Chapter 2
Trigonometric Generalisations

In this chapter we introduce the p-trigonometric functions, for 1 < p < oo, and estab-
lish their fundamental properties. These functions generalise the familiar trigono-
metric functions, coincide with them when p = 2, and otherwise have important
similarities to and differences from their classical counterparts. As will be shown
later, they play an important part in both the theory of the p-Laplacian and that of the
Hardy operator. Particular attention is paid to the basis properties of the analogues
of the sine functions in the context of Lebesgue spaces.

2.1 The Functions sin, and cos,

Let 1 < p < e and define a (differentiable) function F), : [0,1] — R by

Fy(x) = /Ox(l — Py Vrgs, 2.1

Plainly F, = arc sin. Since F), is strictly increasing it has an inverse which, by anal-
ogy with the case p = 2, we denote by sin,,. This is defined on the interval [0, 7, /2],
where

1
n,,=2/0 (1=1P)" ey, 2.2)

Thus sin,, is strictly increasing on [0,7,/2], sin,(0) = 0 and sin,(m,/2) = 1. We
extend sin, to [0, 7r,] by defining

sin, (x) = sin, (1w, —x) forx € [m,/2,m,); (2.3)

further extension to [—1,, 7] is made by oddness; and finally sin, is extended to
the whole of R by 2m,-periodicity. It is clear that this extension is continuously
differentiable on R.
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A function cos, : R — R is defined by the prescription

cosp(x) = %Csinp(x)7 xeR. (2.4)

Evidently cos), is even, 27m,-periodic and odd about 7, /2. If x € [0, 7,/2] and we
put y = sin,(x), then

cosy(x) = (1 =y")/7 = (1 = (sin(x))") /7. (2.5)
Thus cos,, is strictly decreasing on [0, 7, /2], cos,(0) = 1 and cos, (7, /2) =0. Also
|sinpx|p+ |cospx|p =1 (2.6)

this is immediate if x € [0,7,/2], but it holds for all x € R in view of symmetry
and periodicity. Note that the analogy between these p-functions and the classical
trigonometric functions is not complete. For example, while the extended sin,, func-
tion belongs to C'(R), it is far from being real analytic on R if p # 2. To see this,
observe that with the aid of (2.6) its second derivative at x € [0, 7,/2) can be shown
to be —A(sin,x), where
2
h(y) = (1=y7) 7~y

and so is not continuous at 7, /2 if 2 < p < . Nevertheless, sin,, is real analytic on
[0,7,/2). Figure 2.1 below gives the graphs of sin,, and cos, for p = 1.2 and p = 6.

To calculate 7, we make the change of variable t = s'/7 in the formula above for
7p. Then

rp/2 = [ (s s s = p B 1 1) = T )T (1),

where B is the Beta function. Hence

2n

Ty=—— . (2.7)
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Fig. 2.1 sing,cosg and sinjj,cos;)
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Fig.2.2 y=m,

Note that m, = 7 and
pmy=2I(1/p)[(1/p) = p'my. (2.8)
Using (2.7) and (2.8) we see that 7, decreases as p increases, with

lim 7, = oo, lim 7, =2, lim(p — 1)m, = lim 7,y = 2. (2.9)
p—1 p—reo p—1 p—1

The dependence of 7, on p is illustrated by Fig. 2.2.
An analogue of the tangent function is obtained by defining

sy x

tan, x = (2.10)

COSp X

for those values of x at which cos,x # 0. This means that tan,x is defined for all
x € R except for the points (k+1/2)w, (k € Z). Plainly tan,, is odd and 7,-periodic;
also tan, 0 = 0. Some idea of the dependence of tan, on p is provided by Fig.2.3,
in which the graph of this function is given for p = 1.2 and p = 6.

Use of (2.6) shows that on (—7,/2,7,/2), tan,, has derivative 1 + |tan,x
so if the inverse of tan, on this interval is denoted by A, it follows that

p;and

At)y=1/0+t|"), t eR.

