
Chapter 2
Data Structures

Abstract Programming with R objects and data structures.

Keywords Objects � Data � Indexing � Data manipulation � Missing values

2.1 Data Structures

Data structures store your data, and functions process it. You might think of
functions as actions and data structures as the objects acted upon. You might think
of functions as operators on data structures. A function’s input arguments, and the
object it returns, are data structures.

A data structure is the programmer’s interface to data organised in computer
memory. R provides several kinds of data structure each designed to optimise
some aspect of storage, access, or processing. The five main data structures are
called: vectors, matrices, arrays, data frames, and lists.

2.1.1 Vectors, Matrices, and Arrays

Vectors, matrices, and arrays are all based on a contiguous sequence of cells. They
are designed to enable fast access to a particular layout of data. A vector1 is an
ordered row of cells. A matrix is a rectangular two-dimensional layout of cells like
a grid. An array is a layout of cells that allows more than two dimensions.

1 A vector is the simplest data structure in R. Scalar values are treated as single-cell vectors. A
vector can be thought of either as a row or column since under matrix multiplication in R it is
interpreted in whichever way makes it conformable with the other argument.

M. Allerhand, A Tiny Handbook of R, SpringerBriefs in Statistics,
DOI: 10.1007/978-3-642-17980-8_2, � Springer-Verlag Berlin Heidelberg 2011

11

Each cell contains an item of data. The three main types of data2 in R are called:
‘‘numeric’’, ‘‘character’’, and ‘‘logical’’.

Numeric data includes integers and decimal numbers.3 Character data consists
of strings4 of keyboard characters. Logical data consists of ‘‘truth values’’5 denoted
TRUE and FALSE.

The cells of a vector, matrix, or array must contain the same type of data. For
example a numeric vector must contain numeric data, a character vector must
contain character data, and a logical vector must contain logical data. If you try to
combine data of different types within the same vector, matrix, or array it will
automatically be ‘‘coerced’’6 to one data type.

Numeric vectors are generally used to store continuous data, often as the col-
umns of a data frame. Character vectors are generally used to store names and
labels. Factors (see below) are generally used to store categorical data and
grouping indicators. Logical vectors are generally used during programming
temporarily to store the results of applying some condition to data, which can then
be used programmatically, (see the section on Indexing below).

2.1.2 Data Frames and Lists

Data frames and lists are collections of data structures linked together. They are
designed as general-purpose containers for data.

2 R also provides a ‘‘complex’’ type for complex numbers, and a ‘‘raw’’ type for bits. Cells with
missing values may contain the special value ‘‘Not Available’’ (NA).
3 Sometimes decimal numbers may be printed in exponential form, such as: 1.5e-08. This
notation is used to print very small or very large numbers. The number 1.5e-08 is ‘‘1.5 times
10 to the -8’’, in other words 1.5/100000000.
4 A string is a sequence of one or more keyboard characters, including spaces, and control
characters such as nn (newline) and nt (tab), enclosed within quote marks, (double- or single-
quotes). See help(backquote) for the list of control characters and further information about
quote marks. Each cell of a character vector contains a string. For example: "apple",
"apple", "orange".
5 Logical values are types of data returned by conditional expressions such as 3[2, (TRUE as
3 is greater than 2), and "apple"["orange", (FALSE as "a" is alphabetically less than "o").
TRUE and FALSE can be abbreviated to T and F. Note: don’t make variables with these names as
they will mask the abbreviations.
6 The rules for type coercion are as follows: logical =[numeric =[character. For example
mixtures of numeric and character data are forced to character data, in which case all numbers
become quoted strings, such as: "3.14". The one exception to this is the special value NA (Not
Available) used to signify a missing value. Functions with names that begin "is." are provided
to test the type, and functions with names that begin "as." can be used to coerce the type. See
apropos(‘‘̂ isnn.’’) and apropos(‘‘̂ asnn.’’).
as.numeric: Number strings =[numbers. Non-number strings =[NA. TRUE=[1, FALSE=[0.
as.character: Numbers =[number strings. TRUE=["TRUE", FALSE=["FALSE".
as.logical: 0=[FALSE, all non-zero numbers =[TRUE. Character strings =[NA.

12 2 Data Structures

A data frame is a rectangular layout of cells organised by columns. It is a
collection of columns, all the same length, but which may be different types of
vector. A data frame is most often used to store columns of raw data, some of
which may be numbers, and some character data. Typically, but not necessarily,
the columns are variables (and the column names are the names of the variables),
and the rows are cases or observations. There is no particular requirement for one
row per subject or case. Some columns may hold scores or names, others may be
grouping factors used to indicate subjects, blocks, conditions or treatments, waves
of repeated measures, and so forth.

A list is a collection of objects. The components of a list can be different types of
data structure and can be of different lengths. A list is often used to pass a structured
argument to a function and to return a multi-valued object from a function.

2.1.3 Creating Data

Data structures are created by reading data from some external source such as a
file, database, or website. You can also create data within R for simulation and to
create patterned vectors for use as a programming tool. This idea of ‘‘programming
with data’’ occurs throughout R. For example a vector passed as an argument to a
graph plotting function may be used to control the colours or shapes of individual
points on a graph.

Creating Vectors

The simplest ways to create a vector are by combining, sequencing, or repeating
vectors. The combine function c takes multiple vectors as arguments and combines
them into one vector:

[x1 ¼ cð2; 6;�1; 3:14; 0Þ # Combine 5 single-cell numeric vectors
[x2 ¼ cð"apple"; "apple"; "orange"Þ # Combine 3 single-cell character vectors
[x3 ¼ cðx1; x2Þ # Combine 2 vectors

The sequence operator : makes a numeric vector that is a sequence in integer7

steps between its arguments. For example:

[x4 ¼ 1:5

[x5 ¼ 5:� 5

7 See the seq function for making a sequence in fractional steps.

2.1 Data Structures 13

The repeat function rep makes a vector by repeating its argument, optionally as
a whole or by repeating each cell. For example:

[repðx4; times¼3Þ # Repeat as a whole
[repðx4; each¼3Þ # Repeat each cell

Creating Matrices and Arrays

The simplest way to turn a vector into a matrix or an array is to use the functions
matrix and array. For example:

[x1 ¼ 1:16 # Vector
[x2 ¼ matrixðx1; nrow¼4; ncol¼4Þ # 4�4 matrix
[x3 ¼ matrixðx1; nrow¼4; ncol¼4; byrow¼TRUEÞ # 4�4 matrix by rows
[x4 ¼ arrayðx1; dim¼cð4; 2; 2ÞÞ # 4�2�2 array
[x5 ¼ arrayðx1; dim¼cð2; 2; 2; 2ÞÞ # 2�2�2�2 array

Alternatively bind vectors together as the rows or columns of a matrix using
functions rbind and cbind:

[x1 ¼ 1:3

[x2 ¼ cð"apple"; "apple"; "orange"Þ
[x3 ¼ rbindðx1; x2Þ
[x4 ¼ cbindðx1; x2Þ

Matrices and arrays are vectors with an attribute8 named dim that describes the
dimensionality of the layout of cells. The dim is a numeric vector that stores the
number of number of rows and columns of a matrix, or the dimensions of each
‘‘margin’’ of an array. There is also a function named dim that is used to get or set
this attribute:

[dimðx3Þ # Dimensions ðnumber of rows and number of columnsÞ
[dimðx4Þ

8 An ‘‘attribute’’ is a named piece of additional information attached to a data structure. Some
attributes are part of the language in the sense that R functions understand them, notably names
(named elements or columns) and dim (dimensions of matrices and data frames). Functions called
names and dim are provided to get and set these attributes. However an attribute can also be any
information you like, such as a comment or note attached to a data structure. Function attr is
provided to get or set any individual attribute, and function attributes to get or set an object’s
list of attributes. Function as.numeric has the side effect of removing attributes. Function c also
removes attributes except for names.

