2. Advanced Counting

When properly applied, the (double) counting argument can lead to more
subtle results than those discussed in the previous chapter.

2.1 Bounds on intersection size

How many r-element subsets of an n-element set can we choose under the
restriction that no two of them share more than k elements? Intuitively, the
smaller k is, the fewer sets we can choose. This intuition can be made precise
as follows. (We address the optimality of this bound in Exercise 2.5.)

Lemma 2.1 (Corradi 1969). Let Ay, ..., An be r-element sets and X be their
union. If |A; N A;| <k for all i # j, then

2
X|>—— N
.

m. (2.1)

Proof. Just count. By (1.11), we have for each i =1,..., N,
N
D d@) =) JAin A=A+ ) JAnA<r+(N-1Dk.  (22)
TEA; j=1 B
Summing over all sets A; and using Jensen’s inequality (1.15) we get

Y ) = Y > %(Z d@))Q _ %(;M)Q _ @y

i=1 x€A; rzeX zeX

Using (2.2) we obtain (N7)? < N-|X| (r 4+ (N — 1)k), which gives the desired
lower bound on | X|. O

S. Jukna, Extremal Combinatorics, Texts in Theoretical Computer Science. 23
An EATCS Series, DOI 10.1007/978-3-642-17364-6_2,
© Springer-Verlag Berlin Heidelberg 2011


http://dx.doi.org/10.1007/978-3-642-17364-6_2

24 2 Advanced Counting

Given a family of sets A1, ..., Ay, their average size is

1 N
LYl
=1

The following lemma says that, if the average size of sets is large, then some
two of them must share many elements.

Lemma 2.2. Let X be a set of n elements, and let Ay, ..., Ay be subsets of
X of average size at least njw. If N > 2w?, then there exist i # j such that

n

Proof. Again, let us just count. On the one hand, using Jensen’s inequality
(1.15) and equality (1.10), we obtain that

S dwpz (S aw) - %(ifu) >

zeX reX i=1

On the other hand, assuming that (2.3) is false and using (1.11) and (1.12)
we would obtain

N N
Zd(l‘)z :ZZ‘AZHA” :Z‘Al|+Z‘AlﬂA]‘

zeX i=1 j=1 i i#j
nN(N —1) nN? < 20?1 ) nN?

N = _ =
< it 2uw? 2?2

)

‘N N w2

a contradiction. O

Lemma 2.2 is a very special (but still illustrative) case of the following
more general result.

Lemma 2.3 (Erdds 1964b). Let X be a set of n elements x1,...,x,, and let
Ay,...,Ax be N subsets of X of average size at least n/w. If N > 2kw*,
then there exist A;,, ..., A;, such that |A;, N---N A, | > n/(2wF).

The proof is a generalization of the one above and we leave it as an exercise
(see Exercises 2.8 and 2.9).

2.2 Graphs with no 4-cycles

Let H be a fixed graph. A graph is H-free if it does not contain H as a
subgraph. (Recall that a subgraph is obtained by deleting edges and vertices.)
A typical question in graph theory is the following one:
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How many edges can a H-free graph with n vertices have?

That is, one is interested in the maximum number ex(n, H) of edges in a
H-free graph on n vertices. The graph H itself is then called a “forbidden

subgraph.”
Let us consider the case when forbidden subgraphs are cycles. Recall that
a cycle Cy of length k (or a k-cycle) is a sequence vg,v1,...,vr such that

vk = vo and each subsequent pair v; and v;41 is joined by an edge.

If H = C3, a triangle, then ex(n,C3) > n?/4 for every even n > 2: a
complete bipartite » x r graph K, , with » = n/2 has no triangles but has
r? = n?/4 edges. We will show later that this is already optimal: any n-vertex
graph with more than n?/4 edges must contain a triangle (see Theorem 4.7).

Interestingly, ex(n, Cy) is much smaller, smaller than n3/2.

Theorem 2.4 (Reiman 1958). If G = (V, E) on n vertices has no 4-cycles,
then n
|E| < Z(l +V4n —3).

