
Chapter 2
Hyperbolic Numbers

Abstract Complex numbers can be considered as a two components quantity, as
the plane vectors. Following Gauss complex numbers are also used for repre-
senting vectors in Euclidean plane. As a difference with vectors the multiplication
of two complex numbers is yet a complex number. By means of this property
complex numbers can be generalized and hyperbolic numbers that have properties
corresponding to Lorentz group of two-dimensional Special Relativity are
introduced.
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Complex numbers represent one of the most intriguing and emblematic discoveries
in the history of science. Even if they were introduced for an important but
restricted mathematical purpose, they came into prominence in many branches of
mathematics and applied sciences. This association with applied sciences gener-
ated a synergistic effect: applied sciences gave relevance to complex numbers and
complex numbers allowed formalizing practical problems. A similar effect can be
found today in the ‘‘system of hyperbolic numbers’’, which has acquired the
meaning and importance as the Mathematics of Special Relativity, as shown in this
book.

Let us recall some points from the history of complex numbers and their
generalization.

Complex numbers are today introduced with the purpose of extending the field
of real numbers and for having always two solutions for the second degree
equations and, as an important applicative example, we recall the Gauss Funda-
mental theorem of algebra stating that ‘‘all the algebraic equations of degree N has
N real or imaginary roots’’. Further Gauss has shown that complex and real
numbers are adequate for obtaining all the solutions for any degree equation.

Coming back to complex numbers we now recall how their introduction has a
practical reason. Actually they were introduced in the 16th century for solving a
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mathematical paradox: to give a sense to the real solutions of cubic equations that
appear as the sum of square roots of negative quantities (see Sect. 2.6.1). Really
the goal of mathematical equations was to solve practical problems, in particular
geometrical problems, and if the solutions were square roots of negative quantities,
as can happen for the second degree equations, it simply meant that the problem
does not have solutions. Therefore it was unexplainable that the real solutions of a
problem were given by some ‘‘imaginary quantities’’ as the square roots of neg-
ative numbers.

Their introduction was thorny and the square roots of negative quantities are
still called imaginary numbers and contain the symbol ‘‘i’’ which satisfies the
relation i2 ¼ �1. Complex numbers are those given by the symbolic sum of one
real and one imaginary number z ¼ xþ iy. This sum is a symbolic one because it
does not represent the usual sum of ‘‘homogeneous quantities’’, rather a ‘‘two
components quantity’’ written as z ¼ 1xþ iy, where 1 and i identify the two
components.

Today we know another two-component quantity: the plane vector, which we
write v ¼ ixþ jy, where i and j represent two unit vectors indicating the coordi-
nate axes in a Cartesian representation. Despite there being no a priori indication
that a complex number could represent a vector on a Cartesian plane, complex
numbers were the first representation of two-component quantities on a Cartesian
(or Gauss–Argand) plane (see Fig. 2.1), and they are also used for representing
vectors in a Euclidean Cartesian plane.

Now we can ask: what are the reasons that allow complex numbers to represent
plane vectors? The answer to this question has allowed us to formalizing the
geometry and trigonometry of Special Relativity space–time.

2.1 The Geometry Associated with Complex Numbers

Let us now recall the properties that allow us to use complex numbers for
representing plane vectors. The first property derives from the invariant of
complex numbers the modulus, indicated with jzj, and given by jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ iyÞðx� iyÞ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

.
An important property of the modulus is: given two complex numbers z1; z2,

we have jz1 � z2j ¼ jz1j � jz2j.
If we represent the complex number xþ iy as a point P � ðx; yÞ of the Gauss–

Argand plane (Fig. 2.1), the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

represents the distance of P from
the coordinates origin. This quantity is invariant with respect to translations and
rotations of the coordinate axes. Now if in z ¼ xþ iy, we give to 1 and i the same
meaning of i; j in the vectors representation, jzj is the modulus of the vector.

In addition another relevant property allows complex numbers representing
plane vectors and the related linear algebra. Actually let us consider the product of
a complex constant, a ¼ ar þ iai by a complex number:
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z1 � x1 þ iy1 ¼ az � ðar þ iaiÞðxþ iyÞ: ð2:1Þ

By considering another constant b ¼ br þ ibi, we have z2 ¼ bz1 � baz � cz. Since
c, i.e., the result of product between a and b is yet a complex constant, the product
of z for a complex constant is a group (see Appendix A.4), called multiplicative
group [1, Chap. 3]. Now we note that (2.1), is equivalent to the expression of linear
algebra

x1

y1

� �

¼ ar �ai

ai ar

� �

x
y

� �

: ð2:2Þ

Fig. 2.1 Gauss representation of complex numbers. The square roots of negative numbers are
called ‘‘imaginary’’ and are preceded by the symbol ‘‘i’’, which satisfies the relation i2 ¼ �1. The
expressions z ¼ xþ iy, given by the symbolic sum of a real and an imaginary number are called
complex numbers. We call this sum ‘‘symbolic’’ since it does not represent the usual sum between
homogeneous quantities, rather it is a ‘‘two component quantity’’, written as: z ¼ 1xþ iy, where
1 and i identify the two components. Gauss represented these numbers on a Cartesian plane x; y,
associating with the complex number the point P with abscissa x and ordinate y. This ‘‘strange
representation’’ can derive from the fact that probably Gauss noted that the product between
z ¼ xþ iy and the particular number, called the complex conjugate �z ¼ x� iy is the real number
given by z � �z ¼ ðxþ iyÞðx� iyÞ ¼ x2 þ y2, that also represent the Euclidean distance of P from
the coordinate origin. The square root of this quantity, written as jzj, is called the modulus and is
characteristic of the complex number. The modulus satisfies the relation: given two complex
numbers z1; z2, we have jz1 � z2j ¼ jz1j � jz2j, from which another link with Euclidean geometry
follows. Actually let us consider the complex constant a ¼ cos /a þ i sin /a, that can be written
(2.4) as a ¼ ei/a , therefore jaj ¼ ei/a � e�i/a ¼ 1. By considering the product z1 ¼ az, we have
jz1j ¼ jajjzj ¼ jzj. This transformation preserves the modulus. Developing the transformation
we have: x1 þ iy1 ¼ ðcos /a þ i sin /aÞðxþ iyÞ ¼ x cos /a � y sin /a þ iðx sin /a þ y cos /aÞ.
Making equal the real and the imaginary terms, we obtain the relations between the coordinates
of the point P after the rotation of the segment OP around the axes origin O of an angle /a. These
same expressions represent the transformation of the coordinates of a point in the Cartesian plane,
when the reference axes are rotated by the angle �/a. We also have i ¼ exp½ip=2�, then the axes
x and y are, automatically orthogonal. These properties show an ‘‘unimaginable’’ correspondence
between complex numbers and Euclidean geometry
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In particular, the complex number plays the role of both a vector and an operator
(matrix). Actually, the constant a is written in matrix form (like the operators in
linear algebra), while z is represented as a column vector.

