
Chapter 2
Kinetic Boundary Condition at the Interface

Abstract The vapor–liquid interface can exist only where the bulk vapor phase and
the bulk liquid phase of the same molecules coexist side by side. Therefore, all
the properties of the interface are inevitably affected by the bulk liquid and vapor
phases, and vice versa. The relation among these three constituents still remains
unresolved in general nonequilibrium states. However, at least in a weak nonequi-
librium state, the relations can be simplified and reformulated into a form of Kinetic
Boundary Condition (KBC) at the vapor–liquid interface. In this chapter, from the
microscopic point of view, we explain how the two bulk phases of vapor and liq-
uid are connected via the KBC at the interface. The main tools used here are the
nonequilibrium molecular dynamics simulation of vapor–liquid two-phase system
and the Boltzmann equation for vapor. Our aims in this chapter are to establish the
KBC at the interface by the molecular dynamics simulation and to reduce it into
the boundary condition for the vapor flows in the fluid-dynamics region outside the
Knudsen layer on the interface by the asymptotic analysis of the boundary-value
problem of the Boltzmann equation for small Knudsen numbers.

2.1 Microscopic Description of Molecular Systems

The physical properties of materials consisted of a large number of molecules are
resulted from some kinds of averages over a large number of molecules, because our
utilization activities of materials are usually carried out in some scales considerably
large compared with molecular scales. For example, the density of a fluid is always
evaluated as an averaged mass of a number of molecules in a volume divided by the
volume.

Consider the measurement of the temperature of a fluid by a thermometer. The
motion of molecules forming the thermometer is in an equilibrium state as a result of
the energy exchange with molecules in the fluid that contacts the thermometer. The
total kinetic energy of molecules forming the thermometer is then translated into
the temperature of thermometer, which is equal to the temperature of the fluid in the
equilibrium state. In translating the kinetic energy to the temperature, we employ a
fundamental relation in statistical mechanics [30]
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where k is the Boltzmann constant, T is the temperature in the equilibrium state,
m is the mass of a molecule, and (ξx , ξy, ξz) is the molecular velocity.1 For the
case of temperature measurement, the angle brackets 〈· · · 〉 in the right-hand side of
Eq. (2.1) means the average over the molecules forming the thermometer and also a
time average for some time duration of reading the scale of the thermometer. Thus,
the macroscopic variables, e.g., T in the left-hand side of Eq. (2.1), are defined
by some kinds of averages of microscopic variables, e.g., the molecular velocity
(ξx , ξy, ξz) in the right-hand side of Eq. (2.1).

When the temperature and pressure of a material (liquids or gases) concerned are
uniform over its some volume and the materials is at rest, the relations connecting
the temperature, pressure, density, internal energy, and so on can be described with-
out using the microscopic information. In the last century, such relations have been
compiled and integrated into thermodynamics, which explains the relations among
macroscopic variables of materials in equilibrium states and does not contain the
microscopic information at least apparently. Although fluid dynamics can discuss
behaviors of nonuniform and flowing liquids and gases, its foundation is supported
by thermodynamics under the assumption of the local equilibrium, which requires
that the fluid in a sufficiently small volume2 is locally in an equilibrium state,3 even
if the temperature and pressure are not uniform and the fluid is flowing over large
scales. The interface, however, is a thin layer by its definition, and thermodynam-
ics (and fluid dynamics) in such a thin layer has not been established yet or may
not be expected to be established. Therefore, we have to consider the vapor–liquid
interface and its neighborhood from the microscopic point of view. For example, in
Sect. 4.4, using molecular dynamics simulations, we demonstrate that when a spher-
ical nanodroplet and the surrounding vapor are in an equilibrium state in the sense
of statistical mechanics, the thermodynamical vapor–liquid equilibrium condition
(an equality of chemical potentials of vapor and liquid) does not hold.

We start with a brief explanation of a general microscopic description of molec-
ular systems.

1 For simplicity, the fluid and the thermometer are assumed to be composed of monatomic
molecules and at rest in the macroscopic sense. The formula (m/2)〈ξ2

i 〉 = kT/2 (i = x, y, z)
is called the equipartition theorem or the law of equipartition of energy.
2 The sufficiently small volume in fluid dynamics is sufficiently large in molecular scales so that
it may contain a number of molecules. Thus, the macroscopic variables defined by some kinds of
averages can be regarded as continuous functions of the space coordinates and the time. If the fluid
is an ideal gas in the standard state, the number of molecules in a cube with a side-length 1 µm is
2.6867774×107. The number of molecules per unit volume is called the Loschmidt constant.
3 The actualization of local equilibrium requires a sufficient number of molecular interactions
(intermolecular collisions).
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2.1.1 Equation of Motion

For simplicity, we deal with a single component system consisted of a large number
of monatomic molecules, assuming that the motion of each molecule is determined
by classical mechanics (without any quantum effects), the molecules are electrically
neutral, and any types of association and dissociation do not occur. Then, Newton’s
equation of motion is the starting point:

m
d2x(i)

dt2
= f (i), (i = 1, 2, . . . , N ), (2.2)

where m is the mass of a molecule, N is the total number of molecules in the system
concerned, x(i) is the position vector of the i th molecule, t is the time, and f (i) is
the force exerted on the i th molecule. Equation (2.2) can be written as

m
d2x (i)j

dt2
= f (i)j , (i = 1, 2, . . . , N ; j = 1, 2, 3), (2.3)

where x (i)j and f (i)j are the j th components of vectors x(i) and f (i), respectively.

Once given an explicit form of the force f (i) and initial positions and velocities of
all molecules, Newton’s equation of motion (2.2) can in principle be solved, e.g.,
numercally. All the macroscopic properties of materials can then be determined
through their definitions in terms of some kinds of averages of the microscopic
quantities, i.e., x(i), dx(i)/dt , and d2x(i)/dt2 (or f (i)) for all molecules; the defini-
tions of macroscopic variables, such as the temperature, density, velocity, pressure,
internal energy, and so on, are shown in Sects. 2.1.3, 2.3.1, and 2.5.1.

In general, the force f (i) includes external forces such as the gravity. The mag-
nitude of acceleration due to gravity is, however, negligibly small compared with
a typical intermolecular force in molecular scales in time and space, and hence we
only consider f (i) in Eq. (2.2) as the force acting between molecules, i.e., the inter-
molecular force.4 Then, it seems to be plausible to assume that the force f (i) is a
conservative force, and its potential U is a function of intermolecular distances only.
We further limit ourselves to the case that the potential U may be approximated as
a pairwise and additive one, i.e.,

U = 1

2

N∑
i=1

N∑
k=1
k �=i

φ(rik), (2.4)

where rik = ∣∣x(i)− x(k)
∣∣ is the distance between the i th molecule and the kth

molecule (i �= k) and φ is a function of intermolecular distance rik . The factor 1/2

4 Forces acting between atoms making up a molecule (covalent bonds, ionic bonds, and metallic
bonds) are called the intramolecular forces.
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in the right-hand side of Eq. (2.4) is introduced since the double sum with respect
to i and k counts each pair twice. The force exerted on the i th molecule can then be
defined by

f (i) = − ∂U

∂x(i)
, (2.5)

and expressed in a component form as

f (i)j = −
N∑

k=1
k �=i

∂rik

∂x (i)j

φ′(rik) = −
N∑

k=1
k �=i

x (i)j − x (k)j

rik
φ′(rik), (2.6)

or in a vector form as

f (i) = −
N∑

k=1
k �=i

x(i)− x(k)

rik
φ′(rik), (2.7)

where φ′(rik) denotes the derivative of φ with respect to rik . The pairwise and addi-
tive potentials are widely used in molecular dynamics (MD) simulations of liquids
and gases [1, 11], although the complete validation has not been given. On the
other hand, multi-body potentials are used for various MD simulations of crystalline
materials such as graphite, diamond, and carbon nanotube [6].

Introducing the generalized momenta p(i)j conjugate to the generalized coordi-

nates q(i)j , Newton’s equation of motion (2.3) with Eq. (2.6) can be reformulated to
the equations of motion in Hamilton’s form, or Hamilton’s canonical equations of
motion [22]:

dq(i)j

dt
= ∂H
∂p(i)j

,
dp(i)j

dt
= − ∂H

∂q(i)j

, (i = 1, 2, . . . , N ; j = 1, 2, 3). (2.8)

Here,

p(i)j = m
dx (i)j

dt
, q(i)j = x (i)j , (2.9)

H =
N∑

n=1

⎡
⎢⎢⎣1

2

3∑
k=1

p(n)k p(n)k

m
+ 1

2

N∑
k=1
k �=n

φ(rnk)

⎤
⎥⎥⎦ , (2.10)

where H is the Hamiltonian of the whole system. Note that we confine ourselves
to the molecular system of N monatomic molecules, and hence the kinetic energy
included in the Hamiltonian H is that of translational motions only [the inclusion of
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the internal rotational motions of a polyatomic molecule into Eqs. (2.8), (2.9), and
(2.10) is straightforward]. Since the Hamiltonian H defined by Eq. (2.10) does not
depend explicitly on the time t , it is a global constant of the motion and we write
H = E , where E is the total energy of the system.

2.1.2 Liouville Equation

An arbitrary state of the N molecular system can be specified by using the 6N -
dimensional phase space (q, p), where q =(q(1)1 , q(1)2 , q(1)3 , q(2)1 , . . . , q(N )2 , q(N )3 ) and

p = (p(1)1 , p(1)2 , p(1)3 , p(2)1 , . . . , p(N )2 , p(N )3 ) [22, 30, 32]. The results derived from the
concept of the phase space should be the same as those obtained from the solutions
of Newton’s equation of motion (2.3) with Eq. (2.6), while the former is much more
suitable for the deduction of macroscopic properties from the microscopic informa-
tion, because the macroscopic properties are associated with some kinds of averages
over a number of molecules. The 6N -dimensional phase space is sometimes called
the Γ -space.

Specifying an arbitrary point (q, p) in the 6N -dimensional phase space at a given
time t is equivalent to specifying a set of initial conditions of Newton’s equations
of motion for N molecules. From the existence and uniqueness of the solution of
initial-value problem of a set of Newton’s equations of motion (a set of ordinary
differential equations), there exists a trajectory of solution that passes through the
specified arbitrary point (q, p) in the phase space at the time. That is, the phase
space is filled with the trajectories of solutions of a set of Newton’s equations of
motion and a point in the phase space represents a state of the N molecular system.

The density distribution function (probability density function) F(q, p, t) in the
phase space is now defined by

dP = F(q, p, t) dq d p, (2.11)

where dP is the probability that a point (q, p), moving in the phase space according
to Newton’s equation of motion, lies in a 6N -dimensional volume element dq d p =
dq(1)1 dq(1)2 · · · dq(N )3 dp(1)1 dp(1)2 · · · dp(N )3 at a time t . Thus, the probability of finding
the system of N molecules in a region χ in the phase space is

P(χ) =
∫
χ

F(q, p, t) dq d p, (2.12)

where the integration is taken over the region χ . If χ is the whole 6N -dimensional
space, then P(χ) = 1. The expected value of an arbitrary function G(q, p) is given
by

∫
G(q, p)F(q, p, t) dq d p. (2.13)
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From the conservation of probability, in the same manner as the derivation of
equation of mass continuity in fluid dynamics, we have [22, 30, 32]

dF

dt
= ∂F

∂t
+

N∑
i=1

3∑
j=1

[
∂

∂q(i)j

(
F

dq(i)j

dt

)
+ ∂

∂p(i)j

(
F

dp(i)j

dt

)]
= 0, (2.14)

where dF/dt is the total time derivative of F . Expanding the derivatives with respect
to q(i)j and p(i)j in Eq. (2.14) and applying the equations of motion in Hamilton’s
form (2.8), we can transform Eq. (2.14) into

∂F

∂t
+

N∑
i=1

3∑
j=1

(
dq(i)j

dt

∂F

∂q(i)j

+ dp(i)j

dt

∂F

∂p(i)j

)
= 0. (2.15)

Equation (2.15) is called the Liouville equation. Using Eq. (2.9) and Newton’s equa-
tion of motion (2.3) in Eq. (2.15), we have

∂F

∂t
+

N∑
i=1

3∑
j=1

(
p(i)j

m

∂F

∂q(i)j

+ f (i)j
∂F

∂p(i)j

)
= 0. (2.16)

Equation (2.16) is also called the Liouville equation.
If an isolated system is in an equilibrium state, then the probability density F

must be time independent and we have

N∑
i=1

3∑
j=1

(
p(i)j

m

∂F

∂q(i)j

+ f (i)j
∂F

∂p(i)j

)
= 0. (2.17)

This means that the flow in the phase space is steady and incompressible in the sense
of fluid dynamics [22, 30, 32]. In general nonequilibrium states, Eq. (2.17) does not
hold and we have to return to the Liouville equation (2.16).

2.1.3 Definitions of Macroscopic Variables and Equations
in Fluid Dynamics

The formal relations between microscopic and macroscopic variables can readily be
derived from the Liouville equation (2.16) by the method of Irving and Kirkwood
[15]. The method is superior in that the definitions of macroscopic variables can
be applied to those in nonequilibrium states for both liquids and gases, and the
resulting definitions are suitable for the use in the analysis of the data obtained by
MD simulations. Note that if we restrict ourselves to the case that the fluid is an ideal
gas, the definitions of macroscopic variables have been established in the kinetic
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theory of gases (molecular gas dynamics) in terms not of the probability density F
but of the velocity distribution function of gas molecules [35]. The kinetic theory of
gases are summarized in Sect. 2.3.