Proof. Let G = (V, E) be a Cy-free graph with vertex-set V.= {1,...,n}, and
dy,da,...,d, be the degrees of its vertices. We now count in two ways the
number of elements in the following set S. The set S consists of all (ordered)
pairs (u, {v,w}) such that v # w and w is adjacent to both v and w in G.
That is, we count all occurrences of “cherries”

v
> u

w
in G. For each vertex u, we have (d2“) possibilities to choose a 2-element
subset of its d, neighbors. Thus, summing over u, we find |S| = >_" (d“).

u=1\2
On the other hand, the Cy-freeness of G implies that no pair of vertices v # w

can have more than one common neighbor. Thus, summing over all pairs we
obtain that |S| < (3). Altogether this gives

> (%)= (5)

idfgn(n—l)ﬁ-idi. (2.4)
i=1 i=1

or

Now, we use the Cauchy—Schwarz inequality
n 2 n n
(Tra) < (X)(X#)
i=1 i=1 i=1

with z; = d; and y; = 1, and obtain



26 2 Advanced Counting

n 2 n
(Zdi) <n) d;
i=1 i=1
and hence by (2.4)
(idl) < n? (n—1) —|—nZd.
=1

Euler’s theorem gives Y. | d; = 2|E|. Invoking this fact, we obtain

4|E)? <n*(n—1) + 2n|E|

or 2 )
n n“(n—1
E?-Z|E| - ———= <0.
B2 - 215 - T <
Solving the corresponding quadratic equation yields the desired upper bound
on |E|. O

Ezample 2.5 (Construction of dense Cy-free graphs). The following construc-
tion shows that the bound of Theorem 2.4 is optimal up to a constant factor.

Let p be a prime number and take V = (Z, \ {0}) X Z,, that is, vertices
are pairs (a,b) of elements of a finite field with a # 0. We define a graph G
on these vertices, where (a,b) and (c,d) are joined by an edge iff ac = b+ d
(all operations modulo p). For each vertex (a,b), there are p — 1 solutions of
the equation ax = b+y: pick any x € Z, \ {0}, and y is uniquely determined.
Thus, G is a (p — 1)-regular graph on n = p(p — 1) vertices (some edges are
loops). The number of edges in it is n(p — 1)/2 = 2(n>/?).

To verify that the graph is Cy-free, take any two its vertices (a,b) and
(¢,d). The unique solution (z,y) of the system

ar=b+y
cc=d+y

- r=(b—d)(a—c)!
is given by 2 —a(a+c)—b—d
which is only defined when a # ¢, and has x # 0 only when b # d. Hence, if
a # c and b # d, then the vertices (a, b) and (¢, d) have precisely one common
neighbor, and have no common neighbors at all, if a = c or b = d.

2.3 Graphs with no induced 4-cycles

Recall that an induced subgraph is obtained by deleting vertices together with
all the edges incident to them (see Fig. 2.1).

Theorem 2.4 says that a graph cannot have many edges, unless it contains
C4 as a (not necessarily induced) subgraph. But what about graphs that
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G

Fig. 2.1 Graph G contains several copies of Cy as a subgraph, but none of them as an
induced subgraph.

do not contain Cy as an induced subgraph? Let us call such graphs weakly
Cy-free.

Note that such graphs can already have many more edges. In particular,
the complete graph K, is weakly Cy-free: in any 4-cycle there are edges in K,,
between non-neighboring vertices of Cy. Interestingly, any(!) dense enough
weakly Cy-free graph must contain large complete subgraphs.

Let w(G) denote the maximum number of vertices in a complete subgraph
of G. In particular, w(G) < 3 for every Cy-free graph. In contrast, for weakly
Cy-free graphs we have the following result, due to Gyarfas, Hubenko and
Solymosi (2002).

Theorem 2.6. If an n-vertex graph G = (V, E) is weakly Cy-free, then

|E[”

The proof of Theorem 2.6 is based on a simple fact, relating the average
degree with the minimum degree, as well as on two facts concerning indepen-
dent sets in weakly Cy-free graphs.

For a graph G = (V, E), let e(G) = |E| denote the number of its edges,
dmin(G) the smallest degree of its vertices, and dave(G) = 2e(G)/|V]| the
average degree. Note that, by Euler’s theorem, day.(G) is indeed the sum of
all degrees divided by the total number of vertices.

Proposition 2.7. Every graph G has an induced subgraph H with

dave (H) Z dave (G) and dmin(H) Z dave(G) .

