
Chapter 2

Solution concepts

For more than five decades, vector optimization has been a subject of inten-
sive research. A common notation for a vector optimization problem is

Min
x∈S

f(x), (VOP)

where f is a vector-valued function and S is a feasible set. The central ques-
tion of this chapter is the following:

What is a solution to (VOP)?

It is rather surprising that there is no standard answer to this fundamental
question in textbooks on vector optimization. Luc (1988) states that (VOP)
“amounts to finding a point x ∈ S, called an optimal solution of” (VOP),
where f(x) is required to be minimal in the set f [S] := {f(x)| x ∈ S} for
such a point x. Similarly, Jahn (2004, p. 105) writes that (VOP) “is to be
interpreted in the following way: Determine a minimal solution x ∈ S which
is defined as the inverse image of a minimal element f(x) of the image set
f(S).” Ehrgott (2000) writes in the same situation that “a solution x ∈ S is
called Pareto optimal”, which means that the term solution seems to refer to
a feasible solution rather than a solution to (VOP). In the recent textbook
by Boţ et al. (2009) it is stated that (VOP) “consists in determining the
minimal [...] elements of the image set of S” and that one is “also interested
in finding the so-called efficient [...] solutions to” (VOP), where an efficient
solution is what Luc called “optimal solution”1. It is also stated by Boţ et al.
(2009) that “in practice a decision maker is only interested to have a subset
or even a single element” of the set of efficient solutions.

Therefore, it is not clear whether a single efficient solution, a subset or
even the set of all efficient solutions is a “solution to (VOP)”. This dilemma
is underlined by the following lines, taken from an online encyclopedia2:

1 It is not relevant in this discussion that there are different types of efficient solutions.
2 Wikipedia, the free online encyclopedia, “Multiobjective optimization”, english ver-
sion, 2010-10-10
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44 2 Solution concepts

“The solution to [a multiobjective optimization problem3] is a set of Pareto
points. Pareto solutions are those for which improvement in one objective can
only occur with the worsening of at least one other objective. Thus, instead
of a unique solution to the problem (which is typically the case in traditional
mathematical programming), the solution to a multiobjective problem is a
(possibly infinite) set of Pareto points.

Even though this definition gives the precise statement that a solution to
(VOP) is a set of efficient (or Pareto) points there is no further requirement
to this set; a singleton set is therefore also a solution. For typical vector opti-
mization problems, however, a single efficient point can be already obtained
by solving a scalarized optimization problem. Only a fraction of the theory
on vector optimization would be necessary for this reason.

The main idea of vector optimization is that a decision maker chooses
an efficient solution from the set of all efficient solutions. This decision is
supported by the solution to the vector optimization problem. This means,
the problem must be solved prior to the decision.

We prepend this chapter two postulates.

(1) The goal of vector optimization is to provide a decision maker with a
sufficient amount of information on the problem in terms of efficient
elements.

(2) A solution concept for a vector optimization problem should provide a
specification of the term “sufficient” in (1).

The second hypothesis consists of two aspects.

(a) Does the set of all efficient elements provide enough information?
(b) If so, are there proper subsets of the set of efficient elements that already

contain enough information?

The first aspect (a) is a question of existence. The second question (b) is
concerned with uniqueness, i.e., if the set of all efficient elements is the only
choice, we can say the solution is unique.

Scalar optimization is of course a special case of vector optimization, so
that a solution concept should reduce to the standard concept in this special
case. To this end, let us first consider a general scalar optimization problem.
Let X be a nonempty set and let f : X → R be a proper function on X ,
i.e., f(x) �= −∞ for all x ∈ X and f �≡ +∞. We denote by S ⊆ X the set of
feasible elements. Let us

minimize f : X → R with respect to ≤ over S. (2.1)

The following statements are equivalent characterizations of x̄ ∈ X being
a solution to (2.1):

3 The term “multiobjective optimization” is stands for optimization problems with
more than one real-valued objective functions. These functions can be interpreted as
a single vector-valued objective function.
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(i) x̄ ∈ S and f(x̄) ≤ f(x) for all x ∈ S,
(ii) x̄ ∈ S and f(x̄) �> f(x) for all x ∈ S,
(iii) x̄ ∈ S and f(x̄) = infx∈S f(x).

Since in vector optimization the ordering relation is more complex than in
scalar optimization, the latter conditions do not coincide any longer. While
condition (i) is obviously too restrictive for vector optimization problems
(utopia points), the common “solution concepts” in the literature are mainly
based on (ii). There are several possibilities to interpret the relation �> (“not
greater than”), which leads to a variety of different notions, such as efficient,
weakly efficient and properly efficient elements. All these concepts don’t take
into account the infimum and supremum, which is quite important in scalar
optimization. The usage of infimal sets in the literature is related to condition
(iii), but the complete lattice has not been pointed out.

The solution concept for vector optimization problems, which is introduced
in the next two sections, involves all the conditions (i), (ii) and (iii).

2.1 A solution concept for lattice-valued problems

A complete-lattice-valued optimization problem provides the abstract frame-
work for solution concepts based on the attainment of the infimum or supre-
mum.

Let f : X → Z, where X is an arbitrary nonempty set and, unless other-
wise indicated, (Z,≤) is a complete lattice. For a nonempty subset S ⊆ X ,
called feasible set, we consider the optimization problem

minimize f : X → Z with respect to ≤ over S. (L)

A standard concept is the following, where (Z,≤) is only supposed to be a
partially ordered set in the following definition.

Definition 2.1. An element x̄ ∈ S is called an efficient solution to (L) if

[x ∈ S ∧ f(x) ≤ f(x̄)] =⇒ f(x) = f(x̄).

The set of all efficient solutions to (L) is denoted by Eff (L).

For A ⊆ Z we denote by

MinA := {z ∈ A| (y ∈ A ∧ y ≤ z) ⇒ y = z}

the set of minimal elements of A. Using the notation

f [V ] := {f(x)| x ∈ V },

we obtain
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Min f [S] = f [Eff (L)].

It is demonstrated by the following two examples that the set Eff (L) without
any further requirement is unsatisfactory as a solution concept for vector
optimization problems.

Example 2.2. Let X = Z = R2 and let Z be partially ordered by the natural
ordering cone R2

+. Let f be the identity map and

S =
{
x ∈ R2| x1 > 0, x2 > 0, x1 + 10x2 > 10

}
∪
{
(13, 0)T

}
.

We have Eff (L) =
{
(13, 0)T

}
. But the nonempty set Eff (L) does not yield a

sufficient amount of information about the problem. From a practical point
of view, for instance, the feasible, non-efficient point (1, 1)T could be more
interesting than the set of efficient solutions, see Figure 2.1.

1

105

Eff (L)

(1, 1)T

f [S]

Fig. 2.1 Illustration of Example 2.2. The set of efficient points is not a useful solution
concept.

On the other hand, there are vector optimization problems where it is
already sufficient for the decision maker to know a proper subset of Eff (L).

Example 2.3. Let X = Z = R2, Z partially ordered by R2
+, and

S =
{
x ∈ R2| x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 2, x1 + 2x2 ≥ 2

}
.

The objective f : X → Z is given as f(x) = (0, x2)T . Then

Eff (L) =
{
x ∈ R2| x1 ≥ 2, x2 = 0

}
.

In typical applications the decision maker selects a point in the image
f [Eff (L)] of Eff (L) with respect to f . We have f [Eff (L)] =

{
(0, 0)T

}
. But,

the same image is already obtained by any nonempty subset of Eff (L), see
Figure 2.2.

Example 2.3 indicates that the condition f [X̄] = Min f [S] could be one
suitable requirement for a set X̄ ⊆ S to be a solution. But additionally, the
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Eff (L)

f [S]

Min f [S] = f [Eff (L)]

S

Fig. 2.2 Illustration of Example 2.3. Every nonempty subset of Eff (L) generates the
same image.

situation in Example 2.2 must be avoided. This would be possible by as-
suming the well-known domination property, which is recalled and discussed
below. We choose, however, a weaker condition, which is connected with the
attainment of the infimum. To ensure the existence of the infimum, we need
to assume (Z,≤) to be a complete lattice.

The infimum of f over a set S ⊆ X is defined by

inf
x∈S

f(x) := inf {f(x)| x ∈ S} = inf f [S].

Definition 2.4. Let S ⊆ X and x̄ ∈ X . We say the infimum of f over S is
attained at x̄ if

x̄ ∈ S ∧ f(x̄) = inf
x∈S

f(x).