When p =2, A(¢) is simply arctan #, giving a direct connection with an angle. To
provide a similar geometric interpretation when p # 2 we follow Elbert [57] and
endow the plane R? with the / » metric, so that the distance between points (xy,x;)
and (y1,y2) of R? is

1
L N L



36 2 Trigonometric Generalisations

=6 _
o5 p p=1.2
2000
2
15 1500
1 1000
0.5 500
0 0

0.2 0.4 0.6 0.8 1
Fig.2.3 y=tans(x), [0,76/2) y=tani2(x), [0,712/2)

14
0.8 ]

0.6 1

0.4 ]

0.2 1

0 0.2 0.4 0.6 0.8 1

Fig. 2.4 The first quadrant of S| for p =2,6,1.2

Given R > 0, when 1 < p < oo the curve in R? defined by |x|” +|y|” = R? will be
called the p-circle with radius R, or the unit p-circle S, if R = 1. The first quadrant
of S, is illustrated for p = 1.2,2,4 in Fig. 2.4.

Since ’sinpt|p + ‘cospt‘p = 1, the p-circle of radius R may be parametrised by

x=Rcos,t, y= Rsin,t (0 <t <2m,), (2.11)
just as in the familiar case in which p = 2. Let P; = (cos,t,sin,t) € I, for some

t € (0,2m,); we shall refer to ¢ as the angle between the ray OP; (where O = (0,0))
and the positive x-axis. Now put

mp/2
Colt) = /t sin s ds

and let C be the curve {(C,(t),sin,t) : 1 € [0,27,] } . The arc length of that part of
C between Py = (C,(0),0) and P, = (Cp(t),sin,?), measured by means of the [,
metric on Rz, is

/t{|C;,(s)|p+ |cosps|p}1/pds: /t {|sin, s|” + |cosps|p}l/pds:t.
0 0
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0 1::, X

-circle

Fig. 2.5 Angles

This enables us to explain our method of measuring angles as follows. The ray OP
(where P = (x1,x2)) meets the unit p-circle at Py = (cos,1,sin,); the line through
Py parallel to the x-axis meets C in the same quadrant of the plane at P : see Fig. 2.5
(based on [57]).

Then the signed length of the arc PyP,, namely ¢, is our measure of the angle
PyOP : such a procedure corresponds to what is done when p = 2. Note also that
xp/x1 = siny,t/cos,t = tan,t, so that the arc length r = A(x»/x). This enables us
to introduce polar coordinates p and 6 in R? by

p = (lal”+al?)'?, 6 =A(x2/x1).

Next we record some basic facts about derivatives of the p-trigonometric func-
tions. They follow immediately from the definitions and (2.6).

Proposition 2.1. Forallx € [0,7,/2),

d d

- — _gip?~! 2=p, - 14

e COSpX = —S8In;, ~XCOSs;, "X, e tan,x = l—i—tanpx,
d d
L cos? lx= —(p—1sin? 'x. —sin? 'x=(p—1)sin? 2
.08 X = (p—1)sinh ™ x, 7 Sinp x=(p—1)sin) “xcospx.

Some elementary identities are provided in the proposition below.

Proposition 2.2. Forally € [0,1],

cos;ly = sin;l(l —yP\/p, sin;ly:cos;l(l —yP)/p

and
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2 2 / /
n—sm yl/p+—51n L=y =1, cosﬁ(ﬂ:py/Z):sinz,(ﬂp/(l—y)/Z).
P Ty

Proof. The first two claims follow directly from (2.6). For the third, note that
, (1—yP)1/P , ,
sin? 1 (1—y#)!/7 :/ (1 =717 g,
0

and that the change of variable s = (1 — t”') 1/P transforms this integral into

P )y Urds = 2 (%2 i1y} = 2 (T g1
/ s = FAY sin,, "y 7, \ 2 sin, "y,

the final step following from (2.8). To obtain the fourth identity, write
COSZ(ﬂpy/2) =1- sinz(n:py/z) =1—x

and observe that in view of the third identity,

2 2 /
y=—sin; 'x!/P =1 - Zsin> ! (1 —x)'/7,
Ty p ﬂp/ P

which gives
1— x-sm (77:/(1 v)/2). O

It is also convenient to have more refined extensions of the trigonometric func-
tions. To obtain these, suppose first that p,q € (1,0) and put

Tpg= 2/ )~ VPay. (2.12)

This coincides with 7, when p = g. Use of the substitution s = 9 shows that

n,,q_zq/ ) Vestlalgs = 247 'B(1/p' 1/q). (2.13)