1
2
Proof. We remove vertices one-by-one. To avoid the danger of ending up with
the empty graph, let us remove a vertex v € V if this does not decrease the
average degree d,yve(G). Thus, we should have

2(e(G) — d(v)) _
|V|—_1 > dave(G) =

2e(@G)
Vi

dave (G —v) =

which is equivalent to d(v) < dave(G)/2. So, when we stick, each vertex in
the resulting graph H has minimum degree at least day.(G)/2. O
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(0)
Fig. 2.2 (a) If v and v were non-adjacent, we would have an induced 4-cycle

{zi,2;,u,v}. (b) If y and z were non-adjacent, then (S \ {z:}) U {y, 2} would be a
larger independent set.

Recall that a set of vertices in a graph is independent if no two of its
vertices are adjacent. Let a(G) denote the largest number of vertices in such
a set.

Proposition 2.8. For every weakly Cy-free graph G on n vertices, we have

n
w(G) = (a(G)+1)'

2
Proof. Fix an independent set S = {z1,...,2} with a = a(G). Let A; be
the set of neighbors of z; in G, and B; the set of vertices whose only neighbor
in S is x;. Consider the family F consisting of all o sets {;} U B; and ($)
sets A; N A;. We claim that:

(i)  each member of F forms a clique in G, and
(ii)  the members of F cover all vertices of G.

The sets A; N A; are cliques because G is weakly Cy-free: Any two vertices
u# v € A;NA; must be joined by an edge, for otherwise {x;, ;, u, v} would
form a copy of Cy as an induced subgraph. The sets {z;} U B; are cliques
because S is a maximal independent set: Otherwise we could replace z; in
S by any two vertices from B;. By the same reason (S being a mazimal
independent set), the members of F must cover all vertices of G: If some
vertex v were not covered, then S U {v} would be a larger independent set.
Claims (i) and (ii), together with the averaging principle, imply that
n n n

e e AN GOk -

Proposition 2.9. Let G be a weakly Cy-free graph on n wvertices, and d =
dmin(G). Then, for every t < a(G),
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Proof. Take an independent set S = {x1,..., 2} of size t and let A; be the
set of neighbors of x; in G. Let m be the maximum of |4; N A;| over all
1 <i < j <t We already know that each A; N A; must form a clique; hence,
w(G@) > m. On the other hand, by the Bonferroni inequality (Exercise 1.37)
we have that

t

t
TLZ UAZ th—Z‘AlmAJ‘ ztd— <2>m,
=1 1<J
from which the desired lower bound on w(G) follows. O

Now we are able to prove Theorem 2.6.

Proof of Theorem 2.6. Let a be the average degree of G; hence, a = 2|E|/n.
By Proposition 2.7, we know that G has an induced subgraph of average
degree > a and minimum degree > a/2. So, we may assume w.l.o.g. that the
graph G itself has these two properties. We now consider the two possible
cases.

If «(G) > 4n/a, then we apply Proposition 2.9 with* ¢ = 4n/a and obtain

(a/2)-t—n n
w(G) > =T
(2) ("5
If o(G) < 4n/a, then we apply Proposition 2.8 and obtain

n n
() (T

w(G) >

In both cases we obtain

2 2

% >o1t 0
(natl)y T 8n+2a T T n

w(G) >

2.4 Zarankiewicz’s problem

At most how many 1s can an n x n 0-1 matrix contain if it has no a x b
submatrix whose entries are all 1s? Zarankiewicz (1951) raised the problem
of the estimation of this number for a = b = 3 and n = 4,5, 6 and the general
problem became known as Zarankiewicz’s problem.