In case such an element x̄ exists (does not exist), we say the infimum of f
over S is (not) attained.

The attainment of the infimum is an important concept in optimization.
In vector optimization it is, however, very hard to fulfill as the following
example shows.

Example 2.5. Let X = R2, Z = R2∪{±∞}, R2 partially ordered by the cone
R2

+. The ordering is denoted by ≤ and extended to Z by setting −∞ ≤ z ≤
+∞ for all z ∈ Z. Then, (Z,≤) is a complete lattice. Let

S =
{
x ∈ R2| x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 2, x1 + 2x2 ≥ 2

}
and let f be the identity map. Then the infimum of f over S is not attained.
Indeed, we have infx∈S f(x) = {0, 0}T , but there is no x̄ ∈ S with f(x̄) =
{0, 0}T , see Figure 2.3.

A further aspect can be observed in the previous example. We enforce that
the infimum is attained in a single vector. In vector optimization we intend
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f [S]

inf
x∈S

f(x)

S

Fig. 2.3 Illustration of Example 2.5. The infimum is not attained.

to present the decision maker all or at least a representative choice of efficient
vectors. Therefore, we expect a solution to be a set of feasible vectors.

This requirement is taken into account by a concept that we call canonical
extension.

Definition 2.6. The canonical extension of the objective function f : X → Z
in the complete-lattice-valued optimization problem (L) is the function

F : 2X → Z, F (A) := inf
x∈A

f(x).

Of course, we have f(x) = F ({x}) for all x ∈ X . Working with the canon-
ical extension F instead of f , we make the following two observations: First,
we see that attainment of the infimum is easier to realize. The second differ-
ence is that the infimum is attained in a set rather than in a single element
of X .

We now give a characterization of the attainment of the infimum of the
canonical extension F in terms of the given function f .

Proposition 2.7. Let S ⊆ X. The following statements are equivalent.

(i) The infimum of F over 2S is attained at X̄, i.e.,

X̄ ∈ 2S ∧ F (X̄) = inf
A∈2S

F (A).

(ii) X̄ ⊆ S ∧ inf
x∈X̄

f(x) = inf
x∈S

f(x).

Proof. It remains to prove the equality

inf
A∈2S

F (A) = inf
x∈S

f(x). (2.2)

For all x ∈ S we have

inf
A∈2S

F (A) ≤ F ({x}) = f(x).
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The infimum over x ∈ S yields ≤ in (2.2). For all A ⊆ S we have

F (A) = inf
x∈A

f(x) ≥ inf
x∈S

f(x).

Taking the infimum over all A ∈ 2S we get ≥ in (2.2). ��

Next we define a solution concept for the complete-lattice-valued problem
(L).

Definition 2.8. A nonempty set X̄ with f [X̄] = Min f [S] is called a solution
to (L) if the infimum of the canonical extension F over 2S is attained in X̄.

In terms of f a solution can be characterized as follows.

Corollary 2.9. A nonempty set X̄ is a solution to (L) if and only if the
following conditions hold:

(i) X̄ ⊆ S,
(ii) f [X̄] = Min f [S],
(iii) inf

x∈X̄
f(x) = inf

x∈S
f(x).

Proof. Follows from Proposition 2.7. ��

It can easily be seen that, if a solution to (L) exists, then Eff (L) is a
solution to (L). Of course, if Eff (L) is a solution to (L), every subset X̄ of
Eff (L) with f [X̄] = Min f [S] is a solution to (L), too.

Definition 2.10. If X̄ = Eff (L) is the only solution to (L), we say X̄ is a
unique solution.

Example 2.11. Let X = R2, Y = R2 partially ordered by the cone R2
+ and

Z = Y . Then, (Z,≤) is a complete lattice. Let

S =
{
x ∈ R2| x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 2, x1 + 2x2 ≥ 2

}
and let f be the identity map. Then, X̄ := Eff (L) = Min f [S] is the unique
solution to (L). For the same problem with the choice f(x) := (0, x2)T , we get
Eff (L) =

{
x ∈ R2| x1 ≥ 2, x2 = 0

}
. But, every nonempty subset of Eff (L)

is also a solution. Thus the solution is not unique in this case. Both cases
are illustrated in Figure 2.4. Note that this example is not based on a useful
solution concept for vector optimization, because the current complete lattice
is not suitable.

Let us consider Problem (L) for the special case (Z,≤) = (R,≤).

Proposition 2.12. Let (Z,≤) = (R,≤). For a nonempty set X̄, the following
is equivalent:
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two different solutions

the unique solution

inf
x∈S

f(x)

S

S
f [S]

f [S]

inf
x∈S

f(x)

Fig. 2.4 Illustration of Example 2.11. Unique and non-unique solutions.

(i) f [X̄] = Min f [S],
(ii) ∀x̄ ∈ X̄ : {f(x̄)} = Min f [S].

Proof. (i) ⇒ (ii). This follows from the fact that Min f [S] is a singleton set,
which is a consequence of ≤ being a total ordering in R (i.e. arbitrary elements
y1, y2 satisfy either y1 ≤ y2 or y2 ≤ y1).

(ii) ⇒ (i). By (ii), f is constant on X̄. Hence we have {f(x̄)} = f [X̄] for
all x̄ ∈ X̄ . ��

We next show the connection between a solution to the complete-lattice-
valued problem (L) for the case (Z,≤) = (R,≤) and solutions to the classical
extended real-valued optimization problem (2.1).

Theorem 2.13. Consider Problem (L) for the special case (Z,≤) = (R,≤)
and the corresponding real-valued optimization problem (2.1). For a nonempty
set X̄, the following is equivalent:

(i) X̄ is a solution to (L),
(ii) x̄ is a solution to (2.1) for every x̄ ∈ X̄.

An element x̄ is a unique solution to (2.1) if and only if {x̄} is a unique
solution to (L).

Proof. (i) is equivalent to

X̄ ⊆ S ∧ inf
x∈X̄

f(x) = inf
x∈S

f(x) ∧ f [X̄] = Min f [S].



2.2 A solution concept for vector optimization 51

By Proposition 2.12, this is equivalent to

∀x̄ ∈ X̄ : x̄ ∈ S ∧ f(x̄) = inf
x∈S

f(x) ∧ {f(x̄)} = Min f [S],

which is an alternative way to express (ii). ��

In Example 2.2 (where a complete lattice Z is obtained by extending R2

by two elements ±∞), Eff (L) is not a solution to (L); whence a solution
does not exist. A natural condition ensuring that Eff (L) is a solution is the
well-known domination property (see e.g. Dolecki and Malivert, 1993).

Definition 2.14. Let (Z,≤) be a partially ordered set. We say that the dom-
ination property holds for Problem (L) if

∀x ∈ S, ∃x̄ ∈ Eff (L) : f(x̄) ≤ f(x). (2.3)

Proposition 2.15. The set Eff (L) is a solution to (L) if the domination
property holds.

Proof. Set X̄ := Eff (L). Of course, we have X̄ ∈ 2S . According to Proposi-
tion 2.7, the attainment of the infimum of the canonical extension F over 2S

in X̄ is equivalent to
inf

x∈X̄
f(x) = inf

x∈S
f(x). (2.4)

From (2.3) we get infx∈X̄ f(x) ≤ infx∈S f(x) and the opposite inequality in
(2.4) follows from X̄ ⊆ S. ��

The domination property is not necessary for the existence of a solution.
An example is given below (Example 2.23).

2.2 A solution concept for vector optimization

A vector optimization problem is now transformed such that it becomes a
special case of the complete-lattice-valued problem (L). One can infer from
the examples in the previous section that the choice of a suitable complete
lattice (Z,≤) is rather essential. Originally, the image space of a vector opti-
mization problem is a partially ordered vector space (Y,≤). In some cases, Y
can be extended to a complete lattice by setting Z := Y ∪ {±∞}, where the
ordering is extended in the usual way by setting −∞ ≤ z ≤ +∞ for all z. We
already mentioned the two drawbacks of this procedure. On the one hand, in
many (even finite dimensional) cases we do not obtain a complete lattice in
this way, see Example 1.9. On the other hand, even if a complete lattice is
acquired in this way, our solution concept is unsatisfactory with this choice
of Z. This is demonstrated by the following example.
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Example 2.16. Let X = R2, (Z,≤) the complete lattice from Example 2.5, f
the identity map and

S =
{
x ∈ R2| x1 > 0, x2 > 0, x1 + x2 > 1

}
∪ {x ∈ R2| x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 2}.