14 2 Data Structures

Creating Data Frames and Lists

The simplest way to create a data frame (besides reading data from a file) is to use
the data.frame function to add column vectors to the data frame. The simplest
way to create a list is to use the list function to add objects to the list:

[x5 ¼ data:frameðx1; x2Þ
[x6 ¼ listðx1; x2; x4; x5Þ

R has a simple GUI editor for data frames:

[fixðx5Þ # Edit a data frame
[x7 ¼ editðdata:frameðÞÞ # Create a new data frame

R provides many data sets9 as data frames.
A data frame can have column and row names. These are stored in attributes

called names and row.names respectively.10 For example the provided dataset
named swiss:

[swiss # The data frame
[helpðswissÞ # Its help page
[dimðswissÞ # The dimensions ðrows; columnsÞ
[nrowðswissÞ # Number of rows
[ncolðswissÞ # Number of columns
[namesðswissÞ # The column names
[rownamesðswissÞ # The row names
[summaryðswissÞ # A summary of each column

Creating Character Data

Some useful character vectors are provided for convenience11:

[letters # Lower-case alphabet
[LETTERS # Upper-case alphabet

9 Most R packages provide some data sets as well as functions. Use function data() to see the
data sets that are loaded by default. Data sets have help pages. For example the page describing
the structure and variables of the data set named swiss is displayed by help(swiss).
10 The row names are just row numbers by default, but the attribute may be assigned a character
vector of names using function rownames. Use names or colnames to get or set the columns
names.
11 See also: month.name and month.abb for the full and abbreviated names of the months;
date, Sys.Date, and Sys.time for date and time strings.

2.1 Data Structures 15

Creating and formatting numeric strings:

[x ¼ cð3:1; 0:05; 99Þ
[as:characterðxÞ
[formatðxÞ
[formatðx; width¼8Þ
[formatðx; width¼8; nsmall¼3Þ # Aligning the decimal point

Formatting character vectors:

[x ¼ cð"Apple"; "Orange"Þ
[toupperðxÞ # Convert to upper-case
[tolowerðxÞ # Convert to lower-case
[formatðxÞ # Left justify ðdefaultÞ
[formatðx; width¼8Þ # Field width
[formatðx; width¼8; justify¼"right"Þ # Right justify

Pasting strings together12:

[pasteð"x"; 3:14; sep¼"¼"Þ # Paste strings with a given separator
[pasteðcð"x"; "y"Þ; cð3:14; 99Þ; sep¼"¼"Þ # Paste vectors element-wise
[pasteð"Item"; 1:20; sep¼""Þ # No separator

Searching and replacing strings13:

[grepð" Ĵ"; month:name; value¼TRUEÞ # Match strings beginning with "J"
[subð" Ĵ"; "j"; month:nameÞ # Replace "J" at start of string with "j"

Printing strings:

[x ¼ cð3:14; 0; NA; 99Þ
[catð"Some numbers:"; x; "nn"Þ # Concatenate and print
[printðxÞ # The default print method
[printðx; na:print¼" "Þ # Print missing values ðNAÞ as blanks

2.1.4 Sampling Data

The sample function draws a random sample14 of the cells of a vector, and returns
the sample as a vector. The size of the sample is specified by the size argument.

12 See function: strsplit for splitting strings into vectors.
13 String pattern matching uses regular expressions. See: help(regex). See function substr for
extracting and replacing characters at a given position within the string.
14 A different sample is drawn each time a sampling function is called because the seed of the
internal random number generator is updated automatically. If you want to draw the same sample
you can set the seed. See help(set.seed).

16 2 Data Structures

Without this the default sample is the same size as the argument, so the default
behaviour is to make a vector by permuting or shuffling the argument. For example:

[sampleð1:10Þ
[sampleðcð"a"; "b"; "c"; "d"; "e"ÞÞ
[sampleð1:100; size¼50Þ # Random sample ðn¼50Þ from 1:100
[sampleð100; size¼50Þ # . . . the same thing ðallowed for convenienceÞ
[sampleð0:1; size¼50; replace¼TÞ # Sampling with replacement

R provides functions to draw a random sample from several distribution fam-
ilies. For example the rnorm function draws a random sample from a normal15

distribution. Its first argument specifies the sample size, and there are optional
arguments mean and sd to specify the mean and standard deviation of the distri-
bution to be sampled. The default parameters are mean=0 and sd=1. For example:

[rnormð50Þ # Random sample ðn¼50Þ from Nð0; 1Þ
[rnormð50; mean¼10; sd¼2Þ # Random sample ðn¼50Þ from Nð10; 4Þ

A careful reading of help(rnorm) suggests that mean and sd take vector
values. When the meaning of this is not immediately clear it is often best simply to
try it and see. For example:

[rnormð4; mean¼cð1; 100ÞÞ # Sampling from Nð1; 1Þ and Nð100; 1Þ

The vector passed to the mean argument is ‘‘recycled’’ (repeated) until its length
matches the requested sample size, and then used to specify the mean of the
distribution from which each observation is drawn. This idea of vector-valued
arguments controlling individual observations is used in several places in R. (For
example is to control the appearance of individual plotted points in graphics). A
single valued argument is recycled so each observation in the sample is drawn
from a distribution with the same mean. A multiple valued argument enables
sampling from a normal mixture.

2.1.5 Reading Data

R provides several functions16 for reading data from an external source such as a
file, database, or website, and returning it as a single object. For example the
read.table function is a general-purpose tool for reading tables of data from a
plain text file,17 and returning the data in a data frame.

15 Equivalent functions for other distribution families include: rt, rf, rbinom, rpois,
rchisq, rexp, rweibull, rgeom, rhyper, rlogis, rbeta, rgamma.
16 See: read.table, readLines, scan, and related functions.
17 Functions are provided in the foreign library to read data in several proprietary formats,
including SAS, Stata, and SPSS. It is also possible to read data from certain databases such as
MySQL. See the R Data Import/Export link from the HTML documentation displayed by
help.start().

2.1 Data Structures 17

These functions have a mandatory file argument to specify the data source.
This may be a filename that is expected to be in the current working folder,18 or
may be a URL for data downloaded from a web site. Under Windows the file
argument can be a call to the function file.choose which pops-up a Windows
file locator, or may the special value "clipboard" to paste data from the Win-
dows clipboard.19 For example:

[read:tableð"clipboard"Þ # Paste from the clipboard
[read:tableð"http:==www:some:web:site=myfile:txt"Þ # Download over http
[read:tableðfile:chooseðÞÞ # File locator
[read:tableð"myfile:txt"Þ # Read a file in the working folder

The read.table function has several optional arguments to specify the file
format. The most useful are: header to specify whether the first line is a
column header or data, and sep to specify the column separator. The default
values20 of these arguments specify no header, and columns separated by
blanks (one or more spaces or tabs). If for example the text file contains column
headings on the first line and has comma-separated columns the options should
be as follows:

[read:tableð"myfile:txt"; header¼TRUE; sep¼"; "Þ

Blank lines and comment lines (with the comment sign # at the left) in the file
are ignored by read.table. Columns of numbers become numeric vectors21 in
the data frame. Columns of character data are by default converted to factors22 in
the data frame.