It is worth reformulating this problem in terms of bipartite graphs. A bi-
partite graph with parts of size n is a triple G = (V4,Va, E), where V7 and
V5 are disjoint n-element sets of vertices (or nodes), and E C Vi x V, is the
set of edges. We say that the graph contains an a x b clique if there exist an

* For simplicity, we ignore ceilings and floors.
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a-element subset A C Vi and a b-element subset B C V5 such that Ax B C E.
(Note that an a x b clique is not the same as a b X a clique, unless a = b.)
Let kq(n) be the minimal integer k such that any bipartite graph with
parts of size n and more than k& edges contains at least one a X a clique.
Using the probabilistic argument, it can be shown (see Exercise 20.6) that

ka(n) > ¢-n?72/9,

where ¢ > 0 is a constant, depending only on a. It turns out that this bound
is not very far from the best possible, and this can be proved using the double
counting argument. The result is essentially due to Kévari, Sés and Turan
(1954). For a = 2, a lower bound k2(n) < 3n%/? was proved by Erdés (1938).
He used this to prove that, if a set A C [n] is such that the products of any
two of its different members are different, then |A| < 7(n) + O(n3/*), where
m(n) is the number of primes not exceeding n.

Theorem 2.10. For all natural numbers n > a > 2 we have
ka(n) < (a—1)Y*n271% 4 (a — 1)n.

Proof. The proof is a direct generalization of a double counting argument
we used in the proof of Theorem 2.4. Our goal is to prove the following: let
G = (V1, Vo, E) be a bipartite graph with parts of size n, and suppose that
G does not contain an a x a clique; then |E| < (a — 1)/%n>=1/% 4 (a — 1)n.

By a star in the graph G we will mean a set of any a of its edges incident
with one vertex = € Vi, i.e., a set of the form

S(z,B) :=={(z,y) € E : y € B},

where B C V;, |B| = a. Let A be the total number of such stars in G. We
may count the stars S(z, B) in two ways, by fixing either the vertex x or the
subset B.

For a fixed subset B C V,, with |B| = a, we can have at most a — 1 stars
of the form S(x, B), because otherwise we would have an a x a clique in G.
Thus,

A<(a—1)- (”) (2.5)

a

On the other hand, for a fixed vertex z € V7, we can form (d(az)) stars S(z, B),
where d(z) is the degree of vertex x in G (i.e., the number of vertices adjacent

to ). Therefore,
> (") <@-v-(2). (2.

zeVy
We are going to estimate the left-hand side from below using Jensen’s inequal-
ity. Unfortunately, the function (£) = a(z — 1)+ (z — a + 1)/a! is convex
only for z > a — 1. But we can set f(z) := (¢) if # > a—1, and f(z) :=0
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otherwise. Then Jensen’s inequality (1.14) (with A, = 1/n for all z € V;)
yields

> (") 2 S std@) = w1 dwyn) =n-siE ).

zeWV; zeWV; zeVy

If |E|/n < a —1, there is nothing to prove. So, we can suppose that |E|/n >
a — 1. Then we have that

n.CEyf):n,ﬂmvm<:§:(%?)<(a—UCD.

zeVy

Expressing the binomial coefficients as quotients of factorials, this inequality

implies
n(lE|/n—(a—1))" < (a—1)n"

and therefore |E|/n < (a —1)Y*n'=/ 4 g — 1, from which the desired upper
bound on |E| follows. O

The theorem above says that any bipartite graph with many edges has
large cliques. In order to destroy such cliques we can try to remove some of
their vertices. We would like to remove as few vertices as possible. Just how
few says the following result.

Theorem 2.11 (Ossowski 1993). Let G = (V1,Va2, E) be a bipartite graph
with no isolated vertices, |E| < (k + 1)r edges and d(y) < r for all y € V.
Then we can delete at most k vertices from V1 so that the resulting graph has
no (r—a+1) x a clique fora=1,2,...,r.

For a vertex z, let N(x) denote the set of its neighbors in G, that is, the
set of all vertices adjacent to x; hence, |N(z)| is the degree d(z) of x. We will
use the following lemma relating the degree to the total number of vertices.

Lemma 2.12. Let (X,Y, E) be a bipartite graph with no isolated vertices,
and f 1Y — [0,00) be a function. If the inequality d(y) < d(z) - f(y) holds
for each edge (z,y) € E, then | X[ <3 oy f(y).

Proof. By double counting,

SEDID I EDD d(—%’

z€EX yeN () z€X yeN (z) y
Iy Yy
PP RO TRUUEP WU
L () d(y)
= ) yey yey

Proof of Theorem 2.11. (Due to F. Galvin 1997). For a set of vertices Y C V3,
let N(Y) :=(1,cy IN(y) denote the set of all its common neighbors in G, that
is, the set of all those vertices in Vi which are joined to each vertex of Y
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hence |[N(Y)| < r for all Y C V5. Let X C V; be a minimal set with the
property that |[N(Y)\ X| < r — |Y| whenever Y C V5 and 1 < |Y| < r. Put
otherwise, X is a minimal set of vertices in V7, the removal of which leads to
a graph without (r —a 4+ 1) x a cliques, for alla =1,...,7.