Now we look for the geometrical meaning of this multiplicative group,
beginning with a different representation of complex numbers that starts from the
famous Euler formula

exp½i/� ¼ cos /þ i sin /: ð2:3Þ

This formula is very important for the following of the book and for this reason we
think advisable to recall its first demonstration given by Euler. Actually Euler
applied to a complex quantity the series development that is true for the real
exponential function and realizes that the real and imaginary terms correspond to
the series expansion of cosine and sine functions:

exp½i/� ¼
X

1

l¼0

ði/Þl

l!
¼
X

1

l¼0

ði/Þ2l

ð2lÞ! þ
X

1

l¼0

ði/Þ2lþ1

ð2lþ 1Þ!

¼
X

1

l¼0

ð�1Þl ð/Þ
2l

ð2lÞ! þ i
X

1

l¼0

ð�1Þl ð/Þ
2lþ1

ð2lþ 1Þ! ¼ cos /þ i sin /: ð2:4Þ

Actually, in Euler’s time the theory of power series was not sufficiently developed.
Therefore it was not known that the displacement of terms, necessary for bringing
together the real and imaginary terms, is possible only for absolutely convergent
series, a property that the series (2.4) holds. Therefore his procedure is today
considered mathematically correct. From (2.4) it follows

exp½�i/� ¼ cos /� i sin /: ð2:5Þ

By multiplying (2.3) � (2.5) we obtain, in an algebraic way, the well known
trigonometric relation

1 � exp½i/� � exp½�i/� � ðcos /þ i sin /Þðcos /� i sin /Þ
¼ cos2 /þ sin2 /:

ð2:6Þ

Summing and subtracting (2.4) and (2.5) we obtain a formal relation between the
trigonometric functions and the exponential of an imaginary quantity

cos / ¼ exp½i/� þ exp½�i/�
2

; sin / ¼ exp½i/� � exp½�i/�
2i

: ð2:7Þ

We have called (2.7) a formal relations since we cannot give a meaning to the
exponential of an imaginary quantity. In any case we see in the following its
extension and its relevance.

The introduction of the exponential function of imaginary quantities allows us
to introduce the exponential transformation
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xþ iy ¼ exp½q0 þ i/� � exp½q0�ðcos /þ i sin /Þ; ð2:8Þ

and setting exp½q0� ¼ q we obtain the polar transformation

xþ iy ¼ q exp½i/� � qðcos /þ i sin /Þ: ð2:9Þ

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

¼ jzj is called radial coordinate, and / ¼ tan�1½y=x�angular
coordinate. If we write the constant a of (2.1) in polar form,

a � ðar þ iaiÞ ¼ qaðcos /a þ i sin /aÞ;

where qa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
r þ a2

i

p

; /a ¼ tan�1½ai=ar�, (2.2) becomes

x1

y1

� �

¼ qa
cos /a � sin /a

sin /a cos /a

� �

x
y

� �

� qa
x cos /a � y sin /a

x sin /a þ y cos /a

� �

: ð2:10Þ

We see that the constant a plays the role of an operator representing a homoge-
neous dilatation qa (homothety) and the transformation for the coordinates of a
point P in a rotation, of an angle /a, around the coordinates origin. Or, changing
/a ! �/a, for an orthogonal-axis rotation.

If qa ¼ 1, and if we add another constant b ¼ br þ ibi, then z1 ¼ azþ b gives
the permissible vector transformations in a Euclidean plane. For these transfor-
mations we have jz1j ¼ jajjzj ¼ jzj, i.e., the modulus of complex numbers or
vectors (or the length of a segment) is invariant.

Then, the additive and unitary multiplicative groups of complex numbers are
equivalent to the Euclidean groups of rotations and translations, which depends on
the three parameters /a; br; bi and, as shown in Fig. 2.1, complex numbers can be
used for describing plane-vector algebra. Now we can ask if other systems of
numbers have similar properties. For inquiring into this possibility we begin by
comparing the algebraic properties of sum and product for complex numbers with
the ones of plane vectors:

As the sum is concerned it is defined in the same way, for both complex
numbers and vectors, as the sum of the components, i.e., given the complex
numbers z1 ¼ x1 þ iy1 and z2 ¼ x2 þ iy2, we have

z1 þ z2 ¼ ðx1 þ x2Þ þ iðy1 þ y2Þ:

In the definition of the product there is a relevant difference:

1. the product between two complex numbers is the same as for real numbers just
by adding the rule i2 ¼ �1: we have z1z2 � ðx1 þ iy1Þðx2 þ iy2Þ ¼ x1x2 �
y1y2 þ iðx1y2 þ x2y1Þ: Therefore the product of two complex numbers is yet a
complex number.

