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Abstract This chapter explores how elementary teachers can use functional think-
ing to build algebraic reasoning into curriculum and instruction. In particular, we
examine how children think about functions and how instructional materials and
school activities can be extended to support students’ functional thinking. Data are
taken from a five-year research and professional development project conducted in
an urban school district and from a graduate course for elementary teachers taught
by the first author. We propose that elementary grades mathematics should, from
the start of formal schooling, extend beyond the fairly common focus on recursive
patterning to include curriculum and instruction that deliberately attends to how two
or more quantities vary in relation to each other. We discuss how teachers can trans-
form and extend their current resources so that arithmetic content can provide oppor-
tunities for pattern building, conjecturing, generalizing, and justifying mathematical
relationships between quantities, and we examine how teachers might embed this
mathematics within the kinds of socio-mathematical norms that help children build
mathematical generality.
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Introduction

Current research is redefining what we understand about the kind of mathematics
that young children can and should learn (National Research Council [NRC] 2001).
Consider the following Towers of Cubes problem (see Fig. 1) taken from the Na-
tional Council of Teachers of Mathematics [NCTM] Principles and Standards for
School Mathematics (2000, p. 160):

What is the surface area of each tower of cubes (include the bottom)? As the tower gets taller, how
does the surface area change? What is the surface area of a tower with fifty cubes?

Fig. 1 Towers of cubes

In the not so distant past, such a problem was mostly absent from typical ele-
mentary school! curricula and instruction in the United States. While it might have
appeared as an enrichment task, it was likely marginalized by the press towards
computational skills (Thompson et al. 1994) and procedures that children were (and
are) compelled to memorize as a signal of their readiness for higher mathematical
thinking. Or, it might have appeared in an abbreviated, arithmetic form as “What is
the surface area of a tower built of 3 cubes?” However, algebraic reasoning as an
activity of generalizing mathematical ideas, using literal symbolic representations,
and representing functional relationships, all implicit in this task, is no longer re-
served for secondary grades and beyond, but is an increasingly common thread in
the fabric of ideas that constitute mathematical thinking at the elementary grades.

The Challenge of Curriculum and Instruction

Simply put, young children today need to learn a different kind of mathematics than
their parents learned. Some argue that they need to be “algebra ready” (e.g., Na-
tional Mathematics Advisory Panel 2008). But what experiences make them ready
for algebra, and for what kind of algebra are they being made ready? Romberg and
Kaput (1999) maintain that understanding the increasingly complex mathematics of
the 21% century will require children to have a type of elementary school experi-
ence that goes beyond arithmetic and computational fluency to attend to the deeper
underlying structure of mathematics. It will require experiences that help children
learn to recognize and articulate mathematical structure and relationships and to

!Elementary school refers here to grades PreK-5.
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use these insights of mathematical reasoning as objects for mathematical reasoning.
This type of elementary school experience has come to be embodied in what many
refer to as early algebra,” and because its underlying purpose is to deepen chil-
dren’s understanding of the structural form and generality of mathematics and not
just provide isolated experiences in computation, scholars increasingly agree that it
is the avenue through which young children can become mathematically successful
in later grades. Thus, our perspective on “algebra readiness” is that experiences in
building, expressing, and justifying mathematical generalizations—for us, the heart
of algebra and algebraic thinking—should be a seamless process that begins at the
start of formal schooling, not content for later grades for which elementary school
children are “made ready” through a singular, myopic focus on arithmetic.

But changing the mathematics elementary school children learn—their daily cur-
riculum—is only part of the solution. As Blanton and Kaput note, “most elementary
teachers have little experience with the kinds of algebraic thinking that need to be-
come the norm in schools and, instead, are often products of the type of school
mathematics instruction that we need to replace” (2005). However, these very teach-
ers are central to reforms in children’s school mathematical experiences. Moreover,
the instructional materials in most elementary schools today are basal texts, and
even newer, standards-based materials are just beginning to incorporate systematic
approaches to the development of algebraic reasoning (Kaput and Blanton 2005).
These constraints represent the challenge of building algebraic thinking into cur-
riculum and instruction.

There are two issues implicit in the above discussion that this article aims to
address: (1) how opportunities for algebraic thinking can be integrated into the el-
ementary grades to prepare students for more powerful mathematics in later years,
and (2) how elementary teachers can transform their own resources and instruction
in ways that effect (1).

Functional Thinking as a Route to Algebraic Thinking

Early algebra can occur in several interrelated forms in the classroom.? We focus
here on functional thinking as a strand by which teachers can build generality into
their curriculum and instruction. We broadly conceptualize functional thinking to

2While there are multiple perspectives on early algebra, Lins and Kaput (2004) describe a gen-
eral agreement among scholars that it involves “acts of deliberate generalization and expression of
generality. .. [and] reasoning based on the forms of syntactically guided actions on those expres-
sions”.