From (2.12) it is easy to see that 7, , decreases as either p or g increases, the other
being held constant, and that

lim 7, , =2 (1 < g <eo), hmn,,q_2(1<p<°<>) (2.14)

p—roo

By analogy with the case p = ¢ we define sin), 4, on the interval [0, 7, ,/2] to be the
inverse of the strictly increasing function F), ; : [0, 1] — [0, 7, ,/2] given by
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X
Fpq(x) :/0 (1—19)"VPds. (2.15)

This is then extended to all of the real line by the same processes involving symme-
try and 27, 4-periodicity as for the case p = g. The function cos,, 4 is defined to be
the derivative of sin, 4, and it follows easily that for all x € R,

|sinp,qx|q+ |Cosp,qx|p =1 (2.16)

So far we have supposed that p,g € (1,0), but with natural interpretations of the
integrals involved the extreme values 1 and oo can be allowed. This gives

2p, if 1 <p<eog=1,

t,=d 2 Tlspseq=c, 2.17)
P o, if p=1,1<g<eo, '
2, if p=oo,1 <g<oo.

Corresponding values of sin,, , and cos), , are given by

l—(l—x/p’)"/7 ifl<p<eo,g=1,

sinp 4 x = X, if 1 <p<oo g =oo, (2.18)
X, if p=oo 1 < g < oo,
and
(1—x/pHYY =D if 1 < p<oo,g=1,
COSpgX = 1, if 1 <p<oojg=neco, (2.19)

When p = 1 these functions can be expressed in terms of elementary functions only
when ¢ is rational, in general. Thus

sinj jx=1—e"", cosjjx=e ", sinjpx = tanh x, cosjrx= (coshx)™2. (2.20)

Note that the area A (measured in the usual way) enclosed by the p-circle |x|” +
[y|? = 11is given by

A=2p (' (1/p))*/T(2/p) =Ty . 2.21)

A:4//abcdy7

where the integration is over all those non-negative values of x and y such that
xP +yP < 1. The change of variable x = wl/p, y= z!/P shows that

A :4p_2//w1/p_1z1/p_1dwdz,

To establish this, note that
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where now the integration is taken over the set w > 0,z > 0,w+z < 1. By a result
of Dirichlet (see [121], 12.5),

AT [
=Srar b

from which (2.21) follows.
Moreover,

1
/0 (sittpg (Tpqr/2)) dx = p'/(p' +q) if p,q € (1,00). (2.22)
To establish this, observe that, with the above integral denoted by 1,

2 Tpa/2

I=— sin 9y,
Tpq Jo ( p,qY) y

so that the substitution z = sin, 4y gives

2 1
I=— [ 2291 —z9)"VPdz =

1
/tl/q(l—t)_l/pdt
Tp,q /0O qTp,q JO

_?2 / _ra/'+1/g) _ _7»
B ”p,qB(l/p’1+1/q)_ r(1/q) q+p

Since |c0s,,7qx|p =1- |sinp,qx|q we also have

1
/0 (cospq (mpex/2))P dx=q/(p'+q) if p,q € (1,0). (2.23)

As shown in [92], it is interesting to compute the length L, of the unit p'-circle,
measured by means of the /,, metric on the plane. This is

/2
L, :4/0”'] (|« ()| + \y’(z)\”)l/"dt,

where x(t) = cos,yt and y(t) = sin,/ . Routine computations plus the use of (2.6)
(with p replaced by p’) show that

1 . N2
el A

In [92] it is observed that the p’-circle has an isoperimetric property, namely that
among all closed curves with the same p-length, the p’-circle encloses the largest
area. Since the area A enclosed by the p’-circle |x|” "t Iv|? =R is m, yR* and the
p-length of this p’-circle is 2m, R, we have the isoperimetric inequality
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LY, > 4, A,

which reduces to the more familiar 3 > 47A when p = 2.