2. As the plane vectors are concerned, their product is not a vector but rather it is a
new quantities derived from physics. In particular the scalar and the vector
products are defined.
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So we can summarize: the product between vectors is a new quantity while the
product between complex numbers is yet a complex number: complex numbers are
a group also with respect to the product operation.

Now we recall how this property allows us to generalize the complex numbers
[2]. This research for generalization can look as opposed to Gauss theorem that
stated it is not necessary the introduction of new number systems more than real
and complex numbers, but Gauss referred to solutions of algebraic equations that
was the purpose of the introduction of complex numbers. Differently we are now
looking for new uses of complex numbers, anyway we see that these systems are
related with the kind of roots of the second degree equations.

2.2 Generalization of Complex Numbers

Let us consider a two components quantity written as the complex numbers
z1 ¼ x1 þ uy1 and z2 ¼ x2 þ uy2, where u represents a general versor1 for which
we have not, a priori, defined the multiplication rule, i.e., the meaning of u2 and, as
a consequence, of all the powers of u. For the product we have

z3 � z1z2 � ðx1 þ uy1Þðx2 þ uy2Þ ¼ x1x2 þ uðx1y2 þ x2y1Þ þ u2y1y2; ð2:11Þ

we say that z is a generalized complex numbers, if the result of this multiplication
is a number of the same kind

z3 ¼ q1ðx1; x2; y1; y2Þ þ uq2ðx1; x2; y1; y2Þ; ð2:12Þ

where q1; q2 are quadratic forms as function of the components.
We obtain this result setting u2 as a linear combination of 1 and of the versor u:

u2 ¼ aþ ub; a; b 2 R [4]. Actually with this position (2.11) becomes

z3 ¼ x1x2 þ ay1y2 þ uðx1y2 þ x2y1 þ by1y2Þ ð2:13Þ

In this way the generalized complex numbers are a group with respect to the
product. These numbers are also indicated by

fz ¼ xþ uy; u2 ¼ aþ ub; x; y; a; b 2 R; u 62 Rg; ð2:14Þ

1 The name versor has been firstly introduced by Hamilton for the unitary vectors of his
quaternions [3]. This name derives from the property of the imaginary unity ‘‘i’’ since, as can be
seen from Euler formulas, multiplying by ‘‘i’’ is equivalent to ‘‘rotate’’, in a Cartesian
representation, the complex number of p=2. Since this property also holds for the hyperbolic
numbers that we are going to introduce, we use this name that also states the difference with the
unitary vectors of linear algebra.
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In the theory of hypercomplex numbers [1, Chap. 2], the constants a; b are called
structure constants and, as we see in this two-dimensional example, from their
values derive the properties of the three systems of two-dimensional numbers.

It is known that complex numbers are considered as an extension of real
numbers, as regarding the division. Actually as for real numbers it is ever possible
except for the null element x ¼ 0; y ¼ 0. Now we see how the general complex
numbers can be classified by means of their property about the division.

Actually for the division, given a number aþ ub, one has to look for a number
z ¼ xþ uy such that

ðaþ ubÞðxþ uyÞ ¼ 1: ð2:15Þ

If (2.15) is satisfied, the inverse z of aþ ub exists and we can divide any number
by aþ ub, by multiplying it by z. Thanks to the multiplication rule (2.14), (2.15) is
equivalent to the real system obtained by equating the coefficients of the versors 1
and u

axþ aby ¼ 1;

bxþ ðaþ bbÞy ¼ 0;
ð2:16Þ

As it is known from the theory of linear systems, (2.16) has a solution if the
determinant of the coefficients, given by

D ¼ a2 þ bab� ab2 � aþ b
2

b

� �2

� aþ b2

4

� �

b2; ð2:17Þ

is different from zero. Actually if D ¼ 0 the associated homogeneous system
axþ aby ¼ 0; bxþ ðaþ bbÞy ¼ 0 admits non-null solutions. These numbers for
which the product between two non-null numbers aþ ub and xþ uy, is zero are
called divisors of zero [1, Chap. 2]. The origin of this name derives from the
exposed considerations: actually, for these numbers we can formally write

aþ ub ¼ 0
xþ uy

;

therefore dividing zero for xþ uy we obtain the finite quantity aþ ub.
For studying this property (2.17), in the last passage, has been divided into two

terms: now we inquire into the second one, by setting

D ¼ b2 þ 4a ð2:18Þ
we see that the sign of the real quantity D determines the possibility of executing
the division between two numbers. Actually, let us consider in the ðb; aÞ plane the
parabola, obtained by setting D ¼ 0

a ¼ �b2=4; ð2:19Þ

that divides the plane into three regions (see Fig. 2.2). In these regions we have
D [ 0;D ¼ 0;D\0.
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The position of a point P � ðb; aÞ with respect to parabola, determines three
types of systems and we have

Theorem 2.1 We can classify the general two-dimensional numbers into three
classes according to the position of point P � ðb; aÞwith respect to parabola (2.19).

The numbers of the same type have also in common:

1. the characteristic property of the modulus, i.e., the definition of distance that
relates the system of numbers with a geometry;

2. the topological properties of the representative plane.