3Kaput (2008) characterizes algebraic thinking as consisting of two core aspects: (1) making and
expressing generalizations in increasingly formal and conventional symbol systems, and (2) rea-
soning with symbolic forms, including the syntactically guided manipulations of those symbolic
forms. In turn, he argues that these core aspects cut across three longitudinal strands of school
algebra: (1) Algebra as the study of structures and systems abstracted from computations and rela-
tions (e.g., algebra as generalized arithmetic); (2) Algebra as the study of functions, relations, and
joint variation; and (3) Algebra as the application of a cluster of modeling languages to express
and support reasoning about situations being modeled.
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incorporate building and generalizing patterns and relationships using diverse lin-
guistic and representational tools and treating generalized relationships, or func-
tions, that result as mathematical objects useful in their own right. As the NCTM
Principles and Standards (2000, p. 37) argues, children in the elementary grades
should be able to

(1) Understand patterns, relations, and functions;

(2) Represent and analyze mathematical situations and structures using algebraic
symbols;

(3) Use mathematical models to represent and understand quantitative relation-
ships; and

(4) Analyze change in various contexts.

In addition, we use here three modes of analyzing patterns and relationships, out-
lined by Smith (2008), as a framework to discuss the kinds of functional thinking
found in classroom data: (1) recursive patterning involves finding variation within a
sequence of values; (2) covariational thinking is based on analyzing how two quan-
tities vary simultaneously and keeping that change as an explicit, dynamic part of a
function’s description (e.g., “as x increases by one, y increases by three”) (Confrey
and Smith 1991); and (3) a correspondence relationship is based on identifying a
correlation between variables (e.g., “y is 3 times x plus 2”).

In what follows, we draw on data from a five-year research and professional de-
velopment project in an urban school district (Kaput and Blanton 2005) and a subse-
quent graduate course for elementary teachers, taught by the first author, to examine
how children think about functional relationships, its mathematical implications for
later grades, and how instructional materials and school activities can be deepened
and extended to support the development of functional thinking in the elementary
grades.

Functional Thinking in the Elementary Grades

The idea of function has, for over a century, been regarded by mathematicians as a
powerful, unifying idea in mathematics that merits a central place in the curriculum
(Freudenthal 1982; Hamley 1934; Schwartz 1990). Indeed, the idea can be traced
back to Leibniz (Boyer 1946). However, until very recently, the study of functions
has been treated largely in the US as something to be learned in high school algebra,
or even middle school mathematics. The perspective taken here is that the study of
functions should be treated longitudinally and in its full richness beginning in early
elementary school (NCTM 2000; Smith 2003).

But what capacity do young children have for functional thinking? Even though
elementary school mathematics has more recently included recursive patterning, it
has not attended pervasively to covariation or correspondence in functional think-
ing, especially in grades PreK-2. For instance, even NCTM (2000) suggests that, as
late as fourth-grade, students might find a recursive pattern in the Towers of Cubes
problem (see Fig. 1), and not until fifth-grade would they develop a correspondence



Functional Thinking as a Route Into Algebra in the Elementary Grades 9

relationship. Can elementary students, in fact, make the conceptual shift from simple
recursive patterning to account for simultaneous changes in two or more variables?
Moreover, at what grades can they do this? And can they, or in what ways can they,
symbolize and operate on covariational or correspondence relationships in data?

Children’s Capacity for Functional Thinking

Current research challenges the developmental constraints traditionally placed on
young learners and their capacity for functional thinking. For example, researchers
have found that elementary school children can develop and use a variety of rep-
resentational tools to reason about functions, they can describe in words and sym-
bols recursive, covarying, and correspondence relationships in data, and they can
use symbolic language to model and solve equations with unknown quantities (e.g.,
Blanton 2008; Brizuela and Schliemann 2003; Brizuela et al. 2000; Carraher et al.
2008; Kaput and Blanton 2005; Moss et al. 2008; Schliemann and Carraher 2002;
Schliemann et al. 2001).

While much of this research focuses on functional thinking in grades 3-5, we
have found that students are not only capable of deeper functional analysis than pre-
viously thought, but that the genesis of these ideas appear at grades earlier than typi-
cally expected. In particular, we have found that the types of representations students
use, the progression of mathematical language in their descriptions of functional re-
lationships, the ways students track and organize data, the mathematical operations
they use to interpret functional relationships, and how they express covariation and
correspondence among quantities, can be scaffolded in instruction beginning with
the very earliest grades, at the start of formal schooling (Blanton and Kaput 2004).

The following discussion draws on our research data to elaborate these capacities
in children’s functional thinking across elementary grades. We note that the data in-
cluded here are intended to convey existence proofs of what is possible in children’s
thinking; our goal is not to examine the regularity with which functional thinking
occurred in instruction.