Our goal is to show that | X| < k.

Note that, for each x € X we can choose Y, C V5 so that 1 < |Y,| < r,
x € N(Y;) and

IN(Y)\ X| =7 — Y, :

otherwise X could be replaced by X \ {«}, contradicting the minimality of
X. We will apply Lemma 2.12 to the bipartite graph G’ = (X, Va, F'), where

F={(z,y) : yeY,}.

All we have to do is to show that the hypothesis of the lemma is satisfied by
the function (here N(y) is the set of neighbors of y in the original graph G):

= Y0

)

because then

X < Zf(y)Z%Z Nl = E i

o
yeVz yeVs
Consider an edge (z,y) € F; we have to show that d(y) < d(z) - f(y), where
d(z) =Yz andd(y) ={z € X : ye Yy}

are the degrees of z and y in the graph G’ = (X, Va4, F). Now, y € Y, implies
N(Y.) C N(y), which in its turn implies

INW\ X| = [N(Ya) \ X| =7 —[Yal;

hence
d(y) < [N(y) N X[ = [N(y)| - [N(y) \ X|
<IN =7+ Yol =7 f(y) —r +d(2),
and so
d(z) - f(y) —d(y) = d(z) - f(y) —r fly) +r—d(x)
=(r—d(=)-(1-f(y)=0. D
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2.5 Density of 0-1 matrices

Let H be an m x n 0-1 matrix. We say that H is a-dense if at least an a-
fraction of all its mn entries are 1s. Similarly, a row (or column) is a-dense
if at least an a-fraction of all its entries are 1s.

The next result says that any dense 0-1 matrix must either have one “very
dense” row or there must be many rows which are still “dense enough.”

Lemma 2.13 (Grigni and Sipser 1995). If H is 2a-dense then either
(a) there exists a row which is \/a-dense, or
(b) at least \/a.- m of the rows are a-dense.

Note that /« is larger than o when « < 1.

Proof. Suppose that the two cases do not hold. We calculate the density of
the entire matrix. Since (b) does not hold, less than \/a - m of the rows are
a-dense. Since (a) does not hold, each of these rows has less than /o - n 1s;
hence, the fraction of 1s in a-dense rows is strictly less than (v/&)(v/a) = a.
We have at most m rows which are not a-dense, and each of them has less
than an ones. Hence, the fraction of 1s in these rows is also less than a.
Thus, the total fraction of 1s in the matrix is less than 2a, contradicting the
2a-density of H. O

Now consider a slightly different question: if H is a-dense, how many of its
rows or columns are “dense enough”? The answer is given by the following
general estimate due to Johan Hastad. This result appeared in the paper
of Karchmer and Wigderson (1990) and was used to prove that the graph
connectivity problem cannot be solved by monotone circuits of logarithmic
depth.

Suppose that our universe is a Cartesian product A = A; x --- x Ay of
some finite sets A1, ..., Ag. Hence, elements of A are strings a = (a1, ..., ax)
with a; € A;. Fix now a subset of strings H C A and a point b € A;. The
degree of b in H is the number dy(b) = [{a € H : a; = b}| of strings in H
whose i-th coordinate is b.

Say that a point b € A; from the i-th set is popular in H if its degree dy (b)
is at least a 1/2k fraction of the average degree of an element in A;, that is,
if

1 |H|
dp(b) > 2% | A
Let P; C A; be the set of all popular points in the i-th set A;, and consider
the Cartesian product of these sets:

P=P  xPyx---xP.

Lemma 2.14 (Hastad). [P| > $|H].
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Proof. 1t is enough to show that |H \ P| < 1|H|. For every non-popular point
b € A;, we have that

1 |H|

2k |A;|

Ha€e H : a;=b}| < =

Since the number of non-popular points in each set A; does not exceed the
total number of points |A;|, we obtain

1

k
[H\P| <) > HacH: az—b}|<zz k

i=1 bg P i=1 bgP;

P 1
i=1

Corollary 2.15. In any 2a-dense 0-1 matriz H either a \/a-fraction of its
rows or a v/a-fraction of its columns (or both) are (a/2)-dense.