Fig. 2.2 The three types of two-dimensional algebras. Complex numbers can be considered as a
two components quantity and are used to representing plane vectors. On the other hand, together
with this correspondence (Sect. 2.1) there is a relevant difference between complex numbers and
vectors: the definition of the product. Actually for complex numbers, just adding the rule i2 ¼ �1, it
is an extension of the product between real numbers, i.e., the result is a complex number. As the
vectors are concerned, their product is not a vector but a new quantity introduced from physics. In
particular the scalar product and the vector product are defined. With respect to multiplication
complex numbers are a group, vectors are not. Thanks to this property complex numbers can be
generalized and two other two-dimensional systems of numbers are introduced [4, 5]. Actually let
us consider a two-components quantity we write as the complex numbers: z ¼ xþ uy, where u
represents a generic versor. If we request that the product between two numbers z1 and z2 is a
number of the same kind, i.e., z is a multiplicative group, u2 must be defined as a linear combination
of the versors 1 and u of the number z, i.e., we must set u2 ¼ aþ ub; a; b 2 R (Sect. 2.2). The values
of a; b determine the properties of the system of numbers. In particular, by considering in the ðb; aÞ
plane the parabola a ¼ �b2=4: the position of the point P � ðb; aÞ with respect to parabola,
determines if the division, except for x ¼ y ¼ 0, is possible. This property allows us to classify the
two-dimensional numbers into three types: (I) Inside the parabola ðD\0Þ we call these systems
elliptic numbers. In particular for b ¼ 0; a ¼ �1 we have the complex numbers. The division is
ever possible. (II) On the parabola ðD ¼ 0Þ, we call these systems parabolic numbers. The
division is not possible for the numbers 2xþ by ¼ 0. (III) Outside the parabola ðD[ 0Þ, we call
these systems hyperbolic numbers. The division is not possible for the numbers 2xþ
ðb� 2

ffiffiffiffi

D
p
Þy ¼ 0. All these three systems have a geometrical or physical relevance. Actually

complex numbers can represent Euclidean geometry, the group of parabolic numbers is equivalent
to Galileo’s group of classical dynamics [6] and hyperbolic numbers, as we at length see in this
book, represent the Lorentz’s group of Special Relativity
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Proof By referring to Fig. 2.2, we have

1. If P 2 ðIÞ;D\0 and D, as the sum of two squares, is never negative and it is
equal to 0 just for a ¼ b ¼ 0. Therefore any non-null element has an inverse
and, as a consequence, division is possible for any non-null number. These
systems are called elliptic numbers.

2. If P is on the parabola, D ¼ ðaþ bb=2Þ2 is zero if a; b are on the straight line
aþ bb=2 ¼ 0. Each of them admits divisors of zero satisfying xþ ðb=2Þy ¼ 0.
Division is possible for all the other numbers. These systems are called par-
abolic numbers.

3. If P 2 ðIIIÞ, the system (2.16) has solutions for a; b on the straight lines

aþ ðb�
ffiffiffiffi

D
p
Þb=2 ¼ 0. Each of them admits divisors of zero satisfying

xþ ðb�
ffiffiffiffi

D
p
Þ=2y ¼ 0. Division is possible for all the other numbers.

These systems are called hyperbolic numbers.
The divisor of zero determines the topology of the representative plane: this
plane is divided in four sectors. h

We can say that the types of the general two-dimensional systems derive from
the kinds of solutions of the second degree equation (2.17) in a=b, obtained by
setting D ¼ 0.

Let us now see the derivation of the nouns for the systems. Actually, let us
consider the conic with equation

x2 þ bxy� ay2 ¼ 0; ð2:20Þ

obtained from (2.17), by considering a; b as variables in Cartesian plane.
According to whether D � b2 þ 4a is \0; ¼0; [0, the curve is an ellipse, a
parabola or a hyperbola. This is the reason for the names used for the three types of
the general two-dimensional numbers. For the three cases, we define the canonical
systems by setting b ¼ 0 and

1. a � u2 ¼ �1. This is the case of the ordinary complex numbers. For these
numbers we set, as usual u) i.

2. a � u2 ¼ 0.
3. a � u2 ¼ 1. This system is related to the pseudo-Euclidean (space–time)

geometry, as we see in this book. For this system we set u) h. In this case the
divisors of zero satisfy y ¼ �x. In a Cartesian representation they are repre-
sented by the axes bisectors.

One can verify that any system can be obtained, from its canonical system, by a
linear transformation of the versors (with the inverse transformation for the
variables), i.e., it is isomorphic to the canonical system.
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2.2.1 Definition of the Modulus

We note that the left-hand side of (2.20), for b ¼ 0; a ¼ �1 represents the squared
modulus of complex numbers, i.e., the real and invariant quantity obtained by
multiplying z � �z. Now we see how this quantity can be defined for a generic
algebra. Actually looking at the last term of (2.17), we note that it can be written as

D ¼ 4aþ b2 � ð2u� bÞ2: in this way D is the difference between two squared
terms and can be written as the product of two linear terms that by substituting
a; b) x; y becomes ðxþ uyÞðxþ by� uyÞ 2 <. Therefore for the generic algebra
we define the number �z ¼ xþ ðb� uÞy, that multiplied for xþ uygives a real
quantity, as the complex conjugate of z ¼ xþ uy.

We conclude this generalization of complex numbers by recalling the definition
of [5, p. 11]2: C The fact that the most general complex numbers can be added,
subtracted and multiplied, all the usual laws of these operations being conserved,
but that it is not always possible divide one by another, is expressed by saying that
such numbers form a ring. B

The representation of Euclidean geometry by means of complex numbers and
the equivalence, from the algebraic point of view, between complex and hyper-
bolic numbers let us suppose that also the hyperbolic numbers, can be associated
with a geometry. Now we see that their geometry is the one of special relativity.

2.3 Lorentz Transformations and Space–Time Geometry

We briefly recall how Lorentz transformations of Special Relativity were
established.

For some decades, at the end of 19th century the Newton dynamics and
gravitational theory together with Maxwell equations of electro-magnetic field
were considered adequate for a complete description of physical world: the
mechanics and gravitation law formalize the motions on the Earth and of celestial
bodies, Maxwell equations, besides the technical and scientific relevance, also
explain the light propagation.

Actually these two theories and the effort to put them in a same logical frame,
brought about the starting ideas for the ‘‘scientific revolutions’’ of 20th century,
that are today considered very far of being concluded.