In the following, we derive the equations in fluid dynamics (conservation equa-
tions of mass, momentum, and energy) from the Liouville equation (2.16) by the
method of Irving and Kirkwood [15] with a small modification for the later use in
Sect. 2.2. In the original paper [15], the Dirac delta function is used instead of a
scalar function χ defined below.

To begin with, we define an averaged fluid density as

ρ(x, t) = m

h3

N∑
i=1

∫
χ(q(i), x; h)F(q, p, t) dq d p, (2.18)

where the integration is taken over the whole 6N -dimensional phase space and

χ(q(i), x; h) =
⎧⎨
⎩

1
∣∣∣ q(i)j − x j

∣∣∣ � h/2 for j = 1, 2, 3,

0 otherwise.
(2.19)

That is, if the i th molecule is in a cube with a side-length h centered at x, then χ = 1
and the integration yields the expected value that one will find the i th molecule in the
cube (Fig. 2.1). Therefore, the right-hand side of Eq. (2.18) is the expected value of
the number of molecules in the cube multiplied by m/h3, which is the averaged fluid
density ρ. Note that the introduction of the function χ is a coarse-graining process.
Although the side-length h of the cube is arbitrary, it should be small compared with
some length scale that is to be resolved.

Similarly, an averaged fluid momentum per unit volume and an averaged total
energy of fluid per unit volume are defined as

h

x

O

χ (q ,˙x.;˙h)(i)

q (k)

q (j)

˙
q (�) h

h

Fig. 2.1 The value of the scalar function χ(q(i), x; h) is equal to unity if the i th molecule is
contained in a cube with a side-length h centered at x
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ρ(x, t)v j (x, t) = 1

h3

N∑
i=1

∫
χ(q(i), x, h)p(i)j F(q, p, t) dq d p, (2.20)

ρ(x, t)E(x, t) = 1

h3

N∑
i=1

∫
χ(q(i), x, h)e(i)F(q, p, t) dq d p, (2.21)

e(i) = 1

2

3∑
j=1

p(i)j p(i)j

m
+ 1

2

N∑
k=1
k �=i

φ(rik), (2.22)

where Eq. (2.10) is used for the definition of e(i), the sum of the kinetic and potential
energies of the i th molecule.5 Thus, the fluid velocity v j and the total energy of fluid
per unit mass E are defined.6

The conservation law of mass of a fluid is expressed in a partial differential
equation, which can be derived from the Liouville equation (2.16) in the following
manner. Multiplying Eq. (2.16) by χ(n) = χ(q(n), x, h), we have

∂

∂t
(χ(n)F)+

N∑
i=1

3∑
j=1

(
χ(n)

p(i)j

m

∂F

∂q(i)j

+ χ(n) f (i)j
∂F

∂p(i)j

)
= 0. (2.23)

Integrating Eq. (2.23) over the whole phase space gives

∂

∂t

∫
χ(n)F dq d p +

N∑
i=1

3∑
j=1

(∫
χ(n)

p(i)j

m

∂F

∂q(i)j

dq d p

+
∫
χ(n) f (i)j

∂F

∂p(i)j

dq d p

)
= 0. (2.24)

With the aid of the Gauss divergence theorem, the following equations hold for
an arbitrary function G,

N∑
i=1

3∑
j=1

∫
Ωq

G(q)
∂F

∂q(i)j

dq = −
N∑

i=1

3∑
j=1

∫
Ωq

∂G

∂q(i)j

F dq, (2.25)

N∑
i=1

3∑
j=1

∫
Ωp

G( p)
∂F

∂p(i)j

d p = −
N∑

i=1

3∑
j=1

∫
Ωp

∂G

∂p(i)j

F d p, (2.26)

5 The potential energy of the i th molecule is defined only formally. It is the total potential energy
of all molecules that has the physical meaning.
6 In Chap. 5 and in Appendix B, the internal energy per unit mass of fluid is denoted by e.
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if the probability density F falls off rapidly outside a bounded region Ωq in the
3N -dimensional space of q in the case of Eq. (2.25) and outside a bounded region
Ωp in the 3N -dimensional space of p in the case of Eq. (2.26).

Using Eqs. (2.25) and (2.26), we can rewrite Eq. (2.24) into

∂

∂t

∫
χ(n)F dq d p −

N∑
i=1

3∑
j=1

[∫
∂

∂q(i)j

(
χ(n)

p(i)j

m

)
F dq d p

+
∫

∂

∂p(i)j

(
χ(n) f (i)j

)
F dq d p

]
= 0. (2.27)

Since χ(n) and f (i)j are independent of p(i)j , the differentiation of χ(n) f (i)j with

respect to p(i)j vanishes, i.e.,

∂

∂p(i)j

(
χ(n) f (i)j

)
= 0. (2.28)

From the definition of the function χ , Eq. (2.19), we have

N∑
i=1

∂

∂q(i)j

(
χ(n)

p(i)j

m

)
= ∂

∂q(n)j

(
χ(n)

p(n)j

m

)
= − ∂

∂x j

(
χ(n)

p(n)j

m

)
, (2.29)

where in the last equality we used

∂χ(n)

∂q(n)j

= −∂χ(n)

∂x j
. (2.30)

Substituting Eqs. (2.28) and (2.29) into Eq. (2.27) and taking the sum over all n, we
obtain the equation of mass continuity in fluid dynamics,

∂ρ

∂t
+

3∑
j=1

∂ρv j

∂x j
= 0, (2.31)

where the definitions of ρ and ρv j , Eqs. (2.18) and (2.20), are used. Equation (2.31)
with the definitions of ρ and v j does not require the assumption of local equilibrium
unlike in the case of fluid dynamics.7

7 The only requirement is that ρ and v j are continuously differentiable functions of x and t . This
will be satisfied by choosing h in the function χ so that the cube with a side-length h centered
at x contains a large number of molecules. If the fluid is a gas, this does not warrant the local
equilibrium, because the mean free path of gas molecules can be very large compared with h.
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In the same manner as the derivation of Eq. (2.27), we can derive the equations
of momentum conservation of nth molecule

∂

∂t

∫
χ(n) p(n)k F dq d p −

N∑
i=1

3∑
j=1

[∫
∂

∂q(i)j

(
χ(n)

p(n)k p(i)j

m

)
F dq d p

+
∫

∂

∂p(i)j

(
χ(n) p(n)k f (i)j

)
F dq d p

]
= 0, (k = 1, 2, 3), (2.32)

where Eq. (2.20) is used. By making use of Eqs. (2.28) and (2.30), Eq. (2.32) can
be rewritten into

∂

∂t

∫
χ(n) p(n)k F dq d p +

3∑
j=1

∂

∂x j

∫
χ(n)

p(n)k p(n)j

m
F dq d p

−
∫
χ(n) f (n)k F dq d p = 0, (k = 1, 2, 3). (2.33)

The third term in Eq. (2.33) can be transformed to yield8

∂

∂t

∫
χ(n) p(n)k F dq d p +

3∑
j=1

∂

∂x j

∫
χ(n)

p(n)k p(n)j

m
F dq d p

−
3∑

j=1

∂

∂x j

∫
1

3

(
x j − q(n)j + h

2

)
χ(n) f (n)k F dq d p = 0, (k = 1, 2, 3).

(2.34)

Taking the sum over n, we should have the conservation equation of the momentum
of the fluid per unit volume,

∂ρvk

∂t
+

3∑
j=1

∂

∂x j

(
ρvkv j + Pkj

) = 0, (k = 1, 2, 3), (2.35)

where the microscopic definition of the stress tensor Pkj is given as

In the case that the fluid is a liquid, this may be a sufficient condition for the local equilibrium,
because the mean free path of liquid molecules is usually comparable with or less than a typical
diameter of a molecule.
8 The factor 1

3 in Eq. (2.34) is an ideal limit of N → ∞ in equilibrium states. The stress tensor in
the original paper [15] is different from this and much more cumbersome.
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Pkj = 1

h3

N∑
n=1

∫ [ p(n)k p(n)j

m
− 1

3

(
x j − q(n)j + h

2

)
f (n)k

]
χ(n)F dq d p

− ρv jvk, ( j, k = 1, 2, 3). (2.36)

If the fluid is in a uniform equilibrium state at rest, then v j = 0 and Pkj = Pδk j ,
where δk j is the Kronecker delta and pressure P is given by

P = 1

3h3

N∑
n=1

3∑
k=1

∫ [
p(n)k p(n)k

m
−
(

xk − q(n)k + h

2

)
f (n)k

]
χ(n)F dq d p. (2.37)

The energy conservation equation for the nth molecule, the counterpart of
Eq. (2.34), is

∂

∂t

∫
χ(n)e(n)F dq d p +

3∑
j=1

∂

∂x j

∫
χ(n)e(n)

p(n)j

m
F dq d p

−
3∑

j=1

∂

∂x j

∫ (
x j − q(n)j + h

2

)
χ(n)

p(n)j

m
f (n)j F dq d p = 0. (2.38)

After taking the sum over n, the conservation equation of the total energy of the fluid
per unit volume and the microscopic definition of the heat flux Q j are obtained as

∂ρE

∂t
+

3∑
j=1

∂

∂x j

(
ρEv j +

3∑
i=1

Pi jvi + Q j

)
= 0, (2.39)

Q j = 1

h3

N∑
n=1

∫ [
e(n) −

(
x j − q(n)j + h

2

)
f (n)j

] p(n)j

m
χ(n)F dq d p

−
(
ρEv j +

3∑
i=1

Pi jvi

)
, ( j = 1, 2, 3). (2.40)

It may be instructive to compare the above results with the definitions of macro-
scopic variables in the kinetic theory of gases [35]. The definitions of the stress
tensor and the heat flux in the kinetic theory of gases are given as follows:

Pi j =
∫
(ξi − vi )(ξ j − v j ) f (x, ξ , t) dξ

=
∫
ξiξ j f (x, ξ , t) dξ − ρviv j , (i, j,= 1, 2, 3), (2.41)
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Q j =
∫

1

2
(ξ j − v j )

3∑
i=1

(ξi − vi )
2 f (x, ξ , t) dξ

=
∫
ξ j

1

2

3∑
i=1

ξ2
i f (x, ξ , t) dξ −

[
ρ

(
3

2
RT + 1

2

3∑
i=1

v2
i

)
v j +

3∑
i=1

pi jvi

]
,

( j = 1, 2, 3), (2.42)

where ξi is the i th component of molecular velocity, T is the temperature, R = k/m
is the gas constant (per unit mass), the integration is taken over the 3-dimensional
space of molecular velocity ξ , and f (x, ξ , t) is the velocity distribution function of
gas molecules, which gives the gas density

ρ =
∫

f (x, ξ , t) dξ . (2.43)

The precise definition of the velocity distribution function f (x, ξ , t) is given in
Sect. 2.3.1. Equations (2.41) and (2.42) are also applicable to general nonequilib-
rium states with the definition of temperature

3

2
ρRT =

∫
1

2

3∑
i=1

ξ2
i f dξ − 1

2
ρ

3∑
i=1

v2
i . (2.44)

As compared with Eqs. (2.36) and (2.40), one can see that the contribution of inter-
molecular force is neglected in Eqs. (2.41) and (2.42).

Thus, the microscopic definitions of the stress tensor and the heat flux are
extended to nonequilibrium states in fluids including liquids where the intermolec-
ular force cannot be neglected. They are used for the analysis of results from MD
simulations. For the definition of temperature,

3

2
kT =

N∑
i=1

∫
χ(q(i)− x; h)

1

2

3∑
j=1

p(i)j p(i)j

m
F(q, p, t) dq d p − m

2

3∑
i=1

v2
i , (2.45)

is used in MD simulations, instead of Eq. (2.44).
We have derived the equations for conservation laws of macroscopic vari-

ables, Eqs. (2.31), (2.35), and (2.39), with the definitions of macroscopic variables,
Eqs. (2.18), (2.20), (2.21), (2.36), (2.40), and (2.45). They can be applied to gen-
eral nonequilibrium states of liquids and gases, for which we cannot expect (i) the
thermodynamic relations (or the assumption of local equilibrium), (ii) the stress
tensor of the Newtonian fluid, and (iii) the heat flux based on the Fourier law. For
example, it is well known that the stress tensor for a slightly rarefied gas contains
terms related to temperature gradient, called the thermal stress [35], which does not
appear in equations of fluid dynamics (see Appendix B at the end of this book).
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Since our target is the vapor–liquid interface, we have to know the behavior of
molecules in the liquid phase. For this purpose, we use the MD simulations for the
vapor–liquid two phase system.

2.2 Molecular Dynamics Simulation

In the preceding subsection, we have given the definitions of macroscopic variables
in terms of the microscopic information. They can be applied to liquids and gases
in general nonequilibrium states, and expressed in appropriate forms for the analy-
sis in MD simulation. Now, we move on to the explanation of the method of MD
simulations.

The standard method of MD simulation numerically solves Newton’s equation
of motion (2.3) for a number of molecules confined in a simulation box fixed in a
physical coordinate system. The total number of molecules in the box is unchanged
during the simulation if an appropriate boundary condition on the surface of the
box is imposed. Such a method of simulation is called N V E simulation because
the number of molecules, N , the volume of the system, V , and the total energy of
molecules, E , are constant in the simulation except for numerical errors (mainly
truncation errors) in the total energy. It is possible and sometimes preferred to
perform simulations with a constant temperature (N V T simulation) or those with
constant temperature and pressure (N PT simulation) [1, 13]. However, N V T simu-
lation and N PT simulation solve some dynamical systems different from Newton’s
equation of motion (2.3) and the Liouville equation (2.16). The differences resulted
from the differences from Newton’s equation of motion have not been figured out
in nonequilibrium MD simulations.9 In this book, we concentrate on the dynamics
of molecules based on Newton’s equation of motion (2.3), although not restricted to
N V E simulations.

