
Chapter 2
Trigonometric Generalisations

In this chapter we introduce the p-trigonometric functions, for 1 < p < ∞, and estab-
lish their fundamental properties. These functions generalise the familiar trigono-
metric functions, coincide with them when p = 2, and otherwise have important
similarities to and differences from their classical counterparts. As will be shown
later, they play an important part in both the theory of the p-Laplacian and that of the
Hardy operator. Particular attention is paid to the basis properties of the analogues
of the sine functions in the context of Lebesgue spaces.

2.1 The Functions sinp and cosp

Let 1 < p < ∞ and define a (differentiable) function Fp : [0,1] → R by

Fp(x) =
∫ x

0
(1− t p)−1/pdt. (2.1)

Plainly F2 = arc sin. Since Fp is strictly increasing it has an inverse which, by anal-
ogy with the case p = 2, we denote by sinp. This is defined on the interval [0,πp/2],
where

πp = 2
∫ 1

0
(1− t p)−1/pdt. (2.2)

Thus sinp is strictly increasing on [0,πp/2], sinp(0) = 0 and sinp(πp/2) = 1. We
extend sinp to [0,πp] by defining

sinp(x) = sinp(πp − x) for x ∈ [πp/2,πp]; (2.3)

further extension to [−πp,πp] is made by oddness; and finally sinp is extended to
the whole of R by 2πp-periodicity. It is clear that this extension is continuously
differentiable on R.
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34 2 Trigonometric Generalisations

A function cosp : R → R is defined by the prescription

cosp(x) =
d
dx

sinp(x), x ∈ R. (2.4)

Evidently cosp is even, 2πp-periodic and odd about πp/2. If x ∈ [0,πp/2] and we
put y = sinp(x), then

cosp(x) = (1− yp)1/p = (1− (sinp(x))p)1/p. (2.5)

Thus cosp is strictly decreasing on [0,πp/2], cosp(0) = 1 and cosp(πp/2) = 0. Also

∣∣sinpx
∣∣p +

∣∣cospx
∣∣p = 1; (2.6)

this is immediate if x ∈ [0,πp/2], but it holds for all x ∈ R in view of symmetry
and periodicity. Note that the analogy between these p-functions and the classical
trigonometric functions is not complete. For example, while the extended sinp func-
tion belongs to C1(R), it is far from being real analytic on R if p �= 2. To see this,
observe that with the aid of (2.6) its second derivative at x ∈ [0,πp/2) can be shown
to be −h(sinp x), where

h(y) = (1− yp)
2
p−1yp−1,

and so is not continuous at πp/2 if 2 < p < ∞. Nevertheless, sinp is real analytic on
[0,πp/2). Figure 2.1 below gives the graphs of sinp and cosp for p = 1.2 and p = 6.

To calculate πp we make the change of variable t = s1/p in the formula above for
πp. Then

πp/2 = p−1
∫ 1

0
(1−s)−1/ps1/p−1ds = p−1B(1−1/p,1/p)= p−1Γ (1−1/p)Γ (1/p),

where B is the Beta function. Hence

πp =
2π

psin(π/p)
. (2.7)
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Note that π2 = π and

pπp = 2Γ (1/p′)Γ (1/p) = p′πp′ . (2.8)

Using (2.7) and (2.8) we see that πp decreases as p increases, with

lim
p→1

πp = ∞, lim
p→∞

πp = 2, lim
p→1

(p−1)πp = lim
p→1

πp′ = 2. (2.9)

The dependence of πp on p is illustrated by Fig. 2.2.
An analogue of the tangent function is obtained by defining

tanp x =
sinp x

cosp x
(2.10)

for those values of x at which cosp x �= 0. This means that tanp x is defined for all
x ∈R except for the points (k+1/2)πp (k ∈Z). Plainly tanp is odd and πp-periodic;
also tanp 0 = 0. Some idea of the dependence of tanp on p is provided by Fig. 2.3,
in which the graph of this function is given for p = 1.2 and p = 6.

Use of (2.6) shows that on (−πp/2,πp/2), tanp has derivative 1 +
∣∣tanp x

∣∣p
; and

so if the inverse of tanp on this interval is denoted by A, it follows that

A′(t) = 1/(1 + |t|p), t ∈ R.

When p = 2, A(t) is simply arctan t, giving a direct connection with an angle. To
provide a similar geometric interpretation when p �= 2 we follow Elbert [57] and
endow the plane R

2 with the lp metric, so that the distance between points (x1,x2)
and (y1,y2) of R

2 is

{|x1 − y1|p + |x2 − y2|p}1/p
.
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Given R > 0, when 1 < p < ∞ the curve in R
2 defined by |x|p + |y|p = Rp will be

called the p-circle with radius R, or the unit p-circle Sp if R = 1. The first quadrant
of Sp is illustrated for p = 1.2,2,4 in Fig. 2.4.