Proof. Let H be an m xn matrix. We can view H as a subset of the Cartesian
product [m] x [n], where (i,7) € H iff the entry in the i-th row and j-th
column is 1. We are going to apply Lemma 2.14 with £ = 2. We know that
|H| > 2amn. So, if Py is the set of all rows with at least 1|H|/|Ai| = an/2
ones, and P, is the set of all columns with at least 1|H|/|A2| = am/2 ones,
then Lemma 2.14 implies that

[P || 1\H| 1 2amn
m n 2m *2 mn

Hence, either |Pi|/m or |Ps|/n must be at least v/, as claimed. O

2.6 The Lovasz—Stein theorem

This theorem was used by Stein (1974) and Lovasz (1975) in studying some
combinatorial covering problems. The advantage of this result is that it can
be used to get existence results for some combinatorial problems using con-
structive methods rather than probabilistic methods.

Given a family F of subsets of some finite set X, its cover number of F,
Cov (F), is the minimum number of members of F whose union covers all
points (elements) of X.

Theorem 2.16. If each member of F has at most a elements, and each point
x € X belongs to at least v of the sets in F, then

Cov (F) < ?(1 +1na).
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Proof. Let N = |X|, M = |F| and consider the N x M 0-1 matrix A = (az),
where a, ; = 1 iff x € X belongs to the i-th member of 7. By our assumption,
each row of A has at least v ones and each column at most a ones. By double
counting, we have that Nv > Ma, or equivalently,

M N
— < —. (2.7)
v a
Our goal is to show that then A must contain an N x K submatrix C with
no all-0 rows and such that

K <N/a+ (M/v)lna < (M/v)(1+1Ina).

We describe a constructive procedure for producing the desired submatrix C'.
Let A, = A and define A/, to be any maximal set of columns from A, whose
supports’ are pairwise disjoint and whose columns each have a ones. Let
K, = |AL|. Discard from A, the columns of A/, and any row with a one in A/,.
We are left with a k, x (M — K,) matrix A,_1, where k, = N —aK,. Clearly,
the columns of A,_; have at most a— 1 ones (indeed, otherwise such a column
could be added to the previously discarded set, contradicting its maximality).
We continue by doing to A,—1 what we did to A,. That is we define A/, _; to be
any maximal set of columns from A,_; whose supports are pairwise disjoint
and whose columns each have a — 1 ones. Let K,_1 = |A/,_;|. Then discard
from A,_1 the columns of A/ _; and any row with a one in A/, _; getting a
ko1 X (M —K,— K,_1) matrix A,_o, where ka1 = N—aK,—(a—1)K,_1.

The process will terminate after at most a steps (when we have a matrix
containing only zeros). The union of the columns of the discarded sets form
the desired submatrix C' with K = Y% | K;. The first step of the algorithm
gives k, = N — aK,, which we rewrite, setting k11 = N , as

kaJrl - ka
—a .

K, =

Analogously,
kiv1 — ki
i

K, = fori=1,...,a.

Now we derive an upper bound for k; by counting the number of ones in A;_1
in two ways: every row of A; 1 contains at least v ones, and every column at
most ¢ — 1 ones, thus

1)]{7,‘ S (i—l)(M—Ka—-“—KiJrl) S (i—l)M,
or equivalently,

(i—1)M

ki <

f The support of a vector is the set of its nonzero coordinates.
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So,

K:ifg:i@

i=1

ka+1 k'a ka—l k2
— e 2k
¢« Tala—1  (a—Da—2 "ty M
N M/1 1 1 N
<—+—-4+—+4+=-] < —+ —Ina.
a v \a a-—1 2 a v

The last inequality here follows because 1 4+1/2+1/3+---+1/n is the n-th
harmonic number which is known to lie between Inn and Inn 4 1. Together
with (2.7), this yields K < (M/v)(1 + Ina), as desired. O

The advantage of this proof is that it can be turned into a simple greedy
algorithm which constructs the desired N x K submatrix A’ with column-set
C,|C|=K:

1. Set C := 0 and A’ := A.
2. While A’ has at least one row do:

- find a column ¢ in A’ having a maximum number of ones;
- delete all rows of A’ that contain a 1 in column c;
delete column ¢ from A’;

set C':= C U{c}.