18 If R displays a message that there is "No such file or directory" the most
likely explanation is that your working directory is not pointing to the folder that contains the
file. Set your working directory, or provide an absolute pathname to the file. Pathnames
should either use forward slashes as in "C:/path/to/file", or double backslashes as in
"C:nnpathnntonnfile".
19 See: help(connections) and help(clipboard).
20 Several variants of read.table are provided with slightly different defaults. See
help(read.table).
21 If a column of numbers is intended to be a grouping indicator then it is necessary explicitly to
convert the column to a factor, for example using function as.factor.
22 Set argument stringsAsFactors=FALSE to override the default behaviour and keep columns
of character data as character vectors. Use command options(stringsAsFactors=FALSE) if
you wish to set this default behaviour globally. If a column of numbers contains characters such
as ‘.’ to signify a missing value, then the whole column is taken to be characters and converted
to a factor. Set argument na.strings to ‘.’ to override this and recode all ‘.’ as NA, (see the
section on Missing Values).

18 2 Data Structures

2.2 Operations on Vectors and Matrices

2.2.1 Arithmetic Functions

Arithmetic functions take a data structure argument and return the data structure
after applying an operation element-wise to each cell. For example:

[x ¼ rnormð10; mean¼5; sd¼2Þ # A numeric vector
[roundðx; 2Þ # Round to 2 decimal places
[sqrtðabsðxÞÞ # Square root: Absolute value to avoid sqrt of negative
[logðx þ 1Þ # Log ðbase eÞ: Add 1 to avoid logð0Þ
[scaleðxÞ # Standardize as z-scores

The arithmetic functions have no effect on the input data structure x. If you
want to transform x you must explicitly assign the returned value back to x.
For example:

[x ¼ scaleðxÞ # Standardize x

Some arithmetic functions

round Round to given number of decimal places
trunc Truncate down to nearest whole number
ceiling, floor Round values in a vector up (ceiling) or down (floor)
zapsmall Replace values in a vector or matrix that are close to zero with 0
abs Absolute (unsigned) value
sqrt Square root
exp Exponential
log, log10, log2 Log to base e, 10, and 2
sin, cos, tan Trigonometric functions
asin, acos, atan Inverse (arc) trigonometric functions
scale Centering and scaling

2.2.2 Descriptive Functions

Descriptive functions take a data structure argument and return a summary. For
example a single-valued summary of a vector:

[x ¼ rnormð10; mean¼5; sd¼2Þ # A numeric vector
[lengthðxÞ # Length ðnumber of elements in xÞ
[meanðxÞ # Mean of the elements in x
[sdðxÞ # Standard deviation of the elements in x

2.2 Operations on Vectors and Matrices 19

Some summary descriptive functions

length Number of elements in a vector
sum Sum of the values in a vector
min, max, range Minimum, maximum, and range (min, max) of a vector
mean, median Mean and median of the values in a vector
sd, var Standard deviation and variance
cov, cor Covariance and Pearson correlation

Functions cov and cor return either a single value or a matrix, depending upon
the arguments.23 If the arguments are two vectors a single value is returned. If the
argument is a matrix a matrix is returned. The i,j’th element of the matrix is the
covariance (using cov) or correlation (using cor) between the i’th and j’th
column vectors.

[x ¼ rnormð100Þ
[y ¼ rnormð100Þ
[varðxÞ
[varðyÞ # Variance
[covðx; yÞ # Scalar covariance
[corðx; yÞ # Pearson correlation coefficient
[covðcbindðx; yÞÞ # Covariance matrix
[corðcbindðx; yÞÞ # Correlation matrix

2.2.3 Operators and Expressions

R has conventional arithmetic expression syntax with the usual arithmetic and
conditional operators.24

Arithmetic and conditional operators

x+y add x == y x equal to y?
x-y subtract x != y x not equal to y?
x*y multiply x\ y x less than y?
x/y divide x\= y x less than or equal to y?

(continued)

23 Functions are designed where possible to allow different kinds of input data, and to implement
the generic meaning of the function in whatever way makes best sense for the kind of data they
are given. For example the description of the arguments in help(cor) suggests they can be a
numeric vector, matrix or data frame.
24 See: help(Arithmetic), help(Comparison), and help(Syntax).

20 2 Data Structures

(continued)

Arithmetic and conditional operators

x̂ y raise to power x[y x greater than y?
x%%y remainder x[= y x greater than or equal to y?
-x negate

Vector Arithmetic

The operators are ‘‘vectorized’’ as follows. Unary operators apply element-wise to
each cell:

[x ¼ cð0; 2; 4; 6; 8; 10Þ
[� x # Negate each element
[x 2̂ # Square each element

Binary operators apply element-wise to corresponding pairs of cells:

[x ¼ cð0; 2; 4; 6; 8; 10Þ
[y ¼ cð1; 5; 3; 7; 11; 8Þ
[x þ y # Add corresponding elements
[x\y # Test corresponding elements

If the vectors are different lengths the shorter vector is ‘‘recycled’’ to match the
length of the longer, by concatenating it end-on-end with itself until it is at least as
long, trimming excess off the end if necessary.25 The operation is then applied
pair-wise to corresponding cells. The result vector is the same length as the longer
argument.

[x ¼ cð0; 2; 4; 6; 8; 10Þ
[y ¼ cð4; 8Þ
[x þ y
[x\y
[x � 4 # Scalar 4 is recycled to match lengthðxÞ
[x\4

Matrix Arithmetic

Unary operations and arithmetic functions are applied element-wise. Binary
operations are applied between corresponding pairs of elements. Matrices must
have the same dimensions to be ‘‘conformable’’ for arithmetic, but if one argument

25 A warning message about fractional recycling is displayed if the length is not an exact
multiple. This can safely be ignored, or turned off by the command: options(warn = -1).

2.2 Operations on Vectors and Matrices 21

is a vector it is recycled to match the length of the matrix. For conventional matrix
multiplication26 use the special operator: %*%. For example:

[x ¼ matrixð1:16; nrow¼4; ncol¼4Þ
[x 2̂ # Square each element

[sqrtðxÞ # sqrt each element

[x þ 0:1 # 0:1 is recycled

[x � x # Multiply corresponding elements

[x % � % x # Conventional matrix multiplication

Some matrix functions

t Transpose
diag Diagonal
%*% Inner (dot) product of two vectors xty, and conventional

matrix multiplication
%o% Outer product of two vectors xyt

crossprod, tcrossprod Cross products xty and xyt of matrices
det Determinant
solve Inverse
eigen Eigenvalues and eigenvectors
svd Singular value decomposition
qr QR decomposition
chol Choleski decomposition

Conditional Expressions

Conditional expressions result in logical vectors. The main purpose of these is to
represent the vectorized result of a conditional expression so that it can subse-
quently be applied in conditional indexing.

Conditional operators compare values and return truth values: TRUE or FALSE.
For example if x=1 then the conditional expression x[0 returns the value TRUE.

Conditional operations are defined for numeric, logical, and character vectors.
The conditional operators == and != are defined for factors.

Under conditional operations both numerical and logical values are compared
numerically.27 Logical values are treated numerically in this context as: TRUE=[1,

26 Matrix multiplication x %*% y is conformable if ncol(x) == nrow(y). If one argument is a
vector it is interpreted as a row or column to suit so a transpose is unnecessary.
27 Annoyance: when testing for negative numbers an expression like x\-1 will unexpectedly
modify x because the\- is interpreted as the assignment operator. The workaround is to include
space: x\ -1.

