. Take an independent set S = {x1, . . . , xt} of size t and let Ai be the
set of neighbors of xi in G. Let m be the maximum of |Ai ∩ Aj | over all
1 ≤ i < j ≤ t. We already know that each Ai ∩ Aj must form a clique; hence,
ω(G) ≥ m. On the other hand, by the Bonferroni inequality (Exercise 1.37)
we have that

n ≥
∣∣∣∣
t⋃
i=1

Ai

∣∣∣∣ ≥ td −
∑
i<j

|Ai ∩ Aj | ≥ td −
(
t

2

)
m,

from which the desired lower bound on ω(G) follows. ��
Now we are able to prove Theorem 2.6.

Proof of Theorem 2.6. Let a be the average degree of G; hence, a = 2|E|/n.
By Proposition 2.7, we know that G has an induced subgraph of average
degree ≥ a and minimum degree ≥ a/2. So, we may assume w.l.o.g. that the
graph G itself has these two properties. We now consider the two possible
cases.
If α(G) ≥ 4n/a, then we apply Proposition 2.9 with∗ t = 4n/a and obtain

ω(G) ≥ (a/2) · t − n(
t
2
) = n(4n/a

2
) .

If α(G) ≤ 4n/a, then we apply Proposition 2.8 and obtain

ω(G) ≥ n(
α(G)+1

2
) ≥ n(4n/a+1

2
) .

In both cases we obtain

ω(G) ≥ n(4n/a+1
2
) = a2

8n+ 2a ≥ 0.1a
2

n
. ��

2.4 Zarankiewicz’s problem

At most how many 1s can an n × n 0-1 matrix contain if it has no a × b
submatrix whose entries are all 1s? Zarankiewicz (1951) raised the problem
of the estimation of this number for a = b = 3 and n = 4, 5, 6 and the general
problem became known as Zarankiewicz’s problem.
It is worth reformulating this problem in terms of bipartite graphs. A bi-

partite graph with parts of size n is a triple G = (V1, V2, E), where V1 and
V2 are disjoint n-element sets of vertices (or nodes), and E ⊆ V1 × V2 is the
set of edges. We say that the graph contains an a × b clique if there exist an

∗ For simplicity, we ignore ceilings and floors.
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2 Advanced Counting

a-element subset A ⊆ V1 and a b-element subset B ⊆ V2 such that A×B ⊆ E.
(Note that an a × b clique is not the same as a b × a clique, unless a = b.)
Let ka(n) be the minimal integer k such that any bipartite graph with

parts of size n and more than k edges contains at least one a × a clique.
Using the probabilistic argument, it can be shown (see Exercise 20.6) that

ka(n) ≥ c · n2−2/a,

where c > 0 is a constant, depending only on a. It turns out that this bound
is not very far from the best possible, and this can be proved using the double
counting argument. The result is essentially due to Kővári, Sós and Turán
(1954). For a = 2, a lower bound k2(n) ≤ 3n3/2 was proved by Erdős (1938).
He used this to prove that, if a set A ⊆ [n] is such that the products of any
two of its different members are different, then |A| ≤ π(n) + O(n3/4), where
π(n) is the number of primes not exceeding n.

Theorem 2.10. For all natural numbers n ≥ a ≥ 2 we have

ka(n) ≤ (a − 1)1/an2−1/a + (a − 1)n.

Proof. The proof is a direct generalization of a double counting argument
we used in the proof of Theorem 2.4. Our goal is to prove the following: let
G = (V1, V2, E) be a bipartite graph with parts of size n, and suppose that
G does not contain an a × a clique; then |E| ≤ (a − 1)1/an2−1/a + (a − 1)n.
By a star in the graph G we will mean a set of any a of its edges incident

with one vertex x ∈ V1, i.e., a set of the form

S(x,B) := {(x, y) ∈ E : y ∈ B},

where B ⊆ V2, |B| = a. Let Δ be the total number of such stars in G. We
may count the stars S(x,B) in two ways, by fixing either the vertex x or the
subset B.
For a fixed subset B ⊆ V2, with |B| = a, we can have at most a − 1 stars

of the form S(x,B), because otherwise we would have an a × a clique in G.
Thus,

Δ ≤ (a − 1) ·
(
n

a

)
. (2.5)

On the other hand, for a fixed vertex x ∈ V1, we can form
(
d(x)
a

)
stars S(x,B),

where d(x) is the degree of vertex x in G (i.e., the number of vertices adjacent
to x). Therefore, ∑

x∈V1

(
d(x)
a

)
≤ (a − 1) ·

(
n

a

)
. (2.6)