As might be expected, there are connections between the generalised trigonomet-
ric functions we have been discussing and some functions from classical analysis.
For example, consider the incomplete Beta function I(-;a,b), defined for any
positive a and b by

1

I(x;a,b) = Ba.b)

X
/ N1 —n)b e, x € ]0,1];
0
see, for example, [1, 26.5.1]. The change of variable u = 7 in (2.15) shows that
— [ ) = g B0 g, V11,
and so, by (2.13),

1 /
sing }(x) = Fp(¥) = S (1 /q,1/p), x€ 0,1 2.24)

Moreover, since the incomplete Beta function is related to the hypergeometric
function F by

x?
I(x;a,b) = aB(a,b)F(a’ 1 —bsa+ 1;x)
(see [1, 6.6.2]), we have
sin, ¢ (x) = xF(1/q,1/p:1+1/q:x7), x € 0,1]. (2.25)

Since

_ ~x(1—x)? o Bla+1,n41) .4
I()C,ClJ))—B—{l-’—nzomxn 7)66(071)7

(see, for example, [1, 26.5.9]), we have

- +1/g,n+1)
1 _ q 1/p q(n+1)
smp’q(x) x(1—x7) {1+ E l/q 1 l)x }, xe(0,1).
(2.26)

We can also use the well-known fact that

< T'(a+n)l(b+n)(c) x"

Flabied) = 0 o+

to obtain the expansion
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I'n+1/p) x™M

Sinp’q(x) = X%m;, S (0, l) (227)

From (2.27) it is possible to obtain a series expansion for sin, 4(x) in the form xz

n=0
anx?" | but we leave this delightful task to the intrepid reader, who is urged to show
that if x € [0,7,/2), then

1 bl (P —2p—1) 2

Sin,x =x — X
P p(p+1) 2p*(p+1)(2p+1)

Finally, we consider various integrals involving the p-trigonometric functions.
Proposition 2.3. Forallx € (0,7,/2),

— g P —(p— i p—1
/cospxdx— sinp x, p/cospde— (p— D)x+sinyxcosh ™ x,

(p— 1)/sin§_1xdx = —cosﬁ_lx7 /tanﬁxdx =tan,x —Xx

and !
/sinpxdx = Esinlz,xF(l/p,Z/p; 1+2/p;sinf) x).

Proof. Apart from the last integral, these follow directly from the definitions. To
obtain the final result, make the substitution u = sin, x, note that

pn
/sin,,xdx:/( )VPdu = / z n—i—/lp/p L du,

n'

integrate, and then write the resulting series in terms of the hypergeometric function.
O

For definite integrals we note the following elementary results.

Proposition 2.4. Let k,l > 0. Then

Tp/2 k+1 1 Tp/2 1 1 k—1
/ ] smkxdx——B( i ), / ] coskxdx——B( l+—>
0 p p 0 P \p p

and /2
/ ' sm;‘,xcos xdx = —B (k+1 1+ ! 1)
0 p p p
These follow directly by making natural substitutions: for example, in the first
integral we put y = sin, x and then ¢ = y”. The conditions on k and / can be weak-
ened: in the first and third equality the condition on k can be weakened to k > —1,
while in the remaining cases the conditions k,/ > 1 — p will do.
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To illustrate the utility of Proposition 2.4 we give a result concerning the Catalan
constant G, defined to be
G- 5 L0
S (2k+1)%

This constant plays a prominent role in various combinatorial identities. From the
power series representation (2.27) of sin;l x we have

1 sin, x)"” T
x—sm,,xz I'(n+1/p) (sinpx) 0<cx<

(np+1)C(1/p) n! 2

Hence, with the aid of the first part of Proposition 2.4, we have

/7[,,/2 x 77:,,2 rn+1/p)\* 1
0 sin,, =\ nlC(1/p) ) np+1°

It is known that (see, for example, [63], 1.7.4)

/2
/ —dx =2G.
0 Sinx

Thus the Catalan constant is expressible as

& (2n) \? 1
G:Zz<(n!)222n> 1

n=0

We refer to [20, 39, 89, 90] for further information and additional references
concerning these functions and their applications. A fascinating account of early

work on generalisations of trigonometric functions is given by Lindqvist and Peetre
in [93].