22 2 Data Structures

FALSE=[0. Character values are compared alphabetically and case-sensitively: the
alphabet is in increasing order, for example "ant" \ "bee", and upper-case is
greater than lower-case so "Ant"["ant".

Conditional operators are vectorized as follows. When two vectors are com-
pared the shorter is recycled if necessary to make the vectors the same length, then
the conditional operation is applied between pairs of corresponding cells. The
result is a logical vector the same length as the longer argument. For example:

[x ¼ cð2; 4; 6; 8; 10Þ
[x[¼ 6 # 6 is recycled to match the length of x

[y ¼ cð"apple"; "apple"; "orange"; "apple"; "orange"Þ
[y ¼¼ "apple"

Logical vectors can be combined using the operators28: & (AND), | (OR), and
! (NOT) to form composite conditions. For example:

[x[¼ 6 & y ¼¼ "apple" # TRUE where x[¼ 6 AND y ¼¼ "apple"

Arithmetic With Logical Vectors

Arithmetic operations are conventional for numeric data. They are not defined for
character data. They are defined for logical data by treating logical values as
numeric in an arithmetic context as: TRUE=[1 and FALSE=[0.

Consequently the sum function counts TRUE in a logical vector, and the mean
function calculates the proportion TRUE. This enables descriptive functions to
summarise how a vector meets a given condition. For example

[x ¼ cð2; 4; 6; 8; 10Þ
[y ¼ cð"apple"; "apple"; "orange"; "apple"; "orange"Þ
[sumðxÞ # Sum of the elements of x

[sumðyÞ # Error! ðarithmetic not defined for character dataÞ
[sumðx \ 6Þ # How many elements of x are less than 6 ðx\6 TRUEÞ?
[sumðy ¼¼ "apple"Þ # How many elements of y are "apple"?

[sumðx ¼ 6 & y¼¼ "apple"Þ # How many x[¼6 AND y¼¼"apple"?
[meanðx\ 6Þ # What proportion of x is less than 6?

[meanðy¼¼ "apple"Þ # What proportion of y is "apple"?

[meanðx[¼ 6 & y¼¼ "apple"Þ # What proportion x[¼6 AND y¼¼"apple"?

28 & and | are vectorized for combining logical index vectors. Corresponding operators && and ||
result in single truth values, usually for purposes of flow control in a program. See help(Logic,
package="base"), and the examples therein which show how to construct truth tables defining
the logical operations.

2.2 Operations on Vectors and Matrices 23

2.3 Factors

Factors represent categorical variables and are used as grouping indicators.
The categories are stored internally as numeric codes, with labels to provide
meaningful names for each code.

For example a sequence of categorical observations: "apple",
"apple","orange","apple","orange" is efficiently stored as numeric codes
1,1,2,1,2. The values of the codes are always restricted to 1,2,. . .,k, to rep-
resent k discrete categories. The labels, here "apple","orange", are a character
vector stored with the factor as an attribute named levels. Whenever the factor is
used, such as when its value it printed, the labels are mapped onto the codes
internally. The order of the labels is important: the first label is mapped to each
code 1, the second to each code 2, (and so on if there are more levels). Here
"apple" is mapped to each code 1, and "orange" to each code 2.

Use function as.factor to create the factor from a vector, and functions
as.numeric and levels to get the factor’s internal numeric codes29 and labels:

[x ¼ as:factorðcð"apple"; "apple"; "orange"; "apple"; "orange"ÞÞ
[as:numericðxÞ # The internal numeric codes

[levelsðxÞ # The labels ða character vectorÞ
[x # Print the value of the factor

The factor can be used to indicate which group30 observations belong to:

score condition

1 39 apple

2 14 apple

3 2 orange

4 7 apple

5 44 orange

29 To coerce a factor with numeric labels as a numeric vector first coerce as character using
as.character and then as numeric using as.numeric.
30 There are programming advantages to abstracting the grouping information in this way: it
provides a device for manipulating groupings that does not depend upon a particular shape or
layout for data, that can accommodate missing observations, and that enables programming easily
to express conditions on the groupings, such as to extract and summarise the observations in a
particular group.

24 2 Data Structures

2.3.1 Making Factors

The read.table function that reads an external text file into a data frame converts
columns of non-numeric characters to factors by default. The factor levels depend
upon the number of different character strings found in the data.

Functions as.factor and as.ordered make factors from vectors. Ordered
factors31 differ from factors only in their class. When a vector is converted to a
factor the factor labels are the unique values found in the vector by default. Their
default order is their natural sort order: alphabetical for character vectors,
numerical for numeric vectors.

[x ¼ cð"orange"; "orange"; "orange"; "orange"; "apple"Þ
[as:factorðxÞ # Levels in alphabetical order

[x ¼ repð3:1; each¼2Þ
[as:factorðxÞ # Levels in numerical order

Function gl (generate levels) is used to make grouping factors for balanced
experimental designs. Use function rep to add replications to the grouping factor
if necessary.

[glð3; 10; labels¼cð"low"; "med"; "high"ÞÞ # Grouping factor

Function cut makes a factor from a numeric vector by dividing the numeric
range into intervals to group the values. The interval boundaries are specified using
an argument named breaks. By default the intervals are defined as ‘‘open on the
left’’, (or equivalently ‘‘closed on the right’’), and are indicated by labels like
(. . .]. This means values that fall on a break between intervals will be grouped to
the left of the break. Any value on the left break of the left-most interval is
classified as NA, (since there is no information about the interval to the left of that).
Set argument include.lowest=TRUE to override this behaviour and group such
values within the lowest interval. Set argument right=FALSE to re-define the
intervals so that values on a break are grouped to the right of the break. (In that
case include.lowest=TRUE groups right-most values within the highest
interval). For example:

31 An ordered factor does not refer to the order of the level labels, but simply marks the factor as
‘‘ordered’’ so it can be handled appropriately by functions where the distinction between nominal
and ordinal data is relevant. For example the contrast coding used in linear modelling functions
has different defaults for unordered and ordered factors. Unordered factors get comparisons
between group means. Ordered factors get trend analysis.

2.3 Factors 25

[x ¼ cð20; 21; 30; 39; 40Þ
[cutðx; breaks¼cð20; 30; 40ÞÞ # Open on the left

[cutðx; breaks¼cð20; 30; 40Þ; inc¼TRUEÞ
[cutðx; breaks¼cð20; 30; 40Þ; right¼FALSEÞ # Open on the right

[cutðx; breaks¼cð20; 30; 40Þ; right¼FALSE; inc¼TRUEÞ

The breaks can be specified as a single number (greater than 1) giving the
number of intervals. The quantile function is useful for calculating breaks so that
the intervals will contain equal frequencies of values. For example:

[x ¼ roundðrexpð1000Þ�100Þ
[histðxÞ
[g1 ¼ cutðx; breaks¼4; inc¼TRUEÞ # Breaks at equal intervals

[g2 ¼ cutðx; breaks¼quantileðxÞ; inc¼TRUEÞ # Breaks at quantiles

[tableðg1Þ
[tableðg2Þ # Quantile intervals try to contain equal frequencies

2.3.2 Operations on Factors

Some functions for working with factors

as.factor, factor Make a factor from a vector
as.ordered, ordered Make an ordered factor from a vector
gl Make a factor by generating (equal sized) levels
cut Make a factor by cutting a vector at given break points
relevel Set the first (reference) level of a factor
as.numeric Get a factor’s numeric codes
levels Get the labels of a factor’s levels
nlevels Get the number of levels of a factor
:, interaction Cross-classify factors

Arithmetic operators are not valid for factors. The conditional operators == and
!= are valid for factors and typically are used for conditional indexing in a vector
or data frame. The : operator between two factors of the same length returns a
factor by cross-classifying its arguments. The result is a factor with levels made
from all combinations of the levels of the arguments.