Then X̄ :=
{
(0, 2)T , (2, 0)T

}
is a solution. This is unsatisfactory from the

viewpoint of vector optimization, because this set does not contain enough
information, see Figure 2.5.

the solution

f [S]

inf
x∈S

f(x)

S

Fig. 2.5 Illustration of Example 2.16. The extended vector space R
2 ∪ {±∞} is a

complete lattice, but not suitable for vector optimization.

The loophole is the usage of the complete lattice I of self-infimal subsets
of Y instead of the space Y as the image space. The space I was introduced
in Section 1.5. Recall further that we denote by Inf A the infimal set of a
set A ⊆ Y , see Section 1.4. We can identify a vector y in Y by the element
Inf {y} of I. In this way the ordering relation in I is an extension of the
ordering relation in Y . Note that the partial ordering on Y is generated by
a pointed, convex cone C with ∅ �= intC �= Y , which is involved in the
definition of infimal sets. The new image space I is a complete lattice even
if Y is not a complete lattice. Moreover, an infimum is now an element of
I, which contains more information than a single vector. In particular, an
infimum contains the information which is required by a solution concept
based on the above postulates.

Let X be a nonempty set and S ⊆ X . Let Y be an extended partially
ordered topological vector space, let the ordering cone C of Y be closed and
let ∅ �= intC �= Y . Note that C is automatically pointed and convex, compare
the remark after Definition 1.27. We consider the vector optimization problem

minimize f : X → Y with respect to ≤C over S. (V)

We assign to (V) a corresponding I-valued-problem, i.e., a problem of type
(L), where the complete lattice (Z,≤) = (I,�) is used. Note that (I,�)
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is defined with respect to the ordering cone C of the vector optimization
problem.

Given a function f : X → Y , we set

f̄ : X → I, f̄(x) := Inf{f(x)}

and we assign to (V) the problem

minimize f̄ : X → I with respect to � over S. (V)

Problem (V) is said to be the lattice extension, or more precisely the I-
extension, of the vector optimization problem (V). This terminology can be
motivated by the fact that the lattice extension of the vector optimization
problem allows us to handle the problem in the framework of complete lat-
tices. The ordering relation of the original objective space Y is extended to
the complete lattice I as shown in the following proposition. Note that this
extension is the reason for the assumption of C being closed.

Proposition 2.17. For all x, v ∈ X we have

f(x) ≤C f(v) ⇐⇒ f̄(x) � f̄(v).

Proof. Let Inf {y} � Inf {z}, then Cl + {y} ⊇ Cl + {z}. By Proposition 1.40,
we get z ∈ cl ({z}+C) ⊆ cl ({y}+C). Since C is closed, we obtain z ∈ {y}+C.
This means y ≤C z. The opposite inclusion is obvious. ��

We next see that both problems (V) and (V) are related as they have the
same efficient solutions.

Proposition 2.18. A feasible element x̄ ∈ S is an efficient solution to the
vector optimization problem (V) if and only if it is an efficient solution to its
lattice extension (V).

Proof. This is a direct consequence of Proposition 2.17. ��

Proposition 2.19. The domination property holds for the vector optimiza-
tion problem (V) if and only it holds for its lattice extension (V).

Proof. Follows from Proposition 2.17. ��

We now define a solution concept for the vector optimization problem (V).

Definition 2.20. A nonempty set X̄ ⊆ X is called a solution to the vector
optimization problem (V) if X̄ is a solution to its lattice extension (V).

The next theorem provides a characterization of a solution to the vector
optimization problem (V) by standard notations.

Theorem 2.21. A nonempty set X̄ ⊆ X is a solution to the vector optimiza-
tion problem (V) if and only if the following three conditions are satisfied:
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(i) X̄ ⊆ S,
(ii) f [X̄] = Min f [S],
(iii) Inf f [X̄] = Inf f [S].

Proof. This is a direct consequence of Proposition 2.7 and Theorem 1.54. ��

Example 2.22. Consider the vector optimization problem (V) with a linear
objective function f and a polyhedral convex feasible set S. Then, the set
Eff (L) is a solution whenever it is nonempty. As shown in (Hamel et al., 2004,
Lemma 2.1) (note that the cone has to be pointed there) the domination
property is fulfilled in this case. Thus Proposition 2.15 yields that Eff (L) is
a solution.

Example 2.23. Consider the vector optimization problem (V) with f : R2 →
R2 being the identity map, let C = R2

+ and

S = {x ∈ R2| x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1} \ {(0, 1)T}.

Then X̄ := Eff (L) = {λ (0, 1)T + (1 − λ) (1, 0)T | 0 ≤ λ < 1} is a solution,
but the domination property is not satisfied.

As we will see in Chapter 3 the solution concept of Definition 2.8 is also
relevant for problems which are not a lattice extension of a given vector
optimization problem. There we consider a set-valued dual problem of a given
vector optimization problem. In special cases, the values of the dual objective
map are self-infimal hyperplanes.

Another lattice extension will be of interest in this work. The I-valued
extension f̄ : X → I of a vectorial objective (as introduced above) is actually
Ico -valued, see Section 1.6. Therefore, we also consider the lattice extension

minimize f̄ : X → Ico with respect to � over S. (Vco )

If f̄ is regarded to be Ico -valued, we have a different infimum and thus a
different solution concept. Problem (Vco ) is said to be the convex lattice
extension, or more precisely, the Ico -extension of the vector optimization
problem (V).

Definition 2.24. A nonempty set X̄ ⊆ X is called a convexity solution or
Ico -solution to the vector optimization problem (V) if X̄ is a solution to the
corresponding convex lattice extension (Vco ).

Convexity solutions can be characterized as follows.

Theorem 2.25. A nonempty set X̄ ⊆ X is a convexity solution to the vector
optimization problem (V) if and only if the following three conditions are
satisfied:

(i) X̄ ⊆ S,
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(ii) f [X̄] = Min f [S],
(iii) Inf co f [X̄] = Inf co f [S].

Proof. This is a direct consequence of Proposition 2.7 and Theorem 1.63. ��

Proposition 2.26. Every solution to (V) is also a convexity solution to (V).

Proof. This follows from the fact that, by Proposition 1.60, Inf f [X̄] =
Inf f [S] implies Inf co f [X̄] = Inf co f [S]. ��

Example 2.27. Let X = R2, Y = R2 partially ordered by the cone R2
+ and

Z = Y . Then, (Z,≤) is a complete lattice. Let

S =
{
x ∈ R2| x1 > 0, x2 > 0, 2x1 + x2 > 2, x1 + 2x2 > 2

}
∪
{

(0, 2)T , (2, 0)T ,

(
2
3
,
2
3

)T
}

and let f be the identity map. Then, X̄ =
{
(0, 2)T , (2, 0)T ,

(
2
3 ,

2
3

)T} is a
convexity solution but not a solution to (V), see Figure 2.6.

inf
x∈X̄

f(x)X̄

f [S]S

Fig. 2.6 Illustration of Example 2.27. The set X̄ is a convexity solution but not a
solution. The infimum on the right refers to the complete lattice Ico . It coincides
with infx∈S f(x).

This example looks somewhat artificial. Convexity solutions will play a role
in Section 2.5, where we introduce mild solutions by relaxing the condition
f [X̄] = Min f [S]. Mild convexity solutions will naturally occur in linear vector
optimization problems.

2.3 Semicontinuity concepts

Lower semicontinuity of the objective function is typically required as an
assumption for the existence of minimal solutions. This section provides a
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summary of different notions of lower semicontinuity for functions with values
in Z, where Z is a partially ordered set and sometimes even a complete lattice.
We are mainly interested in the general case without any a priori topology on
Z. However, we also consider the special case where Z = Y := Y ∪ {±∞} is
the extension of a partially ordered topological vector space Y . In particular,
we examine Y - and F -valued functions. Note that (F ,⊇) is isomorphic and
isotone to (I,�), see Proposition 1.52.

If f : X → Z = Y is a function from a topological space X into the
extended real numbers R, i.e., Y = R and Z = R, then the following five
properties are equivalent characterizations of lower semicontinuity of f .

(a) For all z ∈ Z the level sets Lf (z) := {x ∈ X | f(x) ≤ z} are closed.
(b) For all y ∈ Y the level sets Lf(y) are closed.
(c) For all x̄ ∈ X ,

f(x̄) ≤ sup
U∈U(x̄)

inf
x∈U

f(x) =: lim inf
x→x̄

f(x)

holds true, where U(x̄) is a neighborhood base of x̄ (that is, for every
neighborhood U of x̄, there exists some Ū ∈ U(x̄) such that Ū ⊆ U).