2.2.1 Lennard-Jones Potential and Normalization of Variables

In MD simulations, the most widely used pairwise additive potential is the Lennard-
Jones 12-6 potential [23],

U = 1

2

N∑
i=1

N∑
k=1
k �=i

φ(rik), φ(rik) = 4ε

[(
σ

rik

)12

−
(
σ

rik

)6
]
, (2.46)

where ε (J) and σ (m) are the energy and length parameters of Lennard-Jones 12-6
potential. Using these two parameters and the molecular mass m, Newton’s equation
of motion (2.3) can be nondimensionalized as

9 The macroscopic properties in equilibrium states should not be different by the difference of
simulation methods.
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d2 x̂ (i)j

dt̂2
= f̂ (i)j , (2.47)

where

x̂ (i)j = x (i)j

σ
, t̂ = t

σ
√

m/ε
, f̂ (i)j = f (i)j

ε/σ
. (2.48)

The nondimensional quantities are signified by ˆ. Then, from Eq. (2.6), the nondi-
mensionalized intermolecular force f̂ (i)j is given by

f̂ (i)j = −
N∑

k=1
k �=i

x̂ (i)j − x̂ (k)j

r̂ik
φ̂′(r̂ik), (2.49)

where

φ̂(r̂ik) = 4

[(
1

r̂ik

)12

−
(

1

r̂ik

)6
]
, r̂ik =

∣∣∣x̂(i)− x̂(k)
∣∣∣. (2.50)

The macroscopic variables are also nondimensionalized as follows:

ρ̂ = σ 3ρ

m
, T̂ = kT

ε
, v̂ j = v j√

ε/m
, P̂i j = σ 3 Pi j

ε
, Q̂ j = σ 3m1/2 Q j

ε3/2
.

(2.51)
In Fig. 2.2, the nondimensionalized Lennard-Jones 12-6 potential φ̂(r̂) and its

derivative with respect to the argument, φ̂′(r̂), are shown in a solid curve and dashed
curve, respectively. The potential φ̂(r̂) has a minimum at r̂ = 21/6, at which a strong
repulsive force (r̂ < 21/6) is switched to an attractive force (r̂ > 21/6). The repulsive
force behaves like r̂−13 and the asymptotic form of the tail of attractive force is r̂−7

as r̂ → ∞.
Figure 2.2 suggests that r̂ = 1 (r = σ ) is a reasonable measure of the diam-

eter of the molecule modeled by the Lennard-Jones 12-6 potential. The depth
of potential well, i.e., the minimum of φ̂, corresponds to φ = ε and indicates
the strength of molecular interaction. Thanks to a number of simulation studies
up to now, the Lennard-Jones parameters ε and σ suitable for modeling simple
molecules such as Ar, Ne, Kr, N, O have been tabulated; for example, (ε/k, σ ) =
(119.8 K, 0.341 nm) for Ar, (47.0 K, 0.272 nm) for Ne, (164.0 K, 0.383 nm) for
Kr, (37.3 K, 0.331 nm) for N, (61.6 K, 0.295 nm) for O [1], where the Boltzmann
constant k = 1.3806504 × 10−23 J/K.

Before proceeding to subsections for numerical method, we note that the nondi-
mensionalization of variables in Eqs. (2.48), (2.49), (2.50), and (2.51) are defined
by the quantities in molecular scales. Effects of much larger scales in space and
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Fig. 2.2 The nondimensionalized Lennard-Jones 12-6 potential φ̂(r̂) (solid curve) and its deriva-
tive with respect to the argument φ̂′(r̂) (dashed curve)

time may therefore slip through standard numerical methods usually used in MD
simulations.10 We focus on molecular phenomena in molecular scales.

2.2.2 Finite Difference Method

Newton’s equation of motion (2.47) is a set of ordinary differential equations.
Although we have many sophisticated numerical techniques for solving ordinary
differential equations [29], MD simulations usually use rather simple finite differ-
ence methods. This is because we have to deal with a number of molecules in the
system N , and/or we have to continue computations for quite large steps M . The
number of molecules N and the number of steps M sometimes exceed N = 106 and
M = 108. Large N and M directly result in the increase in the computational time.
We therefore prefer numerical methods as simple as possible with less degradation
in accuracy. The methods commonly used are the leap-frog scheme, the velocity
Verlet scheme, and Gear’s predictor–corrector algorithms [1, 11]. We here explain
the leap-frog scheme.

In the leap-frog scheme, the nondimensionalized Newton’s equation of motion
(2.47) is discretized as

x̂ (i)j (t̂ +�t̂ ) = x̂ (i)j (t̂ )+�t̂ v̂(i)j (t̂ + 1
2�t̂ )+ O(�t̂ 3), (2.52)

10 For example, it is natural that large-scale fluid flows are affected by the gravity.
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v̂
(i)
j (t̂ + 1

2�t̂ ) = v̂
(i)
j (t̂ − 1

2�t̂ )+�t̂ f̂ (i)j (t̂ )+ O(�t̂ 3), (2.53)

where v̂(i)j is the j th component of velocity of the i th molecule and �t̂ is the time
step. By using the Taylor expansions, it is easy to derive Eqs. (2.52) and (2.53), and
to confirm that the local truncation errors are of the order of �t̂ 3. Note that f̂ (i)j (t̂)
in the right-hand side of Eq. (2.53) is given by

f̂ (i)j (t̂) = −
N∑

k=1
k �=i

x̂ (i)j (t̂ )− x̂ (k)j (t̂ )

r̂ik(t̂ )
φ̂′(r̂ik(t̂ )), (2.54)

r̂ik(t̂ ) =
∣∣∣x̂(i)(t̂ )− x̂(k)(t̂ )

∣∣∣, (2.55)

and hence v̂(i)j (t̂ + 1
2�t̂ ) can be obtained by Eq. (2.53) if v̂(i)j (t̂ − 1

2�t̂ ) and x̂ (i)j (t̂ )

are known. After obtaining v̂
(i)
j (t̂ + 1

2�t̂ ), we can determine x̂ (i)j (t̂ + 1
2�t̂ ) by

Eq. (2.52), and the computation can be continued to the next time step. Thus, the
time series of positions and velocities obtained by the leap-frog scheme (2.52) and
(2.53) are shifted by the half of the time step.

In many cases, it is important and useful to monitor the value of the total energy
(total Hamiltonian) (2.10), which can be written in the nondimensional form as
follows:

Ĥ(t̂ ) = 1

2

N∑
i=1

3∑
j=1

v̂
(i)
j (t̂ )v̂(i)j (t̂ )+ 1

2

N∑
i=1

N∑
k=1
k �=i

φ̂
(
r̂ik(t̂ )

)
. (2.56)

For the evaluation of Ĥ(t̂ ), we can use

v̂
(i)
j (t̂ ) = 1

2

[
v̂
(i)
j (t̂ + 1

2�t̂ )+ v̂
(i)
j (t̂ − 1

2�t̂ )
]

+ O(�t̂ 2). (2.57)

The error of the order of �t̂ 2 brought into Ĥ(t̂ ) by the use of Eq. (2.57) may not
lead to serious problems, because Eq. (2.57) is used only in the evaluation of Ĥ,
and significant errors are caused by the accumulation of local truncation errors for
a large number of computational steps.

Even if the number of molecules in the system is not so large, e.g., N = 104,
the exact evaluation of f̂ (i)j is a hard task because of the long tail of attractive force,

as shown in Fig. 2.2. Since the tail of attractive force decays as r̂−7, it seems to be
reasonable to cut it off at some distance r̂cut from the center of the i th molecule.
Many authors have so far used r̂cut = 2.5 in their MD simulations. However, the
simulations of vapor–liquid interface and its neighborhood are strongly affected
by the details of the numerical method, such as, the size of cut-off radius r̂cut, the
thickness of liquid layer, and the area of the interface [12, 26, 40]. In particular, the
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Fig. 2.3 The density and temperature in a vapor–liquid equilibrium state. In the figure, the density
transition layer is shown as the interface

shorter is the cut-off radius, the lower the liquid density and the higher the vapor
density. According to Refs. [12, 26, 40], to suppress artificial effects due to small
r̂cut, it should be larger than or at least equal to 4.4 (it corresponds to 1.5 nm for the
case of argon).

Usually, the simulation is performed for a specified N molecules put in a sim-
ulation box fixed in the coordinate system. We therefore impose some boundary
condition at the surface of the box. The most simple one is the periodic boundary
condition [1, 11], and it enables us to avoid introducing artificial boundary con-
ditions and to conserve the number of molecules. Needless to say, the use of the
periodic boundary condition does not imply the simulation of infinitely large volume
at all, even in the cases of equilibrium simulation. For example, the thickness of the
vapor–liquid interface (density transition layer), as shown in Fig. 2.3 in Sect. 2.2.3
and illustrated in Fig. 2.7 in Sect. 2.4.1, is known to be a logarithmically increas-
ing function of the area of the interface (the cross section of the simulation box)
[12, 26, 40]. Furthermore, if the size of the box is not sufficiently large compared
with the cut-off radius, the artificial effect of periodic boundary condition spoils the
result of simulations [1, 11].

2.2.3 Example: Vapor–Liquid Equilibrium State

As an example of MD simulations, we present the distributions of averaged density
and temperature of a vapor–liquid coexistence system including two interfaces in
Fig. 2.3, where a planar liquid layer of monatomic molecules exists between two
vapor phases of the same molecules, and the system is in an equilibrium state.
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Although the simulation is performed with nondimensional variables defined in
previous subsections, the dimensional density and temperature are shown in Fig. 2.3
with the use of (ε/k, σ ) = (119.8 K, 0.341 nm) for argon. The temperature (84.6 K)
is uniform,11 the liquid density is 1410 kg/m3, and the vapor density is 4.3 kg/m3,
which are in agreement with known values [28] with errors less than 1%. The den-
sity profile in Fig. 2.3 shows that the vapor–liquid interface has a finite thickness.
The dashed line in Fig. 2.3 denotes the edge of the bulk liquid region or bulk vapor
region, where we tentatively use “bulk” to indicate that the averaged density is spa-
tially uniform.

The details of the simulation method are as follows: The simulation box is
L1 × L2 × L3 = 90 σ × 30 σ × 30 σ nm3, and a planar liquid layer with thickness
about 7 nm is set at around x1 = L1/2 as the initial condition, and the total number
of molecules is N = 17280. Under the periodic boundary condition, Newton’s equa-
tions of motion (2.47), (2.48), (2.49), and (2.50) for N molecules are numerically
solved by using the leap-frog scheme (2.52) and (2.53) with the time step �t̂ =
0.0005 (σ

√
m/ε�t̂ = 10−15 s) and the cut-off radius r̂cut = 5 (σ r̂cut = 1.7 nm).

The number of total simulation steps is M = 4 × 108 (σ
√

m/εM�t̂ = 4 × 10−7 s).
The first half of M simulation steps is dedicated to a relaxation process to a vapor–
liquid equilibrium, and the results shown in Fig. 2.3 are evaluated from averages of
samples obtained in the second half of M steps.

The evaluation of density and temperature uses Eqs. (2.18) and (2.45). Since
the phenomenon considered here is one-dimensional in the macroscopic sense, the
function χ defined by Eq. (2.19) should be replaced by

χ1(q(i)− x; h) =
⎧⎨
⎩

1
∣∣∣q(i)1 − x1

∣∣∣ � h/2,

0
∣∣∣q(i)1 − x1

∣∣∣ > h/2.
(2.58)

Accordingly, the volume of the cube h3 in Eqs. (2.18) and (2.45) should also be
replaced by hL2L3 (see Fig. 2.4). The integration of any function multiplied by the
probability density F(q, p, t) with respect to q and p is naturally replaced by the
summation over a large number of samples obtained in the MD simulation.

The errors introduced by the cut-off of the intermolecular force are illustrated in

Fig. 2.5a, where the error is defined by the difference of
∣∣∣ f (i)

∣∣∣ with r̂cut from
∣∣∣ f (i)

∣∣∣
with r̂cut = 10 for some i th molecule at some instant t . From the figure, we can
approximately estimate that the error of molecules in the bulk liquid phase decreases
with 10−3r̂cut/4 as r̂cut increases, and that of molecules at the edge of the bulk liquid
phase decreases more slowly with 10−r̂cut/4. The molecular motions in the vicinity
of the interface is therefore affected by the size of cut-off radius of intermolecular
potential strongly. The use of a small cut-off radius results in an equilibrium system
with a high vapor density and a low liquid density [12, 26, 40].

