
Chapter 1
Survey of the Classical Theory

1.1 Why is the Classical Theory Needed?

Notwithstanding that quantum physics is necessary to obtain a good grasp of the
theory of near-field electrodynamics classical approaches are still indispensable for
several reasons.

Quantum theory is a rational generalization of the classical theory, and the corre-
spondence principle of Niels Bohr [1–4] links the two together. In a certain limit the
result obtained by a quantum physical calculation thus agrees with that of a classi-
cal calculation. One may illustrate this by an example of importance in mesoscopic
optics, viz., the calculation of the linear polarizability of a mesoscopic spherical
particle [5]. The quantum calculation aims at a determination of the microscopic
nonlocal conductivity of the particle, and may conveniently be carried out on the
basis of the equation of motion for the density matrix operator. A knowledge of
the conductivity leads directly to a quantum expression for the polarizability. This
expression depends on the energies and wave functions of the various stationary
states of the mesoscopic particle, as well as on the probability that a given state
is occupied. In the Fourier domain of the electromagnetic field, the polarizability
depends on the frequency and wave vector of the externally impressed field. As a
function of the particle radius (R) the polarizability increases on the average pro-
portional to R3, the classical Rayleigh result [6]. Superimposed on this average
behavior the polarizability exhibits quantum fluctuations. These fluctuations become
less prominent as the radius increases, and the spectrum of the energy eigenstates
begins to form a quasi-continuum. Asymptotically, the classical Lorenz–Mie theory
for the polarizability of a spherical object is reached [7–9].

For many applications of near-field electrodynamics in the fields of near-field
optics and nano-optics it appears sufficient to have an average (effective medium)
theory for the physics. In such cases a classical approach is of particular value.
In almost all situations a classical calculation is much easier to carry out than a
quantum calculation. This, in itself makes the classical approach useful as a starting
point for a deeper analysis.

We study the theory of near-field electrodynamics to gain insight in unifying
principles, to predict new phenomena, and not least to account for experimental
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observations. For the last purpose, it is useful to remember the words of Bohr [10]:
“The experimental conditions can be varied in many ways, but the point is that in
each case we must be able to communicate to others what we have done and what
we have learned, and therefore the functioning of the measuring instruments must be
described within the framework of classical physical ideas.” A theoretical account of
observations related even to quantum processes (here in near-field electrodynamics)
always involve a certain amount of classical theory.

The physics of near-field electrodynamics brings into focus the old question con-
cerning the epistemological difference between classical theory and quantum theory
in a fresh and inspiring manner. Alone for this reason it is important to have a clear
classical picture of near-field interactions. The central point of quantum theory (and
Bohr’s point) can be formulated as follows: No (elementary) phenomenon is a phe-
nomenon until it is a registered (observed) phenomenon [11]. In contrast to this,
classical theory tells us that phenomena exists (have a “physical reality” in the words
of Einstein, Podolsky, and Rosen [12]) independent of all acts of observation. In both
classical and quantum physics isolated systems develop in a deterministic manner in
time. All attempts to observe physical properties of an isolated system (object) break
its isolation, at least temporarily. The interaction between the system and the mea-
suring apparatus inevitably results in correlations which are conceptually different
in classical and quantum physics [13]. In far-field electrodynamic studies these cor-
relations are often (but not always!) so weak that the conceptual difference between
classical and quantum measurements can be neglected. In near-field electrodynam-
ics the correlations are in most situations strong, and the joint state of the object and
the apparatus appears quite complicated, even in a classical framework. On top of
the classical complications, the quantum mechanical measurement process “only”
establishes statistical correlations between the states of the object and measuring
apparatus [14, 15].

1.2 Classical Electrodynamics:
Macroscopic vs. Microscopic Theory

In classical studies of the electrodynamics of macroscopic media, one is often not
interested in the detailed behavior of the electromagnetic field over atomic dis-
tances. What matters is the average of the field, and the matter properties, over
a volume large compared to the volume occupied by a single atom or molecule.
Roughly speaking, what is of relevance is an averaging over macroscopically small,
but microscopically large, regions. Let us denote such an averaging by h� � � i. As it
is well-known, macroscopic electrodynamics is governed by the following so-called
macroscopic Maxwell equations [16–19]:

r � hEi D � @

@t
hBi; (1.1)

r � hDi D h�i; (1.2)
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r � hH i D hJ i C @

@t
hDi; (1.3)

r � hBi D 0: (1.4)