The Development of Representational Infrastructure: Children’s Use
of Function Tables

Research, including early algebra research, suggests that students’ flexibility with
multiple representations both reflects and promotes deeper mathematical insights
(Behr et al. 1983; Brizuela and Earnest 2008; Goldin and Shteingold 2001). Brizuela
and Earnest note that “the connections between different representations help to
resolve some of the ambiguity of isolated representations, [so] in order for concepts
to be fully developed, children will need to represent them in various ways”.

We found that teachers across the elementary grades were able to scaffold chil-
dren’s use of tables, graphs, pictures, words and symbols in gradually more sophis-
ticated ways in order for them to make sense of data and interpret functional rela-
tionships (Blanton and Kaput 2004). For example, while students in grades PreK-1
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Fig. 2 Kindergarten
students’ representation for
the numbers of eyes and eyes
and tails for two dogs

Fig. 3 A first-grader’s t-chart - H
for the Handshake Problem?’

relied on counting visible objects or hand-written marks and registering their counts
through inscriptions in t-charts* or through dots and hatch marks for eyes and tails
(see Figs. 2 and 3), by second and third grade, students could routinely operate on
data that had no iconic or tangible counterpart (e.g., tracking the number of eyes
on ten dogs without pictures or physical objects). Moreover, while grades PreK-1
teachers typically led students in developing t-charts to organize their data, the re-
sponsibility for this began to shift to students during first grade. Figure 3 shows a
t-chart, constructed by a first-grader, which records the total number of handshakes
in a group of varying size (Blanton 2008).

We have found that the t-chart, or function table, becomes an important structure
in children’s mathematical reasoning. In the earlier grades (PreK-1), it provided a
context to re-represent marks with numerals as children worked on the arithmetic of
correspondence between quantity and numeral. But its introduction in these grades

4T.charts are teacher-termed function tables with a column of data for the independent variable
followed by a column of data for the dependent variable.

5The Handshake Problem can be stated as follows: If 3 people are in a group, how many total
handshakes would there be if every person shook hands with all people in the group once? How
many handshakes would there be if there were 4 people in the group? Five people? Six people?
Twenty people? Can you find a relationship between the number of people in the group and the
total number of handshakes?
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Fig. 4 The growing snake i
(|

Day 1 Day 2 Day 3

as a tool for organizing covarying data also initiated its transformation from opaque
to transparent object (Kaput 1995) in children’s functional thinking as a represen-
tation that one could “look through” to “see” new relationships. The first grader’s
analysis of differences in the numbers of handshakes in Fig. 3 illustrates that as early
as first grade, students can begin to transition beyond an understanding of t-charts
as opaque objects—a place to record numbers—to a transparent object that can be
used to determine relationships in data. We maintain that introducing such repre-
sentational tools from the start of formal schooling can help spread the cognitive
load across grades in a way that allows students in second and third grades (and
beyond) to focus on more difficult tasks such as symbolizing correspondence and
covariational relationships.

By second and third grades, we have found that students are able to use this
tool transparently, as a mathematical object, in thinking about data. The following
teacher narrative illustrates this algebraic reasoning with third-graders. The third-
grade teacher who authored the narrative, Mrs. Gardiner, had designed a task in
which students were to find the number of body parts a growing snake would have
on day 10 and on day n, where each triangle equaled a body part. She drew the
growing snake on the board for Days 1, 2, and 3 (see Fig. 4).

The class worked on this problem for approximately 10 minutes. All organized their data
with a t-chart. When I pulled the group together to discuss the problem, it was Karlie® who
had her hand waving hard. ... Karlie usually just sits and listens during math time, so her
enthusiasm was very special. I called on her right away. ‘I know that on day 10 the snake
will have 101 body parts and I know that on day n the snake will have n x n 4 1. I know
this because I used my t-chart and I looked for the relationship between n and body parts.
This is the first time I saw the pattern, so please tell me I’m right!” she said excitedly....
The class had all come to pretty much the same answer.

This suggests to us that the t-chart helped structure Karlie’s thinking about re-
lationships between quantities. Unlike in the earlier elementary grades, where stu-
dents were more likely to use t-charts opaquely as a storage system for numbers
and were not yet able to attend to the meanings embedded in how data were po-
sitioned in the chart, the t-chart became the object, or tool, by which Karlie could
compare data and find relationships. She was able to attend to how numbers were
located in the chart and see through it to the relationships it made available to her.
In this sense, we maintain that the t-chart had become transparent in how she used
it to think about functions. Our point is that critical instruction in the earlier grades
(PreK-1) can initiate the transition of representational tools from opaque to trans-
parent objects in children’s thinking so that children are able to shift their attention
to more complex tasks in later elementary grades and beyond. This is exactly how

6 All student names are pseudonyms.
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mathematics has grown in power historically, as new representation systems were
developed (including that of algebra itself) to increase the power of human thinking.