We begin by setting out their different mathematical nature and the role the
time holds.

1. The Newton dynamics equations give the bodies positions as functions of time.
The time acts as a parameter.

2 We use C. . .B to identify material that reports the original author’s words or is a literal
translation.
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2. The Maxwell equations allow us to calculate the electric and magnetic fields,
from static and moving charges. These fields depend in an equivalent way on
space coordinates and time.

From a mathematical point of view the Newton equations are ordinary differ-
ential equations, Maxwell equations are a partial differential system.

Moreover besides these mathematical differences there were theoretical con-
siderations and experimental results, as the Michelson and Morley experiment, that
we directly recall, that stated that Newton and Maxwell equations are not equiv-
alent also for a physical point of view.

The result of this debate was that Poincaré and Einstein, in the same year
(1905), looked for the variable transformations that leaved the same expressions of
Maxwell equations when one considers two reference systems in uniform relative
motion. This requirement is the same as the invariance of Newton dynamics
equations with respect to Galileo’s group.

Both the scientists obtained the today known Lorentz transformations of special
relativity.

Since Maxwell equations depend in an equivalent way from both time and
space variables, also the transformations depend in an equivalent way on these
variables.

For practical purposes the Lorentz transformations, notwithstanding can be
considered as elementary from a mathematical point of view, have represented, for
the connexion between space and time, a ‘‘revolution’’ with respect to settled
philosophical concepts about ‘‘time’’.

The Poincaré and Einstein works reflect their professionalism and their inter-
pretation of the results are complementary:

• Poincaré, one of the most important and encyclopedic mathematician at the turn
of the century, associated these transformations with group theory (today known
as Lorentz–Poincaré’s group).

• Einstein, young physicist, had the cheek to extend the transformation laws
relating space with time, obtained for Maxwell equations, to dynamics equa-
tions. This extension, together with the paper about photoelectric effect pub-
lished by Einstein in the same year, was the basis for the most important
scientific results of 20th century. Actually the results of both these works entail
the equivalence between waves and corpuscles.

Now we briefly recall Einstein’s formulation, who gives to the obtained
transformations the physical meaning today accepted, in particular the extension to
Newton dynamics of the obtained relation between space and time.

Einstein was able to obtain in a straightforward way and by means of ele-
mentary mathematics the today named Lorentz transformations, starting from the
two postulates

1. all inertial reference frames must be equivalent
2. light’s velocity is constant in all inertial systems.

2.3 Lorentz Transformations and Space–Time Geometry 13



The first postulate is the same stated by Galileo and applied to the laws of
dynamics, that starts from the principle that by means of physical experiments we
cannot detect the state of relative uniform motion.

The second one takes into account the results of experiments carried out by
Michelson and Morley. These experiments have shown that the speed of the light
is the same in all inertial systems and is independent of the direction of the motion
of the reference frame relative to the ray of light. Actually also this experimental
result, in contrast with the traditional physics, stimulated the search for new the-
ories which could explain it.

For the formalization of the problem let us consider a reference system ðt; xÞ
and another ðt1; x1Þ in motion with constant speed v1 with respect to the first one.
In this description t represents the time multiplied by light’s velocity (c = 1) and
v1 the speed divided by c. The obtained transformations are

x1 ¼
xþ v1t
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
1

p ; t1 ¼
v1xþ t
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
1

p : ð2:21Þ

From these equations we note two relevant differences with respect to classical
dynamics

1. both the length x and the time t depend on the speed of the reference frame in
which are measured,

2. the square root of the quantity t2 � x2 ¼ t2
1 � x2

1 is invariant and is called
proper time.

The dependence of time on the speed of the reference system originated the
‘‘twin paradox’’. This problem is exhaustively formalized in Chap. 6.

Now let us consider a third system ðt2; x2Þ in motion with speed v2, with respect
to system ðt1; x1Þ. The transformation equations from the first system and this one
are again (2.21) with the substitution v1 ! vT where vT is given by

vT ¼
v1 � v2

1� v1v2
; ð2:22Þ

where the þ and � signs refer if v1 and v2 have the same or different directions.
Therefore, as recalled in Appendix A.4, the relations (2.21) represent a group,
i.e., two repeated transformations have the same expression as (2.21) with a
speed vT that is a function of the speeds (parameters) of the component trans-
formations. From (2.22) it follows that if v1 or v2 are equal to 1 (one reference
system have the speed of the light), we have vT ¼ 1. The light’s velocity is a
limiting speed.

Therefore a line in the t; x plane can represent the motion of a body only if the
tangent lines have an angular coefficient dx=dt � v\1. These curves (or lines) are
called time-like. In a similar way the lines that have an angular coefficient dx=dt �
v [ 1 are called space-like and if dx=dt � v ¼ 1 are called light-like.
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From the considerations of Appendix A it follows:
we can introduce a geometry that, with respect to the distance of Euclidean

geometry, has as invariant the square root of the quantity t2 � x2, i.e., the proper
time.

For this geometry the transformations (2.21) represent the motions.
This geometry is called pseudo-Euclidean or Minkowskian geometry.

2.4 The Geometry Associated with Hyperbolic Numbers

Let us now apply to hyperbolic numbers the same considerations that allow one to
associate complex numbers with Euclidean geometry. Let us consider the system
of hyperbolic numbers defined as

fz ¼ xþ h y; h2 ¼ 1; x; y 2 R; h 62 Rg:

As for complex numbers, we call ~z ¼ x� h y the hyperbolic conjugate3 and

define the modulus as jzj ¼
ffiffiffiffiffiffiffiffi

jz~zj
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jx2 � y2j
p

. Therefore, by giving to one
variable the physical meaning of time, the modulus can be recognized as the
invariant of the two-dimensional special relativity (proper time). Now we see that
hyperbolic geometry is equivalent with the ‘‘geometry of special relativity’’. Let us
now see its properties (Fig. 2.3).