As they stand, the macroscopic Maxwell equations are a set of eight equations
involving the four fields E , B, D, and H . It is a consequence of (1.2) and (1.3)
that the “free” charge (h�i) and current (hJ i) densities satisfy the equation of con-
tinuity, r � hJ i C @h�i=@t D 0. To close the set of equations in (1.1)–(1.4), these
are supplemented by so-called constitutive relations connecting the “derived” elec-
tric (hDi) and magnetic (hH i) fields to the “primary” electric (hEi) and magnetic
(hBi) fields [19–22]:

hDi D hDi .hEi; hBi/ ; (1.5)

hH i D hH i .hEi; hBi/ : (1.6)

The constitutive relations describe the electric and magnetic response of the “bound”
charges to the primary electromagnetic field, in an average sense. In addition to (1.5)
and (1.6), a “generalized Ohm’s law,”

hJ i D hJ i .hEi; hBi/ ; (1.7)

is needed to account for the average response of the “free” charges to the field. The
constitutive relations in (1.5)–(1.7) in general have a complicated form. Basically,
they originate in equations of motions for the charged particles in the selfconsistent
(here macroscopic) electromagnetic field.

To obtain the actual (physical) solution of (1.1)–(1.7) also a study of the relevant
initial-value problem is needed. In many situations this problem is difficult to solve
in a satisfactory manner.

The macroscopic scheme outlined above often is employed even in near-field
electrodynamics, where physical phenomena on a subwavelength scale are in focus
[23–25]. Great caution must be exercised if the scheme is used in the optical regime,
and the results obtained (predicted) in general should be taken with a grain of salt.
In nano-optics, where one aims at an understanding of optical phenomena on the
nanometer scale, the spatial averaging procedure of macroscopic electrodynamics
certainly may be doubtful.

Classical electrodynamics can be based on a quite different scheme in which
in a way no spatial averaging procedure is needed. The scheme is based on the
so-called microscopic Maxwell–Lorentz equations, which are presented in the fol-
lowing chapter ((2.1)–(2.4)). These equations dates back to Lorentz, who introduced
atomic concepts into Maxwell’s theory, in his attempts to “separate ether and matter
[26, 27].” In the Lorentz programme only the microscopic E - and B-fields appear,
and in general these fluctuate rapidly in space over atomic distances. The material
particles are considered as charged point-particles, and in the classical Maxwell–
Lorentz equations only the current (J ) and charge (�) densities of these particles
appear on the matter side [16–18]. In order to obtain a closed set of equations
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for the microscopic classical approach, the Maxwell–Lorentz equations are supple-
mented by the Newton–Lorentz equations of motion for the various point-particles;
see (2.30).

What has been gained in going from macroscopic to microscopic classical
electrodynamics? From a quantum mechanical point of view, the correspondence
principle leads to the microscopic classical Maxwell–Lorentz theory, an important
fact for the quantum theory of near-field electrodynamics. The microscopic electro-
dynamic field (E , B) concept remains its validity on the atomic length scale (and
below). This does not mean that the Maxwell–Lorentz theory can be trusted on the
atomic length scale, but if one calculates the microscopic current and charge den-
sities of the particles via the nonrelativistic Schrödinger equation or, if needed, via
the Dirac equation, and not by means of the Newton–Lorentz equation, a theory
valid on the atomic length scale emerges. For most purposes in near-field electrody-
namics this so-called microscopic semiclassical theory is a good starting point. The
word semiclassical here refers to the fact that the electromagnetic field is treated as a
classical (unquantized) quantity. When it comes to classical studies of the near-field
interaction between just a few atomic particles the microscopic Maxwell–Lorentz
approach is indispensable.

1.3 Maxwell–Lorentz Electrodynamics

Most of the material presented in Part I is based on the framework offered us by the
microscopic classical theory of electrodynamics, and the purpose of Chap. 2 is to
review and discuss basic aspects of the Maxwell–Lorentz approach with a view to
subsequent developments in the quantum theory of near-field electrodynamics.

The potential formulation of the Maxwell–Lorentz theory is emphasized because
it is of central importance in near-field electrodynamics. The redundancy in the
potentials only affects the rotational-free part of the vector potential and the scalar
potential, and the relevant combination of these quantities relates exclusively to the
matter-attached part of the electromagnetic field. This part is nonvanishing only in
the near-field zone of matter. The gauge freedom allows one a certain flexibility
in the description of near-field interactions, a circumstance of great importance in
both the semiclassical and field-quantized theory, as we shall realize later on. In the
Lorenz gauge, simple and form-identical inhomogeneous wave equations appear for
the scalar and vector potentials. The most general and physically acceptable, integral
solutions to these equations have the retarded scalar (Huygens) propagator as kernel.
With a knowledge of the Lorenz-gauge potentials it is easy to determine the electric
and magnetic fields, but one cannot from the standard solutions conclude that these
fields are retarded (with the vacuum speed of light) in the near-field zone of matter.
From a fundamental point of view the electromagnetic field of a single moving
point-charge is of particular interest. From the potentials in the Lorenz gauge, the
so-called Liénard–Wiechert potentials, we obtain the electric and magnetic fields
of the point-particle. Each of these fields divides naturally into two parts, named
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the velocity and acceleration field. Only the velocity field is present if the particle
moves with uniform velocity (in the given inertial frame), and this field, also called
the attached field, plays an important role in near-field interactions.