11 The triple point temperature is 83.8 K for argon [28].
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Figure 2.5b illustrates how the system size (number of total molecules N ) affects
the total Hamiltonian Ĥ defined by (2.56) and numerical errors in Ĥ. Here, the error
is defined by three times the standard deviation of Ĥ. In the figure, four systems
with different N (4320, 17280, 69588, 286487) are compared, for which we use the
same leaf-frog scheme with the same cut-off radius r̂cut = 5 and the same time step
�t̂ = 0.0005, and different simulation boxes: (L1/σ, L2/σ, L3/σ) = (90, 15, 15)
for N = 4320, (90, 30, 30) for N = 17280, (150, 60, 60) for N = 69588,
(390, 120, 120) for N = 286487. In our vapor–liquid two-phase systems, almost
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Fig. 2.5 (a) The difference between the intermolecular force with various cut-off r̂cut and that
with r̂cut = 10 is shown as a measure of error in the intermolecular force, where the open circle
denotes the force on some molecule in the bulk liquid phase and the closed circle denotes that on
some molecule at the edge of the bulk liquid phase. (b) The relation between the error in the total
Hamiltonian and the number of molecules in the system. The open circles are Ĥ × (−1) and the
closed circles are three times the standard deviation of Ĥ × 105 . The number near the symbol
denotes the total number of molecules in the system, N . The solid line is a line of slope 1 and the
dashed line slope 1/2
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80% of Ĥ is the potential energy of molecules in liquid and hence Ĥ is substantially
determined by the number of molecules in the liquid layer. This is the reason why
Ĥ in Fig. 2.5b is proportional to N . The important conclusion from Fig. 2.5b is
that if Ĥ ∝ N , then the error ∝ √

N . Theoretically, Ĥ should be constant in N V E
simulations as well as in an isolated system, and therefore, the fluctuation in Ĥ is
purely numerical. Figure 2.5b suggests that the numerical error in Ĥ also is governed
by the central limit theorem.12

2.3 Kinetic Theory of Gases

The kinetic theory is a microscopic theory of processes in systems not in statistical
equilibrium [24]. A kinetic boundary condition means a boundary condition for a
kinetic equation, the governing equation of a kinetic theory, such as the Boltzmann
equation [35], the Vlasov equation for plasma [9], the Enskog equation for dense
gases [31].

In contrast to the well-established kinetic theory of gases, the rigorous kinetic
theory of liquids is considerably complicated [5], and its formidable mathemati-
cal difficulties impede reducing and interpreting the formal solutions. The origin
of difficulties is clearly apparently random multi-body interactions of molecules
in liquids. On the other hand, the kinetic theory of gases based on the Boltzmann
equation, which is a mainstay of this book, deals with dilute gases in the sense that
the three-body interaction of gas molecules does not occur. As a result, the kinetic
theory of gases permits us to obtain a number of fruits from it, although the exact
kinetic theory of gases is still mathematically difficult.

In the context of this book, however, the random multi-body interactions of liquid
molecules are not necessarily an obstacle for our purpose. It allows us to expect that
the liquid is in a local equilibrium state everywhere except for the interface because
of a sufficiently rapid relaxation to equilibrium due to frequent multi-body interac-
tions of molecules in liquids. Once the local equilibrium in a liquid is admitted, we
can focus our attention to the behavior of gas molecules under the given macroscopic
condition of the liquid. Strictly speaking, if the evaporation or condensation at the
interface is not so weak, the assumption of local equilibrium in the liquid may not
be accepted uncritically. For example, if the heat flux across the interface due to the
evaporation or condensation is fairly large, the liquid near the interface may deviate
from a local equilibrium state. If the liquid near the interface is not in a local equi-
librium state, we cannot specify the macroscopic condition of the liquid, which is
necessary to analyze the vapor flow separately by the kinetic theory of gases. In this
book, we therefore confine ourselves to the case of weak evaporation/condensation
state, the precise definition of which is given in Sects. 2.5.1 and 2.5.2. Although
we determine the molecular motions in the liquid in a rigorous way of the MD

12 It is easy to confirm that the probability density of numerically obtained Ĥ approaches a Gaus-
sian with the increase in N .
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simulation, some constraints are still imposed on the bulk of the liquid, and we do
not pursue the kinetic theory of liquids.

2.3.1 Boltzmann Equation

For the present, we confine ourselves to the gases of monatomic molecules.
In the kinetic theory of gases, the only unknown microscopic variable is the

velocity distribution function of gas molecules, f (x, ξ , t), defined by

m dN = f (x, ξ , t) dx dξ , (2.59)

where dN in the left-hand side denotes the number of molecules in a volume ele-
ment dx dξ = dx1dx2dx3dξ1dξ2dξ3 centered at (x, ξ) in the 6-dimensional space
of the position x and the velocity ξ of a molecule [35] (N signifies the number of
molecules). The governing equation for f is the Boltzmann equation,

∂ f

∂t
+ ξ j

∂ f

∂x j
= J ( f ), (2.60)

where J ( f ) in the right-hand side represents the effects of the intermolecular colli-
sions. Here and hereafter the Einstein summation convention is used, e.g.,

ξ j
∂ f

∂x j
=

3∑
j=1

ξ j
∂ f

∂x j
, (2.61)

(see Appendix A at the end of this book). Furthermore, the notation of the j th com-
ponent of a vector a, a j , will be used without notice.

Once given the velocity distribution function f (x, ξ , t), the macroscopic vari-
ables are evaluated by

ρ =
∫

f dξ , vi = 1

ρ

∫
ξi f dξ , T = 1

3ρR

∫
(ξ j − v j )

2 f dξ , (2.62)

where ρ is the gas density, vi is the gas velocity, and T is the gas temperature. The
definitions of stress tensor and heat flux have already been given by Eqs. (2.41)
and (2.42) in Sect. 2.1.3. The gas pressure p and the internal energy e are given by
p = ρRT and e = (3R/2)T , respectively.13

The collision term J ( f ) for the molecules with a spherically symmetric inter-
molecular potential with a finite influence range dm is given by a five-fold integral
of f [35],

13 The relations p = ρRT and e = (3R/2)T do not imply that the gas is in a (local) equi-
librium state. They are formal extensions to nonequilibrium states, as well as the definition of
temperature T .
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J ( f ) = 1

m

∫
all αi , all ξi∗

( f ′ f ′∗ − f f∗) B dΩ(α) dξ∗, (2.63)

where

f = f (xi , ξi , t), f ′ = f (xi , ξ
′
i , t), f∗ = f (xi , ξi∗, t), f ′∗ = f (xi , ξ

′
i∗, t),

(2.64)

ξ ′
i = ξi + αiα j (ξ j∗ − ξ j ), ξ

′
i∗ = ξi∗ − αiα j (ξ j∗ − ξ j ), (2.65)

B = B

(
α j (ξ j∗ − ξ j )

|ξ∗ − ξ | , |ξ∗ − ξ |
)
, (2.66)

and α is a unit vector expressing the variation of the direction of molecular velocity
just before and after the collision, dΩ(α) is the solid-angle element in the direction
of α, and the functional form of B is determined by the intermolecular force; for
example, B = d2

m |α j (ξ j∗ − ξ j )|/2 for a gas consisting of hard-sphere molecules
with diameter dm [35].

The mean free path of gas molecules, �, is defined as the product of the molecular
average speed ξ = (8RT/π)1/2 and the inverse of the mean collision frequency νc

[35],

� = ξ

νc
, (2.67)

where the mean collision frequency14

νc = 1

ρm

∫
f (ξ) f (ξ∗) B dΩ(α) dξ dξ∗, (2.68)

is an average of the collision frequency of a molecule with velocity ξ

νc(ξ) = 1

m

∫
f (ξ∗) B dΩ(α) dξ∗. (2.69)

The integrations are taken over 6-dimensional space of (ξ , ξ∗) in Eq. (2.68) and over
3-dimensional space of ξ∗ in Eq. (2.69). When the velocity distribution function f
is the Maxwellian (the Maxwell distribution function) with constant ρ0, T0, and v0i ,

fM (ξ) = ρ0

(2πRT0)3/2
exp

[
− (ξi − v0i )

2

2RT0

]
, (2.70)

14 The inverse of the mean collision frequency is called the mean free time.
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the mean collision frequency νc defined by Eq. (2.68) can be evaluated as

νc = 4d2
m(πRT0)

1/2 ρ0

m
, (2.71)

where ρ0/m is the number density of molecules and, as mentioned earlier, dm is
the radius of the influence range of the intermolecular force (not restricted to the
diameter of a hard-sphere molecule) [35]. The mean free path is then given by

� = 1√
2πd2

m(ρ0/m)
. (2.72)

Here, we should comment on the fundamental framework of the kinetic theory
of gases based on the Boltzmann equation. The collision term of the Boltzmann
equation only considers the binary collision of molecules. Mathematically, this is a
situation where N → ∞ and dm → 0 with Nd2

m fixed. This is called the Grad–
Boltzmann limit [35]. In this limit, we have Nd3

m → 0, and this means that the
gas is an ideal gas. The Nd2

m corresponds to the inverse of the mean free path of
gas molecules,15 and it can be arbitrarily small or large as far as it is kept at a fixed
value in the limiting process of N → ∞ and dm → 0. The wide applicability
of the Boltzmann equation from atmospheric to very low pressures is therefore the
consequence of the Grad–Boltzmann limit. In the right-hand side of Eq. (2.63), one
can see a factor m−1, which tends to infinity as m tends to zero. The collision term is,
however, always bounded because the function B has a factor d2

m . In other words, it
is implicitly assumed that the mass of a molecule m → 0 as N → ∞ with keeping
Nm fixed at a finite value, as it should be. This is the reason why we define the
velocity distribution function by Eq. (2.59). In many literature, however, the velocity
distribution function is defined by f/m, which is infinite in the Grad–Boltzmann
limit.

In addition to the hard-sphere model, the following model is widely used for the
collision term of the Boltzmann equation (2.60):

J ( f ) = Acρ( fe − f ), (2.73)

fe = ρ

(2πRT )3/2
exp

[
− (ξ j − v j )

2

2RT

]
, (2.74)

where Ac is a constant, fe is the local Maxwellian with density ρ, velocity v j , and
temperature T defined by Eq. (2.62). The Boltzmann equation with the collision
term (2.73) with Eq. (2.74) is called the Boltzmann–Krook–Welander (BKW) equa-
tion [35]. Since ρ, v j , and T in Eqs. (2.73) and (2.74) are given by the integrals of

15 Precisely, the mean free path corresponds to 1/(n0d2
m), where n0 is a characteristic number

density of gas molecules, as shown by Eq. (2.72).
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unknown function f as shown in Eq. (2.62), the BKW equation is a highly nonlinear
integro-differential equation.

The constant Ac in Eq. (2.73) is related to the mean free path � of molecules in
the gas in an equilibrium state with density ρ and temperature T as

� = (8RT/π)1/2

Acρ
, (2.75)

where Acρ is the collision frequency (νc) of molecules described by the BKW equa-
tion. That is, the collision frequency of molecules described by the BKW equation
is independent of the molecular velocity ξ [see Eqs. (2.68) and (2.69)], and hence
νc = νc.

The BKW equation shares the important properties in the kinetic theory of gases
with the standard Boltzmann equation with the collision term (2.63), (2.64), (2.65),
and (2.66): (i) the Maxwellian (2.70) is the solution expressing the equilibrium state,
where ρ0, v0i , and T0 are constants, (ii) the same conservation equations for macro-
scopic variables can be derived as those from the standard Boltzmann equation,
and (iii) the Boltzmann H-theorem16 holds [35]. By many theoretical and numerical
studies, it has been confirmed that not only qualitatively but also quantitatively simi-
lar results are obtained for the BKW equation and the standard Boltzmann equation,
except that the BKW equation gives the Prandtl number equal to unity [35].

Furthermore, the BKW equation has an advantage that two components of molec-
ular velocity can be eliminated in spatially one-dimensional problems [35], and this
considerably reduces the computational cost in simulation studies. The Gaussian–
BGK Boltzmann equation [2] also has the same advantage, and as a result, we have
obtained several substantial results in the analysis of shock-tube experiment for the
condensation coefficients of water and methanol, as shown in Chap. 3.

16 The Boltzmann H-theorem corresponds to the entropy inequality extended to nonequilibrium
states [35]. The theorem states that the H function or the integral H of H function over a domain
D,

H =
∫

f ln( f/c) dξ or H =
∫

D
H dx,

never increases by an inequality

dH

dt
−
∫
∂D
(Hi − Hvwi )ni dS =

∫
D

(∫
[1 + ln( f/c)]J ( f ) dξ

)
dV � 0,

if (Hi − Hvwi )ni = 0 on the boundary ∂D, where c is a constant to make f/c dimensionless and

Hi =
∫
ξi f ln( f/c) dξ .
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2.3.2 Boundary Condition for the Boltzmann Equation

The gas molecules impinging on the surface of solid or liquid are scattered by some
rule. That is, the velocity distribution of molecules leaving the boundary should be
regulated by some rule other than the molecular interaction law in the gas. This is
the boundary condition for the Boltzmann equation and called the kinetic boundary
condition.

In the case of a solid boundary [see Fig. 2.6a], the commonly used one is the
diffuse-reflection condition [35],

f (x, ξ , t) = ρw

[2πRTw(x, t)]3/2
exp

{
−[ξi − vwi (x, t)]2

2RTw(x, t)

}
, (2.76)

for molecules leaving the boundary with the velocity ξ satisfying

ξ · n(x, t) > vw(x, t) · n(x, t), (2.77)

at a point x on the surface of the boundary and at a time t , where Tw(x, t) and
vw(x, t) are respectively the temperature and velocity at the point on the surface of
the boundary, n(x, t) is the unit vector normal to the surface and pointing to the gas
phase, and

ρw = −
[

2π

RTw(x, t)

]1/2

×
∫
ξ j n j (x,t)<vw j (x,t)n j (x,t)

[
ξ j − vw j (x, t)

]
n j (x, t) f (x, ξ , t) dξ . (2.78)

The diffuse-reflection condition represents the situation that all the molecules
impinging on the boundary are isotropically emitted from the boundary after the
full adaptation to the velocity and temperature of the boundary in an infinitesimal
time interval. From the diffuse-reflection condition (2.76), (2.77), and (2.78), it can
immediately be confirmed that the mass flux across the boundary is equal to zero.
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Fig. 2.6 (a) The solid boundary and the unit normal vector pointing to the gas phase. (b) The
vapor–liquid interface and the unit normal vector pointing to the vapor phase



44 2 Kinetic Boundary Condition at the Interface

In the case that the boundary is a vapor–liquid interface [see Fig. 2.6b], the sim-
plest one is the complete-condensation condition [35],

f (x, ξ , t) = ρ∗

[2πRTw(x, t)]3/2
exp

{
−[ξi − vwi (x, t)]2

2RTw(x, t)

}
, (2.79)

for molecules leaving the boundary with the velocity satisfying Eq. (2.77), where
ρ∗ is the saturated vapor density at temperature Tw(x, t). The mass flux M across
the interface is then given by

M(x, t) = (ρ∗ − ρw)

√
RTw(x, t)

2π
, (2.80)

where Eq. (2.78) is used. The right-hand side of Eq. (2.79) is the same form as the
Maxwell distribution in the vapor–liquid equilibrium state of uniform temperature
Tw and uniform velocity vw. In the equilibrium state, the velocity distribution func-
tion of impinging molecules, appearing in the integrand of Eq. (2.78), is equal to
the Maxwellian, and hence ρw defined by Eq. (2.78) is equal to ρ∗, which yields
M = 0.