26 2 Data Structures

[g1 ¼ glð2; 6; labels¼cð"þ "; "� "ÞÞ
[g2 ¼ glð3; 4; labels¼cð"A"; "B"; "C"ÞÞ
[g1:g2 # Cross-classify the factors
[nlevelsðg1:g2Þ # Number of levels in the crossing ð2�3Þ

2.3.3 Re-ordering and Re-labelling

Functions factor and ordered make factors from vectors, in the same way as
as.factor and as.ordered. They have additional arguments to control the
labels which, given a factor instead of a vector as input, can be used to re-order and
re-label the factor’s levels.

The levels argument specifies an order32 for the labels in terms of the current
labels. When the labels are re-ordered the corresponding numeric codes are
changed as well to preserve the mapping between labels and codes. The labels
argument specifies new values for the labels, which are re-labelled in the order
given. When both levels and labels are given the new labels re-label the old in
their order specified by levels.

[x ¼ as:factorðcð"orange"; "orange"; "apple"; "orange"; "apple"; "pear"ÞÞ
[factorðx; levels¼cð"orange"; "pear"; "apple"ÞÞ # Re-order

[factorðx; labels¼cð"A"; "O"; "P"ÞÞ # Re-label

[factorðx; levels¼cð"orange"; "pear"; "apple"Þ; labels¼cð"O"; "P"; "A"ÞÞ

2.4 Indexing

There are functions that return the first and last few parts of a data structure, (head
and tail), and there is a rudimentary editor GUI for data frames (fix and edit).
But indexing is a more powerful approach to data manipulation in general.

Objects have distinct parts: the rows and columns of a data frame, the
components of a list, the individual cells within a vector, matrix, array, or data
frame. These parts are ordered and numbered, and may also have names asso-
ciated with them. Indexing means accessing parts by name or by number to
extract or replace values.33 The index can be conditional and derived program-
matically, (for example to extract or replace ‘‘scores for males aged over 50 and
in employment’’).

32 The order is relevant to the default appearance of tables and graphs, and also in modelling
functions when a reference level is used for comparisons. See also function relevel to re-order
levels so a given level is the first (reference) level.
33 See: help(Extract), help("[.data.frame"), and help(subset).

2.3 Factors 27

2.4.1 Indexing by Name

Objects may have a names attribute to associate a label with each part.34 For
example the names of a data frame are its column names, most often representing
the names of variables. The names of a list are the names of the objects collected
in the list.

An object’s names can be accessed using the names function, and then its parts
can be accessed by name using a $ syntax. For example, the provided data set
named sleep consists of two variables in a data frame:

[namesðsleepÞ # Names of the variables in data frame 'sleep'
[sleep$extra # Access variable 'extra' in data frame'sleep'
[meanðsleep$extraÞ # Mean of 'extra' in data frame 'sleep'

Many functions return multi-valued results as a single object with named
components. Individual parts of the results can be extracted by name. For example:

[x ¼ t:testðextra�group; data¼sleep; paired¼TRUEÞ # Paired t-test

[namesðxÞ # The names of the components returned by 't:test'

[x$p:value # The p value from the t test

Attaching Data Frames

In situations where the $ syntax is cumbersome, functions attach and detach can
be used to enable access to the columns of a data frame as if they are variables
outside the data frame.35

[attachðsleepÞ # Attach a data frame
[meanðextraÞ # Access variables by name
[detachðsleepÞ # Detach the data frame

Functions with and transform provide temporary access to data frame col-
umns by name. Function with enables evaluation with data frame variables.
Function transform enables evaluation in the data frame and returns the trans-
formed data frame. For example:

34 See: help(names), and also help(colnames), help(dimnames), and help(row.names).
35 Caveat: assignments to attached variables are not assignments to the data frame. Attaching a
data frame works by inserting the object on the search path so the variables within the data frame
can be found by name. See help(search). However the global environment is always searched
first, so variables in the data frame may be masked by variables in the global environment. Any
assignment to variables of the same name assigns in the global environment and not in the data
frame. So assignments to attached variables have no effect on the data frame.

28 2 Data Structures

[withðsleep; meanðextraÞÞ # Mean of 'extra' in data frame 'sleep'
[transformðsleep; ctime¼scaleðextraÞÞ # Add a derived variable

2.4.2 Indexing by Number

The parts of an object, (the rows and columns of a data frame, the components of a
list, the individual cells within a vector, matrix, array, or data frame), are ordered
and numbered. The numbering always starts with 1, (not 0), and ends at the length
or dimensions of the object.

The length of an object, (for example the number of cells in a vector, or the
number of components in a list), is returned by function length:

[lengthðcð"x"; "y"; "z"ÞÞ # Length of a vector

The dimensions of an object, (such as the number of rows and columns in a
matrix or data frame), are returned by functions dim, nrow and ncol. For example,
using the provided data set named swiss:

[dimðswissÞ # Dimensions ðrows; columnsÞ of data frame 'swiss'
[nrowðswissÞ # Number of rows in data frame 'swiss'
[ncolðswissÞ # Number of columns in data frame 'swiss'

The syntax for indexing by number uses square brackets. For example to index
the cells of a vector by number:

[x ¼ cð"x"; "y"; "z"Þ
[x½1� # Get the first cell ðx½0� is undefinedÞ
[x½lengthðxÞ� # Get the last cell
[x½1� ¼ "a" # Set the first cell

A feature of R is that the indices are vectors, enabling simultaneous access to a
slice or subset of cells. The result is the same length as the index vector, (which
may be longer than the object being indexed). The index addresses particular cells
by number and these are returned in the order given in the index. This enables
repetition, re-ordering, and sorting.

[x½1:2� # Get the first two cells
[x½cð3; 1Þ� # Get cells 3 and 1 in that order
[x½cðrepð3; 4Þ; repð1; 3ÞÞ� # Get cell 3 ð4 timesÞ and 1 ð3 timesÞ
[x½1:2� ¼ cð"p"; "q"Þ # Set the first two cells

Vectors have a single index, as in: x[i]. Matrix and data frame cells have
pairs of indices, respectively for rows and columns, as in: x[i,j]. Arrays have
tuples of indices depending on the dimensionality of the array, as in: x[i,j,k]

2.4 Indexing 29

(for a 3-dimensional array). An empty index is shorthand for a complete index.
For example:

[swiss½cð10; 15Þ; 2:3� # Index rows 10 and 15; and columns 2 to 3
[swiss½cð10; 15Þ; � # Rows 10; 15 and all columns ðempty column indexÞ
[swiss½; 2:3� # Columns 2:3 and all rows ðempty row indexÞ

If the object has named parts an index vector can be character or numeric:

[swiss½cð10; 15Þ; cð"Agriculture"; "Examination"Þ� # Same as: swiss½cð10; 15Þ; 2:3�

A single index to a data frame accesses columns by number or by name. Names
can for example be derived using grep to find names matching a pattern, (useful
when the data frame has hundreds of columns). The columns are returned as a data
frame, or a single column can be returned in its native type using double brackets.
For example:

[swiss½2:3� # Columns 2:3; ðsame as swiss½; 2:3�Þ
[swiss½3� # Column 3 returned as a data frame
[swiss½½3�� # Column 3 returned as a vector
[swiss½"Examination"� # Column 3 accessed by name