The Development of Students’ Symbol Sense

One particularly vital aspect of early algebra is the transition from natural language
to symbolic notational systems. If one’s perspective is that development precedes
learning, then the use of symbols as variables in elementary grades is, perhaps, not
without controversy. However, we take the view here that learning promotes de-
velopment and that it entails a pseudo-conceptual stage of concept formation in
students’ development of symbol sense. In describing the development of higher
mental functioning in children, Vygotsky (1962) identified the notion of a pseudo-
concept as an essential bridge in children’s thinking to the final stage of concept
formation. While the pseudo-concept a child possesses is phenotypically equivalent
to that of an adult, it is psychologically different. As a result, the child is able to
“operate with [the concept], to practice conceptual thinking, before he is clearly
aware of the nature of these operations” (p. 69). This suggests that learning to think
mathematically involves the acquisition of notational tools that are within the child’s
zone of proximal development, but not entirely owned by the child. In essence, it in-
volves students’ transition from an opaque to transparent use of symbols. Moreover,
the dialectic between thought and language in learning (Vygotsky 1962) implies
that symbolic notational systems are more fully conceptually formed in children’s
thinking as a result of children’s interaction with them in meaningful contexts. In
short, children can develop symbol sense as they have opportunity to use symbolic
notation in meaningful ways (see also Brizuela et al. 2000).

We have found that, when curriculum and instruction provide opportunity for
thinking about functional relationships, students can transition linguistically from
iconic and natural language registers at grades PreK-1 to symbolic notational sys-
tems by grade 3 (Blanton and Kaput 2004). A first grade teacher described how one
of her students made this transition while thinking about the Handshake Problem:

I asked, ‘Can I label one side [of the t-chart] ‘people’ and the other side ‘handshake’?’” One
little boy said, ‘Just write ‘p’ and ‘h’.’ I immediately stopped what I was doing. I asked,
‘What did you say?’ He continued to repeat what I heard him say. ‘Awesome, how did you
come up with that?’ I probed. He continued, ‘Well, ‘people’ begins with p and ‘handshakes’
begin with h.” (Blanton 2008, p. 43)

While this student’s understanding of variable is certainly in its early stages (for
example, care must be taken to ensure that the student does not confuse the variable
as representing the object and not the quantity), the point here is that giving children
opportunities to begin using symbolic representations can occur as early as first
grade, and acquiring these more basic ideas in the early grades allows them greater
cognitive room to explore more complex ideas in later elementary grades.

By third-grade, students can move beyond this more primitive act of symbolizing
to describe and discuss functional relationships. We include the following teacher
narrative to illustrate third-grade students using symbolic notation to think about the
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number of circle-shaped body parts on a growing caterpillar. In this vignette, Mrs.
Gardiner has just described the Growing Caterpillar task to her students.’

I showed my students my caterpillar example and all I wanted them to see was how I devel-
oped the problem. I had no idea that they would begin to solve the problem. I couldn’t stop
them. There were hands going up all over the place. Everyone wanted to tell me the pattern
they saw when they looked at the growth of the caterpillar. I said, ‘Guys, I haven’t even
asked you the question yet’. ‘But I see the pattern, Mrs. Gardiner’, yelled Jak. ‘Okay, what
do you think the pattern is?’ I asked. ‘I think it is x times 2 plus one’, he said. ‘How many
of you agree with Jak?’ I questioned. ‘I don’t know. I have to do a t-chart’, explained Meg.
‘Well, then let’s do that together on the board’, I said. With the students’ help, we drew the
following t-chart on the board (see Fig. 5):

Fig. 5 T-chart for growing
caterpillar

[« 1 [ ]

1 2
2 5
3 10
4 17

‘Now that we have that on the board, I don’t agree with Jak’, said Meg. ‘Why is that Meg?’
I asked. ‘Because if it was x times 2 plus 1, then x would be one and y would be three. And,
it’s not. It’s x = 1 and y =2’, she explained.... [If x equaled 1, then by Jak’s formula, y
would be 2(1) 4 1, or 3, not 2, as the t-chart indicated.] The class struggled with the pattern
for a long time. Then Shane saw a pattern that I had not seen. He came up to the t-chart on
the board and with a red marker highlighted the pattern. It looked like this (see Fig. 6):

Fig. 6 Shawn’s Pattern for
Growing Caterpillar task

[« T[]

1;72
2 5
3 10
4 17

So, what Shane was saying is that if you add 1 42+ 2, itequals 5. If you then add 24543,
it equals 10. This ... didn’t help him find the formula, but it did help Joe! ‘I see it, I know

7Growing Caterpillar was similar to Growing Snake except for the shape of the body parts. The
growth rates for the snake and caterpillar were the same. Mrs. Gardiner had given Growing Cater-
pillar to students two weeks prior to Growing Snake.
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the formula!” Joe cried out. “Well, what is it?’ I prodded. ‘It’s x x x + 1 = y’, he said. At
that moment, a loud group of ‘Oh yeah’s’ could be heard in the room. ... I asked everyone
why this was algebra. I think Jak put it best. He said, ‘Because we have people looking for
patterns and relationships and we have them developing a formula’.