Since the dynamical Maxwell–Lorentz and Newton–Lorentz equations exhibit
translational invariance in time and space, and rotational invariance in space, the
total energy, the total momentum, and the total angular momentum of the global
field-particle system are time independent quantities, as we show by a direct cal-
culation. Besides these global conservation laws, one has related local conservation
laws of great importance in near-field electrodynamics, not least for conceptual rea-
sons. Perhaps, these laws take the most physical transparent forms when matter, as
here, is treated as consisting of an assembly of point-particles [28]. The local energy
conservation leads to microscopic expressions for the energy density and energy
flow (Poynting vector) of the electromagnetic field. The local momentum conser-
vation allows us to identify the momentum density of the field, and to introduce a
stress tensor for the particle-field system. This tensor consists of additive parts from
the electromagnetic field (the Maxwell stress tensor (multiplied by �1)) and the
point-particles. The local momentum conservation law is important for the studies
of, e.g., mechanical forces in near-field optics [29–31] and on atoms [32–34] and
mesoscopic (and nano-sized) objects [35]. A classical account for the forces acting
on the atoms and molecules in confined fields, and for the radiation pressure (light
drag) phenomenon [36], can be made on the basis of the local momentum conser-
vation law. The angular momentum light drag effect [37–39] can be studied starting
from the local conservation law for the angular momentum, possibly extended to
the semiclassical level in the case of mesoscopic objects [40–42].

1.4 The Standard Green Functions (Not Propagators)

In the Lorenz gauge the four-vector potential is related to the four-current density
by means of an integral relation where the kernel is the Huygens propagator. This
propagator describes how light spreads out from a source point in space-time. Since
the Huygens propagator is nonvanishing (and in fact singular) only on the light cone
the interpretation at first sight perhaps appears satisfactory from the point of view
of special relativity. However, one must not forget that the four-potential is not an
observable quantity in physics. With this in mind, it seems of interest to establish a
propagator formalism which relates the electric and magnetic fields to the three-
current density. Within the so-called scalar theory of scattering (diffraction) the
Huygens propagator continues to be the relevant kernel for the description, but
the scalar approach is an approximation [43, 44].

In near-field electrodynamics it has for many years been popular to base theoreti-
cal studies on what I here call the standard Green function formalism [18,24,45–48].
In Chap. 3, the standard Green functions (now dyadic quantities) relating respec-
tively the electric field and magnetic field to the current density of the Maxwell–
Lorentz theory are determined and discussed. As everyone else, we carry out the
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calculations in the space-frequency domain, but, and this is an important point, we
do not say that the result can be taken back to the space-time domain by Fourier
transformation, if wished. From the perspective of near-field electrodynamics we
face what might seem to be a conceptual problem: The near-field part of the stan-
dard Green function which relates the electric field to the current density does not
exist in the space-time domain. This fact is the reason that I use the term standard
Green function and not the name standard propagator, as many people do. The root
of the above-mentioned problem is the fact that it is the photon field which prop-
agates (with the vacuum speed of light), and this field is associated only to the
divergence-free (transverse) part of the electromagnetic field. The related so-called
transverse propagator has been studied in [5, 49–51]. The total electric field has a
rotational-free part in the near-zone of matter, and if this part is subtracted we arrive
at a genuine propagator relation between the transverse electric field and the cur-
rent density, as we shall realize in Chap. 14. In a quantum context, where the matter
field is a continuum field in the probabilistic sense, a related problem arises for the
standard Green function for the electric field if the “point of observation” is inside
matter: The spatial integral of the Green function is only conditionally convergent,
a physically unacceptable feature. The solution of this aspect of the problem is also
given in Chap. 14 (see also [45]).

1.5 Evanescent Electromagnetic Fields

The information contained in the standard Green functions G .RI !/ and G M.RI !/,
which relate the electric and magnetic fields to the particle current density, can be
represented in a variety of different forms, which basically are physically equivalent.
All the forms have in common that they belong to the microscopic Maxwell–Lorentz
equations in the frequency (!) domain. They differ in the manner in which the spa-
tial (R) information is represented. For investigations of a given problem one form
of representation can be more useful than the others. In studies of the electrody-
namics of atomic, molecular, and mesoscopic objects which linear extensions are
(much) less than the relevant wavelengths of the electromagnetic field the standard
Green functions are most often given in spherical coordinates. In these coordinates
the local unit vectors and the magnitude R D jRj appear in the Green functions.
The R-dependence contains terms proportional to R�1, R�2, and R�3. A term pro-
portional to R�3 only appears in the Green function relating to the electric field, and
it is this part we referred to as the near-field part of G .RI !/ in the previous section.