(d) For every x̄ ∈ X , every ȳ ∈ Y with ȳ ≤ f(x̄) and every neighborhood
V of ȳ there is some neighborhood U of x̄ such that

∀x ∈ U, ∃y ∈ V : f(x) ≥ y.

(e) The epigraph of f , epi f := {(x, y) ∈ X × Y | f(x) ≤ y}, is closed.

For more general instances of Z these five properties do not coincide any
longer. If Z is merely a complete lattice without any additional structure,
then only the properties (a) and (c) are applicable.

Definition 2.28. Let X be a topological space, and let (Y,≤) and (Z,≤) be
partially ordered sets. A function f : X → Z is called level closed if property
(a) holds. f : X → Y is called weakly level closed if property (b) holds. In
case Z is a complete lattice, a function f : X → Z is called lattice lower
semi-continuous (lattice-l.s.c.) if property (c) holds. In case Y is a partially
ordered topological space f : X → Y is called topologically l.s.c. if property
(d) holds and epi-closed if (e) holds.

In the following we investigate the relationships between these properties.
First we clarify the connection between the two notions that do not require
further structural assumptions for the image space Z in addition to the lattice
property.

Proposition 2.29. Let X be a topological space and (Z,≤) a complete lattice.
If a function f : X → Z is lattice-l.s.c., then it is level closed.
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Proof. Assume that f is lattice-l.s.c. but not level closed, i.e., there is some
z̄ ∈ Z such that Lf (z̄) is not closed. Then there is some x̄ ∈ X with x̄ �∈ Lf (z̄)
such that for all U ∈ U(x̄) there exists some x ∈ U with x ∈ Lf (z̄). This
implies

sup
U∈U(x̄)

inf
x∈U

f(x) ≤ z̄.

Since f is lattice-l.s.c., we conclude f(x̄) ≤ z̄. But this means x̄ ∈ Lf(z̄), a
contradiction. ��

The converse is generally not true as the following example shows.

Example 2.30. Let X = R and Z = R2, where R2 is partially ordered by R2
+.

The function f : X → Z defined by

f(x) =

{
(1, 0)T if x ≥ 0
(0,−1/x)T if x < 0

is level closed since

Lf(y) = {x ∈ X | f(x) ≤ y}

=




[0,+∞) if y2 = 0, y1 ≥ 1
(−∞,−1/y2] ∪ [0,+∞) if y2 > 0, y1 ≥ 1
(−∞,−1/y2] if y2 > 0, 0 ≤ y1 < 1
R if y = +∞
∅ otherwise.

But f is not lattice-l.s.c. at x̄ = 0. Indeed, if we take the set of open ε-intervals
as a neighborhood base of x̄ = 0, i.e., U(0) = {(−ε,+ε)| ε > 0}, we obtain
for every U = (−ε,+ε) ∈ U(0),

inf
x∈U

f(x) = inf
{
(0, 1/ε)T , (1, 0)T

}
= (0, 0)T .

We conclude
sup

U∈U(0)

inf
x∈U

f(x) = (0, 0)T �≥ (1, 0)T = f(0)

i.e., the condition of f being lattice-l.s.c. at x̄ = 0 is violated.

The following relations between epi-closedness, weak level closedness and
level closedness follow immediately from the definitions.

Proposition 2.31. Let X be a topological space, (Y,≤) a partially ordered
topological space and f : X → Y . The following statements hold.

(i) If f is epi-closed, then it is weakly level closed.
(ii) If f is level closed, then it is weakly level closed.
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The converse implications are only true under additional assumptions.

Proposition 2.32. Let X be a topological space.

(i) Assume that (Y,≤C) is a topological vector space ordered by a pointed
closed convex cone C with nonempty interior. If a function f : X → Y
is weakly level closed, then it is epi-closed.

(ii) Assume that (Y,≤) is a partially ordered set having no least element.
If a function f : X → Y is weakly level closed, then it is level closed.

Proof. (i) Assume that f is weakly level closed, i.e., for every x̄ ∈ X and
y ∈ Y we have

[∀U ∈ U(x̄), ∃x ∈ U : f(x) ≤C y] =⇒ f(x̄) ≤C y. (2.5)

In order to prove that f is epi-closed we assume that (x̄, ȳ) ∈ cl (epi f), i.e.,

∀U ∈ U(x̄), ∀V ∈ V , ∃x ∈ U, ∃y ∈ V : f(x) ≤C ȳ + y, (2.6)

where V denotes a neighborhood base of 0 in Y . We have to show that
f(x̄) ≤C ȳ. Since for every c ∈ intC there is some V ∈ V with V ⊆ c−C we
obtain from (2.6),

∀c ∈ intC, ∀U ∈ U(x̄), ∃x ∈ U : f(x) ≤C ȳ + c.

Now, (2.5) implies that f(x̄) ≤C ȳ + c holds for all c ∈ intC. Therefore, we
have f(x̄) ≤C ȳ as C is closed.

(ii) It remains to show that Lf(+∞) and Lf (−∞) are closed. Lf (+∞) =
X is closed by definition. Since Y has no least element, for z ∈ Y we have
z = −∞ if and only if z ≤ y for all y ∈ Y . Hence

Lf (−∞) =
⋂

y∈Y

Lf (y)

is a closed set as well. ��
In general, there is no inclusion between the sets of lattice-l.s.c., topolog-

ically l.s.c. and epi-closed functions (Gerritse, 1997, appendix). Some of the
inclusions are valid under additional assumptions (Penot and Théra, 1982;
Gerritse, 1997; Ait Mansour et al., 2007). In this context we only mention
the following two results.

Proposition 2.33. Let X be a topological space and let (Y,≤) be a partially
ordered topological space that has no greatest element. If the ordering of Y
is closed (i.e., the set G := {(z, y) ∈ Y × Y | z ≤ y} is closed) then every
topologically l.s.c. function f : X → Y is epi-closed.

Proof. In order to prove that epi f is closed we take a pair (x̄, ȳ) ∈ (X ×Y ) \
(epi f) and show that there are neighborhoods U ∈ U(x̄) and W ∈ V(ȳ) such
that (U ×W ) ∩ (epi f) = ∅.
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If (x̄, ȳ) ∈ (X×Y )\ (epi f), then f(x̄) �= −∞ and (f(x̄), ȳ) �∈ G. Let ŷ ∈ Y
be chosen such that ŷ ≤ f(x̄) and (ŷ, ȳ) �∈ G. Such an element ŷ always exists.
Indeed, if f(x̄) ∈ Y , we can use ŷ = f(x̄). On the other hand, assuming that
no such ŷ exists in the case f(x̄) = +∞, we obtain that ȳ is the greatest
element of Y , a contradiction.

Since (ŷ, ȳ) �∈ G and G is closed there exist neighborhoods V of ŷ and W
of ȳ such that (V ×W ) ∩G = ∅. Since f is topologically l.s.c. there exists a
neighborhood U ∈ U(x̄) such that

∀x ∈ U, ∃y ∈ V : y ≤ f(x). (2.7)

This implies (U×W )∩(epi f) = ∅. Otherwise there would exist x̂ ∈ U, ŷ ∈ W
with f(x̂) ≤ ŷ. By (2.7) there would exist y ∈ V with y ≤ f(x̂). Hence we
obtain y ≤ ŷ, which contradicts (V ×W ) ∩G = ∅. ��

Let us summarize the connections between the different notions. If Y is a
partially ordered topological space with a closed ordering that has no greatest
element such that Y is a complete lattice, then for functions f : X → Y the
concept of weak level closedness is the weakest one. It is equivalent to level
closedness if Y has no least element. Moreover, epi-closedness, level closedness
and weak level closedness coincide and the first two concepts are stronger than
the last three.

We next study the relationship between the different concepts for functions
with values in the complete lattice (Z,≤) = (F ,⊇), where F := FC (Y ) is the
space of upper closed subsets of a partially ordered topological vector space
Y with an ordering cone C such that ∅ �= intC �= Y . Moreover, the ordering
cone C is supposed to be closed. By Proposition 1.52, the corresponding
results for the space I follow immediately.