There are several points with respect to students’ use of symbols that bear men-
tioning here. First, before any data were publicly recorded and without any prompt-
ing from the teacher, Jak proposed a symbolic relationship between an arbitrary day,
x, and the number of caterpillar body parts. His spontaneous use of symbols conveys
the generality with which he was beginning to think about functional relationships.
Second, Meg was beginning to reason transparently with the t-chart and the sym-
bolic relationship conjectured by Jak in order to refute his idea (“Now that we have
that on the board, I don’t agree with Jak™). That is, implicit in her refutation was her
reasoning with both the meaning embedded in the structure of the t-chart, including
the unique roles of dependent and independent variables, as well as the symbolic
notation (“Because if it was x times 2 plus 1, then x would be one and y would
be three. And, it’s not. It’s x = 1 and y = 2”). Meg’s emerging transparent use of
symbolic notation (as well as her evident understanding of equality, another critical
issue in the development of children’s algebraic thinking) is further indicated by
her treatment of the expression ‘x times 2 plus 1’ and the dependent variable, y, as
equivalent quantities.

Because the elementary grades often incorporate meaningful imagery and con-
crete experiences to support conceptual development, they, more so than secondary
grades, can provide a rich, inquiry-based atmosphere for introducing symbolic nota-
tion. Thus, as with the development of representational infrastructure, we maintain
that instruction should begin to scaffold students’ thinking toward symbolic notation
from the start of formal schooling so that students can transition from an opaque to
transparent use of symbols as they progress through the elementary grades. Ulti-
mately, elementary students who have learned to reason symbolically in meaningful
ways will be much better prepared for the abstractions of more advanced mathemat-
ical thinking in later grades.

The Emergence of Thinking About Covariational and Correspondence
Relationships

We have found it particularly compelling that, even as early as kindergarten, chil-
dren can think about how quantities co-vary and, as early as first grade, can describe
how quantities correspond (Blanton and Kaput 2004). For instance, in the task Cut-
ting String (Blanton 2008; see also Cramer 2001), children are asked to look for a
relationship between the number of cuts on a piece of string and the resulting num-
ber of pieces of string when the string is folded in a single loop (see Fig. 7). First
graders were able to describe the relationship not only in recursive terms (“It gets
two more each time”), but also in terms of a co-varying relationship “Every time
you make one more snip it’s two more” (Blanton 2008).
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Fig. 7 Folded piece of string

In a task in which students were asked to describe the total number of eyes or
the total number of eyes and tails for an increasing number of dogs, one kinder-
garten class described an additive covariational relationship between the numbers
of eyes and dogs as “every time we add one more dog we get two more eyes”. In
first and second grade, students identified a multiplicative relationship of “doubles”
and “triples” between the number of eyes and the number of eyes and tails, respec-
tively, for an increasing number of dogs. The observation that the pattern “doubles”
or “triples” suggests that students could attend to how quantities corresponded. For
example, some quantity (in particular, the independent variable) needed to be dou-
bled to get the total amount of eyes. Since data representing the total number of
eyes (i.e., 2, 4, 6, 8...) were not doubled to get subsequent quantities of dog eyes (4
doubled does not yield the next value of 6; 6 doubled does not yield the next value
of 8), this suggests that students were not looking for a recursive pattern such “add
2 every time” or “count by 2’s”, but a relationship between two quantities.

We recognize that some children might be responding to a known relationship
without fully understanding its functional aspect. “Doubles”, for example, is not
uncommon in the vocabulary of early grades mathematics, and to say “it doubles”
does not necessarily indicate a full conceptual understanding of correspondence or
covariation, including an explicit understanding that the value of the independent
variable is being doubled to obtain the value of the dependent variable. For some
children, “doubles” could be code for a pattern recognized as adding by two’s. How-
ever, these situations can prompt discussions that scaffold students’ thinking about
relationships between data, not just recursive patterning.

As the Growing Snake and Growing Caterpillar excerpts suggest, by third grade
students can attend to how quantities co-vary and, moreover, symbolize relation-
ships as a functional correspondence (e.g., “It’s x x x + 1 = y”). Thus, although
the data on cutting string and dog eyes and tails illustrate a simple mathematical
relationship for which some children used only natural language to describe co-
variational and correspondence relationships, we think this represents the critical
kinds of experiences that children need in the earlier elementary grades in order to
leverage deeper, more complex functional thinking in later elementary grades and
beyond.