If one, at least as an attempt, seeks to make a spatial Fourier transform of the stan-
dard Green functions one arrives at a plane-wave (wave vector q) representation
of these (G .q; !/, G M.q; !/). The assumption of the existence of Fourier inte-
gral transformations turns out to be incorrect, since G .q; !/ and G M.q; !/ have
poles. Nevertheless, closely related integral representations do exist for G .RI !/

(see also [50]) and G M.RI !/, and as we shall see later on in this book, these rep-
resentations are extremely useful. In Chap. 4, we use the plane-wave representation
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as a springboard for the introduction of the so-called mixed representation of the
standard Green functions. In this representation, also called the angular spectrum
representation [44,52,53], a Fourier expansion is made in only two coordinates, say
X and Y , leading to G .ZI qk; !/ and G M.ZI qk; !/, where qk is the wave vector in
the XY -plane. The two-dimensional plane-wave expansion is useful in (near-field)
studies of the electrodynamics of plane structures (surfaces, interfaces, sheets and
layered media), and to a certain extent for the description of the electrodynamic
interaction between mesoscopic (or microscopic) particles and plane structures.

The theoretical studies of the electromagnetic coupling between a small parti-
cle and a planar surface have a 100-year-old history, starting around 1909 with
Sommerfeld’s theory for the radiation from an electric dipole oriented vertically
above a conducting medium (ground) [54]. In Sommerfeld’s asymptotic solu-
tion electromagnetic surface waves, investigated earlier by Zenneck [55], appear.
A few years later, in 1911, Hörschelmann analyzed the radiation from a horizon-
tally oriented dipole [56]; see also [57]. In Sommerfeld’s and Hörschelmann’s
calculations an expansion of the field in cylindrical coordinates was used. In an
important paper, dealing with the propagation of electromagnetic waves over a con-
ducting sphere, Weyl derived a new contour integral representation of a diverging
spherical scalar wave [58]. In this representation the mode functions are so-called
inhomogeneous waves (more on these below). For a particular contour the Weyl
representation provides us with a decomposition of the spherical wave into homo-
geneous and evanescent field modes, the angular spectrum representation. The early
developments in the field is summarized in [59]. Almost two decades ago the Weyl
expansion was employed by Agarwal in a theoretical study of the optics of an atom
placed in front of a phaseconjugating mirror [60]. Further analyses were made
by Hendriks and Nienhuis [61], Milonni et al. [62], Arnoldus and George [63],
Agarwal and Gupta [64]. The work of Agarwal inspired me to suggest that phasec-
onjugation of the field from the tip of a near-field microscope would allow one to
focus light beyond the classical diffraction limit [65], an idea which was confirmed
experimentally shortly afterwards [66]. An account of the microscopic theory for
phaseconjugation from a mesoscopic particle is given in [67]; see also [40], Part B.
The question of phaseconjugation of evanescent waves plays an important role for
the studies in [60–67], and for further analyses of this the reader is referred to
[68, 69], and references therein. Because the field from a point-charge has a singu-
larity at the position of the charge, a rigorous derivation of the Weyl representation
of a spherical wave requires some care [70]. The dipole–surface interaction gives
rise to a mutual attraction, also found between a pair of parallel, uncharged, con-
ducting plates in vacuum. The attraction, referred to as the Van der Waals attraction,
was calculated originally by Casimir [71] in 1949; see also Casimir and Polder [72].
From a quantum electrodynamic point of view, the attraction can be accounted for
by assuming that the related force is a consequence of the separation-dependent
energy in the vacuum field trapped between the plates [73,74]. The Weyl expansion
has been used by Agarwal in a study of basic aspects of quantum electrodynamics
in the presence of dielectrics and conductors [75]. Theoretical studies of the elec-
trodynamic interaction between an electric dipole and a planar (metallic) medium
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exhibiting a so-called nonlocal (spatially dispersive) response have also been carried
out in the nonretarded regime [76], and with retardation effects included [77, 78],
and the results obtained used in calculations of the surface-dressed dipole polariz-
ability. The renormalized polarizability agrees with that obtained in a local approach
[79,80]. The dipole emission near planar interfaces is also discussed in the book by
Novotny and Hecht [24], and here further references of interest in nano-optics are
listed.