In Propositions 2.34 and 2.35 the assumption ∅ �= intC �= Y could be
relaxed so that C is only required to be proper. In this case we would need
a new definition of the upper closure, because our definition involves the
interior of C. For this purpose the condition in Proposition 1.40 could be
used.

We only consider the notions of (weakly) level closedness and lattice-
semicontinuity in the case of F -valued functions. A topology for F is not con-
sidered, but we investigate the connections to semi-continuity notions based
on the topology of the underlying topological vector space Y . If we identify
a function f : X → F with a corresponding multivalued map f : X ⇒ Y ,
the set

gr f := {(x, y) ∈ X × Y | y ∈ f(x)} ,
is called the graph of f .

Proposition 2.34. A function f : X → F is lattice-l.s.c. if and only if gr f
is closed.

Proof. We have
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sup
U∈U(x̄)

inf
x∈U

f(x) =
⋂

U∈U(x̄)

cl
⋃

x∈U

f(x).

It follows that
ȳ ∈ sup

U∈U(x̄)

inf
x∈U

f(x)

is equivalent to

∀U ∈ U(x̄), ∀V ∈ V(ȳ), ∃x ∈ U, ∃y ∈ V : y ∈ f(x), (2.8)

where V(ȳ) denotes a neighborhood base of ȳ in Y . Consequently f is lattice-
l.s.c. if and only if for all (x̄, ȳ) satisfying (2.8) one has ȳ ∈ f(x̄). But, this is
equivalent to gr f being closed. ��

Proposition 2.35. A function f : X → F is level closed if and only if for
all y ∈ Y the sets {x ∈ X | y ∈ f(x)} are closed.

Proof. If f is level closed then the sets Lf (Cl + {y}) are closed for all y ∈ Y .
We have y ∈ f(x) if and only if Cl + {y} ⊆ Cl +f(x) = f(x). Thus the “only
if”-part follows. The “if”-part follows from

Lf (A) =
⋂
y∈A

{x ∈ X | y ∈ f(x)}

and the fact that the intersection of closed sets is closed. ��

Corollary 2.36. Let f : X → Y be an extended vector-valued function and
f̃ : X → F its F-valued extension, defined by f̃(x) := Cl + {f(x)}. Then f̃ is
level closed if and only if f is weakly level closed.

Proof. By Proposition 2.35, f̃ is level closed if and only if for all y ∈ Y the
sets {x ∈ X | y ∈ f̃(x)} are closed. Similarly to Proposition 2.17, we have
y ∈ f̃(x) if and only if y ≥C f(x), where we use that C is closed. Thus the
statement follows. ��

By Proposition 2.29, every lattice-l.s.c. function is also level closed. For
functions with values in F the converse implication also holds. As seen in
Example 2.30 this is generally not true.

Proposition 2.37. A function f : X → F is lattice-l.s.c. if and only if it is
level closed.

Proof. Assume that f is level closed. We show that gr f is closed. By Propo-
sition 2.34, this implies that f is lattice-l.s.c.. Assume that (x̄, ȳ) ∈ X × Y
is given such that for all U ∈ U(x̄), V ∈ V(ȳ) there exist x ∈ U, y ∈ V with
y ∈ f(x). We have to show that ȳ ∈ f(x̄).

Take z ∈ {ȳ} + intC arbitrarily. Then there exists some neighborhood
Ṽ ∈ V(ȳ) such that y ≤C z, i.e., z ∈ Cl + {y} holds for all y ∈ Ṽ . Thus, for
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all U ∈ U(x̄) there exist some x ∈ U and some y ∈ Ṽ with y ∈ f(x), hence
z ∈ Cl + {y} ⊆ f(x). By Proposition 2.35 we get

x̄ ∈ cl {x ∈ X | z ∈ f(x)} = {x ∈ X | z ∈ f(x)} .

Thus we have ȳ+intC ⊆ f(x̄) and consequently ȳ ∈ cl (ȳ+intC) ⊆ f(x̄). ��

We next formulate a sufficient condition for the domination property of the
general optimization problem (L). As in the classical Weierstrass theorem,
the assumptions are lower semicontinuity of f and compactness of the feasible
set. The appropriate semicontinuity condition for the function f in the general
case is level closedness.

Proposition 2.38. Let X be a compact topological space, (Z,≤) be a par-
tially ordered set and f : X → Z a level closed function. Then the domination
property holds, i.e., for every x ∈ X there exists a minimal element y ∈ f [X ]
with y ≤ f(x).

Proof. We have to show that for every x ∈ X the set {y ∈ f [X ]| y ≤ f(x)} =
f [Lf(f(x))] has minimal elements. Because of Zorn’s lemma it suffices to
show that every chain in f [Lf(f(x))] has a lower bound in f [Lf(f(x))]. Since
every lower bound (in f [X ]) of a subset W of f [Lf(f(x))] is obviously in
f [Lf(f(x))], it is sufficient to prove that every chain in f [X ] has a lower
bound.

Let W be a chain in f [X ]. A subset W of f [X ] has a lower bound in f [X ]
if and only if the set

{x ∈ X | ∀w ∈W : f(x) ≤ w} =
⋂

w∈W

Lf (w)

is nonempty. If B is a finite subset of W then
⋂

b∈B Lf(b) is nonempty since
every finite chain in f [X ] has a least element and hence a lower bound. Since
all the sets Lf(w) are closed, X being compact implies that

⋂
w∈W Lf(w) is

nonempty, too. Hence W has a lower bound. ��

For special cases of the complete lattice Z, the semicontinuity assumption
in the latter result can be replaced by other concepts. For the case (Z,≤) =
(I,�) this is pointed out in the next section. As a consequence we obtain the
existence of solutions based on a variety of different semicontinuity notions.
This matches the situation in scalar optimization.

2.4 A vectorial Weierstrass theorem

The results of the previous section can be applied to the vector optimization
problems (V) and its lattice extension (V) in order to obtain conditions for
the existence of solutions.
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Let X be a topological space and S ⊆ X . Moreover, let Y be an extended
partially ordered topological vector space, let the ordering cone C of Y be
closed and let ∅ �= intC �= Y . We consider the vector optimization problem
(V) as introduced in Section 2.2 as well as its lattice extension (V). The
semicontinuity concept required for the existence result can be characterized
in terms of the objective function f : X → Y of (V) and in terms of the
objective function f̄ : X → I of the lattice extension (V) of (V), where f̄ is
defined by f as

f̄(x) := Inf {f(x)} . (2.9)

Theorem 2.39. For a function f : X → Y and the corresponding function
f̄ : X → I according to (2.9), the following statements are equivalent:

(i) f is epi-closed, i.e., the epigraph of f is closed;
(ii) f is level closed, i.e., f has closed level sets for all levels in Y ;
(iii) f is weakly level closed, i.e., f has closed level sets for all levels in Y ;
(iv) f̄ is level closed, i.e., f̄ has closed level sets for all levels in I;
(v) f̄ is lattice-l.s.c., i.e., for all x̄ ∈ X one has f̄(x̄) � lim infx→x̄ f̄(x).

Proof. The equivalence of (i), (ii) and (iii) follows directly from Proposition
2.31 and Proposition 2.32. The equivalence of (iii), (iv) and (v) follows from
Corollary 2.36, Proposition 2.37, the fact (see Proposition 1.52) that a func-
tion g : X → F is level closed (lattice l.s.c.) if and only if j ◦ g : X → I is
level closed (lattice l.s.c.) and the fact that for the I-valued extension f̄ and
the F -valued extension f̃ of a function f : X → Y , f̄ = j ◦ f̃ holds true. ��
Applying Proposition 2.38 we can formulate the following existence result for
a solution to a vector optimization problem. The result is a vectorial analogue
of the famous Weierstrass theorem.

Theorem 2.40. If one of the equivalent characterizations of lower semiconti-
nuity in the preceding theorem is satisfied for the objective function f : X → Y
of (V) and if S is a compact subset of X, then there exists a solution to (V).

Proof. This is a direct consequence of Proposition 2.15, Proposition 2.38 and
Theorem 2.39. ��

It is remarkable that f̄ : X → I being lattice-l.s.c. is an adequate semicon-
tinuity assumption for a vectorial Weierstrass existence result. The condition
that f : X → Y is lattice-l.s.c. is usually (if it is well-defined at all) too strong
and not satisfiable.