2.2 Basis Properties

We have already remarked in 1.1.1 that (sin(n7-)),cn is a basis in L,(0, 1) for any
q € (1,00). It is natural to ask whether the functions sin,(n7-) have a similar prop-
erty: the answer, given in [9], is that they do, at least if p is not too close to 1,
and we now give an account of this result. For simplicity the action will take place
in L,(0,1) rather than L,(a,b), and for this reason we introduce the functions f, ,
defined by

Sap(t) =siny(nmpt) (n € N;1 < p <oo,t €R). (2.28)

When p = 2 these functions are simply the usual sine functions, and we write
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en(t) = fu2(t) = sin(nmt). (2.29)

Since each f;, , is continuous on [0, 1] it has a Fourier sine expansion:
Sap(t) anp sin(kmt), fn,7 2/ Snp(t)sin(kmt )dt. (2.30)

From the symmetry of fj , about s = 1/2 it follows that ]le(k) =0 when k is even
and that

f,,,,J = 2/ fi,p(nt)sin(knt)dt =2 z f1 plm / sin(kmt) sin(mnzt )dt

_ {flvp(m) if mn = k for some odd m, 2.31)

0 otherwise.

For brevity put 7,,(p) = ]Tl\p(m) As all the Fourier coefficients of the f;, , may be
expressed in terms of the 7,,(p), we concentrate on the behaviour of these numbers,
beginning with their decay properties as m — oo. For even m, T,,(p) = 0. If m is odd,
integration by parts and the substitution s = cos,(7,¢) show that

1/2 4r,. 12
4 1 () sin(mme)dr = —£ cos,(m,t)cos(mmt)dt
U p\p
4 1/2 d
= 27::2/ sin (mmt) Ecos,,(n,,t)dt
m 0
4 1
= = [ sin (P cos; s ) ds. 2.32)
m*n? Jo T,
In a similar way we have, for odd m,
4 gl
Tu(p) = — [ cos m—ﬂsm s ) ds. (2.33)
mr Jo T, P
From (2.32) we obtain the estimate
|Tn(p)| < 47,/ (mm)? (m odd). (2.34)

Next we consider the dependence of sin, (nm,t) on p.
Proposition 2.5. Suppose that 1 < p < g < e. Then the function f defined by
sin_ 1(1)

fle)=—+

sm;1 (1)

is strictly decreasing on (0,1).
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Proof. Let
(1—19)'/a

g(t):m(0<t<l).

Forallz € (0,1),

/ e R (tP —19)g(t)
gU)zﬂﬂ{l_ﬂ+1_ﬁ}:tu—ﬂxﬁﬁﬂ>0'

Put
G(t)= sin;l (t)—g() sin;l (1)
and observe that
G'(t) = —(sin; '1)g'(t) < 0in (0, 1).

q
Hence G(r) < 0in (0,1), so that

G(t) )
"(t) = <0in (0,1). O
f( ) (Sin;ll‘)z(l—tq)l/‘f ( )
From this we immediately have
Corollary 2.1. (i) If 1 < p < g < oo, then

L1

sin " (¢t T

1>,Qozlm&m
sin, " (t) — 7

(ii) If 1 < p < q < oo, then

1 1
sin;l(t) > sin;l(t) and n—q sin;l(t) > n—p sin;l(t) in [0,1].

(iii) If 1 < p < g < oo, then
sin, (7yt) > sing(myt) in [0,1/2].
The following analogue of the classical Jordan inequality will also be useful.
Proposition 2.6. Let 1 < p < eo. Forall 8 € (0,7,/2],

i < sin, 0
Tp

<1
Proof. Change of variable shows that

1
sinljlx :x/ (1 —xPsP)~Pgs,
0
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and so .
0 = (sin, 9)/ (1 —(sin, 0)PsP)~ /P ds.
0
Since 1
1< / (1—(sin, 0)Ps?) " /Pds < %
0
for all 6 € (0,7, /2], the result follows. O

Corollary 2.2. Forall p € (1,00) and allt € (0,1/2),
sin, (myt) > 2t.
Proof. By Proposition 2.6, sin, 8 > 26 /m, if 0 < 6 < m,/2. Now put 0 = m,r. O
Given any function f on [0, 1], we extend it to a function fonR, = [0,°0) by

setting _ _
f@&)=—f(2k—1)forr e [k,k+1],keN. (2.35)

With this understanding, we define maps M,, : L;(0,1) — L,(0,1) (1 < g < o) by
Mug(t) =&(mt), meN, t € (0,1). (2.36)

Note that M,,e,, = -

Lemma 2.1. For allm € N and all g € (1,0) the map M, : L,(0,1) — L4(0,1) is
isometric and linear.