The situation represented by the complete-condensation condition may be
explained as follows: (i) all the molecules impinging on the interface are adsorbed
to the interface; (ii) it is impossible or meaningless to distinguish which molecule
leaving the boundary is reflected at the boundary or comes from the inside of the
interface; (iii) the velocity distribution of molecules leaving the interface is inde-
pendent of the vapor and solely determined by the interface properties, ρ∗, Tw,
and vw.

Both the diffuse-reflection and complete-condensation conditions have the same
Maxwellian-like functional form with respect to the molecular velocity ξ . If we
assume that the ξ -dependence of a boundary condition is unchanged irrespective
of the gas condition, the Maxwellian-like functional form is essential because the
boundary-value problem of the Boltzmann equation has an equilibrium solution of
Maxwellian.

Since the situations of diffuse-reflection and complete-condensation conditions
are compatible and they have the same Maxwellian-like functional form with respect
to ξ , another type of boundary condition can be considered [35]:

f (x, ξ , t) = αeρ
∗ + (1 − αc)ρw

[2πRTw(x, t)]3/2
exp

{
−[ξi − vwi (x, t)]2

2RTw(x, t)

}
, (2.81)

with Eq. (2.78) for molecules leaving the boundary with the velocity satisfying
Eq. (2.77), where αe (0 � αe � 1) and αc (0 � αc � 1) are called the
evaporation coefficient and condensation coefficient, respectively. This mixed-type
boundary condition (2.81) has also widely been used so far, and is our target in this
book.
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In the kinetic boundary condition (2.81), we assume that the information of
molecules impinging on the interface is contained in (1 − αc)ρw only, and αe in the
right-hand side of Eq. (2.81) is independent of molecules impinging on the interface.
Under these assumptions, the αe part in Eq. (2.81), i.e., the complete-condensation
condition multiplied by αe, is unchanged even if there are no molecules impinging
on the interface. That is, the αe part does not include the molecules reflected at
the interface, and hence αe is named the evaporation coefficient. The αe part in
Eq. (2.81) is studied by a nonequilibrium MD simulation in Sect. 2.4.1. On the
other hand, the (1 − αc) part, i.e., the diffuse-reflection condition multiplied by
(1 − αc), may be regarded as the reflection part and the remaining αc fraction of
ρw may be considered to be condensed on the interface. Hence, αc is called the
condensation coefficient. The condensation coefficient αc and Eq. (2.81) itself are
studied in Sect. 2.4.2 by a nonequilibrium MD simulation.

Based upon the kinetic boundary condition (2.81), the mass flux across the inter-
face is given by

M = (αeρ
∗ − αcρw)

√
RTw(x, t)

2π
. (2.82)

This formula will be repeatedly utilized in this book.
The formulation of the boundary-value problem for vapor adjacent to a vapor–

liquid interface is completed by the Boltzmann equation (2.60), the boundary con-
dition at the interface, Eqs. (2.81), (2.77), (2.78), and the boundary condition at
infinity.

We assume that the evaporation or condensation is sufficiently weak so that we
can expect that the liquid is in a local equilibrium state. This allows us to determine
the temperature field and velocity field in the liquid phase by the equations of fluid
dynamics (see Appendix B at the end of this book). The temperature Tw(x, t) and
velocity vwi (x, t) at the interface are thus determined without relying on the kinetic
theory of liquids. Then, we can solve the boundary-value problem of the Boltzmann
equation. Now, we have made all sorts of preparations for tackling our main prob-
lem.

2.4 Kinetic Boundary Condition

The first topic of our main problem in this chapter is to establish the kinetic bound-
ary condition at the vapor–liquid interface by the method of molecular dynamics
(MD) simulation. In Sect. 2.3.2, we have introduced the boundary condition (2.81)
as a widely used one. However, the derivation of (2.81) has not been accomplished
neither from the kinetic theories of gases and liquids nor from the Liouville equation
(2.16). Until the MD studies on (2.81) were performed [16–18], it has been just
a mathematical model. In Sect. 2.4.1, according to Refs. [16–18], we firstly con-
struct the αe part of Eq. (2.81) and determine the values of αe for argon, water, and
methanol by specially devised nonequilibrium MD simulations. Then, in Sect. 2.4.2,
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by using further devised MD simulation of nonequilibrium states, we formulate the
kinetic boundary condition at the vapor–liquid interface, the result of which is sub-
stantially equal to Eq. (2.81) if the condensation mass flux across the interface is not
so large.

2.4.1 Evaporation into Vacuum

In Sect. 2.3.2, the αe part of Eq. (2.81) is assumed to be independent of the molecules
impinging on the interface and unchanged even if no molecules impinge on the inter-
face. We therefore consider a situation that all vapor molecules near the interface
have the velocities in the direction of leaving the interface. This can be realized in a
molecular simulation by eliminating the molecules impinging on the interface, and
we call this type of simulation the MD simulation of evaporation from the interface
into a virtual vacuum [16, 17]. Note that the vapor density near the interface cannot
be zero in reality, and hence we call this situation the virtual vacuum. From the
samples obtained by the simulation, we can directly construct the velocity distribu-
tion function of molecules evaporating from the interface, and thereby investigating
the functional form of the velocity distribution function. Such an MD simulation of
evaporation into vacuum has first been performed by Anisimov et al. [3].

The simulation is started from an equilibrium vapor–liquid two-phase system as
shown in Fig. 2.3 [16, 17]. Although the equations solved are Newton’s equations of
motion (2.47), (2.48), (2.49), and (2.50) in the nondimensional form, we present the
results in the dimensional forms with the use of (ε/k, σ ) = (119.8 K, 0.341 nm)
for argon. The leap-frog method with the time step 10−15 s and the cut-off radius
1.5 nm (4.4 σ ) are used.

The evaporation into a virtual vacuum is actualized by eliminating vapor
molecules in a region that is a few multiples of a thickness of interface distant from
the center of the interface, where the center of the interface x0 and the thickness of
the interface δ are defined by

x0 = ρ−1
(
ρL + ρV

2

)
, (2.83)

δ = ρ−1
(
ρV + ρL − ρV

10

)
− ρ−1

(
ρL − ρL − ρV

10

)
, (2.84)

where ρL and ρV are the density of the liquid and vapor near the interface, and ρ−1

is the inverse function of ρ(x) (x is the space coordinate normal to the interface,
which is a plane in the macroscopic sense). The thickness δ defined by Eq. (2.84)
is called the 10–90 thickness (see Fig. 2.7). Since the evaporating molecules carry
the energy from the liquid, the temperature of liquid drops with the time goes on.
To maintain the temperature in the liquid, we apply the temperature control by the
velocity scaling method [1], and thus the evaporation phenomenon observed on the
coordinate fixed at the interface can be regarded as a steady state. The distance
where the vapor molecules are eliminated and the region where the temperature



2.4 Kinetic Boundary Condition 47

x
x

ρ
L

ρ
V

0

δ

ρρ
VL

10

ρρ
VL

10

ρρ
VL

2

+

Fig. 2.7 The density profile (bold curve), the center of the interface x0, and the 10–90 thickness δ
of the density transition layer

control is applied are carefully examined and chosen appropriately [16]. However,
by the temperature control, the temperature in a bulk liquid region is rendered to
be uniform. The simulation may therefore be an approximation for the case that the
temperature gradient in the bulk liquid phase, which is necessarily generated by the
heat flux due to evaporation, is sufficiently small.

Figure 2.8 shows the averaged molecular mass fluxes in the simulation of evap-
oration into the virtual vacuum, where X = (x − x0)/δ is a normalized space coor-
dinate normal to the interface and measured from the center of the interface, and
the molecular mass fluxes are averaged with respect to time on the coordinate fixed
at the interface.17 The molecules are eliminated at X = 4. The liquid temperature
controlled by the velocity scaling is shown in the figure. The angle brackets 〈· · · 〉 in
Fig. 2.8 represent a long-time average. The averaged mass flux 〈M〉 shown in the
figure is defined by the time average of the molecular mass flux M
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Fig. 2.8 The molecular mass fluxes in the simulation of evaporation into the virtual vacuum [16].
The liquid temperature controlled by the velocity scaling is shown in the figure. Here, the angle
brackets represent a long-time average

17 The center of the interface x0 is almost constant on the coordinate fixed to the interface in spite
of the backward movement of interface due to evaporation.
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M(x, t) = 1

L2L3h

N∑
i=1

∫
χ1(q(i)− x, h)p(i)j n j F(q, p, t) dq d p, (2.85)

which is the one-dimensional counterpart of Eq. (2.20), χ1 is defined by Eq. (2.58),
and n j is the unit vector normal to the interface and pointing to the vapor phase.
Another averaged mass flux 〈M+〉 is defined by the time average of the molecular
mass flux M+

M+(x, t) = 1

L2L3h

N∑
i=1

p(i)j n j>0

∫
χ1(q(i)− x, h)p(i)j n j F(q, p, t) dq d p, (2.86)

which gives the mass flux of molecules moving in the positive X direction.
As shown in Fig. 2.8, in the region X � 1, the region very close to the interface,

the density is not low, and hence the molecular interactions frequently happen. The
difference between 〈M〉 and 〈M+〉 means that there exist some molecules moving
in the negative X direction. In the region X � 2, the difference of the two fluxes
vanishes and all molecules are evaporating into the virtual vacuum.

The velocity distribution function can be constructed according to its defi-
nition Eq. (2.59), and the results are shown in Fig. 2.9, where the normalized
velocity distribution functions of the normalized molecular velocity (ζx , ζy, ζz) =
(ξx , ξy, ξz)/

√
2RTL are plotted and the temperature of the liquid controlled by

velocity scaling TL is also shown.18 The velocity component normal to the interface
is signified by the open circle.

At X = 0, as shown in Fig. 2.9a, d, the velocity distribution function is the
Maxwellian with the temperature TL . Although X = 0 is not the bulk liquid phase
but the center of the interface, the normalized velocity distribution of molecules is
the same as that in the equilibrium state. However, at X = 2, the profiles of dis-
tribution of velocity component normal to the interface, ζx , are distorted as shown
in Fig. 2.9c, e, which clearly means that the number of molecules with negative ζx

decreases. In the case that X = 4 and TL = 85 K, the distribution of ζx > 0 is almost
equal to the half part of the one-dimensional Maxwellian with the temperature TL

and zero mean velocity, and the distribution of the other components are unchanged
from those at X = 0. That is, the velocity distribution of molecules evaporating into
the virtual vacuum has the same functional form as that of Eq. (2.81) at TL = 85 K.
On the other hand, at TL = 130 K, a significant amount of molecules have the veloc-
ity of ζx < 0 even at X = 4. This means that, when the temperature of the liquid
is high, the vapor density of molecules evaporating into the virtual vacuum is also
high, and hence the molecular interaction in the vapor phase cannot be neglected.

18 In Eq. (2.81), we used the symbol Tw for the temperature at the surface of the liquid phase.
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Fig. 2.9 The velocity distribution functions at X = 0, 2, 4 [16]. The abscissa of the figure is the
normalized molecular velocity ζ j = ξ j/

√
2RTL ( j = x, y, z), where TL is the temperature of the

liquid controlled by velocity scaling

In this case, it is impossible to realize the situation that all vapor molecules near
the interface have the velocities in direction of leaving the interface. Note that the
mean free path of the vapor molecules in the equilibrium at T = 130 K is about
2σ ≈ 2dm , and hence the vapor is not in the Grad–Boltzmann limit.

2.4.2 Evaporation Coefficient

Thus, the velocity distribution function of molecules evaporating from the interface
into the virtual vacuum is obtained by the MD simulation, and its functional form
is found to be the half part of the Maxwellian with liquid temperature TL and zero
mean velocity, if TL is not so high or if the vapor density is sufficiently low so that
the gas may be regarded to be in the Grad–Boltzmann limit. That is, the functional
form of the αe part of Eq. (2.81), which is independent of the molecules impinging
on the interface, is validated by the MD simulation. Once admitted the αe part of
Eq. (2.81), by considering the situation that ρw = 0 in Eq. (2.81), and applying
Eq. (2.82), we have
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Fig. 2.10 Evaporation coefficient for argon [16] and the comparison with those obtained by other
authors [3, 25, 41]

〈M+〉 = αeρ
∗
(

RTL

2π

)1/2

. (2.87)

The left-hand side of Eq. (2.87) has already been evaluated in the simulation as
shown in Fig. 2.8, and the saturated vapor density ρ∗ can be calculated from the
Clausius–Clapeyron equation [30] or the equilibrium MD simulation as shown in
Sect. 2.2.3. The values of the evaporation coefficient αe can thus be determined and
the results are plotted in Fig. 2.10. In the figure, the evaporation coefficient for TL

below the triple point temperature are also shown, where the sublimation occurs
from the vapor–solid interface. Since the Lennard-Jones potential is not suitable for
the vapor–solid equilibrium state, we have used the Dymond–Alder potential for the
temperature range of sublimation [10, 16].