2.5 Mild solutions

For a solution X̄ to the complete-lattice-valued optimization problem (L) as
defined in Section 2.1, the condition f [X̄] = Min f [S] is part of the defini-
tion. This requirement can be by several reasons too strong. Relaxing this
condition, we obtain an alternative solution concept.
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Definition 2.41. A nonempty set X̂ with f [X̂] ⊆ Min f [S] is called a mild
solution to (L) if the infimum of the canonical extension F over 2S is attained
at X̂.

The idea of a mild solution can be explained as follows. A mild solution
X̂ is allowed to be a smaller set than a solution. However, as the attainment
of the infimum is required, the set X̂ cannot become arbitrarily small. This
ensures that X̂ contains a sufficient amount of information. Of course, every
solution to (L) is also a mild solution to (L). But a mild solution can be a
proper subset of a solution.

Theorem 2.42. If a mild solution to (L) exists, then there exists a solution
to (L).

Proof. Let X̂ be a mild solution to (L). Set X̄ := Eff (L), then S ⊇ X̄ ⊇
X̂ �= ∅. Since infx∈S f(x) = infx∈X̂ f(x), we get infx∈S f(x) = infx∈X̄ f(x).
Thus X̄ is a solution to (L). ��

We now consider the vector optimization problem (V) as defined in Section
2.2.

Definition 2.43. A set X̂ is called mild solution to the vector optimization
problem (V) if it is a mild solution to its lattice extension (V).

For the special case of a vector optimization problem, we have the following
characterization of a mild solution.

Theorem 2.44. Assume that a solution to (V) exists. A set X̂ ⊆ S is a mild
solution to (V) if and only if

f [X̂] ⊆ Min f [S] ⊆ Inf f [X̂]. (2.10)

Proof. If {x ∈ X̂| f(x) = −∞} �= ∅, then

{−∞} = Min f [S] = Inf f [S] = Inf f [X̂].

Hence X̂ is a mild solution if and only if f [X̂] = {−∞}.
In case that f(x) = +∞ for all x ∈ S we have

{+∞} = f [X̂] = Min f [S] = Inf f [S] = Inf f [X̂]

for every nonempty subset X̂ ⊆ S. Therefore, every nonempty subset X̂ ⊆ S
is a mild solution.

We can assume that f [S] ⊆ Y because otherwise we have

Min f [S] = Min(f [S] \ {+∞}) and Inf f [S] = Inf(f [S] \ {+∞}).

If X̂ is a mild solution to (V), we have
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∅ �= X̂ ⊆ S ∧ f [X̂] ⊆ Min f [S] ∧ Inf f [X̂] = Inf f [S].

It remains to show Min f [S] ⊆ Inf f [X̂]. Let y ∈ Min f [S], i.e.,

y ∈ f [S] ∧ y �∈ f [S] + C \ {0}.

It follows

{y} + intC ⊆ f [S] + intC ∧ y �∈ f [S] + intC.

We have ∅ �= Cl +f [S] �= Y . By Corollary 1.48 (ii) we get y ∈ Inf f [S] =
Inf f [X̂].

Let X̄ be a solution to (V) and let (2.10) be satisfied. It follows f [X̂] ⊆
f [X̄] ⊆ Inf f [X̂]. From Corollary 1.49 (i), we get Cl +f [X̄] = Cl +f [X̂].
Proposition 1.52 yields Inf f [X̄] = Inf f [X̂]. Hence X̂ is a mild solution to
(V). ��

We next focus on a relationship to properly efficient solutions (e.g. Luc,
1988; Göpfert et al., 2003; Jahn, 2004). The famous theorem by Arrow et al.
(1953) and related results state that, under certain assumptions, the set of
properly minimal vectors is a dense subset of the set of minimal vectors. In
the literature, there are many density results for different types of proper ef-
ficiency (e.g. Borwein, 1980; Jahn, 1988; Ferro, 1999; Fu, 1996; Göpfert et al.,
2003). The following theorem shows that the set of proper efficient solutions
is just an instance of a mild solution, whenever (under certain assumptions)
a corresponding density result holds.

Theorem 2.45. Assume that a solution to (V) exists. Let X̂ ⊆ S be a set
such that f [X̂] ⊆ Y and

f [X̂] ⊆ Min f [S] ⊆ cl f [X̂]. (2.11)

Then X̂ is a mild solution to (V).

Proof. Let X̄ be a solution to (V). Then Min f [S] is nonempty, hence cl f [X̂]
is nonempty and thus X̂ is nonempty, too. We have

f [X̂] ⊆ Min f [S] = f [X̄] ⊆ cl f [X̂].

Using Corollary 1.49 (i) and the fact Cl +cl f [X̂] = Cl +f [X̂], we get
Cl +f [X̄] = Cl +f [X̂]. Proposition 1.52 yields Inf f [X̄] = Inf f [X̂]. Hence
X̂ is a mild solution to (V). ��

In general, (2.11) does not hold for a mild solution X̂ to (V).

Example 2.46. Let X = R2, Y = R2 partially ordered by C = R2
+, f the

identity map and

S =
{
x ∈ R2| x1 > 0, x2 > 0, x1 + x2 ≥ 1

}
∪ {x ∈ R2| x1 = 0, x2 ≥ 2}.
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Then X̂ := {λ (0, 1)T + (1 − λ) (1, 0)T | λ ∈ (0, 1)} is a mild solution. But
(0, 2)T ∈ Min f [S] \ cl f [X̂], hence (2.11) is violated, see Figure 2.7.

f [S]

mild solution X̂ Min f [S]

S

Fig. 2.7 Illustration of Example 2.46. The mild solution X̂ does not satisfy the
density condition (2.11).

If we additionally assume that f [S] +C is closed and Y is a finite dimen-
sional space, say Y = Rq, we obtain that a mild solution satisfies (2.11). For
instance, if S is a polyhedral convex set, C is polyhedral and f linear (see
Chapter 4), then f [S] +C is closed (Rockafellar, 1972, Theorem 19.3). Also,
the assumptions of the Weierstrass existence result, Theorem 2.40, imply that
f [S] + C is closed (this follows from epi f being closed and S compact).

Theorem 2.47. Let Y = Rq. If X̂ is a mild solution to (V), f [S] ⊆ Rq and
f [S] + C is closed, then

f [X̂] ⊆ Min f [S] ⊆ cl f [X̂].

Proof. It remains to show the second inclusion. Let y ∈ Min f [S], i.e.,

y ∈ f [S] ⊆ cl (f [S] + C) = Cl +f [S].

and (take into account that the cone C is pointed and convex and f [S] + C
is closed)

y �∈ f [S] + C \ {0} = (f [S] + C) + C \ {0}
= cl (f [S] + C) + C \ {0} = Cl +f [S] + C \ {0}.

This yields y ∈ Min Cl +f [S]. As X̂ is a mild solution, we have Inf f [X̂] =
Inf f [S]. Proposition 1.52 implies Cl +f [X̂] = Cl +f [S]. Thus we have y ∈
Min Cl +f [X̂].

It remains to show that Min Cl +f [X̂] ⊆ cl f [X̂]. Assuming the contrary,
there exists some y ∈ Cl +f [X̂] = cl (f [X̂ ] + C) such that y �∈ cl f [X̂] and(

y − C \ {0}
)
∩ cl (f [X̂] + C) = ∅. (2.12)
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Let (bn) and (cn) be sequences, respectively, in f [X̂] and C such that bn +
cn → y. There is no subsequence of cn that converges to 0, because otherwise
we get the contradiction y ∈ cl f [X̂]. Hence there exists n0 ∈ N and α > 0
such that ‖cn‖ ≥ α for all n ≥ n0. There is a subsequence (cn)n∈M (M an
infinite subset of {n ∈ N| n ≥ n0}) such that

c̃n :=
αcn
‖cn‖

M−→ c̃ ∈ C \ {0}.

It follows

bn +
(

1 − α

‖cn‖

)
cn = bn + cn − c̃n

M−→ y − c̃.

We obtain y − c̃ ∈ cl (f [X̂] + C) which contradicts (2.12). ��

In Section 2.2 we introduced convexity solutions to (V). To this end the
complete lattice I is replaced by the complete lattice Ico . We proceed in the
same way and introduce mild convexity solutions to (V).

Definition 2.48. A nonempty set X̂ ⊆ X is called a mild convexity solution
or mild Ico -solution to the vector optimization problem (V) if X̂ is a mild
solution to the corresponding convex lattice extension (Vco ).

Parallel to Theorem 2.25, mild convexity solutions can be characterized in
terms of the vectorial objective function f .