As for complex numbers, given two hyperbolic numbers, z1; z2, we have
jz1 � z2j ¼ jz1j � jz2j.

Let us now consider the multiplicative group given by the product of z for a
hyperbolic constant

z1 ¼ az � ðar þ hahÞðxþ h yÞ; ð2:23Þ
this group can be expressed in vector–matrix form by

x1

y1

� �

¼ ar ah

ah ar

� �

x
y

� �

: ð2:24Þ

This result is the same as (2.2): the multiplicative constant is an operator that acts
on the vector ðx; yÞ.

As for complex numbers we can introduce the Hyperbolic exponential
function and hyperbolic polar transformation.

In hyperbolic geometry these transformations play the same important role as the
corresponding complex ones in Euclidean geometry. In [1, Chap. 7] the functions of
a hyperbolic variable are introduced and analogies and differences with respect to
functions of a complex variable are pointed out. Here we define the exponential
function of a hyperbolic number following the method that Euler used for intro-
ducing the complex exponential with his famous formula (2.3). Actually going on as

3 Here and in the following we use the symbol ~: for indicating the hyperbolic conjugate.
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for (2.4), taking into account that the even powers of h are equal to 1 and the odd
powers to h, we can recognize that the real and hyperbolic parts of the series
developments correspond to the hyperbolic trigonometric functions, and we have

exp½h h� ¼
X

1

l¼0

ðh hÞl

l!
¼
X

1

l¼0

ðh hÞ2l

ð2lÞ! þ
X

1

l¼0

ðh hÞ2lþ1

ð2lþ 1Þ!

¼
X

1

l¼0

ðhÞ2l

ð2lÞ! þ h
X

1

l¼0

ðhÞ2lþ1

ð2lþ 1Þ! ¼ cosh hþ h sinh h:

ð2:25Þ

Fig. 2.3 Geometry in pseudo-Euclidean plane The Euclidean geometry is defined by the
invariance of geometrical figures with respect to their rotations and translations. Or, in a
Cartesian representation, with respect to the reference axes rotations. These same two criterion
can be applied to Lorentz transformations of special relativity. Following the Newton dynamics,
the motion of a body is represented in a Cartesian reference frame x; y, by a curve expressed as
function of a parameter t, to which we can give the physical meaning of time. From special
relativity, formalized by (2.21), the ‘‘time’’ is ‘‘equivalent’’ to space then, in a representation on a
plane, one reference axis must represent the time. Therefore, in this plane, a curve x ¼ xðtÞ
represents the motion of a body. In particular a straight line x ¼ bt; b\1 represents a uniform
motion. As we do for Euclidean geometry, represented in a Cartesian plane (Fig. 2.1), we can
consider a second reference frame t1; x1 for which the relation between the old and new variables,
corresponding to the Euclidean (2.10), is given by (2.21). In this transformation, as it has been
shown for the first time by Minkowski after whom the space–time geometry is named, the
transformed axes are not yet orthogonal. As it is shown in the figure, they go in a symmetric way
toward the axes bisector (b) t ¼ x. As we see in Fig. 3.2 these axes are yet ‘‘orthogonal in the
hyperbolic geometry’’. Minkowski, by means of this geometrical representation, studied the
dependence of t1; x1 on the body’s velocity. The second possibility is the one studied in this book,
i.e., to stay in a representative Cartesian plane by applying in this plane the geometry that leaves
as invariant the ‘‘space–time’’ distance. We observe that while the axes rotation allow us to study
just the uniform motions, represented by (2.21), this second approach allows us to quantify the
‘‘relativistic effect’’ for every motion. Actually for all the lines in t; x plane that represent a
motion ðb\1Þ, its ‘‘relativistic length’’ is the proper time. These lengths can be evaluated for all
the lines and then the differences or the ratios between the respective proper times. In particular
(see Chap. 6) for uniform and uniformly accelerated motions, and all their compositions, these
calculations are performed by elementary methods (Figs. 6.1–6.5); for a general motion by means
of differential geometry (Fig. 6.6.)
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In particular cosh h ¼ 1þ even powers, then cosh h[ 1.
By means of exponential function we introduce the exponential transformation

z � xþ h y ¼ exp½q0 þ h h� � exp½q0�ðcosh hþ h sinh hÞ; ð2:26Þ

and setting 0\ exp½q0� ¼ q we obtain the hyperbolic polar transformation

z � xþ h y ¼ q exp½h h� � qðcosh hþ h sinh hÞ: ð2:27Þ

Where, as for complex numbers, q is called radial coordinate, and h is called
angular coordinate.

By comparing the real and the hyperbolic parts we can obtain, as for the polar

transformation q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2
p

� jzj and h ¼ tanh�1ðy=xÞ. From (2.27) we have

~z � x� h y ¼ q exp½�h h� � qðcosh h� h sinh hÞ: ð2:28Þ

Setting q ¼ 1 and multiplying (2.27) by (2.28) we obtain the relevant relations
between the hyperbolic trigonometric functions

1 � exp½h h� � exp½�h h� � ðcosh hþ h sinh hÞðcosh h� h sinh hÞ
¼ cosh2 h� sinh2 h:

ð2:29Þ

From this relation and the previous one ðcosh h[ 1Þ, it follows cosh h [ sinh h,
therefore the polar representation (2.27) holds for x [ y; x [ 0. In Chap. 3 we see
how it is possible to extend it for representing points in the whole x; y plane.