We are going to estimate the left-hand side from below using Jensen’s inequal-
ity. Unfortunately, the function

(
x
a

)
= x(x − 1) · · · (x − a + 1)/a! is convex

only for x ≥ a − 1. But we can set f(z) := (xa) if x ≥ a − 1, and f(x) := 0
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2.4 Zarankiewicz’s problem

otherwise. Then Jensen’s inequality (1.14) (with λx = 1/n for all x ∈ V1)
yields

∑
x∈V1

(
d(x)
a

)
≥
∑
x∈V1

f(d(x)) ≥ n · f
( ∑
x∈V1

d(x)/n
)
= n · f(|E|/n) .

If |E|/n < a − 1, there is nothing to prove. So, we can suppose that |E|/n ≥
a − 1. Then we have that

n ·
(|E|/n

a

)
= n · f(|E|/n) ≤

∑
x∈V1

(
d(x)
a

)
≤ (a − 1)

(
n

a

)
.

Expressing the binomial coefficients as quotients of factorials, this inequality
implies

n (|E|/n − (a − 1))a ≤ (a − 1)na,
and therefore |E|/n ≤ (a−1)1/an1−1/a+a−1, from which the desired upper
bound on |E| follows. ��
The theorem above says that any bipartite graph with many edges has

large cliques. In order to destroy such cliques we can try to remove some of
their vertices. We would like to remove as few vertices as possible. Just how
few says the following result.

Theorem 2.11 (Ossowski 1993). Let G = (V1, V2, E) be a bipartite graph
with no isolated vertices, |E| < (k + 1)r edges and d(y) ≤ r for all y ∈ V2.
Then we can delete at most k vertices from V1 so that the resulting graph has
no (r − a+ 1)× a clique for a = 1, 2, . . . , r.

For a vertex x, let N(x) denote the set of its neighbors in G, that is, the
set of all vertices adjacent to x; hence, |N(x)| is the degree d(x) of x. We will
use the following lemma relating the degree to the total number of vertices.

Lemma 2.12. Let (X,Y,E) be a bipartite graph with no isolated vertices,
and f : Y → [ 0,∞) be a function. If the inequality d(y) ≤ d(x) · f(y) holds
for each edge (x, y) ∈ E, then |X | ≤∑y∈Y f(y).

Proof. By double counting,

|X | =
∑
x∈X

∑
y∈N(x)

1
d(x) ≤

∑
x∈X

∑
y∈N(x)

f(y)
d(y)

=
∑
y∈Y

∑
x∈N(y)

f(y)
d(y) =

∑
y∈Y

f(y)
d(y) · |N(y)| =

∑
y∈Y

f(y). ��

Proof of Theorem 2.11. (Due to F. Galvin 1997). For a set of vertices Y ⊆ V2,
let N(Y ) :=

⋂
y∈Y N(y) denote the set of all its common neighbors in G, that

is, the set of all those vertices in V1 which are joined to each vertex of Y ;
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2 Advanced Counting

hence |N(Y )| ≤ r for all Y ⊆ V2. Let X ⊆ V1 be a minimal set with the
property that |N(Y ) \ X | ≤ r − |Y | whenever Y ⊆ V2 and 1 ≤ |Y | ≤ r. Put
otherwise, X is a minimal set of vertices in V1, the removal of which leads to
a graph without (r − a+ 1)× a cliques, for all a = 1, . . . , r.
Our goal is to show that |X | ≤ k.
Note that, for each x ∈ X we can choose Yx ⊆ V2 so that 1 ≤ |Yx| ≤ r,

x ∈ N(Yx) and
|N(Yx) \ X | = r − |Yx|;

otherwise X could be replaced by X \ {x}, contradicting the minimality of
X . We will apply Lemma 2.12 to the bipartite graph G′ = (X,V2, F ), where

F = {(x, y) : y ∈ Yx} .

All we have to do is to show that the hypothesis of the lemma is satisfied by
the function (here N(y) is the set of neighbors of y in the original graph G):

f(y) := |N(y)|
r

,

because then

|X | ≤
∑
y∈V2

f(y) = 1
r

∑
y∈V2

|N(y)| = |E|
r

< k + 1.