Theorem 2.49. A set X̂ ⊆ X is a mild convexity solution to the vector
optimization problem (V) if and only if the following three conditions are
satisfied:

(i) X̂ ⊆ S,
(ii) f [X̂] ⊆ Min f [S],
(iii) Inf co f [X̂] = Inf co f [S].

Proof. This follows in the same way as Theorem 2.25. ��

Corollary 2.50. Every convexity solution to (V) is also a mild convexity
solution to (V).

Proof. This follows from Theorem 2.25 and Theorem 2.49. ��

Corollary 2.51. Every mild solution to (V) is also a mild convexity solution
to (V).

Proof. This follows from the fact that, by Proposition 1.60, Inf f [X̂] =
Inf f [S] implies Inf co f [X̂] = Inf co f [S]. ��

The different solution concepts to (V) are compared in Figure 2.8.
The next example illustrates a mild convexity solution to a linear vector

optimization problem. An essential advantage of mild convexity solutions is
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X̄ is a mild convexity

solution to (V)

X̄ is a mild

X̄ is a

X̄ is a convexity

⇒

⇒

⇒

⇒

solution to (V)

solution to (V)

solution to (V)

Fig. 2.8 Connections between different solution concepts to (V)

that finite sets sometimes are sufficient. In Chapter 4 we consider a modifi-
cation of this concept in order to ensure that a “solution” to a linear vector
optimization problem can always be a finite set. To this end we have to involve
directions of the feasible set.

Example 2.52. Let X = R2, Y = R2 partially ordered by the cone R2
+. Con-

sider Problem (V) with

S =
{
x ∈ R2| x1 ≥ 0, x2 ≥ 0, 2x1 + x2 ≥ 2, x1 + 2x2 ≥ 2

}
and let f be the identity map. Then

X̂ :=

{
(0, 2)T , (2, 0)T ,

(
2
3
,
2
3

)T
}

is a mild convexity solution to (V), see Figure 2.9.

2.6 Maximization problems and saddle points

Saddle points play a crucial role in duality theory. The goal of this section is
to introduce saddle points in the framework of complete-lattice-valued opti-
mization problems. As a consequence we obtain a corresponding saddle point
notion for vector optimization problems, which differs from those in the lit-
erature. It is necessary to consider minimization and maximization problems
simultaneously and it should be initially clarified how the solution concepts
apply in this case.
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X̂ inf
x∈X̂

f(x)

S f [S]

Fig. 2.9 Illustration of Example 2.52. On the left we see a mild convexity solution
X̂. On the right, the infimum of f over X̂ with respect to the complete lattice Ico is
shown. It coincides with infx∈S f(x).

Let V be a nonempty set, T ⊆ V and let (Z,≤) be a complete lattice. Par-
allel to the minimization problem (L) introduced in Section 2.1, we consider
the complete-lattice-valued maximization problem

maximize g : V → Z with respect to ≤ over T. (Lmax)

The canonical extension of the function g : V → Z in the complete-lattice-
valued maximization problem (Lmax) is the function

G : 2V → Z, G(B) := sup
v∈B

g(v).

The set of maximal elements of a set B ⊆ Z is defined by

MaxB := {z ∈ B| (y ∈ B ∧ y ≥ z) ⇒ y = z}.

A solution to (Lmax) can now be defined in the same way as for Problem (L)
in Definition 2.8.

Definition 2.53. A nonempty set V̄ with g[V̄ ] = Max g[T ] is called a so-
lution to (Lmax) if the supremum of the canonical extension G over 2T is
attained in V̄ .

In terms of g a solution can be characterized as follows.

Corollary 2.54. A nonempty set V̄ is a solution to (Lmax) if and only if the
following conditions hold:

(i) V̄ ⊆ T ,
(ii) g[V̄ ] = Max g[T ],
(iii) sup

v∈V̄

g(v) = sup
v∈T

g(v).

Proof. This follows from an analogous result to Proposition 2.7. ��
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Let X also be a nonempty set. We consider a function l : X × V → Z
depending on two variables, where we minimize with respect to the first
variable and we maximize with respect to the second one. It turns out to be
useful to distinguish between two types of canonical extensions for a function
l depending on two variables. The function

Ll : 2X × 2V → Z, Ll(X̄, V̄ ) := sup
v∈V̄

inf
x∈X̄

l(x, v)

is called the lower canonical extension of l : X × V → Z, and

Lu : 2X × 2V → Z, Lu(X̄, V̄ ) := inf
x∈X̄

sup
v∈V̄

l(x, v)

is called the upper canonical extension of l : X × V → Z. This notion can be
motivated by the fact that for all (X̄, V̄ ) ∈ 2X × 2V one has

Ll(X̄, V̄ ) ≤ Lu(X̄, V̄ ),

which is an easy consequence of Z being a complete lattice.
Denoting by +∞ and −∞, respectively, the largest and the smallest ele-

ment in Z, we set

S :=
{
x ∈ X

∣∣∣∣ sup
v∈V

l(x, v) �= +∞
}

and

T :=
{
v ∈ V

∣∣∣∣ inf
x∈X

l(x, v) �= −∞
}
.

Let p : X → Z and d : V → Z be two functions such that

∀x ∈ S : p(x) = sup
v∈V

l(x, v),

∀v ∈ T : d(u) = inf
x∈X

l(x, v).

We assign to l : X × V → Z the pair of dual optimization problems

minimize p : X → Z with respect to ≤ over S ⊆ X, (2.13)

maximize d : V → Z with respect to ≤ over T ⊆ V. (2.14)

Problem (2.13) corresponds to minimize l : X × V → Z with respect to
the first variable and likewise, Problem (2.14) corresponds to maximize l :
X × V → Z with respect to the second variable. Note that weak duality
relation always holds, that is

inf
x∈S

p(x) = inf
x∈X

sup
v∈V

l(x, v) ≤ sup
v∈V

inf
x∈X

l(x, v) = sup
v∈T

d(v).
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According to our solution concept we propose the following notion of a saddle
point for complete-lattice-valued problems.

Definition 2.55. Let X,V be two nonempty sets, (Z,≤) a complete lattice
and let a function l : X × V → Z be given. An element (X̄, V̄ ) ∈ 2S × 2T ,
where X̄ �= ∅ and V̄ �= ∅, is called a saddle point of l if the following conditions
are satisfied:

(i) p[X̄ ] = Min p[S],
(ii) d[V̄ ] = Max d[T ],
(iii) ∀A ∈ 2X , ∀B ∈ 2V : Lu(X̄, B) ≤ Lu(X̄, V̄ ) = Ll(X̄, V̄ ) ≤ Ll(A, V̄ ).

Condition (iii) in the latter definition is a generalization of the well-known
saddle point condition for an extended real-valued function, i.e., (x̄, v̄) ∈
X × V with l(x̄, v̄) ∈ R is a saddle point of l : X × V → R if

∀a ∈ X, ∀b ∈ V : l(x̄, b) ≤ l(x̄, v̄) ≤ l(a, v̄). (2.15)

Note that in the extended real-valued case, (x̄, v̄) ∈ S×T implies l(x̄, v̄) ∈ R.
Vice versa, (2.15) and l(x̄, v̄) ∈ R implies (x̄, v̄) ∈ S × T . Note further that
condition (2.15) implies

Min p[S] = {p(x̄)} and Max d[T ] = {d(v̄)} .

Consequently, conditions like (i) and (ii) of Definition 2.55 do not occur in
the scalar case.

In our general setting, (X̄, V̄ ) ∈ 2S × 2T implies the following two condi-
tions:

∀a ∈ X̄ : Lu({a} , V̄ ) �= +∞ (2.16)

∀b ∈ V̄ : Ll(X̄, {b}) �= −∞. (2.17)

Vice versa, if (iii) in Definition 2.55 holds, (2.16) ∧ (2.17) implies (X̄, V̄ ) ∈
2S × 2T .

The following equivalent characterization of condition (iii) in Definition
2.55 is useful.

Lemma 2.56. For nonempty sets X̄ ⊆ X and V̄ ⊆ V , statement (iii) in
Definition 2.55 is equivalent to

sup
v∈V̄

d(v) = inf
x∈X̄

p(x). (2.18)

Proof. From (iii) in Definition 2.55, we get

Lu(X̄, V ) ≤ Ll(X, V̄ )

and hence
inf

x∈X̄
sup
v∈V

l(x, v) ≤ sup
v∈V̄

inf
x∈X

l(x, v).
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Moreover, we have

sup
v∈V̄

inf
x∈X

l(x, v) ≤ inf
x∈X

sup
v∈V̄

l(x, v) ≤ inf
x∈X̄

sup
v∈V

l(x, v).