Under certain conditions an evanescent field may be generated by a current
sheet, as we shall see. In a sense sheet electrodynamics shows the evanescent field
concept in its simplest form, and starting from the result for a single sheet the
evanescent fields belonging to more complicated layered structures can be deter-
mined by superposition. Evanescent fields play a key role in studies of surface
electromagnetic waves; see [24,25,81–88], and references therein. In the condensed
matter physics literature these waves are commonly referred to as surface polaritons.
Roughly speaking a surface polariton is an admixture of the electromagnetic field
and a collective particle excitation that propagates along the surface of a medium,
or along the interface between two media. The strength of the electromagnetic field
associated with a surface polariton decays exponentially as one moves away from
the interface into either medium. Surface electromagnetic waves are of particular
importance when carried by (bound to) a metal surface, and in the literature they are
called surface plasmaritons, surface plasmon polaritons, or just surface plasmons.
In the context of near-field optics and nano-optics the study of optical phenomena
related to surface waves on metals recently has been termed plasmonics or nanoplas-
monics [24]. The overwhelming majority of the theoretical (numerical) calculations
describes the metal response on the basis of macroscopic (local) electrodynam-
ics. The diversity of electromagnetic surface phenomena, which one catches a
glimpse of when microscopic (nonlocal) response theory is used [84, 89–95] has
not been very well explored theoretically nor experimentally up to now. To under-
stand the basic physical properties of surface polaritons bound to the surface of
a (BCS) superconductor [96–98] microscopic electrodynamics is necessary [99–
102]. Surface electromagnetic waves can be generated (excited) by various methods.
Thus, the substantial increase in the interest of surface polaritons which appeared
around 1970, mainly was due to excitation schemes suggested by Otto [103] and
Kretschmann [104]. In the wake of the birth of near-field optics the use of local
(dipole-like) excitation (and detection) methods for surface modes gained renewed
interest in the scientific community, and the tremendous recent interest in studies
of surface polaritons is bound up with the scanning near-field optical microscopy
technique [24, 25]. Evanescent fields also show up when a plane monochromatic
electromagnetic wave is incident on a planar dielectric (glass)-vacuum interface
at an angle larger than the critical angle. On the vacuum side the electromagnetic
field decays exponentially with the distance from the interface. Although the energy
density of the evanescent field is nonzero, no energy is transported away from the
interface. Frustrated total internal reflection (FTIR) results if a second planar dielec-
tric is brought within an optical wavelength from the first. From a fundamental
point of view FTIR is the paradigm of optical tunneling [105–107], and it has been
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maintained that photon tunneling is a near-field phenomenon which originates in
our inability to localize a photon completely in space [108, 109]. There are certain
indications that information on the photon tunneling phenomenon may be obtained
from studies of the Goos–Hänchen shift [110–113], a phenomenon which shows
up in FTIR experiments. A mixed representation also can be used to describe the
current density of a moving point-charge. If the particle trajectory is confined to
lie in a plane, a classical expression for the related sheet current density can be
established. In near-field electrodynamics it is of importance to investigate also
the (cycle-averaged) field momentum density outside the current sheet. We do this
paying particular attention to the case of evanescent modes.

Starting from the two-dimensional plane-wave expansion other useful represen-
tations of the Huygens propagator and the standard Green functions can be obtained.
Thus, for studies of the electrodynamic interaction between a small particle (possi-
bly atom or molecule) and a planar structure it may be advantageous to describe
the interaction over the qk-plane in polar coordinates [50,114]. The angular integra-
tions associated with the magnetic part of the standard Green function thus can be
expressed in terms of Bessel functions of the first kind and zero and first order, for
instance. For the electric part of the Green function also the Bessel function of the
first kind and second order appears. Altogether, one ends up with a representation of
the various Green functions in which only a single integral over the magnitude of qk
(0 � qk < 1) enters. The region 0 � qk � !=c0 (c0 is the vacuum speed of light) is
associated with homogeneous waves, and the region !=c0 < qk < 1 is connected
to evanescent modes. If a different set of variables is used for the integration over the
qk-plane, one may express the Green functions as a contour integral in a complex
˛-plane. A segment along the <˛-axis now gives the homogeneous wave contri-
bution, and a segment parallel to the =˛-axis associates to the evanescent modes.
By modifying the contour above one can obtain an expansion of the Green func-
tions in terms of so-called generalized inhomogeneous waves [53,58,70]. For these
waves the surfaces of constant amplitude and of constant phase are distinct, except
for special values of the variables.