Consider an edge (x, y) ∈ F ; we have to show that d(y) ≤ d(x) · f(y), where

d(x) = |Yx| and d(y) = |{x ∈ X : y ∈ Yx}|

are the degrees of x and y in the graph G′ = (X,V2, F ). Now, y ∈ Yx implies
N(Yx) ⊆ N(y), which in its turn implies

|N(y) \ X | ≥ |N(Yx) \ X | = r − |Yx|;

hence

d(y) ≤ |N(y) ∩ X | = |N(y)| − |N(y) \ X |
≤ |N(y)| − r + |Yx| = r · f(y)− r + d(x),

and so

d(x) · f(y)− d(y) ≥ d(x) · f(y)− r · f(y) + r − d(x)
= (r − d(x)) · (1− f(y)) ≥ 0 . ��
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2.5 Density of 0-1 matrices

2.5 Density of 0-1 matrices

Let H be an m × n 0-1 matrix. We say that H is α-dense if at least an α-
fraction of all its mn entries are 1s. Similarly, a row (or column) is α-dense
if at least an α-fraction of all its entries are 1s.
The next result says that any dense 0-1 matrix must either have one “very

dense” row or there must be many rows which are still “dense enough.”

Lemma 2.13 (Grigni and Sipser 1995). If H is 2α-dense then either
(a) there exists a row which is

√
α-dense, or

(b) at least
√
α · m of the rows are α-dense.

Note that
√
α is larger than α when α < 1.

Proof. Suppose that the two cases do not hold. We calculate the density of
the entire matrix. Since (b) does not hold, less than

√
α · m of the rows are

α-dense. Since (a) does not hold, each of these rows has less than
√
α · n 1s;

hence, the fraction of 1s in α-dense rows is strictly less than (
√
α)(

√
α) = α.

We have at most m rows which are not α-dense, and each of them has less
than αn ones. Hence, the fraction of 1s in these rows is also less than α.
Thus, the total fraction of 1s in the matrix is less than 2α, contradicting the
2α-density of H . ��
Now consider a slightly different question: if H is α-dense, how many of its

rows or columns are “dense enough”? The answer is given by the following
general estimate due to Johan Håstad. This result appeared in the paper
of Karchmer and Wigderson (1990) and was used to prove that the graph
connectivity problem cannot be solved by monotone circuits of logarithmic
depth.
Suppose that our universe is a Cartesian product A = A1 × · · · × Ak of

some finite sets A1, . . . , Ak. Hence, elements of A are strings a = (a1, . . . , ak)
with ai ∈ Ai. Fix now a subset of strings H ⊆ A and a point b ∈ Ai. The
degree of b in H is the number dH(b) = |{a ∈ H : ai = b}| of strings in H
whose i-th coordinate is b.
Say that a point b ∈ Ai from the i-th set is popular in H if its degree dH(b)

is at least a 1/2k fraction of the average degree of an element in Ai, that is,
if

dH(b) ≥ 1
2k

|H |
|Ai| .

Let Pi ⊆ Ai be the set of all popular points in the i-th set Ai, and consider
the Cartesian product of these sets:

P := P1 × P2 × · · · × Pk .

Lemma 2.14 (Håstad). |P | > 1
2 |H |.
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Proof. It is enough to show that |H \P | < 1
2 |H |. For every non-popular point

b ∈ Ai, we have that

|{a ∈ H : ai = b}| < 1
2k

|H |
|Ai| .

Since the number of non-popular points in each set Ai does not exceed the
total number of points |Ai|, we obtain

|H \ P | ≤
k∑
i=1

∑
b�∈Pi

|{a ∈ H : ai = b}| <
k∑
i=1

∑
b�∈Pi

1
2k

|H |
|Ai|

≤
k∑
i=1

1
2k |H | = 12 |H | . ��

Corollary 2.15. In any 2α-dense 0-1 matrix H either a
√
α-fraction of its

rows or a
√
α-fraction of its columns (or both) are (α/2)-dense.

Proof. Let H be anm×nmatrix. We can view H as a subset of the Cartesian
product [m] × [n], where (i, j) ∈ H iff the entry in the i-th row and j-th
column is 1. We are going to apply Lemma 2.14 with k = 2. We know that
|H | ≥ 2αmn. So, if P1 is the set of all rows with at least 1

4 |H |/|A1| = αn/2
ones, and P2 is the set of all columns with at least 1

4 |H |/|A2| = αm/2 ones,
then Lemma 2.14 implies that

|P1|
m

· |P2|
n

≥ 12
|H |
mn

≥ 12 · 2αmn

mn
= α .