This means that (2.18) is obtained from (iii) in Definition 2.55.
Now, let (2.18) be satisfied. It follows that

∀A ∈ 2X , ∀B ∈ 2V : inf
x∈X̄

sup
v∈B

l(x, v) ≤ sup
v∈V̄

inf
x∈A

l(x, v).

In particular, this implies

∀A ∈ 2X : Lu(X̄, V̄ ) ≤ Ll(A, V̄ ),

∀B ∈ 2V : Lu(X̄, B) ≤ Ll(X̄, V̄ ),

Lu(X̄, V̄ ) ≤ Ll(X̄, V̄ ).

Moreover, we have
Ll(X̄, V̄ ) ≤ Lu(X̄, V̄ ).

The last four statements imply statement (iii) in Definition 2.55. ��

We are now able to relate saddle points to solutions of (2.13) and (2.14).

Theorem 2.57. The following statements are equivalent:

(i) X̄ is a solution to (2.13), V̄ is a solution to (2.14) and

sup
v∈T

d(v) = inf
x∈S

p(x);

(ii) (X̄, V̄ ) is a saddle point of l.

Proof. Condition (i) can be equivalently expressed as

(a) Min p[S] = p[X̄], ∅ �= X̄, X̄ ⊆ S,

(b) inf
x∈X̄

p(x) = inf
x∈S

p(x),

(c) Max d[T ] = d[V̄ ], ∅ �= V̄ , V̄ ⊆ T ,

(d) sup
v∈V̄

d(v) = sup
v∈T

d(v),

(e) sup
v∈T

d(v) = inf
x∈S

p(x).

In view of Lemma 2.56 it remains to show that (b)∧(d)∧(e) is equivalent to
(2.18) in the present situation. Of course, (b)∧(d)∧(e) implies (2.18). On the
other hand, since X̄ ⊆ S and V̄ ⊆ T , (2.18) implies that

inf
x∈X̄

p(x) = sup
v∈V̄

d(v) ≤ sup
v∈T

d(v) ≤ inf
x∈S

p(x) ≤ inf
x∈X̄

p(x).
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The last expression holds with equality. This yields (b)∧(d)∧(e). ��

We next focus on the special case (Z,≤) = (R,≤) and show that an
ordinary saddle point is obtained.

Theorem 2.58. For l : X × V → R the following is equivalent.

(i) (X̄, V̄ ) is a saddle point of l in the sense of Definition 2.55.
(ii) Every (x̄, v̄) ∈ X̄ × V̄ is a saddle point of l in the classic sense, that is

(x̄, v̄) ∈ X × V with l(x̄, v̄) ∈ R such that (2.15) holds.

Proof. As discussed above, (x̄, v̄) ∈ S × T corresponds to l(x̄, v̄) ∈ R in the
present situation. By Theorem 2.57 and Theorem 2.13, (i) is equivalent to

∀x̄ ∈ X̄, ∀v̄ ∈ V̄ : p(x̄) = inf
x∈S

p(x) = sup
v∈T

d(v) = d(v̄). (2.19)

From the definition of p and d we get p(x̄) ≥ l(x̄, v̄) ≥ d(v̄) and (2.19) yields
p(x̄) = l(x̄, v̄) = d(v̄) for all x̄ ∈ X̄ and all v̄ ∈ V̄ . This implies (ii).

On the other hand, (ii) implies that for all x̄ ∈ X̄ and all v̄ ∈ V̄ one has

inf
x∈S

p(x) ≤ p(x̄) = sup
b∈V

l(x̄, b) ≤ l(x̄, v̄)

≤ inf
a∈X

l(a, v̄) = d(v̄) ≤ sup
v∈T

d(v).

Weak duality yields equality. This implies (2.19). ��

Similarly to mild solutions we can define mild saddle points by relaxing
the conditions (i) and (ii) in Definition 2.55.

Definition 2.59. Let X,V be two nonempty sets, (Z,≤) a complete lattice
and let a function l : X × V → Z be given. An element (X̂, V̂ ) ∈ 2S × 2T ,
where X̂ �= ∅ and V̂ �= ∅, is called a mild saddle point of l if the following
conditions are satisfied:

(i) p[X̂ ] ⊆ Min p[S],
(ii) d[V̂ ] ⊆ Max d[T ],
(iii) ∀A ∈ 2X , ∀B ∈ 2V : Lu(X̂, B) ≤ Lu(X̂, V̂ ) = Ll(X̂, V̂ ) ≤ Ll(A, V̂ ).

A corresponding characterization follows immediately.

Theorem 2.60. The following statements are equivalent:

(i) X̂ is a mild solution to (2.13), V̂ is a mild solution to (2.14) and

sup
v∈T

d(v) = inf
x∈S

p(x);

(ii) (X̂, V̂ ) is a mild saddle point of l.

Proof. Similarly to the proof of Theorem 2.57. ��
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The notion of a saddle point introduced in this section can be used for
arbitrary I-valued problems. In case of a vector optimization problem we
consider its lattice extension which yields an I-valued problem. We obtain
an I-valued Lagrangian and an I-valued dual problem. Thus, the saddle
point notions introduced in this section easily apply to vector optimization.

2.7 Notes on the literature

In the framework of a mathematical optimization theory, the notion of an ef-
ficient element seems to be first used by Koopmans (1951), compare (Stadler,
1979), but the ideas can be traced back to the early works by Pareto and
Edgeworth. Modifications of efficient solutions, such as weakly or properly ef-
ficient solutions, are commonly considered in the literature (Luc, 1988; Jahn,
1986, 2004; Ehrgott, 2000; Boţ et al., 2009). The idea to compute a subset
of the efficient solutions in order to present it to a decision maker is stan-
dard in the literature on vector optimization. Nevertheless, there is no unique
and precise specification of such a subset, which is understood as a solution
concept.

The solution concept for complete-lattice-valued problems in Section 2.1
and its application to vector optimization in Section 2.2 including the notion
of a mild solution first appeared in (Heyde and Löhne, 2010). It should be
mentioned that these ideas arose from several discussions about solution con-
cepts for set-valued optimization problems between Andreas H. Hamel and
the mentioned authors. The notion of (mild) convexity solutions and all the
related results are new in this book.

Section 2.3 is a collection of results on semicontinuity concepts for set-
valued maps which can be found similarly in the literature. The results and
proofs in the presented form are taken from Heyde and Löhne (2010) and
are due to the first author. Definition 2.28 follows the articles by Gerritse
(1997) and Ait Mansour et al. (2007). Note that in (Ait Mansour et al.,
2007) the term “level closed” is used for property (b). We call a function
level closed if all level sets are closed and we speak about weak level closed-
ness if the weaker property (b) holds. The notions of lattice- and topological
semicontinuity are introduced in (Gerritse, 1997). The definition of lattice
semicontinuity coincides with that of Gerritse (1997). The definition of topo-
logical semicontinuity differs slightly from that in (Gerritse, 1997) since we do
not require a topological structure on the whole set Y . It coincides, however,
with the concept denoted simply by lower semicontinuity in (Ait Mansour
et al., 2007). Note also that Gerritse (1997) deals with upper rather than
lower semicontinuity. Proposition 2.33 is slightly different from (Penot and
Théra, 1982, Proposition 1.3.a) but the proof follows essentially the lines of
the one in (Penot and Théra, 1982). Note further that it was shown by Liu
and Luo (1991, Theorem 3.6.) that every level closed function f : X → Z
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is lattice-l.s.c. if and only if Z is a completely distributive lattice (compare
Proposition 2.29).

The existence result in Section 2.4, the notion of mild solutions as well
as all related results in Section 2.5 are due to Heyde and Löhne (2010).
There are other existence results in the literature; partially they are related
to the domination property (e.g. Jahn, 1986, 2004; Luc, 1988; Sonntag and
Zălinescu, 2000).

Saddle points for complete-lattice-valued problems as well as all related
concepts and results in Section 2.6 seem to be new and arose from discussions
with Andreas H. Hamel. In the literature (see e.g. Rödder, 1977; Luc, 1988;
Tanaka, 1990, 1994; Li and Wang, 1994; Tan et al., 1996; Li and Chen, 1997;
Ehrgott and Wiecek, 2005b; Adán and Novo, 2005) there are other notions
of saddle points for vector optimization problems which are not based on the
structure of a complete lattice.
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