Let us come back to the multiplicative groups (2.23) and, as for complex
numbers, let us write the constant

a � ar þ h ah ¼ qaðcosh ha þ h sinh haÞ ð2:30Þ

in hyperbolic polar form, (2.24) becomes

x1

y1

� �

¼ qa
cosh ha sinh ha

sinh ha cosh ha

� �

x
y

� �

� qa
x cosh ha þ y sinh ha

x sinh ha þ y cosh ha

� �

: ð2:31Þ

By considering, as for complex numbers, the transformation with qa ¼ 1 the
modulus, i.e., the square root of the quantity ðx2 � y2Þ, equivalent to proper time,
is invariant. These transformations shall be called hyperbolic rotations and, we
are going to see, they represent the Lorentz transformations of Special
Relativity.
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2.4.1 Hyperbolic Rotations as Lorentz Transformations

Let us write a space–time vector as a hyperbolic variable,4w ¼ t þ h x and con-
sider a unitary hyperbolic constant a ¼ ar þ h ah; a2

r � a2
h ¼ 1. If we give to the

components of constant a the physical meaning given to the variables, ar corre-
sponds to time and ah to a space variable. Therefore ah=ar � x=t has the meaning
of a velocity v. If a represents a physical motion ðv\1Þ, it must be ar [ ah (with
this position a is a time-like constant). Setting a in polar form (2.30), we have

ar þ h ah � exp½h ha� � cosh ha þ h sinh ha

where ha ¼ tanh�1½ah=ar� � tanh�1½v�:
ð2:32Þ

Transformation (2.31) becomes

t1 þ h x1 ¼ t cosh ha þ x sinh ha þ hðt sinh ha þ x cosh haÞ: ð2:33Þ

By considering as equal the coefficients of versors ‘‘1’’ and ‘‘h’’, as we do in
complex analysis, we get the Lorentz transformation of two-dimensional special
relativity [7]. Actually, from the second of (2.32) we have tanh ha ¼ v, and, by
means of the relation (2.29), we have

sinh ha ¼
v
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p ; cosh ha ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p : ð2:34Þ

These relations allow us to verify that (2.33) are the same as (2.21).
In addition the composition (2.22) of speeds of two motions is given by the sum

of the hyperbolic angles corresponding to the two speeds (see 4.24).
We also have

Theorem 2.2 The Lorentz transformation is equivalent to a ‘‘hyperbolic
rotation’’.

Proof By writing the hyperbolic variable t þ h x in exponential form (2.26)

t þ h x ¼ q exp½h h�;

the Lorentz transformation (2.33), becomes

t1 þ h x1 ¼ aðt þ h xÞ � q exp½hðhþ haÞ�: ð2:35Þ

From this expression we see that the Lorentz transformation is equivalent to a
‘‘hyperbolic rotation’’ of the angle ha, of the t þ h x variable. h

4 In all the problems which refer to Special Relativity (in particular in Chap. 6) we change the
symbols by indicating the variables with letters reflecting their physical meaning x; y) t; x, i.e.,
t is a normalized time variable (light velocity c ¼ 1) and x a space variable.
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This correspondence allows us to call hyperbolic and pseudo-Euclidean the
representative plane of space–time (Minkowski’s) geometry and trigonometry. We
note that to writing the Lorentz transformations by means of hyperbolic trigono-
metric functions, is normally achieved by following a number of ‘‘formal’’ steps,
i.e., by introducing an ‘‘imaginary’’ time t0 ¼ it which makes the Lorentz invariant
ðx2 � t2Þ equivalent to the Euclidean invariant ðx2 þ y2Þ, and by introducing the
hyperbolic trigonometric functions through their equivalence with circular func-
tions of an imaginary angle. We stress that this procedure is essentially formal,
while the approach based on hyperbolic numbers leads to a direct description of
Lorentz transformation explainable as a result of symmetry (or invariants) pres-
ervation: the Lorentz invariant (space–time ‘‘distance’’) is the invariant of
hyperbolic numbers and the unimodular multiplicative group of hyperbolic num-
bers represents the Lorentz transformations, as the unimodular multiplicative
group of complex numbers represents the rotations in a Euclidean plane.5

Therefore we conclude:
For the description of the physical world the hyperbolic numbers have the

same relevance of complex numbers.
And, following Beltrami (see Sect. A.3), we can say: results that seem

contradictory with respect to Euclidean geometry are compatible with
another geometry as simple and relevant as the Euclidean one.

2.5 Conclusions

The association of hyperbolic numbers with the two-dimensional Lorentz’s group
of Special Relativity makes hyperbolic numbers relevant for physics and stimulate
us to find their application in the same way as complex numbers are applied to
Euclidean plane geometry.

In Chap. 4 we see that it is possible go over with respect to this project.
Actually we show that the link between complex numbers and Euclidean geometry
allow us to formalize, in a Cartesian plane, the trigonometric functions as a direct
consequence of Euclid’s rotation group (Sect. 4.1.1). This result allows us to show
that all the trigonometry theorems can be obtained by an analytical method, as
mathematical identities, instead of the usual method of Euclidean geometry and
trigonometry for which theorems are demonstrated by means of the axiomatic-
deductive method and geometrical observations. Afterward, taking into account
that hyperbolic numbers have the same algebraic properties of complex numbers,
these approaches to Euclidean geometry and trigonometry are extended to the
space–time and, by means of hyperbolic numbers, the theorems are demonstrated

5 Within the limits of our knowledge, the first description of Special Relativity, directly by these
numbers was introduced by I. M. Yaglom [6].
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through an algebraic method that replaces the absence, in space–time plane, of the
intuitive Euclidean observations.

In this way, we obtain the complete formalization of space–time geometry, by
means of the axiomatic-deductive method, starting from experimental axioms, thus
equivalent to Euclid’s geometry construction.

Therefore the problems in Minkowski space–time are solved as we usually do
in the Euclidean Cartesian plane.