As can be seen from Fig. 2.10, the evaporation coefficient αe is a decreasing
function of liquid temperature, and it is almost unity at slightly below the triple point
temperature. We here remark that the left-hand side of Eq. (2.87), 〈M+〉, is eval-
uated by the MD simulation formulated in a nondimensional form, and hence the
obtained 〈M+〉 is applicable to other species of molecules, for which the Lennard-
Jones 12-6 potential is effective, e.g., Ne, Kr, and so on. The evaporation coefficient
of other species of molecules can therefore be evaluated by using 〈M+〉 obtained
here and the saturated vapor density ρ∗ of the species of molecules.

The method of MD simulation of evaporation into the virtual vacuum has been
extended to the cases of polyatomic molecules [17], for water and methanol. In the
simulations [17], TIP3P model for water [20] and OPLS model for methanol [19]
have been used for the intermolecular potentials, in addition to the cut and shifted
Coulomb potentials [17].

For polyatomic molecules, the mathematical model of the kinetic boundary con-
dition at the interface is given by [8]
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f (x, ξ , η, t) = αeρ
∗ + (1 − αc)ρw

[2πRTw(x, t)]3/2
exp

{
−[ξi − vwi (x, t)]2

2RTw

}

× 1

Γ (n/2 + 1)[RTw(x, t)]n/2
exp

[
− η2/n

RTw(x, t)

]
, (2.88)

with Eq. (2.78) for molecules leaving the boundary with the velocity satisfying
Eq. (2.77), where η2/n (0 � η < ∞) is the energy of internal motion of one poly-
atomic molecule with the internal degrees of freedom n,19 and Γ is the gamma func-
tion. The Boltzmann equation and the kinetic boundary condition for polyatomic gas
molecules is discussed in Sect. 2.5.1.

As in the case of monatomic molecule [16], the αe part of the velocity distribution
function of polyatomic molecules leaving the interface is found to be the half of the
Maxwellian with temperature TL and zero mean velocity in the case that the liquid
temperature is close to the triple point temperature [17]. Again, using Eq. (2.87),
the evaporation coefficients for water and methanol are determined. The results
are shown in Fig. 2.11. It may be worth noting that the temperature dependence
of evaporation coefficients of polyatomic molecules is very similar to that of the
monatomic molecule.
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Fig. 2.11 Evaporation coefficients of argon, water, and methanol. The closed squares are from
Ref. [16], the closed circles and solid triangles are from Ref. [17], the open circles are from
Ref. [27], and the open triangles are from Ref. [25]. The abscissa of the figure is the liquid temper-
ature TL divided by the critical temperature Tcr, where Tcr for argon, TIP3P model for water [20],
and OPLS model for methanol [19] are 151, 516, and 404 K, respectively

19 The internal motions of a polyatomic molecule are the rotational and vibrational motions.
Although the rotational motions are usually active at room temperature, the vibrational modes are
activated at higher temperature. However, since n is constant in Eq. (2.88), the gas flows associated
with the activation and deactivation of the vibrational modes cannot be treated by Eq. (2.88). The
distribution of the energy of internal motion is discussed in Sect. 3.1.2.
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2.4.3 Condensation Coefficient and KBC in Weak
Condensation States

In Sect. 2.4.2, we have constructed the velocity distribution function of molecules
evaporating from the interface into the virtual vacuum, and confirmed that the αe

parts of Eqs. (2.81) and (2.88) are precisely reproduced by the MD simulation for the
case that the temperature of the liquid phase is low so that the vapor can be regarded
as an ideal gas. Next, we construct the complete functional form of Eq. (2.81) by the
nonequilibrium MD simulation of various steady condensation states of monatomic
molecules [18].

The steady condensation states are realized in the MD simulation by controlling
the velocity distribution of molecules impinging on the interface as

f = ρcol

(2πRTcol)3/2
exp

(
− ξ2

i

2RTcol

)
, ρcol = βρ∗, Tcol = γ TL , (2.89)

where we studied 16 cases of β = 1, 2, 3, 4 and γ = 1, 2, 3, 4 [18]. Note that ρ∗
is the saturated vapor density at the temperature TL , and the case of β = γ = 1
corresponds to the equilibrium state. The profiles of averaged density for (β, γ ) =
(1, 1), (2, 2), and (4, 4) are shown in Fig. 1.1 in Chap. 1, where the parameters
(a, b) are used in place of (β, γ ).

The condensation at the interface means the transport of mass and energy across
the interface, and hence the liquid temperature inevitably increases unless some
amount of heat is absorbed appropriately inside the liquid phase. In the MD simu-
lations in Ref. [18], we have fixed the temperature of bulk liquid phase TL by the
velocity control method. This renders the temperature distribution in the bulk liquid
phase spatially uniform in spite of the existence of heat flux. We therefore consider
that our results are valid in the case that the condensation is weak and hence the
temperature gradient in the bulk liquid is negligibly small.

Figure 2.12 shows the velocity distribution of molecules leaving the interface at
several pairs of (β, γ ), where the velocity distribution function is evaluated on the
coordinate that moves with the interface. As clearly shown in the figure, the distri-
bution functions of velocity component normal to the interface are almost the half
of the one-dimensional Maxwellian with temperature TL and zero mean velocity
[Fig. 2.12b–d]. On the other hand, the distribution functions of velocity component
tangential to the interface deviate from the Maxwellian with temperature TL as the
values of the pair (β, γ ) increase [Fig. 2.12e–h]. The results shown in Fig. 2.12 can
be formulated into the kinetic boundary condition of the form

f = [αeρ
∗ + (1 − αc)ρw] 1√

2πRTL
exp

(
− ξ2

x

2RTL

)

× 1√
2πRTT

exp

(
− ξ2

y

2RTT

)
1√

2πRTT
exp

(
− ξ2

z

2RTT

)
, (2.90)
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Fig. 2.12 Velocity distribution functions of molecules leaving the interface at several condensation
states [18]. The temperature of the bulk liquid is fixed at TL = 85 K by the velocity control method.
The equilibrium state at TL = 85 K and at rest is shown in the panels (a) and (e)

for the molecules leaving the interface with ξx > 0, where TT is the temperature
associated with the velocity component tangential to the interface, as shown in
Fig. 2.12f–h. In Ref. [18], we have shown that TT has a strong correlation with
the energy flux across the interface, although a precise functional relation between
TT and the energy flux still remains unresolved. Nevertheless, we can conclude that
Eq. (2.81) can be retrieved for small (β, γ ), i.e., in the weak condensation states.

Since we have obtained Eq. (2.90), we can determine the values of condensation
coefficient αc at various nonequilibrium states. To do so, we rewrite the mass flux
equation given by Eq. (2.82) as

〈M〉 = (αeρ
∗ − αcρw)

(
RTL

2π

)1/2

, (2.91)

by using Eq. (2.90), where the angle brackets indicate the time average. Substituting
the evaporation coefficient αe obtained in Sect. 2.4.1, ρ∗, ρw given by Eq. (2.78),
and the mass flux 〈M〉 obtained by the present MD simulations, we can evaluate the
condensation coefficient αc from Eq. (2.91), and the results are plotted in Fig. 2.13.
The figure clearly shows that αc is almost equal to αe = 0.868 at TL = 85 K [18].
We emphasize that if αc is a constant, it must be equal to αe, because f given by
Eq. (2.90) should be equal to the Maxwellian with TL = TT and ρw = ρ∗ at the
equilibrium state.
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Fig. 2.13 The condensation coefficient at several condensation states [18]. The open circle corre-
sponds to the equilibrium state at temperature TL and at rest

2.5 Asymptotic Analysis of Weak Condensation State
of Methanol

In the preceding sections in this chapter, we have demonstrated that the relations
connecting the liquid phase, the interface, and the vapor phase can be simplified
and reformulated into the KBC at the interface, namely, Eq. (2.81) with Eqs. (2.77)
and (2.78) for monatomic molecules and Eq. (2.88) with Eqs. (2.77) and (2.78) for
polyatomic molecules. The prerequisites are that (i) the evaporation and condensa-
tion should be weak so that the heat flux may be small and the temperature in the
liquid near the interface may be regarded as uniform, and that (ii) the temperature
of the liquid is not high so that the density of the vapor near the interface may
be sufficiently low. The second prerequisite is easily satisfied if the vapor near the
interface can be approximated by an ideal gas, and this holds usually. Therefore, we
concentrate on the first prerequisite, which can be satisfied if the mass flux across
the interface induced by evaporation or condensation is not large.

Since the KBC at the interface is specified, what we should do next is to
solve the boundary-value problem of the Boltzmann equation, thereby deriving the
boundary conditions for vapor flow in the fluid-dynamics region governed by the
set of Navier–Stokes equations or the set of Euler equations. The method of the
derivation of the boundary condition for the gas flow in the fluid-dynamics region
was devised by Sone [34, 35] on the basis of the kinetic theory of gases. The
steady (time-independent) problems associated with monatomic molecules have
been solved thoroughly and completely by Sone and his colleagues (see, for exam-
ple, Refs. [4, 33, 36], and references in his books [34, 35]), including the case of a
mixture of a vapor and a noncondensable gas [37, 39].20 In the following, we apply
Sone’s asymptotic theory to the case of polyatomic vapor [43].

20 In Ref. [39], the ghost effect [35] induced by the noncondensable gas is found. The ghost effect
has first been found in Ref. [38], and means a finite effect produced by an infinitesimal quantity.
For example, in Ref. [38], Sone et al. discussed the temperature field in the limit Kn → 0 affected
by the thermal creep flow that has already vanished in the limit Kn → 0.
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2.5.1 Problem and Formulation

In the presence of evaporation or condensation at the vapor–liquid interface, the
vapor near the interface cannot be in an equilibrium state. The typical length scale
characterizing the nonequilibrium behavior of the vapor near the interface is the
mean free path of the vapor molecules, �. On the other hand, the characteristic
length scale of variations in macroscopic variables in the fluid-dynamics region is
in general different from �, and let it be L , which is determined by a macroscopic
characteristics of vapor flow, such as a linear dimension of a body in the flow. Then,
the problem considered here is the case that the Knudsen number defined by

Kn = �

L
, (2.92)

is sufficiently small compared with unity. The nonequilibrium region near the inter-
face is called the Knudsen layer [35]. As we will see later, under the condition that
Kn � 1, the vapor outside the Knudsen layer is in a local equilibrium state in the
leading order of approximation, and hence the vapor flow can be determined by
the macroscopic quantities. The appropriate equations governing the macroscopic
quantities (the set of Navier–Stokes equations or the set of Euler equations21) are
derived by applying the asymptotic theory for small Knudsen numbers [35].

The boundary conditions associated with the derived equations for the macro-
scopic quantities should also be derived from the asymptotic theory [35]. To do so,
we have to solve the Boltzmann equation with the kinetic boundary condition at
the vapor–liquid interface and the boundary condition at a distant region where the
vapor is in a local equilibrium state. This is called the Knudsen layer analysis or the
half-space problem of gas flow with evaporation or condensation [35], and exten-
sively studied by Sone and his colleagues for the cases of monatomic molecules
[4, 33–37, 39]. The Knudsen layer analysis will be explained in Sect. 2.5.3.

In this subsection, we employ the Boltzmann equation of the Gaussian–BGK
model22 for polyatomic molecules [2]

∂ f

∂t
+ ξ j

∂ f

∂X j
= p

μ(1 − ν + θν)

[
G( f )− f

]
, (2.93)

where f (X, ξ , η, t) is the distribution function of molecular velocity and internal
motion for polyatomic vapor molecules, t is the time, X j is the j th component of

21 Actually, the equations governing the macroscopic quantities outside the Knudsen layer are not
always equal to the set of Navier–Stokes equations and the set of Euler equations. Depending upon
the macroscopic situation of the flow considered, the derived equations can contain some terms that
are not included in the set of Navier–Stokes equations, and hence these equations are sometimes
called the fluid-dynamics-type equations [35].
22 In Ref. [2], the Gaussian–BGK models for both cases of monatomic and polyatomic molecules
are discussed. The Boltzmann H-theorem is proved for both cases.
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the position vector X , ξ j is the j th component of the molecular velocity vector ξ ,
p is the pressure, μ is the viscosity, and θ and ν are nondimensional parameters
(0 < θ � 1 and − 1

2 � ν < 1).
The symbol G in the right-hand side of Eq. (2.93) represents a nonlinear func-

tional of f given by

G( f ) = ρ√
(2π)3det(τi j )

exp

[
−1

2
(ξi − vi )τ

−1
i j (ξ j − v j )

]

× 1

Γ (n/2 + 1)(RTrel)n/2
exp

(
− η2/n

RTrel

)
, (2.94)

where η2/n denotes the internal energy of one polyatomic molecule associated
with the internal degrees of freedom n, Trel is a relaxation temperature defined in
Eq. (2.98), τi j is a rectified stress tensor defined by Eq. (2.99), Γ is the gamma
function, and det(τi j ) is the determinant of matrix τi j . The ratio of specific heats of
polyatomic molecules γ is related to the parameter n by

γ = n + 5

n + 3
. (2.95)

The most important feature of the Gaussian–BGK Boltzmann equation (2.93)
and (2.94) is that the mathematical proof of the Boltzmann H-theorem23 has been
given for the parameters θ and ν in the range 0 < θ � 1 and − 1

2 � ν < 1 [2].
The H-theorem has not been proved for other models of Boltzmann equations for
polyatomic molecules.