Implications of Children’s Functional Thinking for Later Grades

The preceding discussion underscores how early algebra, and functional thinking in
particular, can nurture the development of students’ mathematical thinking in later
grades. To begin with, it can help children build critical representational and lin-
guistic tools for analyzing, describing and symbolizing patterns and relationships.
Moreover, if teachers scaffold these ideas from the start of formal schooling, these
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experiences can provide a continuum of mathematical development whereby opaque
symbols and tools can be transformed into transparent objects of functional thinking.
T-charts and graphs become not just visual configurations, but structures embedded
with meaning about relationships; symbols are no longer meaningless abstract in-
scriptions, but tools by which broader ideas can be mediated and communicated.
Moreover, the elementary grades, because of its inclination towards concrete, tac-
tile, and visual experiences in learning, can bridge the expression of mathematical
ideas from natural, everyday language to symbolic notational systems in meaningful
ways. For example, students in secondary grades are often given, a priori, a sym-
bolic generalization about the commutative property of addition for real numbers
a and b (a + b = b + a). In contrast, early algebra entails exploring this property
through operations on particular numbers, then generalizing the property using ev-
eryday or symbolic language systems, where the symbolizing develops as a valid
linguistic form of expression through children’s interactions with number and oper-
ation (Carpenter et al. 2003).

All of these experiences—the development of representational and linguistic
tools, the transformation of mathematical structures and symbols from opaque to
transparent objects, and the integration of concrete, tactile, and visual experiences
to support the development of mathematics with understanding—coalesce to build
mathematical thinkers for whom abstract ideas are rooted in meaningful, concrete
events. As a result, we argue that children for whom functional thinking is a routine
part of mathematics in the elementary grades are better prepared than those who
spend the first six or seven years of formal schooling fine-tuning arithmetic skills,
procedures and facts.

Integrating Functional Thinking into Curriculum and
Instruction

While much more could be said about children’s capacity for functional thinking,
our point thus far is that young children can identify and express functional rela-
tionships in progressively more symbolic ways and that instruction in the elemen-
tary grades that nurtures this kind of thinking can support students’ mathematical
thinking in later grades. Although this suggests a mandate for change in elemen-
tary school curricula, our reality is often working with teachers who have limited
resources that, more often than not, focus on the development of children’s arith-
metic thinking. Moreover, curricular innovations alone, without the development
of teachers’ instructional and mathematical knowledge on how to build children’s
functional thinking, are not sufficient to produce real change in children’s mathe-
matical thinking. Smith (2003) notes that “elementary school teachers may create
rich classroom experiences around patterns, yet not have a sense of how this topic
ties into the ongoing mathematical development of their students, much less into
the topic of functions” (p. 136). To address this, our early algebra work with teach-
ers has involved three connected dimensions of change: (1) transforming teachers’
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instructional resource base, (2) using children’s thinking to leverage teacher learn-
ing, and (3) creating classroom culture and practice to support algebraic thinking.
In what follows, we address each of these and how they support the integration of
functional thinking into curriculum and instruction.

Transforming Teachers’ Resource Base to Support Students’
Functional Thinking

In spite of limited resources or the lack of materials that integrate functional think-
ing in viable ways, elementary teachers can transform their existing instructional
resource base to include the exploration of covariational and correspondence rela-
tionships. Our approach with teachers is to help them deliberately transform single-
numerical-answer arithmetic problems to opportunities for pattern building, conjec-
turing, generalizing, and justifying mathematical relationships by varying the given
parameters of a problem (Blanton and Kaput 2003). This is easily done with tasks
such as the Telephone Problem, which might typically be posed as an arithmetic
task with a single numerical answer:

How many telephone calls could be made among 5 friends if each person spoke
with each friend exactly once on the telephone?

Stated this way, students simply need to compute a sum, although they might first
draw a picture or diagram to keep track of the phone calls. Functional thinking can
be introduced into the task by varying the number of friends in the group:

How many telephone calls would there be if there were 6 friends? Seven friends?
Eight friends? Twenty friends? One hundred friends? Organize your data in a ta-
ble. Describe any relationship you see between the number of phone calls and the
number of friends in the group. How many phone calls would there be for n friends?

The tasks included here (e.g., Growing Snake, Growing Caterpillar, Towers of
Cubes) are examples of this type of transformation; all are derived from single-
numerical-answer tasks. For example, Towers of Cubes can be seen as an extension
of the arithmetic problem “What is the surface area of a tower built of 3 one-inch
cubes?” Similarly, Growing Snake can be seen as an extension of an arithmetic task
in which students count the total number of body parts for a particular snake.