2.4.3 Inserting and Deleting Rows or Columns

Numeric indices in R can be positive or negative, (the elements of an index vector
must either be all positive or all negative). A negative index accesses all the cells
NOT indexed. This can be used to delete cells, rows, or columns. For example to
delete rows or columns of a data frame (assign the results if you wish to save
them):

[swiss½�cð3; 5; 7Þ; � # Drop rows 3; 5; and 7
[swiss½�6� # Drop column 6

A data frame can dynamically be increased in size with new rows or columns,36

either by name (using $ syntax) or by index number. For example:

[swiss$zFertility ¼ scaleðswiss$FertilityÞ # Append a derived variable
[sleep$zFertility ¼ NULL # Drop a variable by name
[swiss½nrowðswissÞþ1; � ¼ NA # Append a row ðof NA valuesÞ
[swiss ¼ swiss½�nrowðswissÞ; � # Delete a row

36 Columns may only be appended. A new column is not allowed to leave ‘‘holes’’ after existing
columns.

30 2 Data Structures

To insert a row or column use rbind and cbind to construct the data frame
around the insert. For example:

[rbindðswiss½1:6; �; NA; swiss½7:nrowðswissÞ; �Þ # Insert 7th row
[cbindðswiss½1:2�; NA; swiss½3:ncolðswissÞ�Þ # Insert 3rd column

2.4.4 Indexing with Factors

Factors can be indexed37 by numeric or logical vectors, and can be assigned values
provided these are amongst the factor’s labels:

[g ¼ as:factorðcð"orange"; "orange"; "apple"; "orange"; "apple"; "pear"ÞÞ
[g½4�
[g½4� ¼ "apple"

A factor can be used as an index vector, and then its numeric codes are
the index.

[x ¼ cð"red"; "orange"; "green"; "yellow"Þ
[x½g�

The conditionals == and != are valid for factors and the resulting logical vector
is typically used to index a vector or data frame. For example:

[x ¼ 1:6
[x½g¼¼"apple"� # Get values of x where factor g is "apple"

Indexing can be used to merge or drop factor levels

[factorðcð"apple"; "orange"; "orange"Þ½g�Þ # Merge levels
[g½g!¼"pear"� # Subset the factor
[g½g!¼"pear"; drop¼TRUE� # Drop a level
[factorðg; levels¼cðlevelsðgÞ; "lemon"ÞÞ # Add a level

2.4.5 Conditional Indexing

Conditioning by String Pattern Matching

The grep function is used to extract elements of character vectors by string pattern
matching using regular expressions. By default it returns the numeric index of each
match, or with argument value=TRUE it returns the matching elements

37 See: help("[.factor").

2.4 Indexing 31

themselves. For example to extract a subset of variables from a data frame by
matching name patterns:

[swiss½grepð" Ê"; namesðswissÞÞ� # Variables with names beginning "E. . ."

Indexing with Logical Vectors

Conditional indexing means indexing with a logical vector that has been derived
from a conditional expression. For example:

[i ¼ swiss$Agriculture[50 & swiss$Education[8

A conditional expression returns a logical vector. Logical index vectors are
different from other kinds of index. Numeric and character index vectors address
particular cells by number or by name, and these are returned in the order given in
the index. Logical index vectors specify a pattern of cells to be addressed. If
necessary the pattern is recycled so that the index vector matches the length of the
object being indexed. The index is then applied element-wise and addresses cells
corresponding to cells of the logical vector that are TRUE.

[swiss½i; � # Index rows where the condition is TRUE
[swiss½!i; � # Index rows where the condition is NOT TRUE
[meanðswiss½i; "Fertility"�Þ # Mean 'Fertility' within condition

Some functions for logical and set operations

any TRUE if any of the arguments contains TRUE
all TRUE if all of the arguments are TRUE
which Get numeric indices where a logical vector is TRUE
grep, agrep Get indices or values that match regular expression patterns
union Set union, (elements in vector x OR y or both)
intersect Set intersection, (elements in vector x AND y)
x %in% y Get vector containing TRUE for each element of x that is also in y
unique Get vector of unique values by dropping duplicate values
duplicated Get vector containing TRUE to indicate duplicated values
upper.tri TRUE for the upper-triangle of a matrix
lower.tri TRUE for the lower-triangle of a matrix

2.4.6 Sorting

There is a function rev that reverses a vector’s order, and a function sort sorts a
vector numerically or alphabetically into ascending or descending order. A more
flexible approach is to sort by deriving and applying an appropriate index vector.

32 2 Data Structures

The benefit of this two-step approach is that it enables you sort one vector by
another or, for example, to sort the rows of a data frame by one or more of the
columns.

The function order is used to derive the index vector that would sort a vector.
For example the first element of order(x) is the index of the lowest-valued
element in x. The next is the index of the next lowest value, and so on:

[x ¼ cð2; 4; 1; 3Þ
[orderðxÞ
[x½orderðxÞ� # Sort x using an ordered index vector

An appropriately ordered index vector can be used to sort the rows or columns
of a data frame:

[# Sort rows of 'swiss' by 'Examination'

[swiss½orderðswiss$ExaminationÞ; �
[# Sort rows of 'swiss' by 'Examination' and within that by 'Education'

[swiss½orderðswiss$Examination; swiss$EducationÞ; �
[# Sort columns of 'swiss' by name

[swiss½; orderðnamesðswissÞÞ�

2.5 Reshaping

Reshaping data frames

stack, unstack Stack or unstack columns to reshape into long or wide format
reshape Reshape a data frame into long or wide format
merge Merge data frames by common column or row names

One purpose of reshaping a data frame is to convert between ‘‘long format’’ and
‘‘wide format’’. A ‘‘long format’’ data frame has one column for each variable. A
‘‘wide format’’ data frame has one row for each subject or case. These formats are
different when there are repeated measures of subjects in time.

In long format a time-varying variable is a single column containing all the
subjects measures of that variable at all time-points. The data frame must then
also have factors to indicate which subject and which time-point each measure
belongs to.

In wide format a time-varying variable is spread over several columns, one for
each time-point. In that case it is clear which subject and time-point each measure

2.4 Indexing 33

belongs to from its location in the data frame. However the data must be balanced
in the sense that all subjects have a complete set of measures at all time-points,
otherwise it is necessary to pad the data with missing values to preserve the
rectangular shape of the data frame. One advantage of long format is that grouping
factors can represent unbalanced data.

2.5.1 Stacking and Unstacking

The basic operation of reshaping is stacking and unstacking. The stack function
takes a data frame and stacks its columns into a single column, returning this in a
data frame as a column named values, with a factor named ind to indicate which
of the original columns each value belongs to. For example, stack the four iris
measures:

[stackðiris½1:4�Þ

The unstack function takes a column and unstacks it into several columns by
splitting it on a factor. It returns a data frame if the factor is balanced, or a list if
not.38 To check balance the replications function counts the number of repli-
cations, and it too returns a list if the groups are unbalanced. For both functions the
name of the column and the grouping factor are specified using a formula. For
example with the sleep data:

[replicationsðextra�group; sleepÞ # Balanced data ð10 reps per groupÞ
[unstackðsleep; extra�groupÞ # Data frame ðunstack 'extra' by 'group'Þ

As an example of unbalanced data, the ChickWeight data contains repeated
measures of 50 chickens weight at several time-points. Different chickens were
measured different numbers of times:

[replicationsðweight� Chick; ChickWeightÞ # Unbalanced data
[unstackðChickWeight; weight� ChickÞ # List ðunstack 'weight' by 'Chick'Þ

2.5.2 Reshaping: Wide and Long

The reshape function is a more general reshaping tool39 designed for data that are
repeated measures of subjects in time. It has arguments to specify the time-varying

38 See also functions split and unsplit which split a vector or data frame into a list, or
combine list components.
39 See also functions melt and cast in package reshape.