Proof. Letg € Ly(0,1). Then
/|Mmg )idt =m~ /|g ($)|7ds=m 12/ (5)|?ds
—m_IZ/ |qu—/ lg(s)|?ds. 0

The maps M, are introduced because they help to construct a linear homeomor-
phism 7' of L,(0,1) onto itself that maps each e, to f, , : once this is done it will
follow from general considerations that the f;, , form a basis of L,(0, 1). The map T
is defined by

M

Tg(t)= TnMmg (). (2.37)

1

n

Lemma 2.2. Let p,q € (1,00). The map T is a bounded linear map of Ly(0,1) to
itself with |T|| < m,/2. Foralln € N, Te, = fy p.



2.2 Basis Properties 47

Proof. From (2.31), (2.34) and Lemma 2.1 we see that

oo

4my
7)< Gm— i /2.

m=1

A second application of (2.31) shows that

Tey= Y, tnemn= Y, frp(mem =3, fupk)ex=fup- 0

m=1 m=1 k=1
Lemma 2.3. There exists po € (1,2) such that if p > po, then for all g € (1,),
T:Ly(0,1) — Ly(0,1) has a bounded inverse.
Proof. Since M is the identity map id, we have from (2.31) and Lemma 2.1 that
IT —mid|| < Y, |12j1(p)|,
j=1

and so the invertibility of 7 will follow from Theorem II.1.2 of [123] if we can show
that

=

> | ws1(p)] < T (p)]. (2.38)
|

From (2.34) we have, for all p € (1,00),

. i /2
> [n(p) < =2 (% - 1> . (2.39)
=

2

To estimate |71 (p)|, note that by Corollary 2.2,

1/2 1/2
7(p) :4/0 sin, (mpt ) sin(re)dt > 4 A 2tsin(rt)dt = 8/m?,

from which (2.38) follows if 2 < p < oo since 7, < 7.
If 1 < p <2, then the monotonic dependence of sin,(m,t) on p given by
Corollary 2.1 (iii) shows that

12
7(p) > 4/ sin®(7t)dt = 1.
0

Now define pg by

Then if p > py,
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2
Mo (Eq) <,
h 8

We summarise these results in the following theorem.

and again we have (2.38).

Theorem 2.1. The map T is a homeomorphism of L4(0,1) onto itself for every
q € (1,00) if po < p < oo, where py is defined by the equation

Tpy = . (2.40)

Remark 2.1. Numerical solution of (2.40) shows that pq is approximately equal
to 1.05.

Theorem 2.2. Let p € (po,o°) and q € (1,00). Then the family (fy p)ncn forms a
Schauder basis of L,(0, 1) and a Riesz basis of L>(0,1).

Proof. Since the e, form a basis of L;(0,1) and T is a linear homeomorphism of
L4(0,1) onto itself with Te, = f,, (n € N), it follows from [73], p. 75 or [114],
Theorem 3.1, p. 20 that the f;, , form a Schauder basis of L,(0,1). When ¢ = 2 the
argument is similar and follows [67], Sect. VI.2. O

The condition p > po > 1 in this theorem arises from the techniques used in the
proof: a discussion of this is given in [20]. Whether the result remains true for all
p > 1 appears to be unknown at the moment.

Notes

Note 2.1. As the literature contains various different definitions of the sin, and cos,
functions, confusion about the nature of such functions is possible. Our choice was
largely motivated by the wish to have available the identity ’sinpx’p + ‘cos px’p =1,
while other authors attached greater importance to different properties. Power series
expansions for his versions of sin,, cos, and tan, are given by Lingvist [90]; see
also the detailed work in this direction on related functions by Peetre [104]. No
sensible addition formulae (e.g. for sin,(x+y)) seem to be known. Further details
of properties of p-trigonometric functions are given in [20].

Note 2.2. The only work on the basis properties of the sin, functions of which we
are aware is that of [9]. Our treatment gives the modification of their proof presented
in [20], which in particular seals a gap in the proof of Corollary 2.1(iii) given in [9].

Completeness properties of certain function sequences of the form { f(nx) },en
have been investigated by Bourgin ([16]; see also [17]) in an L, setting and by
Szasz [119] in the context of L,. However, these papers require properties, such as
orthogonality or specified behaviour of the Fourier coefficients of f, that are not
available when f = sin,,.
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