2.6 Appendix

2.6.1 Cubic Equation and Introduction of Complex Numbers

All the third degree equations were reduced to

x3 þ pxþ q ¼ 0 ð2:36Þ

by the mathematicians Nicolò Fontana (named Tartaglia) and Girolamo Cardano
(Ars magna, Nurberg, 1545) and they found the solution

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q

2

� �2
þ p

3

� �3
r

3

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q

2

� �2
þ p

3

� �3
r

3

s

: ð2:37Þ

This equation has three real roots if

q

2

� �2
þ p

3

� �3
\0:

This negative quantity appears under a square root, then a paradox grows that the
solution of a geometrical problem is obtained by means of quantity that does not
have a geometrical meaning.

Today we say that these solutions are the sum of two complex conjugate
quantities, therefore the final result is real.

Raffaele Bombelli, at the end of 16th century has introduced (Algebra,
Bologna, 1572), complex numbers for the solution of cubic equations, by for-
mulating, practically in modern form, the four operations with complex numbers
and introducing the expression that today we write aþ ib.6 These numbers have
been called imaginary by Descartes and this name is also the actual one. The way

6 Bombelli writes: C … also if this introduction can appear as an extravagant idea and I
considered it, for some time, as sophistical rather than true, I have found the demonstration that
it works well in the operations. B
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for the modern formalization has required more than two centuries and has been
completed by Euler and Gauss by:

• the introduction of the imaginary unity i,
• to call complex numbers the binomial aþ ib
• to introduce the functions of a complex variable, for relevant physical (Euler: the

motion of fluids) and geometrical (Gauss: conformal mapping) applications.

2.6.2 Geometrical and Classical Definition
of Hyperbolic Angles

2.6.2.1 Geometrical Meaning of Hyperbolic Angle

We have seen that the circular trigonometric functions could be introduced, in a
formal way, by means of Euler’s formula (2.7). In a similar way the hyperbolic
trigonometric functions can be introduced. Actually by summing and subtracting
(2.27) and (2.28) for q ¼ 1 we obtain a formal relation between the hyperbolic
trigonometric functions and exponential function of a hyperbolic quantity

cosh h � x ¼ exp½h h� þ exp½�h h�
2

; sinh h � y ¼ exp½h h� � exp½�h h�
2h

: ð2:38Þ

We can check that also from these relations (2.29) follows. From (2.29) we can
obtain the geometrical interpretation of hyperbolic trigonometric functions.
Actually let us consider in the x; y Cartesian plane, the curve

x ¼ cosh h; y ¼ sinh h; ð2:39Þ

as function of the parameter h.
This curve, taking into account that cosh h [ sinh h and cosh h [ 1 represents

the right arm of the unitary equilateral hyperbola x2 � y2 ¼ 1.
Therefore, by analogy with the circular angles defined on the unitary circle, we

can call h the hyperbolic angle and define cosh h and sinh h as the abscissa and the
ordinate of the hyperbola point defined by h, respectively (see Fig. 2.4).

Now we see another correspondence with the circular trigonometric functions.
Actually we know that trigonometric angles, measured by radiants, are equal to
twice the area of the circular sectors they identify. The same is true for hyperbolic
angles. We have

Theorem 2.3 The hyperbolic angle h is twice the area of the sector OVP
(Fig. 2.4)

Proof The area of the sector OVP is given by the difference between the areas of
triangle OHP and VHP. Therefore, by means of (2.39), we have
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areaðOHPÞ ¼ 1
2

sinh h cosh h ¼ sinh 2h
4

areaðVHPÞ ¼
Z

h

0

y dx �
Z

h

0

sinh2h dh ¼ sinh 2h
4
� h

2

areaðOVPÞ � areaðOHPÞ � areaðVHPÞ ¼ h
2
:

ð2:40Þ

The integral is solved by means of (4.28). h

Now we see how this definition allows one to introduce the classical hyperbolic
trigonometric functions.

2.6.2.2 Classical Definition of Hyperbolic Trigonometric Functions

Let us consider the equation of hyperbola in Cartesian coordinates x2 � y2 �
ðxþ yÞðx� yÞ ¼ 1 that can also be written

Fig. 2.4 Geometrical definition of hyperbolic angles. The trigonometric circular functions are
defined by means of goniometric circle. In a similar way the hyperbolic trigonometric functions
can be defined by means of the unitary equilateral hyperbola. Actually let us consider the right
arm of hyperbola x2 � y2 ¼ 1 and define an angle h corresponding to half-line OP so that
cosh h ¼ OH; sinh h ¼ HP. In Appendix 2.6.2 we see that, as for circular angles measured in
radiants, also to hyperbolic trigonometric angles h we can give the geometrical meaning of an
area h ¼ 2areaðOVPÞ. In Chap. 4, we also see that this area has the same value measured in both
‘‘hyperbolic’’ or ‘‘Euclidean’’ way
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y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

ð2:41Þ

x� y ¼ 1
xþ y

ð2:42Þ

we have

areaðOHPÞ ¼ xy

2
� x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

2
ð2:43Þ

areaðVHPÞ ¼
Z x

1
ydx �

Z x

1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

dx � x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

� lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

Þ
2

� x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

� lnðxþ yÞ
2

ð2:44Þ

areaðOVPÞ � areaðOHPÞ � areaðVHPÞ ¼ lnðxþ yÞ
2

: ð2:45Þ

Comparing (2.40) with (2.45) we have

h ¼ lnðxþ yÞ ) xþ y ¼ exp½h�; ð2:46Þ

and from (2.42)

lnðx� yÞ ¼ � lnðxþ yÞ ) lnðx� yÞ ¼ �h) x� y ¼ exp½�h�: ð2:47Þ

Summing and subtracting (2.46) and (2.47), the classical definition follows

cosh h � x ¼ exp½h� þ exp½�h�
2

; sinh h � y ¼ exp½h� � exp½�h�
2

: ð2:48Þ
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