Varying Task Parameters Introduces Algebraic Thinking into the Curriculum

But how does this transformation lead to algebraic thinking or, specifically, func-
tional thinking? First, varying a problem parameter enables students to generate a
set of data that has a mathematical relationship, and using sufficiently large quan-
tities for that parameter leads to the algebraic use of number. For example, in the
Telephone Problem, finding the number of phone calls for a group whose size is
large enough so that children cannot (or would not want to) model the problem and
write down a corresponding sum to compute requires children to think about the
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structure in the numbers and how the numbers of phone calls for the various groups
are related to the number of people in the group. From their analysis, children can
identify a recursive pattern or conjecture a covariational or correspondence relation-
ship between the total numbers of phone calls and the variations in the parameter
that produces them. Moreover, depending on the grade and skill of the student, the
teacher can scaffold students in describing their conjectures with symbolic nota-
tion. Children can then develop justifications for whether or not their conjectured
relationships and patterns hold true. Finally, the mathematical generalizations that
result, while important results in and of themselves, can become objects of mathe-
matical reasoning as students become more sophisticated algebraic thinkers (Blan-
ton 2008; Blanton and Kaput 2000). None of these processes occur if tasks remain
purely arithmetic in scope.

As we describe elsewhere, our approach “recasts elementary mathematics in a
profound way, not by ignoring its computational agenda, but by enlarging the agenda
in ways that include the old in new forms that deliberately contextualize, deepen,
and leverage the learning of basic skills and number sense by integrating them into
the formulation of deeper mathematical understandings” (Kaput and Blanton 2005).
In essence, a powerful result of transforming arithmetic tasks in this way is that
children are doing many important things all at once, including building number
sense, practicing number facts, building and recognizing patterns to model situa-
tions, and so forth (Blanton and Kaput 2003). In fact, this genre of tasks can provide
large amounts of computational practice in a context that intrigues students and that
avoids the mindlessness of numerical worksheets.

Transforming the Curriculum Empowers Teachers

Moreover, we have found that when teachers transform their own instructional re-
source base so that arithmetic tasks are extended to include opportunities for es-
tablishing and expressing mathematical generalizations, they are able to transcend
constraints imposed by their existing school culture such as limited or inadequate
resources, or even their own lack of experience with teaching algebraic thinking.
Instead, they are able to see algebraic thinking as a fluid domain of thinking which
permeates all of mathematics, not as a set of tasks or a prescribed curriculum. Thus,
what we advocate, more so than an “early algebra curriculum” per se, involves the
development of a habit of mind that transcends the particular resource being used
and allows elementary teachers to see opportunities for algebraic thinking, and func-
tional thinking in particular, in the mathematics they already teach, using the cur-
riculum they have in place. After using only two functional thinking tasks with her
students, one third-grade teacher wrote

I had a new outlook on math. I knew I wanted to integrate algebraic thinking into every
topic I did. The truth was that our curriculum was wonderful. It allowed plenty of ways to
integrate this way of thinking. I just hadn’t noticed up to this point (Blanton 2008, p. xii).

This sense of empowerment, as well as the development of an algebraic habit of
mind, was later echoed by a first-grade teacher:
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[Functional thinking] activities at the beginning seemed like they were going to be hard
to do, never mind creating my own. I’ve realized that they are a lot simpler to create and
implement than I thought. I am really impressed with how these activities have shaped my
way and my students’ way of thinking algebraically. They have really opened my mind up
about algebra and how, if we put it into a simple form, our students can do it! (Blanton
2008, p. 147)

Using Children’s Functional Thinking to Leverage Teacher
Learning

Integrating functional thinking into instruction does not rest solely on the particular
materials the teacher chooses or develops. It requires an “algebra sense” by which
teachers can identify occasions in children’s thinking to extend conversations about
arithmetic to those that explore mathematical generality. While the task one chooses
can certainly support this, teachers also need the skills to interpret what children are
writing about and talking about. In turn, a written or verbal record of student think-
ing can serve as a tool to engage teachers in thinking about content and practice. As
teachers think collectively about how children make sense of data, whether and how
they attend to how quantities relate, the kinds of meaning they derive from tables
and graphs, and how they use symbols in describing and reasoning with mathemat-
ical ideas, they have the potential to build functional thinking into instruction in
deeper and more compelling ways (Kaput and Blanton 2005).