Since
∣∣sinp t

∣∣p +
∣∣cosp t

∣∣p = 1, the p-circle of radius R may be parametrised by

x = Rcosp t, y = Rsinp t (0 ≤ t ≤ 2πp), (2.11)

just as in the familiar case in which p = 2. Let P1 = (cosp t,sinp t) ∈ Ip for some
t ∈ (0,2πp); we shall refer to t as the angle between the ray OP1 (where O = (0,0))
and the positive x1-axis. Now put

Cp(t) =
∫ πp/2

t
sinp s ds

and let C be the curve
{
(Cp(t),sinp t) : t ∈ [0,2πp]

}
. The arc length of that part of

C between P0 = (Cp(0),0) and P2 = (Cp(t),sinp t), measured by means of the lp

metric on R
2, is

∫ t

0

{∣∣C′
p(s)

∣∣p +
∣∣cosp s

∣∣p}1/p
ds =

∫ t

0

{∣∣sinp s
∣∣p +

∣∣cosp s
∣∣p}1/p

ds = t.
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Fig. 2.5 Angles

This enables us to explain our method of measuring angles as follows. The ray OP
(where P = (x1,x2)) meets the unit p-circle at P1 = (cosp t,sinp t); the line through
P1 parallel to the x1-axis meets C in the same quadrant of the plane at P2 : see Fig. 2.5
(based on [57]).

Then the signed length of the arc P0P2, namely t, is our measure of the angle
P0ÔP : such a procedure corresponds to what is done when p = 2. Note also that
x2/x1 = sinp t/cosp t = tanp t, so that the arc length t = A(x2/x1). This enables us
to introduce polar coordinates ρ and θ in R

2 by

ρ = (|x1|p + |x2|p)1/p , θ = A(x2/x1).

Next we record some basic facts about derivatives of the p-trigonometric func-
tions. They follow immediately from the definitions and (2.6).

Proposition 2.1. For all x ∈ [0,πp/2),

d
dx

cosp x = −sinp−1
p xcos2−p

p x,
d
dx

tanp x = 1 + tanp
p x,

d
dx

cosp−1
p x = −(p−1)sinp−1

p x,
d
dx

sinp−1
p x = (p−1)sinp−2

p xcosp x.

Some elementary identities are provided in the proposition below.

Proposition 2.2. For all y ∈ [0,1],

cos−1
p y = sin−1

p (1− yp)1/p, sin−1
p y = cos−1

p (1− yp)1/p

and
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2
πp

sin−1
p y1/p +

2
πp′

sin−1
p′ (1− yp)1/p′ = 1, cosp

p(πpy/2) = sinp′
p′(πp′(1− y)/2).

Proof. The first two claims follow directly from (2.6). For the third, note that

sin−1
p′ (1− yp)1/p′ =

∫ (1−yp)1/p′

0
(1− t p′)−1/p′dt,

and that the change of variable s = (1− t p′)1/p transforms this integral into

p
p′

∫ 1

y
(1− sp)−1/pds =

p
p′

(πp

2
− sin−1

p y
)

=
πp′

πp

(πp

2
− sin−1

p y
)

,

the final step following from (2.8). To obtain the fourth identity, write

cosp
p(πpy/2) = 1− sinp

p(πpy/2) := 1− x

and observe that in view of the third identity,

y =
2

πp
sin−1

p x1/p = 1− 2
πp′

sin−1
p′ (1− x)1/p′,

which gives

1−x = sinp′
p′(πp′(1−y)/2). ��

It is also convenient to have more refined extensions of the trigonometric func-
tions. To obtain these, suppose first that p,q ∈ (1,∞) and put

πp,q = 2
∫ 1

0
(1− tq)−1/pdt. (2.12)

This coincides with πp when p = q. Use of the substitution s = tq shows that

πp,q = 2q−1
∫ 1

0
(1− s)−1/ps1/q−1ds = 2q−1B(1/p′,1/q). (2.13)

From (2.12) it is easy to see that πp,q decreases as either p or q increases, the other
being held constant, and that

lim
p→∞

πp,q = 2 (1 < q < ∞), lim
q→∞

πp,q = 2 (1 < p < ∞). (2.14)

By analogy with the case p = q we define sinp,q on the interval [0,πp,q/2] to be the
inverse of the strictly increasing function Fp,q : [0,1]→ [0,πp,q/2] given by
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Fp,q(x) =
∫ x

0
(1− tq)−1/pdt. (2.15)

This is then extended to all of the real line by the same processes involving symme-
try and 2πp,q-periodicity as for the case p = q. The function cosp,q is defined to be
the derivative of sinp,q, and it follows easily that for all x ∈ R,

∣∣sinp,q x
∣∣q +

∣∣cosp,q x
∣∣p = 1. (2.16)

So far we have supposed that p,q ∈ (1,∞), but with natural interpretations of the
integrals involved the extreme values 1 and ∞ can be allowed. This gives

πp,q =

⎧⎪⎪⎨
⎪⎪⎩

2p′, if 1 ≤ p ≤ ∞,q = 1,

2, if 1 ≤ p ≤ ∞,q = ∞,

∞, if p = 1,1 ≤ q < ∞,

2, if p = ∞,1 ≤ q ≤ ∞.