Hence, either |P1|/m or |P2|/n must be at least √
α, as claimed. ��

2.6 The Lovász–Stein theorem

This theorem was used by Stein (1974) and Lovász (1975) in studying some
combinatorial covering problems. The advantage of this result is that it can
be used to get existence results for some combinatorial problems using con-
structive methods rather than probabilistic methods.
Given a family F of subsets of some finite set X , its cover number of F ,

Cov (F), is the minimum number of members of F whose union covers all
points (elements) of X .

Theorem 2.16. If each member of F has at most a elements, and each point
x ∈ X belongs to at least v of the sets in F , then

Cov (F) ≤ |F|
v
(1 + ln a) .
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Proof. Let N = |X |,M = |F| and consider the N ×M 0-1 matrix A = (ax,i),
where ax,i = 1 iff x ∈ X belongs to the i-th member of F . By our assumption,
each row of A has at least v ones and each column at most a ones. By double
counting, we have that Nv ≥ Ma, or equivalently,

M

v
≤ N

a
. (2.7)

Our goal is to show that then A must contain an N × K submatrix C with
no all-0 rows and such that

K ≤ N/a+ (M/v) ln a ≤ (M/v)(1 + ln a) .

We describe a constructive procedure for producing the desired submatrix C.
Let Aa = A and define A′a to be any maximal set of columns from Aa whose
supports† are pairwise disjoint and whose columns each have a ones. Let
Ka = |A′a|. Discard from Aa the columns of A′a and any row with a one in A′a.
We are left with a ka× (M −Ka) matrix Aa−1, where ka = N −aKa. Clearly,
the columns of Aa−1 have at most a−1 ones (indeed, otherwise such a column
could be added to the previously discarded set, contradicting its maximality).
We continue by doing toAa−1 what we did toAa. That is we define A′a−1 to be
any maximal set of columns from Aa−1 whose supports are pairwise disjoint
and whose columns each have a − 1 ones. Let Ka−1 = |A′a−1|. Then discard
from Aa−1 the columns of A′a−1 and any row with a one in A′a−1 getting a
ka−1 × (M −Ka−Ka−1) matrix Aa−2, where ka−1 = N −aKa− (a−1)Ka−1.
The process will terminate after at most a steps (when we have a matrix

containing only zeros). The union of the columns of the discarded sets form
the desired submatrix C with K =

∑a
i=1 Ki. The first step of the algorithm

gives ka = N − aKa, which we rewrite, setting ka+1 = N , as

Ka =
ka+1 − ka

a
.

Analogously,
Ki =

ki+1 − ki
i

for i = 1, . . . , a.

Now we derive an upper bound for ki by counting the number of ones in Ai−1
in two ways: every row of Ai−1 contains at least v ones, and every column at
most i − 1 ones, thus

vki ≤ (i − 1)(M − Ka − · · · − Ki+1) ≤ (i − 1)M ,

or equivalently,

ki ≤ (i − 1)M
v

.

† The support of a vector is the set of its nonzero coordinates.
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So,

K =
a∑
i=1

Ki =
a∑
i=1

ki+1 − ki
i

= ka+1
a
+ ka

a(a − 1) +
ka−1

(a − 1)(a − 2) + · · ·+ k2
2 · 1 − k1

≤ N

a
+ M

v

(
1
a
+ 1

a − 1 + · · ·+ 12
)

≤ N

a
+ M

v
ln a .

The last inequality here follows because 1+ 1/2+ 1/3+ · · ·+1/n is the n-th
harmonic number which is known to lie between lnn and lnn+ 1. Together
with (2.7), this yields K ≤ (M/v)(1 + ln a), as desired. ��
The advantage of this proof is that it can be turned into a simple greedy

algorithm which constructs the desired N ×K submatrix A′ with column-set
C, |C| = K:
1. Set C := ∅ and A′ := A.
2. While A′ has at least one row do:

- find a column c in A′ having a maximum number of ones;
- delete all rows of A′ that contain a 1 in column c;
- delete column c from A′;
- set C := C ∪ {c}.

2.6.1 Covering designs

An (n, k, l) covering design is a family F of k-subsets of an n-element set
(called blocks) such that every l-subset is contained in at least one of these
blocks. Let M(n, k, l) denote the minimal cardinality of such a design. A
simple counting argument (Exercise 1.26) shows that M(n, k, l) ≥ (n

l

)/(
k
l

)
.