1.6 Multipole Electrodynamics: A Richly Faceted Subject

The theoretical analysis of field–matter interactions is simplified in cases where
the linear extension of the particle system (object) is much smaller than the “rele-
vant” wavelengths of the electromagnetic field. What we mean by the word relevant
depends on the context. In order to exemplify this let us consider the interaction
of a monochromatic external (incoming) field with an object of extension much
less than the wavelength of the external field. During the interaction local fields
of different wavelengths are generated inside the object and these fields do not have
wavelengths which are large in comparison with the linear size of the object. Despite
this, the relevant wavelength is that of the externally impressed field in this case. If
the monochromatic external field is replaced by a quasi-monochromatic field of the
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same mean frequency, the relevant wavelengths are those of this field. From the
point of view of electrodynamics the object may be characterized as mesoscopic.
An object which appears mesoscopic when subjected to an external field may also
be characterized as mesoscopic in a field emission process if the dominating wave-
lengths of the radiated field all are much larger than the electronic size of the object.
The field–matter interaction in the case of mesoscopic objects often is characterized
as mesoscopic electrodynamics. Nano-optics, which deals with the electromag-
netic interaction between visible (or infrared or ultraviolet) light and nano-sized
objects, is a form of mesoscopic electrodynamics. The optical near-field interac-
tion with material structures may also be characterized as a sort of mesoscopic
electrodynamics.

The prevailing microscopic classical current density, J .r; t/, in a mesoscopic
object can often with advantage be described in terms of a so-called moment expan-
sion, in which only terms of the lowest orders are retained. The spatial integral
(zeroth-order moment) of J .r; t/ over the mesoscopic object gives the so-called
electric dipole current density, J ED, of the object (at a given time). The spatial
first-order moment of J .r ; t/, a tensorial quantity, gives the sum of the electric
quadrupole (J EQ) and the magnetic dipole (J MD) moments of the current density
distribution. The symmetric part of the tensor is the EQ-moment, and the anti-
symmetric part is the MD-moment. The moments J ED and J EQ are just the time
derivatives of the well-known electric dipole (p.t/) and quadrupole (Q.t/) moments
of a point-charge distribution. The quantity J MD relates in a simple fashion to the
magnetic dipole moment (m.t/) of a point-charge distribution, a moment which in
turn can be expressed in terms of the (relativistic) orbital angular momenta of the
individual point-particles.

In the space-frequency domain the electric (EED.rI !/) and magnetic (BED.r I
!/) fields generated by p.!/ can be expressed in compact form with the help of
the standard Green functions G .r I !/ and G M.r I !/, respectively. The fields EMD

and BMD generated by m.!/ can also be expressed in terms of the standard Green
functions. In this case G M.r I !/ relates to E MD.r I !/, and G .r I !/ to BMD.r I !/.
As the reader may have anticipated, the fields EEQ.r I !/ and BEQ.rI !/ which are
generated by Q.!/ relate to the third rank tensors rG .rI !/ and rG M.r I !/.

In near-field electrodynamics one is faced with a complicated interplay between
the divergence-free (transverse) and rotational-free (longitudinal) parts of the elec-
tromagnetic field. This interplay is important for our understanding of the space-
time generation and destruction of photons in their interaction with matter, whether
it be in the context of the first or second-quantized theory, and for fundamental
studies of our ability to localize photons in space-time. In mesoscopic electrody-
namics it is therefore fruitful to seek to establish a multipole formalism which
respects the division of the electromagnetic field into its transverse and longitudinal
parts [19, 115–117]. In Sects. 5.4 and 5.5, a systematic approach for higher-order
multipoles is developed for the transverse part of the field. The calculations are
carried out in the space-frequency domain, and we start by considering the elec-
tromagnetic field in a source-free region of space. In such a region the electric
(E.r I !/) and magnetic (B.r I !/) fields satisfy the Helmholtz equation, and so
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do the scalar quantities r � E.r I !/ and r � B.r I !/ because the E - and B-fields
are divergence-free in vacuum. In preparation for the introduction of the so-called
transverse electromagnetic multipole waves one seeks the general solution to the
Helmholtz equation for the scalars r � E and r � B in spherical coordinates. The
solution can be written as a double sum with parameters J and M. The parameter J
can take on the values J D 0; 1; 2; � � � , and for a given value of J the possible M’s
are M D �J; �J C 1; � � � ; 0; � � � ; J � 1; J . Not surprisingly, these parameters are
identical to those entering the quantum theory for the orbital angular momentum.
Each .J; M /-term consists of a product of a spherical harmonic (YJM ) and a radial
function. With an eye to studies of radiation problems, the radial function is given in
the form of a superposition of spherical Hankel functions of the first (h.1/