2.6.1 Covering designs

An (n,k,l) covering design is a family F of k-subsets of an n-element set
(called blocks) such that every l-subset is contained in at least one of these
blocks. Let M (n,k,l) denote the minimal cardinality of such a design. A
simple counting argument (Exercise 1.26) shows that M (n, k1) > (7)/(’;)

In 1985, Rodl proved a long-standing conjecture of Erdds and Hanani
that for fixed k and [, coverings of size (7)/(’;)(1 + 0(1)) exist. Rodl used
non-constructive probabilistic arguments. We will now use the Lovasz—Stein
theorem to show how to construct an (n, k,l) covering design with only In (];)
times more blocks. This is not as sharp as Rédl’s celebrated result, but it is
constructive. A polynomial-time covering algorithm, achieving R6dl’s bound,
was found by Kuzjurin (2000).

Theorem 2.17. M(n, k1) < (7)/(’;) [1+1n (’;)] .

Proof. Let X = (zg,r) be an N x M 0-1 matrix with N = (}) and M = (}).
Rows of X are labeled by l-element subsets S C [n], columns by k-element
subsets T' C [n], and xgr = 1iff S CT. Note that each row contains exactly
v= (Z:Il) ones, and each column contains exactly a = (’f) ones.

By the Lovasz—Stein theorem, there is an N x K submatrix X’ such that
X’ does not contain an all-0 row and
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K < (M/v)(1+1Ina) = (Z)/(Z_j) [Hln (m
=)/ Q)G

as (1) (3= ) = (Z)( ) (see Exercise 1.12). By the definition of X and the
property of X' (no all-0 row), the k-subsets that correspond to the columns
of X’ form an (n, k,l) covering design. O

Exercises

2.1. Let A4,..., A, be subsets of an n-element set such that |4; N A;| <t
for all i # j. Prove that ;" | [A;| <n+t- (7).

2.2. Let A = (a;;) be an n x n matrix (n > 4 even). The matrix is filled
with integers and each integer appears exactly twice. Show that there exists
a permutation 7 of {1,...,n} such that all the numbers a; r¢;y, i = 1,...,n
are distinct. (Such a permutation 7 is also called a Latin transversal of A.)
Hint: Look at how many pairs of entries are “bad,” i.e., contain the same number, and
show that strictly less than n! of all permutations can go through such pairs.

2.3. Let F be a family of m subsets of a finite set X. For x € X, let p(x)
be the number of pairs (A4, B) of sets A, B € F such that either z € AN B
or z ¢ AU B. Prove that p(z) > m?/2 for every € X. Hint: Let d(z) be the
degree of = in F, and observe that p(z) = d(z)? + (m — d(=))>.

2.4. Let F be a family of nonempty subsets of a finite set X that is closed
under union (i.e., A, B € F implies AU B € F). Prove or give a counterex-
ample: there exists € X such that d(x) > |F|/2. (Open conjecture, due to
Peter Frankl.)

2.5. A projective plane of order r — 1 is a family of n = r2 — 7 + 1 r-element

subsets (called lines) of an n-element set of points such that each two lines
intersect at precisely one point and each point belongs to precisely r lines
(cf. Sect. 12.4). Use this family to show that the bound given by Corradi’s
lemma (Lemma 2.1) is optimal.

2.6. Theorem 2.10 gives a sufficient condition for a bipartite graph with parts
of the same size n to contain an a X a clique. Extend this result to not
necessarily balanced graphs. Let kg, (m,n) be the minimal integer k& such
that any bipartite graph with parts of size m and n and more than k edges
contains at least one a x b clique. Prove that forany 0 < a < mand 0 <b <mn,

kap(m,n) < (a — 1)YPnm =Y 4 (b — 1)m.
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2.7. (Paturi—Zane 1998). Extend Theorem 2.10 to r-partite graphs as follows.
An r-partite m-clique is a Cartesian product V3 x Vo X - -+ x V. of m-element
sets V1,..., V.. An r-partite graph with parts of size m is a subset E of an
r-partite m-clique. Let ex(m,r,2) denote the maximum size |E| of such a
graph E which does not contain an r-partite 2-clique. Erdés (1959, 1964b)
proved that