In 1985, Rödl proved a long-standing conjecture of Erdős and Hanani
that for fixed k and l, coverings of size

(
n
l

)/(
k
l

)
(1 + o(1)) exist. Rödl used

non-constructive probabilistic arguments. We will now use the Lovász–Stein
theorem to show how to construct an (n, k, l) covering design with only ln

(
k
l

)
times more blocks. This is not as sharp as Rödl’s celebrated result, but it is
constructive. A polynomial-time covering algorithm, achieving Rödl’s bound,
was found by Kuzjurin (2000).

Theorem 2.17. M(n, k, l) ≤ (nl)/(kl)[1 + ln (kl)].
Proof. Let X = (xS,T ) be an N × M 0-1 matrix with N =

(
n
l

)
and M =

(
n
k

)
.

Rows of X are labeled by l-element subsets S ⊆ [n], columns by k-element
subsets T ⊆ [n], and xS,T = 1 iff S ⊆ T . Note that each row contains exactly
v =
(
n−l
k−l
)
ones, and each column contains exactly a =

(
k
l

)
ones.

By the Lovász–Stein theorem, there is an N × K submatrix X ′ such that
X ′ does not contain an all-0 row and
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K ≤ (M/v)(1 + ln a) =
(
n

k

)/(
n − l

k − l

)[
1 + ln

(
k

l

)]

=
(
n

l

)/(
k

l

)[
1 + ln

(
k

l

)]
,

as
(
n
l

)(
n−l
k−l
)
=
(
n
k

)(
k
l

)
(see Exercise 1.12). By the definition of X and the

property of X ′ (no all-0 row), the k-subsets that correspond to the columns
of X ′ form an (n, k, l) covering design. ��

Exercises

2.1. Let A1, . . . , Am be subsets of an n-element set such that |Ai ∩ Aj | ≤ t
for all i �= j. Prove that

∑m
i=1 |Ai| ≤ n+ t · (m2 ).

2.2. Let A = (aij) be an n × n matrix (n ≥ 4 even). The matrix is filled
with integers and each integer appears exactly twice. Show that there exists
a permutation π of {1, . . . , n} such that all the numbers ai,π(i), i = 1, . . . , n
are distinct. (Such a permutation π is also called a Latin transversal of A.)
Hint: Look at how many pairs of entries are “bad,” i.e., contain the same number, and
show that strictly less than n! of all permutations can go through such pairs.

2.3. Let F be a family of m subsets of a finite set X . For x ∈ X , let p(x)
be the number of pairs (A,B) of sets A,B ∈ F such that either x ∈ A ∩ B
or x �∈ A ∪ B. Prove that p(x) ≥ m2/2 for every x ∈ X . Hint: Let d(x) be the
degree of x in F , and observe that p(x) = d(x)2 + (m− d(x))2.

2.4. Let F be a family of nonempty subsets of a finite set X that is closed
under union (i.e., A,B ∈ F implies A ∪ B ∈ F). Prove or give a counterex-
ample: there exists x ∈ X such that d(x) ≥ |F|/2. (Open conjecture, due to
Peter Frankl.)

2.5. A projective plane of order r − 1 is a family of n = r2 − r + 1 r-element
subsets (called lines) of an n-element set of points such that each two lines
intersect at precisely one point and each point belongs to precisely r lines
(cf. Sect. 12.4). Use this family to show that the bound given by Corrádi’s
lemma (Lemma 2.1) is optimal.

2.6. Theorem 2.10 gives a sufficient condition for a bipartite graph with parts
of the same size n to contain an a × a clique. Extend this result to not
necessarily balanced graphs. Let ka,b(m,n) be the minimal integer k such
that any bipartite graph with parts of size m and n and more than k edges
contains at least one a×b clique. Prove that for any 0 ≤ a ≤ m and 0 ≤ b ≤ n,

ka,b(m,n) ≤ (a − 1)1/bnm1−1/b + (b − 1)m.
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2.7. (Paturi–Zane 1998). Extend Theorem 2.10 to r-partite graphs as follows.
An r-partite m-clique is a Cartesian product V1 ×V2 × · · · ×Vr of m-element
sets V1, . . . , Vr. An r-partite graph with parts of size m is a subset E of an
r-partite m-clique. Let ex(m, r, 2) denote the maximum size |E| of such a
graph E which does not contain an r-partite 2-clique. Erdős (1959, 1964b)
proved that

cmr−r/2r−1 ≤ ex(m, r, 2) ≤ mr−1/2r−1
,

where c = c(r) > 0 is a constant depending only on r. A slightly weaker upper
bound ex(m, r, 2) < 2mr−1/2r−1 can be derived from Lemma 2.2. Show how to
do this. Hint: Argue by induction on r. For the induction step take X = V1 ×· · ·×Vr−1

and consider m subsets Av = {x ∈ X : (x, v) ∈ E} with v ∈ Vr. Apply Lemma 2.2 with
n = mr−1, N = m and w = 1

2m
1/2r−1

, to obtain a pair of points u �= v ∈ Vk for which
the graph E′ = Au ∩Av is large enough, and use the induction hypothesis.