J ) and sec-

ond (h.2/
J ) kind and order J. The electromagnetic multipole waves are divided into

two groups: (1) Electric multipole waves (superscript (E) for which r � B
.E/
JM D 0,

and (2) magnetic multipole waves (superscript (M)) for which r � E
.M/
JM D 0. The

subscript JM indicates that there belongs a multipole wave to each combination of J
and M. In the transverse-electromagnetic-multipole-wave decomposition of the gen-
eral solution to the free-space Maxwell equations still appears linear combinations
of the Hankel functions h

.1/
J and h

.2/
J , but instead of the spherical harmonics YJM

we now find the so-called vector spherical harmonics XJM / i�1r � rYJM .
In the multipole wave expansion of the electromagnetic field in source-free

regions of space appears yet arbitrary so-called electric and magnetic multipole
coefficients, which basically give the strengths of the various multipole fields.
In order to determine these coefficients one needs to know the current density
distribution (J .rI !/) in the source which generates the field.

The examination of the connection between the multipole field strengths and
the source current density distribution gives us a glimpse of the important ques-
tion of how to choose appropriate field variables in the source domain. A key
point here is to work with a new “electric-field” variable which is divergence-
free everywhere in space (the magnetic field is transverse everywhere according
to the Maxwell theory). The new electric-field variable (E) is given by E.r I !/ D
E.r I !/C iJ .r I !/=.�0!/. In Sect. 10.4 we shall introduce the generalized electric
displacement field D and the generalized magnetization M [118, 119]. In terms of
these, one has

�0E.rI !/ D D.r I !/ C i

!
r � M .rI !/; (1.8)

as the reader may show after having studied Sect. 10.4. The D-field plays an impor-
tant role in linear nonlocal response theory, and for studies of near-field aspects of
the photon emission from micro- and mesoscopic sources. It is possible to make the
choice M D 0 without changing any physical properties of the field-particle system
as we shall learn in Sect. 10.4.1. With such a choice the new transverse field vari-
able E is just the generalized displacement field (divided by �0). Via the Helmholtz
equations for r � E and r � B, one is able to express the actual electric and mag-
netic multipole coefficients in terms of space-integrals involving r � J and J ,
respectively.



14 1 Survey of the Classical Theory

As we shall see, the multipole expansion of the source current density distribution
is useful in studies of the rate of energy, momentum, and angular momentum transfer
to a mesoscopic particle from a prescribed external field.

1.7 Local Electromagnetic Fields and Resonances

In near-field electrodynamics the local field concept is of central importance. Thus,
if one has a knowledge of this field all electrodynamic properties of the medium
under study can be predicted. Although quantum physics is needed for a rigorous
calculation of local fields, because these vary on a length scale (much) shorter than
that of the externally impressed field in most cases, it is of some interest to study
local fields in the framework of the microscopic Maxwell–Lorentz equations. For
an assembly of point-particles the local electric field at a given point .r/ in space is
the sum of the external field at this point and the fields generated at r by the various
particles of the system [5,24,25,114,120–129]. The field generated by a given point-
particle is not known a priori, however, because the current density distribution of
this particle, which is the source of the emitted field, is determined by the local
field acting on the particle. To cut the Gordian knot, one must in a selfconsistent
manner determine the local fields acting on all the particles in the system. This task
is a formidable difficult one in general. If we treat the particles as electric dipoles,
and limit ourselves to linear response theory, the task can be solved. A supermatrix
.U � T /�1 relates the local fields at the sites of the, say N, dipoles to the external
fields at these sites. The quantity T contains the electric-dipole polarizabilities of
the various particles, and the Green functions G .r i � rj I !/ [.i; j / D 1; 2; � � � ; N ]
describing the field communication between all pairs, .i; j /, of dipoles. In some
cases the particles are so close to each other that only the near-field part of the G ’s
needs to be retained. Once the selfconsistent solution for the electric field on the
dipole sites has been obtained the local field easily can be determined everywhere
else in space. The procedure described above incorporates all kinds of multipole
scattering between the electric dipoles, and from the general result the Born series
approach to the N-particle scattering problem can be established by making a power
series expansion of .U � T /�1 in T .

In a closed system no external fields act, and possible selfconsistent solutions for
the local field therefore are selfsustaining. For an assembly of electric dipoles self-
sustaining solutions must satisfy the condition DetfU � T g D 0, where Det stands
for determinant. The inevitable presence of irreversible electronic damping mecha-
nisms and spontaneous emission makes all systems open to some extend, perhaps
with the exception that the whole universe may be considered closed. Selfsustaining
solutions are also called local-field resonances, and this name is also used to cover
the resonances one may obtain in weakly open systems. Roughly speaking, a local-
field resonance occurs whenever a component of the supermatrix .U � T /�1 has a
deep minimum. Local-field resonances can occur at certain frequencies ! D !Res,
or at a given frequency for certain spatial arrangements of the dipole positions.
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In the last case, which most often occurs in few-particle systems, one speaks of
a configurational resonance.