The macroscopic variables are defined by the four-fold integrals of f with respect
to ξ and η as follows:

ρ =
∫

f dξ dη, ρvi =
∫
ξi f dξ dη, 3ρRTtr =

∫
(ξ j − v j )

2 f dξ dη, (2.96)

nρTint = 2
∫
η2/n f dξ dη, ρΘi j =

∫
(ξi − vi )(ξ j − v j ) f dξ dη, (2.97)

(3 + n)T = 3Ttr + nTint, p = ρRT, Trel = θT + (1 − θ)Tint, (2.98)

ρτi j = θpδi j + (1 − θ)[(1 − ν)ρRTtrδi j + νρΘi j ], (2.99)

where ρ is the density, vi is the vapor velocity, T is the temperature, Ttr and Tint are,
respectively, the temperatures associated with the translational and internal motions
of the molecule, δi j is the Kronecker delta, and ρΘi j is the stress tensor. The four-
fold integration with respect to ξ and η is carried out over the whole space of ξ and
0 � η < ∞. The parameters θ , ν, and n are chosen so that the Prandtl number

23 See Footnote 16.
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and viscosity coefficients in the Gaussian–BGK model can be adapted for given (or
experimental) values by the relation

2

3
� Pr = 1

1 − ν + θν
< ∞, (2.100)

0 � μb

μ
= 2n

3 + n

1 − ν + θν

3θ
� n

(3 + n)θ
, (2.101)

for 0 < θ � 1 and − 1
2 � ν < 1, where Pr (= cpμ/κ) is the Prandtl number and μb

is the bulk viscosity (cp is the specific heat at constant pressure and κ is the thermal
conductivity coefficient). The case that θ = 1 and ν = n = 0 corresponds to the
BKW equation for monatomic molecules introduced in Sect. 2.3.1, and methanol at
room temperature may be modeled by (θ, ν, n) = (0.6471,−0.5, 6). The mean free
path � of the Gaussian–BGK model is given by

� = (1 − ν + θν)
μ

p

2
√

2RT√
π

. (2.102)

where p/[μ(1 − ν + θν)] is the mean collision frequency.
As mentioned in Footnote 19 in this chapter, since the parameter n is a constant

in the Gaussian–BGK model (2.93), (2.94), (2.95), (2.96), (2.97), (2.98), and (2.99),
the activation and deactivation of vibrational modes of molecular internal motions
cannot be described by Eqs. (2.93), (2.94), (2.95), (2.96), (2.97), (2.98), and (2.99).
For the temperature range treated in this book, the molecular internal motions are
the rotational motions.

The boundary condition for the Gaussian–BGK Boltzmann equation (2.93) and
(2.94) is given by [see Eq. (2.88)]

f (X, ξ , η, t) = αeρ
∗ + (1 − αc)ρw

[2πRTw(X, t)]3/2
exp

{
−[ξi − vwi (X, t)]2

2RTw(X, t)

}

× 1

Γ (n/2 + 1)[RTw(X, t)]n/2
exp

[
− η2/n

RTw(X, t)

]
, (2.103)

and

ρw = −
[

2π

RTw(X, t)

]1/2

×
∫

0�η<∞
ξ j n j (X,t)<vw j (X,t)n j (X,t)

[
ξ j − vw j (X, t)

]
n j (X, t) f (X, ξ , η, t) dξ dη,

(2.104)
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for molecules leaving the boundary with the velocity satisfying

ξ · n(X, t) > vw(X, t) · n(X, t), (2.105)

at a point X on the interface and at a time t , where Tw(X, t) and vw(X, t) are the
temperature and velocity at the interface, n(X, t) is the unit vector normal to the
interface and pointing to the vapor phase. Equation (2.103) is an extension of the
mixed-type boundary condition (2.81) to polyatomic molecules, and its functional
form with respect to ξ and η is equal to the half of the equilibrium distribution
function of polyatomic molecules with the ratio of specific heats γ = (n+5)/(n+3)
at the equilibrium state with the temperature Tw and the mean velocity vw.

The condition of a weak nonequilibrium state can be expressed as

∣∣∣∣ v√
2RT0

∣∣∣∣� 1,

∣∣∣∣ p − p0

p0

∣∣∣∣� 1,

∣∣∣∣T − T0

T0

∣∣∣∣� 1, (2.106)

where p0 and T0 are the pressure and temperature in a reference equilibrium state
at rest. Equation (2.106) should be viewed as a sufficient condition for the weak
evaporation/condensation state where the mass flux across the interface is so small
that the liquid phase may be regarded as in a local equilibrium state and the boundary
condition (2.103) may hold. In the asymptotic analysis for small Knudsen numbers,
we have to specify how the quantities in Eq. (2.106) are small compared with the
small Knudsen number Kn (see Sect. 2.5.2).

2.5.2 Asymptotic Analysis for Small Knudsen Numbers

We study the time-independent solution for the boundary-value problem (2.93),
(2.94), (2.95), (2.96), (2.97), (2.98), and (2.99) with (2.103), assuming that the con-
densation is weak in the sense of Eq. (2.106), and the Knudsen number defined by
Eqs. (2.92) and (2.102) is sufficiently small compared with unity.

According to Refs. [34, 35], we seek a moderately varying solution of Gaussian–
BGK model for polyatomic gas in a power series for small Kn (S expansion [35]),

φ = kφS1 + k2φS2 + · · · , k =
√
π

2
Kn � 1, (2.107)

where φ = ( f − f0)/ f0 is a nondimensional distribution function, f0 is an equi-
librium distribution in a reference equilibrium state at rest, and Kn is the Knudsen
number defined by Eqs. (2.92) and (2.102) at the reference state. The mean free path
�0 is given by

�0 = (1 − ν + θν)
μ0

p0

2
√

2RT0√
π

, (2.108)
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(μ0 is the viscosity in the reference state). The moderately varying solution is often
called the fluid-dynamics part of the solution of the problem [35]. The application
of the S expansion (2.107) means that we consider the situation where

∣∣∣∣ v√
2RT0

∣∣∣∣ = O(k),

∣∣∣∣ p − p0

p0

∣∣∣∣ = O(k),

∣∣∣∣T − T0

T0

∣∣∣∣ = O(k). (2.109)

In general, the Boltzmann equation (2.60) can be nondimensionalized as, for the
time-independent problems,

ζ j
∂φ

∂x j
= 1

k
Ĵ (φ), (2.110)

where ζ j = ξ j/
√

2RT0 is the nondimensional molecular velocity, x j = X j/L is
the nondimensionalized spatial coordinate, and k−1 Ĵ (φ) is the nondimensionalized
collision term of Eq. (2.60). The Gaussian–BGK Boltzmann equation can also be
expressed as Eq. (2.110). From Eq. (2.110), one can immediately see that Ĵ (φ) = 0
in the leading order of approximation, if the moderately varying solution φ and its
derivative with respect to x j are of the order of k. That is, the moderately varying
solution is a local equilibrium distribution function in the leading order of approx-
imation, because the collision term of the Boltzmann equation vanishes when and
only when the distribution function is an equilibrium or a local equilibrium dis-
tribution function. The moderately varying solution is, therefore, characterized by
the macroscopic variables, i.e., the velocity, the density, and the temperature. In the
following, we will derive the equations governing these macroscopic variables and
the boundary conditions for the equations.

Substituting the power series (2.107) into the Boltzmann equation (2.110), and
equating the coefficients of the same powers of k, we have a series of equations

L̂(φS1) = 0, (2.111)

L̂(φS2) = N̂ (φS1)+ ζ j
∂φS1

∂x j
, (2.112)

· · · · · ·

where L̂ is a linearized integral operator and N̂ is a nonlinear integral operator,
both of which are derived from the nondimensional collision term Ĵ in Eq. (2.110),
and their explicit forms depend on the collision term. The homogeneous linear
integral equation for φS1, Eq. (2.111), has nontrivial solutions corresponding to a
local equilibrium solution, and hence the inhomogeneous term of Eq. (2.112) has to
satisfy adequate solvability conditions in order that φS2 is determinable. In addition
to the fact that the solvability conditions render the asymptotic expansion (2.107)
uniformly valid in the region of xi = O(1), the solvability conditions themselves
are the equations governing the macroscopic variables in the region of xi = O(1),
i.e., in the fluid-dynamics region [35].
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For the Gaussian–BGK Boltzmann equation, the procedures to derive the equa-
tions governing the macroscopic variables are summarized in Ref. [43] for the time-
independent problem and in Ref. [14] for the time-dependent (linear) problem. The
results for the time-independent problem are summarized as

∂PS1

∂xi
= 0, (2.113)

∂ui S1

∂xi
= 0, (2.114)

u j S1
∂ui S1

∂x j
= −1

2

∂PS2

∂xi
+ Pr

2

∂2ui S1

∂x2
j

, (2.115)

u j S1
∂τS1

∂x j
= 1

2

∂2τS1

∂x2
j

, (2.116)

∂ui S2

∂xi
+ ui S1

∂ωS1

∂xi
= 0, (2.117)

u j S1
∂ui S2

∂x j
+ (u j S2 + ωS1u j S1)

∂ui S1

∂x j
= −1

2

∂

∂xi

(
PS3 + Pr

2

∂2τS1

∂x2
j

)

+ Pr

2

∂2ui S2

∂x2
j

+ Pr

2

∂

∂xi

[
βτS1

(
∂ui S1

∂x j
+ ∂u j S1

∂xi

)]
, (2.118)

u j S1
∂τS2

∂x j
+ (u j S2 + ωS1u j S1)

∂τS1

∂x j
− 2

5 + n
u j S1

∂PS2

∂x j

= Pr

5 + n

(
∂ui S1

∂x j
+ ∂u j S1

∂xi

)2

+ 1

2

∂2

∂x2
j

(
τS2 + β

2
τ 2

S1

)
, (2.119)

where the macroscopic variables ωSm , ui Sm , τSm , and PSm (m = 1, 2, 3) are the
expansion coefficients of nondimensional density ω = (ρ − ρ0)/ρ0, nondimen-
sional velocity ui = vi/

√
2RT0, nondimensional temperature τ = (T − T0)/T0,

and nondimensional pressure P = (1 + ω)(1 + τ), respectively, and the nondi-
mensional parameter β in Eqs. (2.118) and (2.119) comes from the assumption that
μ = μ0(1 + τ)β .

We shall remark that (i) Eqs. (2.113), (2.114), (2.115), (2.116), (2.117), (2.118),
and (2.119) are the same as those derived from the asymptotic analysis of the BKW
equation [35], if n = 0, Pr = 1, and β = 1; (ii) the temperature associated with
the molecular translational motion Ttr and that with the molecular internal motion
Tint are equal to the vapor temperature T up to the order shown above; (iii) the bulk
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viscosity does not appear up to the order shown above, while it appears in the third
order in the time-dependent problem [14].

From Eq. (2.113), the vapor pressure is spatially uniform in the leading order of
approximation. Equation (2.114) is the solenoidal condition for the vapor velocity
in the leading order. However, the vapor flow is a compressible flow. In fact, the
incompressibility condition

ui S1
∂ωS1

∂xi
= 0, (2.120)

does not hold due to Eq. (2.117), and the energy equation (2.116) is different from
that of incompressible flows in fluid dynamics,

n + 3

n + 5
ui S1

∂τS1

∂x j
= 1

2

∂2τS1

∂x2
j

. (2.121)

2.5.3 Boundary Condition for the Equations
in Fluid-Dynamics Region

The final topic of this chapter is the derivation of the boundary conditions for the
macroscopic equations (2.113), (2.114), (2.115), and (2.116). Thereby, the micro-
scopic information connecting the liquid phase and the vapor phase through the
interface can be transformed into the relations in terms of macroscopic variables.
The microscopic information is included in the macroscopic relations as numerical
constants, called the slip coefficients [35].

The boundary conditions for the macroscopic equations and the slip coefficients
are derived by solving the Boltzmann equation in the Knudsen layer with the kinetic
boundary condition (2.103), (2.104), and (2.105), and the procedure is called the
Knudsen layer analysis [35]. Since the characteristic length scale in the Knudsen
layer is the mean free path of the vapor molecules, we introduce a stretched inde-
pendent variable y normal to the interface,

y = (xi − xwi )ni

k
, (2.122)

where xwi represents the coordinate of the point on the interface. The Boltzmann
equation (2.110) can be expressed as24

24 Sects. 2.5.2 and 2.5.3 are concerned with the time-independent problem. However, even in
a time-dependent problem, if the characteristic time scale t0 of the problem is large so that
�0/t0

√
2RT0 = O(k), then the time derivative term in the Boltzmann equation drops in the

Knudsen layer in the leading order of approximation, and hence the vapor flow in the Knudsen
layer can be treated as a time-independent flow in the leading order of approximation, where the
time variable t is included as a parameter.
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ζi ni
∂φK 1

∂y
= L̂(φK 1), (2.123)

in the leading order of approximation, where the nondimensional distribution func-
tion φ is decomposed into the sum of the fluid-dynamics part φS and the Knudsen
layer correction φK , and φK is expanded as

φK = kφK 1 + k2φK 2 + · · · . (2.124)

Furthermore, it is assumed that φK decays faster than any inverse power of y [35].
Since the coordinate y is stretched, the fluid-dynamics region is located at y →
∞. The Knudsen layer analysis is therefore equivalent to the so-called half-space
problem of the Boltzmann equation [35].

The important point is that the solution of the half-space problem of the Boltz-
mann equation exists only when the condition at infinity satisfies some relations
[35]. Therefore, at the same time when we obtain the solution of the half-space
problem or the solution in the Knudsen layer (Knudsen layer function), the condi-
tion for the macroscopic variables in the fluid-dynamics region (condition at infinity
for the half-space problem) are also obtained, and the microscopic information is
incorporated into the condition for the macroscopic variables. This is the boundary
condition for the macroscopic equations in the fluid-dynamics region.