(2.17)

Corresponding values of sinp,q and cosp,q are given by

sinp,q x =

⎧⎨
⎩

1− (1− x/p′)p′ , if 1 < p ≤ ∞,q = 1,

x, if 1 ≤ p ≤ ∞,q = ∞,

x, if p = ∞,1 ≤ q ≤ ∞,

(2.18)

and

cosp,q x =

⎧⎨
⎩

(1− x/p′)1/(p−1), if 1 < p ≤ ∞,q = 1,

1, if 1 ≤ p ≤ ∞,q = ∞,

1, if p = ∞,1 ≤ q ≤ ∞.

(2.19)

When p = 1 these functions can be expressed in terms of elementary functions only
when q is rational, in general. Thus

sin1,1 x = 1− e−x, cos1,1 x = e−x, sin1,2 x = tanh x, cos1,2 x = (coshx)−2. (2.20)

Note that the area A (measured in the usual way) enclosed by the p-circle |x|p +
|y|p = 1 is given by

A = 2p−1(Γ (1/p))2/Γ (2/p) = πp′,p. (2.21)

To establish this, note that

A = 4
∫ ∫

dxdy,

where the integration is over all those non-negative values of x and y such that
xp + yp ≤ 1. The change of variable x = w1/p, y = z1/p shows that

A = 4p−2
∫ ∫

w1/p−1z1/p−1dwdz,
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where now the integration is taken over the set w ≥ 0,z ≥ 0,w+ z ≤ 1. By a result
of Dirichlet (see [121], 12.5),

A =
4(Γ (1/p))2

p2Γ (2/p)

∫ 1

0
τ2/p−1dτ,

from which (2.21) follows.
Moreover,

∫ 1

0
(sinp,q (πp,qx/2))q dx = p′/(p′ + q) if p,q ∈ (1,∞). (2.22)

To establish this, observe that, with the above integral denoted by I,

I =
2

πp,q

∫ πp,q/2

0
(sinp,q y)q dy,

so that the substitution z = sinp,qy gives

I =
2

πp,q

∫ 1

0
zq(1− zq)−1/pdz =

2
qπp,q

∫ 1

0
t1/q(1− t)−1/pdt

=
2

πp,q
B(1/p′,1 + 1/q) =

Γ (1/p′ + 1/q)
Γ (1/q)

=
p′

q + p′
.

Since
∣∣cosp,q x

∣∣p = 1− ∣∣sinp,q x
∣∣q

we also have

∫ 1

0
(cosp,q (πp,qx/2))p dx = q/(p′ + q) if p,q ∈ (1,∞). (2.23)

As shown in [92], it is interesting to compute the length Lp′ of the unit p′-circle,
measured by means of the lp metric on the plane. This is

Lp′ = 4
∫ πp′/2

0

(∣∣x′(t)∣∣p +
∣∣y′(t)∣∣p)1/p

dt,

where x(t) = cosp′ t and y(t) = sinp′ t. Routine computations plus the use of (2.6)
(with p replaced by p′) show that

Lp′ = 4
∫ 1

0
(1− zp′)−1/pdz = 2πp,p′ =

4(Γ (1/p′))2

p′Γ (2/p)
.

In [92] it is observed that the p′-circle has an isoperimetric property, namely that
among all closed curves with the same p-length, the p′-circle encloses the largest
area. Since the area A enclosed by the p′-circle |x|p′ + |y|p′ = Rp′ is πp,p′R

2 and the
p-length of this p′-circle is 2πp,p′R, we have the isoperimetric inequality
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L2
p′ ≥ 4πp,p′A,

which reduces to the more familiar L2
2 ≥ 4πA when p = 2.