The work of Cognitively-Guided Instruction (Carpenter and Fennema 1999) has
been significant in bringing student thinking to the fore in how people conceptu-
alize and engage in teacher professional development. More recently, researchers
have extended this approach as a tool in the development of teachers’ early alge-
braic thinking (Franke et al. 2001; Kaput and Blanton 2005). The assumption is
that focusing on children’s (algebraic) thinking in professional development builds
teachers’ capacity to identify classroom opportunities for generalization and to un-
derstand the representational, linguistic and symbolic tools that support this and the
particular ways students use these to reason algebraically. Thus, if teachers are to
build algebraic thinking into their instruction, they must become engaged in and
by what students are saying, doing and writing as a catalyst for building their own
classroom algebraic discourse. Moreover, they must be given occasions to use these
classroom artifacts to negotiate mathematical and instructional knowledge within
teacher communities of practice as a way to develop their own knowledge of alge-
bra and teaching algebra. One fourth-grade teacher described her early experience
in leading this work with her teacher peers:

At our last professional development day, I told the other teachers that I have been doing

algebra problems during my math workshop time. I told them the types of problems we did

and how I have been implementing the problems in class. I told them it was a great way

to get kids to look at numbers in different ways. I explained how it was more than algebra;

it also helps kids practice basic arithmetic. I showed them samples of students’ work. I

even explained the importance of organizing data, finding a recursive pattern and finding a

function. I talked so confidently about algebra that the teachers were intrigued. For the first

time in my life, I was a math teacher! (Blanton 2008, p. 147)
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Creating Classroom Culture and Practice to Support Functional
Thinking

Building on children’s functional thinking in instruction requires that a culture of
practice that promotes this type of thinking exists. Classrooms in which children’s
functional thinking can thrive are those in which the teacher has established socio-
mathematical norms of conjecturing, arguing, and generalizing in purposeful ways,
where the arguments are taken seriously by students as ways of building reliable
knowledge. Robust functional thinking requires children to interact with complex
mathematical ideas, to negotiate new notational systems and to understand and use
representational tools as objects for mathematical reasoning. It requires that the
teacher respect and encourage these processes as standard practice on a daily ba-
sis, not as occasional enrichment treated as separate from the “regular” work of
learning and practicing arithmetic.

The teacher narratives included here illustrate the kinds of classroom practice
and culture that can support the development of children’s functional thinking. For
example, the Growing Caterpillar narrative depicts ways of doing mathematics in
which the teacher (1) followed students’ thinking in shaping a lesson’s agenda (“I
showed my students my caterpillar example and all I wanted them to see was how
I developed the problem. I had no idea that they would begin to solve the problem.
I couldn’t stop them”.), (2) placed the responsibility for conjecture, argumentation
and justification with students (“Okay, what do you think the pattern is?”, “How
many of you agree with Jak?”, “Why is that Meg?”), (3) cultivated children’s use of
representational structures as tools for reasoning (Meg: “I don’t know. I have to do
a t-chart”), (4) encouraged the use of symbolic notational systems as valid forms of
mathematical expression (Jak: “I think it is x times 2 plus one”’; Meg: “Because if it
was x times 2 plus 1, then x would be one and y would be three. And, it’s not. It’s
x =1and y =27; Joe: “I see it, [ know the formula!....It's x x x + 1 = y”), and
(5) used children’s utterances to craft an idea-building, dialogic discourse that led
to symbolizing a functional relationship. In short, these aspects of practice allowed
children to construct a mathematical generalization about the caterpillar’s growth.

Children’s role in this process is critical; we are not advocating a form of practice
in which children do not actively participate in the development of conjectures, the
construction of arguments, the establishment of generalizations, or the use of nota-
tion, language, and tools for reasoning about functions. All of these experiences are
critical components of the kind of classroom culture that makes functional thinking
viable when it does occur.

Conclusion

This chapter elaborates the position that elementary school children are capable of
functional thinking and that its study in the elementary grades can affect their suc-
cess in mathematics in later grades. We propose that elementary grades mathematics
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extend beyond the fairly common, initial focus on recursive patterning to include
curriculum and instruction that deliberately attends to how two or more quantities
vary in relation to each other and that begins to scaffold these notions from the start
of formal schooling. Because there is a fundamental conceptual shift that must oc-
cur in how teachers and students attend to data in recursive patterning as opposed
to covariational or correspondence relationships, we speculate that the emphasis on
recursive patterning that does occur in the early elementary grades curricula, could,
if taught in isolation, impede the development of covariational and correspondence
thinking about functions in later grades.

Children’s capacity for functional thinking raises the issue of how it might be
nurtured by curriculum and instruction in the elementary grades. We advocate here
a habit of mind, not just curricular materials, whereby teachers understand both how
to transform and extend their current resources so that the mostly arithmetic content
of the elementary grades can be extended to opportunities for pattern building, con-
jecturing, generalizing, and justifying mathematical relationships and how to embed
this mathematics within the kinds of socio-mathematical norms that allow children
to build mathematical generality. Generalizing is a human activity and an innate,
natural capacity that young children bring to the classroom (Mason 2008). Curricu-
lum and instruction should build on these natural abilities to provide a deeper, more
compelling mathematical experience for young children.
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