34 2 Data Structures

variables in a data frame that are to be stacked or unstacked. It handles unbalanced
data by inserting NA as appropriate, and also treats time-invariant variables
appropriately.

For example to reshape the ChickWeight data from long to wide, use argument
v.names to specify the time-varying variable to be unstacked, and arguments
idvar and timevar to specify the subject and time-point factors:

[dat ¼ reshapeðChickWeight; direction¼"wide"; v:names¼"weight";
þ idvar¼"Chick"; timevar¼"Time"Þ

The result contains NA because the data are not balanced. The result also
includes the Diet variable, a time-invariant variable that was simply repeated at
each time-point in long format.

To reshape from wide to long, use argument varying to specify the columns to
be stacked, and argument v.names to specify a name for the stacked column. For
example if the four iris measures are taken as four time-points with measures of
one time-varying variable:

[reshapeðiris; direction¼"long"; varying¼1:4; v:names¼"value"Þ

The reshape function allows more than one time-varying variable. For
example if the four iris measures are taken as two time-varying variables, each
with measures at two time-points iris[1:2] and iris[3:4]:

[reshapeðiris; direction¼"long"; varying¼listð1:2; 3:4Þ;
þ v:names¼cð"value1"; "value2"ÞÞ

2.5.3 Merging

The merge function performs a database ‘‘join’’ operation between two data
frames based on columns that contain values common to both data frames. For
example if two data frames both have a column named id containing some values
common to both data frames, the merge function returns a data frame by joining
rows with matching id:

[x ¼ data:frameðid¼1:10; var1¼1:10Þ
[y ¼ data:frameðid¼3:7; var2¼letters½3:7�Þ
[mergeðx; y; by¼"id"Þ

The default behaviour is to return a data frame that contains just the rows that
are common to both input data frames, that is rows where the input data frames
have the same value in the by variable. This can be overridden using logical
arguments all.x and all.y. For example if all.x=TRUE the returned data frame
will have all the rows from x, (the first input data frame), whether they match in y

2.5 Reshaping 35

or not. Rows that don’t match in y are then given NA values in the columns merged
from y. For example:

[mergeðx; y; by¼"id"; all:x¼TRUEÞ # All rows from x
[mergeðx; y; by¼"id"; all:y¼TRUEÞ # All rows from y

2.6 Missing Values

The special value NA (‘‘Not Available’’) is used to represent a missing value. The
NA value can appear in a vector of any type without coercion.

2.6.1 Recoding Missing Values

Many R functions understand NA in the sense that they have built-in methods for
handling NA values. Missing values should be coded as NA to take advantage
of these.

Function read.table recodes blanks as NA by default. Other missing value
codes can be passed to argument na.strings. For example to recode all . or
-999 as NA:

[read:tableð"data:txt"; na:strings¼cð" � "; "�999"ÞÞ

2.6.2 Operations with Missing Values

If any data are missing the general principle is that it is better by default to
propagate a missing value code than an incorrect summary or result. A missing
value can be caught and handled by subsequent processes. An incorrect result
might slip through un-noticed. This principle applies logically to arithmetic and
conditional operations. Any operation involving NA is undecidable and so the only
sensible result is NA. Descriptive functions by default will propagate NA values
rather than a potentially incorrect summary. For example:

[x ¼ cð3:14; NA; 2:72; 1:96Þ
[y ¼ cðNA; 2:72; 1:96; 3:14Þ
[meanðxÞ
[corðx; yÞ
[corðcbindðx; yÞÞ # The default use¼"everything"
[sumðx¼¼NAÞ # NOT the way to count NA

36 2 Data Structures

2.6.3 Counting and Sorting Missing Values

A special function is.na is needed to test for NA. The function returns TRUE where
its argument is NA.

[x ¼ cð3:14; 0; NA; 1Þ
[is:naðxÞ # Test for NA
[sumðis:naðxÞÞ # Count NA

Function complete.cases is provided for testing for NA along data frame
rows. Other functions provide arguments to accommodate NA. For example:

[dat ¼ data:frameðA¼cð1; 0; NA; 0; NAÞ; B¼cðNA; 1; 0; 1; 0ÞÞ # Data frame with some NA

[sumðcomplete:casesðdatÞÞ # Count complete cases

[sumð!complete:casesðdatÞÞ # Count incomplete cases

[summaryðdatÞ # Summary counts NA by column

[tableðdat; useNA¼"always"Þ # Cross-tabulate including NA

[dat½orderðdat$AÞ; � # Sort by column A with NA last

[dat½orderðdat$A; na:last¼FÞ; � # Sort by column A with NA first

2.6.4 Handling Missing Values

Cases with missing values can be dropped altogether:

[dat ¼ dat½complete:casesðdatÞ; � # Drop cases ðrowsÞ with any NA

It is possible to impute40 values that are missing. Descriptive and modelling
functions have default methods for handling NA values and generally provide
arguments to override the default behaviour and specify how NA is handled.

Descriptive functions (such as sum, mean, sd, and so forth) propagate NA
by default but provide an argument named na.rm (‘‘NA remove’’) that can be set
to TRUE to instruct the function to omit all NA from the calculation. Functions cov
and cor have a use argument that can be set as use="complete.obs" for
casewise deletion (aka listwise deletion), and use="pairwise.complete.obs"
to use all complete pairs of observations in the calculation.

40 See package mvnmle for maximum likelihood imputation, and various packages for multiple
imputation such as mitools and mice listed at http://cran.r-project.org/web/views/
Multivariate.html.

2.6 Missing Values 37

http://cran.r-project.org/web/views/Multivariate.html
http://cran.r-project.org/web/views/Multivariate.html

[x ¼ cð3:14; NA; 2:72; 1:96Þ
[y ¼ cðNA; 2:72; 1:96; 3:14Þ
[meanðx; na:rm¼TRUEÞ
[corðx; y; use¼"pairwise:complete:obs"Þ
[corðcbindðx; yÞ; use¼"pairwise:complete:obs"Þ

Modelling functions (such as lm, aov, glm, and so forth), and other functions
for multivariate analysis (such as princomp, prcomp, and factanal), have an
argument named na.action which is set to the name of a function to handle
incomplete data. The default setting is the function named na.omit which handles
missing values by casewise deletion. If instead you wish to propagate NA values to
fitted values, residuals, predicted values, or factor scores, preserving the length of
these data,41 then it is necessary to set na.action=na.exclude.

[fittedðlmðy �xÞÞ # NA omitted from result
[fittedðlmðy �x; na:action¼na:excludeÞÞ # NA preserved in result

2.7 Mapping Functions

R provides the usual facilities for programming loops for iterations,42 but in
practice you seldom need to use them. Use mapping functions instead because they
are faster and easier to program. These are functions that apply (map) a given
function over parts of a data structure. Several mapping functions are provided for
different kinds of data structure and groupings.