The classical multipole scattering among magnetic dipole, and between electric
quadrupoles, can of course be studied by analogy with the treatment for electric
dipoles.

1.8 Radiation Reaction in a Classical Perspective

In the procedure for classical local-field calculations, which we briefly described
in the foregoing section, the radiative reaction which the field emitted from a point-
particle exerts on the particle itself was not taken into account. The radiation reaction
problem raises deep questions in electrodynamics, and the problem cannot be dealt
with in a satisfactory manner in the framework of classical electrodynamics. Nev-
ertheless, it certainly is worthwhile to study the phenomena in a purely classical
context because this gives us some insight in the problems we are facing [19, 130–
133]. Nonrelativistic and fully relativistic quantum mechanical treatments have been
given by Moniz and Sharp [134], and by Low [135], respectively.

An electrically charged point-particle emits energy when accelerated, and the
radiative energy loss affects the motion of the particle. In classical electrodynam-
ics a point-charge placed in a prescribed (external) electromagnetic field moves
according to the Newton–Lorentz equation. To account for the radiative energy loss
some force, called the radiation reaction force, must act on the particle besides
the force exerted by the external field. In the nonrelativistic Abraham–Lorentz
approach the radiation reaction force is determined in some approximate and time-
averaged sense via the instantaneous power radiated by the particle’s acceleration
field [19, 130, 136–138]. By demanding that the negative of the work carried out
on the particle by the yet unknown radiative reaction force in a certain time interval
equals the power radiated in this interval one finds that the radiative reaction force is
proportional to the time derivative of the particle’s instantaneous (!) acceleration. To
reach this conclusion the particle motion must have such a form that the scalar prod-
uct of the particle velocity and acceleration has the same value at the two endpoints
of this “certain” time interval.

From our nonrelativistic classical standpoint the radiation reaction effect is of
importance if the relative change in the particle acceleration is appreciable on a
time scale �0 D Q2=.6��0mc3

0/, where Q and m are the charge and mass of the
particle. For the electron �0 � 6:3 � 10�24 s. Among other doubtful consequences,
the Abraham–Lorentz model predicts a preacceleration effect on a time scale of the
order of �0 [116,130]. To observe such an effect the external force must be switched
on over a time interval � �0, an impossibility for classical interactions. The classical
theory for the radiation reaction is useful in physical optics, where it gives an impor-
tant contribution to the electric dipole polarizability, for instance [18]. As a part of
the particle’s “inner” dynamics the so-called (radiation reaction) dressed polarizabil-
ity is the observable quantity in (near-field) electrodynamics. The electric radiation
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reaction field ERR.!/ of an electric dipole (moment p.!/) also can be obtained via
the standard Green function G .RI !/ if one near R D 0 keeps the small imaginary
part of G . Because this part varies only little on a length scale comparable to the lin-
ear extension of a mesoscopic object, the radiative reaction on such an object does
not depend (significantly) on the electronic structure of the object. Via the Green
function G M.RI !/ the magnetic radiation reaction field BRR.!/ on a magnetic
dipole (moment m.!/) is easily calculated. The duality between the electric and
magnetic fields shows that jERR.!/j=jp.!/j D c2

0 jBRR.!/j=jm.!/j.
In the classical relativistic domain the modification of a charged point-particle’s

motion by radiation reaction is described by the Lorentz–Dirac equation [139–144].
Starting from the derivation of a manifestly covariant expression for the energy-
momentum radiation rate, and the conclusion following from the fact an elementary
particle keeps its rest mass intact during the radiation reaction process, we end up
with the Lorentz–Dirac equation. In order to cancel the rest-mass changing radi-
ation, one suspects that the attached self-field of the particle will be temporarily
distorted during the acceleration process. An unaccelerated charged object carries
along its velocity field, and in the particle’s rest frame this is just the electrostatic
Coulomb field. The related field energy is equivalent to some so-called electro-
magnetic mass in a relativistic context. Observed in an inertial frame moving with
respect to the rest frame, the velocity field contributes a self-momentum to the
uniformly moving particle. A distortion of the self-momentum appears during accel-
erated particle motion. In an external (ext) electromagnetic field the transverse
vector potential Aext

T adds a momentum QAext
T to the particle, and this momen-

tum spreads over the Coulomb self-field region. As soon as the external magnetic
field overlaps this region the attached field momentum starts to be distorted. For an
elementary discussion of this aspect the reader is referred to [116].
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