r—r/27 1 r—1/2""1

cm <ex(m,r,2) <m ,

where ¢ = ¢(r) > 0 is a constant depending only on r. A slightly weaker upper
bound ex(m,r,2) < 2m"~1/2""" can be derived from Lemma 2.2. Show how to
do this. Hint: Argue by induction on . For the induction step take X = V3 x---x V,._1
and consider m subsets A, = {z € X : (x,v) € E} with v € V.. Apply Lemma 2.2 with
n=m""Y N=mand w= %ml/?il, to obtain a pair of points u # v € Vj for which
the graph E' = A, N A, is large enough, and use the induction hypothesis.

2.8. Let F = {A1,...,An} be a family of subsets of some set X. Use (1.11)
to prove that for every 1 < s < N,

dd@)yr= Y A, NA,N- N4

zeX (41,8250 +505)

where the last sum is over all s-tuples (i1,142,...,is) of (not necessarily dis-
tinct) indices.

2.9. Use the previous exercise and the argument of Lemma 2.2 to prove
Lemma 2.3.

2.10. Let Aq,..., Ax be subsets of some n-element set X, and suppose that
these sets have average size at least an. Show that for every s < (1 — €)aN
with 0 < € < 1, there are indices i1, 72, ...,%s such that

|[Ai; N A, NN AL > (ea)’n.

Hint: Consider the bipartite graph G = (X, V, E) where V ={1,..., N}, and (z,i) € E
if and only if z € A;. Observe that |E| > anN and argue as in the proof of Theorem 2.10.

2.11. Prove the following very useful averaging principle for partitions. Let
X =AUAU---UA, be a partition of a finite set X into m mutually
disjoint sets (blocks), and a = .. |A;|/m be the average size of a block in
this partition. Show that for every 1 < b < a, at least (1 — 1/b)|X| elements
of X belong to blocks of size at least a/b. How many elements of X belong
to blocks of size at most ab? Hint: m - (a/b) < |X|/b.

2.12. Let A4, ..., A, be a sequence of (not necessarily distinct) subsets of an
n-element set X such that each set has size n/s and each element x € X
belongs to least one and to at most k of them; hence r < ks. Let K :=
Zf:o (Z) and assume that s > 2k. Prove that there exist two disjoint subsets

X1 and X5 of X such that | X;| > n/(2K) for both ¢ = 1,2, and none of the
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sets Ay, ..., A, contains points from both sets X; and Xs. Hint: Associate with
each © € X its trace T(z) = {i : x € A;} and partition the elements of X according
to their traces. Use the previous exercise to show that at least n/2 elements belong to
blocks of size at least n/(2K). Show that some two of these elements = and y must have
disjoint traces, T'(z) N T (y) = 0.

2.13.Let X = Ay UAs U ---U A, be a partition of a finite set X into
mutually disjoint blocks. Given a subset Y C X, we obtain its partition
Y =B UByU---U B, into blocks B; = A; NY. Say that a block B; is \-
large if |B;|/|Ai]l > A-]Y|/|X|. Show that, for every A > 0, at least (1—\)-|Y|
elements of Y belong to A-large blocks.

2.14. Given a family S, ...,S, of subsets of V = {1,...,n}, its intersection
graph G = (V, E) is defined by: {i,j} € E if and only if S; N'S; # 0. Suppose
that: (i) the sets have average size at least r, and (ii) the average size of
their pairwise intersections does not exceed k. Show that |E| > % - (g) Hint:
Consider the sum Zi<]’ |Si NSy

2.15. Let H be a 2a-dense 0-1 matrix. Prove that at least an «/(1 — )
fraction of its rows must be a-dense.

2.16. (Alon 1986). Let S be a set of strings of length n over some alphabet.
Suppose that every two strings of S differ in at least d coordinates. Let k be
such that d > n(1 — 1/(§)) Show that any k distinct strings vq,...,v; of S
attain k distinct values in at least one coordinate. Hint: Assume the opposite
and count the sum of distances between the (g) pairs of v;’s.
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