Mapping functions

apply Map a function to the margins (rows or columns) of an array
sapply, lapply Map a function to each cell of a vector, column of a data frame,

or component of a list
replicate Repeated evaluation of an expression
tapply Map a function to a vector grouped by one or more factors
mapply Map a multivariate function to corresponding cells of multiple vectors,

columns of multiple data frames, or components of multiple lists
outer Map a binary function to corresponding elements of two matrices
aggregate, by Map a function to data frame columns grouped by one or more factors

41 See: help(na.fail) and help(naresid). Note that na.exclude works by passing a
message, via the result’s na.action attribute, to functions that subsequently process the result.
To take advantage of na.exclude it is necessary to process the result with an appropriate
function. For example fitted(fit) and residuals(fit) propagate NA values, but fit$fit-
ted and fit$residuals do not.
42 See: help(Control).

38 2 Data Structures

2.7.1 Repeated Evaluation

The replicate function is often used in conjunction with sample for resampling
and permutations43:

[x ¼ cð"bob"; "carol"; "ted"; "alice"Þ
[replicateð24; sampleðxÞÞ # Permute x 24 times

2.7.2 Applying Functions

Functions are provided for calculating row and column sums and means of a data
frame. Functions colSums and colMeans calculate column sums and means, and
functions rowSums and rowMeans calculate row sums and means. Function
rowsum calculates column sums over rows grouped by a factor. Mapping func-
tions44 allow arbitrary functions to be applied.

Use sapply to map a function to each column of a data frame. For example the
provided iris data set:

[sapplyðiris; classÞ # Apply class to columns of iris
[sapplyðiris½1:4�; meanÞ # Apply mean to columns 1:4

Use tapply to map a function to subsets of a vector grouped by one or more
factors. Pass multiple factor arguments within a list. For example the provided
warpbreaks data set:

[attachðwarpbreaksÞ
[tapplyðbreaks; tension; meanÞ
[tapplyðbreaks; listðwool; tensionÞ; meanÞ # Factor arguments within a list
[detachðwarpbreaksÞ

Instead of attaching the data frame to facilitate access to the variables you may
prefer to use with:

[withðwarpbreaks; tapplyðbreaks; listðwool; tensionÞ; meanÞÞ # Using with

Functions by and aggregate both map a given function to subsets of data
frame columns grouped by one or more factors. They differ in that function by
returns a list, and function aggregate returns a data frame. Function by is ori-
ented towards extracting more complicated information from each group, such as

43 See also: combn to generate combinations of elements, choose for the number of
combinations, and factorial for the size of a full permutation. See permutations in package
gtools for enumerating a full permutation.
44 See: apropos("apply").

2.7 Mapping Functions 39

model fits, and returning these in a form that can subsequently be processed using
sapply.45 Function aggregate is oriented towards computing summary statistics
for each group, and returning these in a form that can more easily be combined
into a table using cbind.

[byðiris½1:4�; listðiris$SpeciesÞ; meanÞ
[aggregateðiris½1:4�; listðiris$SpeciesÞ; meanÞ

Passing Arguments to the Mapped Function

Mapping functions that have an argument named ". . ." allow additional optional
arguments to be passed to the mapped function. For example it is often necessary
to pass the argument na.rm=TRUE to a summary descriptive function to omit
missing values from the calculation.

[sapplyðiris½1:4�; mean; na:rm¼TRUEÞ
[sapplyðiris½1:4�; mean; na:rm¼TRUE; trim¼0:2Þ # Trimmed mean

2.8 Writing Functions

Custom functions to extend the R language can be created using the function
keyword.46 For example a function to calculate the standard error of a sample
vector x could be defined as follows:

[se ¼ functionðxÞ f
þ sdðxÞ=sqrtðlengthðxÞÞ
þ g

The function arguments are declared as the arguments to the function key-
word. Here there is just one argument, named x. The calculations performed by the
function is defined in the function’s body between f. . .g. The value returned by
the function is the value of its final line.47 The name of the function is the name of
the variable you assign it to. Here the function is named se. This function could
then be used as follows:

[y ¼ rnormð100Þ
[seðyÞ # Call the se function; passing argument y

45 See the examples in help(by).
46 See: help("function").
47 See also: help(return).

40 2 Data Structures

The function can be mapped to a data structure in the same way as any provided
function, for example:

[sapplyðiris½1:4�; seÞ # Apply function se to columns 1:4

2.8.1 Anonymous Functions

If the custom function is a small one-off function it is typically defined at the place
it is used as an ‘‘anonymous’’ function, (a function with no name). For example:

[sapplyðiris½1:4�; functionðxÞ sdðxÞ=sqrtðlengthðxÞÞÞ # Anonymous se
[sapplyðiris½1:4�; functionðxÞ sumðis:naðxÞÞÞ # Count NA

2.8.2 Optional Arguments

Optional arguments and their default values are declared as name=value in the
argument list. Argument checking within the function can be reported by function
stop (for fatal errors) or warning (for non-fatal warning messages).

For example a function to calculate the small sample confidence interval for the
mean, and return a list containing the lower and upper limits:

[ci ¼ functionðx; conf¼0:95Þ f
þ ifðlengthðxÞ\2Þ stopð"Not enough n'xn' observations"Þ
þ y ¼ t:testðx; conf:level¼confÞ$conf:int
þ listðlower¼y½1�; upper¼y½2�Þ
þ g
[# Using the function:
[y ¼ rnormð100Þ
[ciðyÞ # 95% CI
[ciðy; conf¼0:99Þ # 99% CI

A special argument ‘. . .’ is used to pass arguments on to function calls within a
function. For example:

[ci ¼ functionðx;. . .Þ f
þ ifðlengthðxÞ\ 2Þ stopð"Not enough n'xn' observations"Þ
þ y ¼ t:testðx;. . .Þ$conf:int
þ listðlower¼y½1�; upper¼y½2�Þ
þ g
[ciðy; conf:level¼0:99Þ # 99% CI

2.8 Writing Functions 41

http://www.springer.com/978-3-642-17979-2

	2 Data Structures
	Abstract
	2.1…Data Structures
	2.1.1 Vectors, Matrices, and Arrays
	2.1.2 Data Frames and Lists
	2.1.3 Creating Data
	Creating Vectors
	Creating Matrices and Arrays
	Creating Data Frames and Lists
	Creating Character Data

	2.1.4 Sampling Data
	2.1.5 Reading Data

	2.2…Operations on Vectors and Matrices
	2.2.1 Arithmetic Functions
	2.2.2 Descriptive Functions
	2.2.3 Operators and Expressions
	Vector Arithmetic
	Matrix Arithmetic
	Conditional Expressions
	Arithmetic With Logical Vectors

	2.3…Factors
	2.3.1 Making Factors
	2.3.2 Operations on Factors
	2.3.3 Re-ordering and Re-labelling

	2.4…Indexing
	2.4.1 Indexing by Name
	Attaching Data Frames

	2.4.2 Indexing by Number
	2.4.3 Inserting and Deleting Rows or Columns
	2.4.4 Indexing with Factors
	2.4.5 Conditional Indexing
	Conditioning by String Pattern Matching
	Indexing with Logical Vectors

	2.4.6 Sorting

	2.5…Reshaping
	2.5.1 Stacking and Unstacking
	2.5.2 Reshaping: Wide and Long
	2.5.3 Merging

	2.6…Missing Values
	2.6.1 Recoding Missing Values
	2.6.2 Operations with Missing Values
	2.6.3 Counting and Sorting Missing Values
	2.6.4 Handling Missing Values

	2.7…Mapping Functions
	2.7.1 Repeated Evaluation
	2.7.2 Applying Functions
	Passing Arguments to the Mapped Function

	2.8…Writing Functions
	2.8.1 Anonymous Functions
	2.8.2 Optional Arguments