If the kinetic boundary condition at the interface has a Maxwellian-like func-
tional form with respect to ξ , the solution of the half-space problem can be
described with some universal functions independent of the multiplication factor of
the Maxwellian-like function [42]. In Ref. [42], although the proof has been given
for the Boltzmann equation of monatomic molecules, its extension to the Gaussian–
BGK Boltzmann equation is straightforward.

For the Gaussian–BGK Boltzmann equation, the Knudsen layer analysis can be
carried out in the same way as those for the BKW equation in Refs. [33, 36] (see
also [35]), and thereby the Knudsen layer corrections and the boundary condition
for the macroscopic equations with slip coefficients can be obtained. The results in
the leading order of approximation are as follows:

(ui S1 − uwi1)ti = 0, (2.125)

ui K 1 = 0, (2.126)

PS1 − Pw1 = αe

αc

(
C∗

4 − 2
√
π

1 − αc

αc

)
ui S1ni + αe − αc

αc
, (2.127)

τS1 − τw1 = d∗
4 ui S1ni , (2.128)

ωK 1 = ui S1niΩ
∗
4 (y), (2.129)

τtrK 1 = ui S1niΘ
∗
4tr(y), (2.130)

τintK 1 = ui S1niΘ
∗
4int(y). (2.131)
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Here, (i) the fluid-dynamics parts, ui S1, τS1, and PS1, are evaluated on the
interface,25 and they are independent of y. (ii) uwi1, τw1, and Pw1 are, respec-
tively, the first expansion coefficients of the nondimensional velocity, tempera-
ture of the interface, and the saturated vapor pressure at the temperature Tw, e.g.,
vwi/

√
2RTw = kuwi1 + k2uwi2 + · · · , and so on. (iii) uwi ni should vanish in the

time-independent boundary-value problem. (iv) ui K 1, ωK 1, τtrK 1, and τintK 1 are,
respectively, the Knudsen layer corrections for the velocity, density, and tempera-
ture associated with translational and internal motions. (v) ni and ti are unit vectors
normal and tangential to the interface, respectively. (vi) Equation (2.127) is a gener-
alization of the result from the complete-condensation condition [36] according to
Ref. [42].

It is important to note that the condensation coefficient αc varies according with
the flow condition, whereas the evaporation coefficient αe is constant if Tw is con-
stant. In the limit to the vapor–liquid equilibrium state, the evaporation or condensa-
tion ceases, i.e., ui S1ni → 0 in Eqs. (2.127) and (2.128), and the vapor temperature
and pressure should be equal to Tw and p∗, respectively. Accordingly, αc → αe in
the limit of ui S1ni → 0. We therefore require another information that gives αc as a
function of ui S1ni . This is one of main topics of Sect. 3. A theoretical formulation
for constructing αc as a linear function of ui S1ni is shown in the next subsection.

The values of slip coefficients C∗
4 and d∗

4 and the functional forms of Knudsen
layer functions Ω∗

4 (y), Θ
∗
4tr(y), and Θ∗

4int(y) are dependent on the parameters θ and
ν in the Gaussian–BGK model and the internal degrees of freedom n. In the present
study, we set θ = 0.6471, ν = −0.5, n = 6, Pr = 0.86, and the ratio of specific
heats 1.22 corresponding to methanol vapor at room temperature. In the case, we
obtain [43]26

C∗
4 = −2.0723, d∗

4 = −0.2185, (2.132)

and

Ω∗
4 (0) = 0.475, Θ∗

4tr(0) = −0.083, Θ∗
4int(0) = 0.145. (2.133)

The slip coefficients and the Knudsen layer functions for the BKW model and for
the Boltzmann equation for hard-sphere gas are precisely determined and tabulated
in the book [35]: for hard-sphere gas,

C∗
4 = −2.1412, d∗

4 = −0.4557, (2.134)

Ω∗
4 (0) = 0.37815, Θ∗

4 (0) = 0.05206, (2.135)

25 The fluid-dynamics parts are unchanged in the Knudsen layer and the Knudsen-layer corrections
rapidly vanish y → ∞. Therefore, ui S1, τS1, and PS1 in Eq. (2.125) and Eqs. (2.127), (2.128),
(2.129), (2.130), and (2.131) are, respectively, equal to the velocity, temperature, and pressure of
the vapor at the outer edge of the Knudsen layer in the approximation of O(k).
26 These values have recently been corrected by M. Inaba as follows (private communication):
C∗

4 = −2.0719, d∗
4 = −0.1921, �∗

4(0) = 0.5006, �∗
4tr (0) = −0.1090, and �∗

4int (0) = 0.1190.
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and for the BKW model,

C∗
4 = −2.13204, d∗

4 = −0.44675, (2.136)

Ω∗
4 (0) = 0.36303, Θ∗

4 (0) = 0.03717. (2.137)

As can be seen from Eqs. (2.132), (2.134), and (2.136), C∗
4 for the Gaussian–

BGK model for polyatomic molecules is rather close to those for monatomic gas.
The coefficient d∗

4 for polyatomic molecules is, however, about a half of that for
monatomic gas for the present case of θ = 0.6471, ν = −0.5, and n = 6.

The dimensional expressions of Eqs. (2.127) and (2.128), extended to time-
dependent problems,27 can be written as

p − p∗

p∗ = αe

αc

(
C∗

4 − 2
√
π

1 − αc

αc

)
[vi − vwi (X, t)] ni (X, t)√

2RTw(X, t)
+ αe − αc

αc
,

(2.138)

T − Tw(X, t)

Tw(X, t)
= d∗

4
[vi − vwi (X, t)] ni (X, t)√

2RTw(X, t)
, (2.139)

where the saturated pressure p∗ = ρ∗ RTw is a function of X and t through
Tw(X, t).

2.5.4 Condensation Coefficient as a Linear Function of Mass Flux

In the weak nonequilibrium problems in the sense of Eq. (2.109), all the perturba-
tions, including the difference between αc and αe, are of the order of k. We may
therefore assume that28

αc = αe +Λ
(vi − vwi )ni√

2RTw
, (2.140)

where Λ is independent of (vi − vwi )ni and may be a function of Tw. The fac-
tor Λ contains the microscopic information of interface, which cannot be deduced
by the kinetic theory of gases. The determination of the factor Λ may be possible
by detailed nonequilibrium MD simulations, although it has not been performed
yet. The experimental study presented in Sect. 3 is an only successful achievement
for the determination of Λ up to now. By using Eq. (2.140), Eq. (2.138) is trans-
formed as

p

p∗ = 1 +
(

C∗
4 + 2

√
π − 2

√
π

αe
− Λ

αe

)
(vi − vwi )ni√

2RTw
, (2.141)

27 See Footnote 24.
28 The dimensionless mass flux ρ(vi − vwi )ni/(ρ

∗√2RTw) is approximately equal to (vi −
vwi )ni/

√
2RTw in the accuracy of O(k) since (vi −vwi )ni/

√
2RTw = O(k) and ρ/ρ∗ = 1+O(k).
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in the approximation up to O(k). The boundary conditions for the fluid-dynamics
region are Eqs. (2.141) and (2.139).

In Ref. [21], a nondimensional parameter A is defined by

A = αeρ
∗ − αcρw

ρ∗ − ρw
, (2.142)

and evaluated as constants, A = 0.52 for water and A = 0.50 for methanol, from the
analysis of a number of data obtained by the shock-tube experiment of weak con-
densation at room temperature (see Sect. 3).29 We here derive the relation between
the factor Λ in Eq. (2.140) and the parameter A.

In the mass flux equation,

M = (αeρ
∗ − αcρw)

√
RTw
2π

, (2.143)

M denotes the mass flux across the interface. Since the vapor flow in the Knudsen
layer concerned is a time-independent flow, M can be replaced by ρ(vi − vwi )ni at
the outer edge of the Knudsen layer, and we have

ρ(vi − vwi )ni = (αeρ
∗ − αcρw)

√
RTw
2π

. (2.144)

Dividing Eq. (2.138) by Eq. (2.139) and neglecting the terms of O(k2) gives

ρ

ρ∗ = αe

αc

[
1 +

(
C∗

4 − d∗
4 + 2

√
π − 2

√
π

αc

)
(vi − vwi )ni√

2RTw

]
, (2.145)

where αc has been treated as O(1) and Eq. (2.140) has not been used yet. Substitut-
ing ρ/ρ∗ = αe/αc obtained from Eq. (2.145) into Eq. (2.144) yields

ρw

ρ∗ = αe

αc

[
1 − 2

√
π

αc

(vi − vwi )ni√
2RTw

]
, (2.146)

in the approximation up to O(k), where we still do not use Eq. (2.140). Substituting
Eqs. (2.140) and (2.146) into Eq. (2.142), and taking the limit of (vi − vwi )ni → 0,
we obtain

Λ = 2
√
π
(αe

A
− 1
)
. (2.147)

Using αe = 0.86 for both water and methanol [17], we can determine Λ as follows:

Λ = 2.3 for water, Λ = 2.6 for methanol. (2.148)

29 Apparently, the right-hand side of Eq. (2.142) is equal to the ratio of the mass flux given by
Eq. (2.82) to that in the case of complete-condensation condition given by Eq. (2.80).
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2.6 Criticism on Hertz–Knudsen–Langmuir
and Schrage Formulas

In Sect. 2.5.3, the boundary conditions for the macroscopic equations in the fluid-
dynamics region, Eqs. (2.127) and (2.128), are derived by solving the Boltzmann
equation in the Knudsen layer on the interface. Without solving the Boltzmann
equation, the boundary conditions can never be obtained. However, several formulas
have been proposed without solving the Boltzmann equation, and surprisingly, these
formulas are used as the boundary conditions for the macroscopic equations in var-
ious applications still now. They are constructed from the mass flux equation (2.82)
by replacing the unknown variable ρw with some functions of ρ, T , and (vi −vwi )ni

at the outer edge of the Knudsen layer [7]. In the following, we take up typical two
formulas and compare them with Eqs. (2.127) and (2.128).

The first one is known as the Hertz–Knudsen–Langmuir formula [7],

MHKL = 1√
2πR

(
αe

p∗
√

Tw
− αc

p√
T

)
, (2.149)

where αe and αc are the evaporation and condensation coefficients, for which αe =
αc = α is sometimes used. The second one is the Schrage formula [7],

MSch = 2α

(2 − α)
√

2πR

(
p∗

√
Tw

− p√
T

)
, (2.150)

where α is a nondimensional parameter for evaporation and condensation. Both
Eqs. (2.149) and (2.150) are produced by replacing ρw in Eq. (2.82) by some func-
tions consisted of p, T , and (vi − vwi )ni , although there is no justification for such
a replacement without solving the Boltzmann equation.

The inappropriateness of the Schrage formula can easily be demonstrated: In
fact, for given Tw and p∗, MSch vanishes if a pair (p, T ) satisfies the relation

T

Tw
=
(

p

p∗

)2

. (2.151)

That is, the mass flux across the interface vanishes for an infinite number of pairs
(p, T ) that satisfy Eq. (2.151) in spite of vapor–liquid nonequilibrium states. This
contradicts the fact that the mass flux evaluated from the solution of the Boltz-
mann equation vanishes only in the vapor–liquid equilibrium state, i.e., p = p∗ and
T = Tw, as shown by Eqs. (2.127) and (2.128). For the Hertz–Knudsen–Langmuir
formula, the same discussion can be applied for pairs (p, T ) satisfying

T

Tw
=
(
αc p

αe p∗

)2

, (2.152)

instead of Eq. (2.151).
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Furthermore, we express a pair (p, T ) satisfying Eq. (2.151) or (2.152)
as (p†, T †), and consider the linearization around (p†, T †). Substituting p = p† ×
(1 + P†) and T = T †(1 + τ †) into Eqs. (2.149) and (2.150), and linearizing the
resulting equations under the assumption of |P†| � 1 and |τ †| � 1, we have

MHKL = αe p∗
√

2πRTw

(
1

2
τ † − P†

)
, (2.153)

MSch = 2α

2 − α

p∗
√

2πRTw

(
1

2
τ † − P†

)
. (2.154)

That is, the both formulas predict that the evaporation (M > 0) occurs when τ † >

2P† even if T − Tw > 0, and the condensation (M < 0) occurs when τ † < 2P†

even if p − p∗ < 0. However, as can be seen from Eqs. (2.127) and (2.128) and
from Fig. 2.14, the evaporation (ui S1ni > 0) occurs only when T − Tw < 0 and
the condensation (ui S1ni < 0) occurs only when p − p∗ > 0 (if αe = αc = 1).
Although Eqs. (2.127) and (2.128) are results in the leading order of approximation
for ui S1ni = O(k), according to the numerical solution for nonlinear problems
[35, 42], it is confirmed that the steady evaporation occurs only when T − Tw < 0
and the steady condensation occurs only when p − p∗ > 0. Thus, the both formulas
are wrong and of no use.

(p*,:Tw)† †

T

p

Condensation

Evaporation

τ.. <. 2P ††
τ ..> .2P ††

p*

:Tww

(p*,:Tw)w

M > 0

M < 0

M >0

M < 0

Fig. 2.14 The boundary conditions for macroscopic equations, Eqs. (2.127) and (2.128), are shown
by a bold straight line passing through the vapor–liquid equilibrium point (p∗, Tw) in the (p, T )
plane. The parabola in the figure means Eqs. (2.151) or (2.152). The Hertz–Knudsen–Langmuir
and Schrage formulas divide the neighborhood of a zero-mass-flux point (p†, T †) on the parabola
into the evaporation and condensation regions with a thin dashed line τ † = 2P†
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