2.8. Let F = {A1, . . . , AN} be a family of subsets of some set X . Use (1.11)
to prove that for every 1 ≤ s ≤ N ,

∑
x∈X

d(x)s =
∑

(i1,i2,...,is)

|Ai1 ∩ Ai2 ∩ · · · ∩ Ais |,

where the last sum is over all s-tuples (i1, i2, . . . , is) of (not necessarily dis-
tinct) indices.

2.9. Use the previous exercise and the argument of Lemma 2.2 to prove
Lemma 2.3.

2.10. Let A1, . . . , AN be subsets of some n-element set X , and suppose that
these sets have average size at least αn. Show that for every s ≤ (1 − ε)αN
with 0 < ε < 1, there are indices i1, i2, . . . , is such that

|Ai1 ∩ Ai2 ∩ · · · ∩ Ais | ≥ (εα)sn.

Hint: Consider the bipartite graph G = (X, V, E) where V = {1, . . . , N}, and (x, i) ∈ E
if and only if x ∈ Ai. Observe that |E| ≥ αnN and argue as in the proof of Theorem 2.10.

2.11. Prove the following very useful averaging principle for partitions. Let
X = A1 ∪ A2 ∪ · · · ∪ Am be a partition of a finite set X into m mutually
disjoint sets (blocks), and a =

∑m
i=1 |Ai|/m be the average size of a block in

this partition. Show that for every 1 ≤ b ≤ a, at least (1 − 1/b)|X | elements
of X belong to blocks of size at least a/b. How many elements of X belong
to blocks of size at most ab? Hint: m · (a/b) ≤ |X |/b.

2.12. Let A1, . . . , Ar be a sequence of (not necessarily distinct) subsets of an
n-element set X such that each set has size n/s and each element x ∈ X
belongs to least one and to at most k of them; hence r ≤ ks. Let K :=∑k
i=0
(
r
i

)
and assume that s > 2k. Prove that there exist two disjoint subsets

X1 and X2 of X such that |Xi| ≥ n/(2K) for both i = 1, 2, and none of the
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sets A1, . . . , Ar contains points from both sets X1 and X2. Hint: Associate with
each x ∈ X its trace T (x) = {i : x ∈ Ai} and partition the elements of X according
to their traces. Use the previous exercise to show that at least n/2 elements belong to
blocks of size at least n/(2K). Show that some two of these elements x and y must have
disjoint traces, T (x) ∩ T (y) = ∅.

2.13. Let X = A1 ∪ A2 ∪ · · · ∪ Am be a partition of a finite set X into
mutually disjoint blocks. Given a subset Y ⊆ X , we obtain its partition
Y = B1 ∪ B2 ∪ · · · ∪ Bm into blocks Bi = Ai ∩ Y . Say that a block Bi is λ-
large if |Bi|/|Ai| ≥ λ · |Y |/|X |. Show that, for every λ > 0, at least (1−λ) · |Y |
elements of Y belong to λ-large blocks.

2.14. Given a family S1, . . . , Sn of subsets of V = {1, . . . , n}, its intersection
graph G = (V,E) is defined by: {i, j} ∈ E if and only if Si ∩Sj �= ∅. Suppose
that: (i) the sets have average size at least r, and (ii) the average size of
their pairwise intersections does not exceed k. Show that |E| ≥ n

k · (r2). Hint:
Consider the sum

∑
i<j

|Si ∩ Sj |.

2.15. Let H be a 2α-dense 0-1 matrix. Prove that at least an α/(1 − α)
fraction of its rows must be α-dense.

2.16. (Alon 1986). Let S be a set of strings of length n over some alphabet.
Suppose that every two strings of S differ in at least d coordinates. Let k be
such that d > n(1 − 1/(k2)). Show that any k distinct strings v1, . . . , vk of S
attain k distinct values in at least one coordinate. Hint: Assume the opposite
and count the sum of distances between the

(
k
2

)
pairs of vi’s.
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