As might be expected, there are connections between the generalised trigonomet-
ric functions we have been discussing and some functions from classical analysis.
For example, consider the incomplete Beta function I(·;a,b), defined for any
positive a and b by

I(x;a,b) =
1

B(a,b)

∫ x

0
ta−1(1− t)b−1dt, x ∈ [0,1];

see, for example, [1, 26.5.1]. The change of variable u = tq in (2.15) shows that

Fp,q(x) = q−1
∫ xq

0
u−1/q′(1−u)−1/pdu = q−1B(1/q,1/p′)I(xq;1/q,1/p′),

and so, by (2.13),

sin−1
p,q(x) = Fp,q(x) =

1
2

πp,qI(xq;1/q,1/p′), x ∈ [0,1]. (2.24)

Moreover, since the incomplete Beta function is related to the hypergeometric
function F by

I(x;a,b) =
xa

aB(a,b)
F(a,1−b;a + 1;x)

(see [1, 6.6.2]), we have

sin−1
p,q(x) = xF(1/q,1/p;1 + 1/q;xq), x ∈ [0,1]. (2.25)

Since

I(x;a,b) =
xa(1− x)b

aB(a,b)

{
1 +

∞

∑
n=0

B(a + 1,n + 1)
B(a + b,n + 1)

xn+1

}
, x ∈ (0,1),

(see, for example, [1, 26.5.9]), we have

sin−1
p,q(x) = x(1− xq)1/p′

{
1 +

∞

∑
n=0

B(1 + 1/q,n + 1)
B(1/q + 1/p′,n + 1)

xq(n+1)

}
, x ∈ (0,1).

(2.26)
We can also use the well-known fact that

F(a,b;c;x) =
∞

∑
n=0

Γ (a + n)Γ (b + n)Γ (c)
Γ (a)Γ (b)Γ (c + n)

xn

n!

to obtain the expansion
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sin−1
p,q(x) = x

∞

∑
n=0

Γ (n + 1/p)
(qn + 1)Γ (1/p)

xnq

n!
, x ∈ (0,1). (2.27)

From (2.27) it is possible to obtain a series expansion for sinp,q(x) in the form x
∞

∑
n=0

anxqn, but we leave this delightful task to the intrepid reader, who is urged to show
that if x ∈ [0,πp/2), then

sinp x = x− 1
p(p + 1)

xp+1 − (p2 −2p−1)
2p2(p + 1)(2p + 1)

x2p+1 + ... .

Finally, we consider various integrals involving the p-trigonometric functions.

Proposition 2.3. For all x ∈ (0,πp/2),

∫
cosp xdx = sinp x, p

∫
cosp

p xdx = (p−1)x + sinp xcosp−1
p x,

(p−1)
∫

sinp−1
p xdx = −cosp−1

p x,
∫

tanp
p xdx = tanp x− x

and ∫
sinp xdx =

1
2

sin2
p xF(1/p,2/p;1 + 2/p; sinp

p x).

Proof. Apart from the last integral, these follow directly from the definitions. To
obtain the final result, make the substitution u = sinp x, note that

∫
sinp xdx =

∫
u(1−up)−1/pdu =

∫
u

∞

∑
n=0

Γ (n + 1/p)
Γ (1/p)

upn

n!
du,

integrate, and then write the resulting series in terms of the hypergeometric function.
��

For definite integrals we note the following elementary results.

Proposition 2.4. Let k, l > 0. Then

∫ πp/2

0
sink

p xdx =
1
p

B

(
k + 1

p
,

1
p′

)
,

∫ πp/2

0
cosk

p xdx =
1
p

B

(
1
p
,1 +

k−1
p

)

and ∫ πp/2

0
sink

p xcosl
p xdx =

1
p

B

(
k + 1

p
,1 +

l −1
p

)
.

These follow directly by making natural substitutions: for example, in the first
integral we put y = sinp x and then t = yp. The conditions on k and l can be weak-
ened: in the first and third equality the condition on k can be weakened to k > −1,
while in the remaining cases the conditions k, l > 1− p will do.
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To illustrate the utility of Proposition 2.4 we give a result concerning the Catalan
constant G, defined to be

G =
∞

∑
k=0

(−1)k

(2k + 1)2 .

This constant plays a prominent rôle in various combinatorial identities. From the
power series representation (2.27) of sin−1

p x we have

x = sinp x
∞

∑
n=0

Γ (n + 1/p)
(np + 1)Γ (1/p)

(sinp x)np

n!
, 0 < x <

πp

2
.

Hence, with the aid of the first part of Proposition 2.4, we have

∫ πp/2

0

x
sinp x

dx =
πp

2

∞

∑
n=0

(
Γ (n + 1/p)
n!Γ (1/p)

)2 1
np + 1

.

It is known that (see, for example, [63], 1.7.4)

∫ π/2

0

x
sinx

dx = 2G.

Thus the Catalan constant is expressible as

G =
π
4

∞

∑
n=0

(
(2n)!

(n!)222n

)2 1
2n + 1

.

We refer to [20, 39, 89, 90] for further information and additional references
concerning these functions and their applications. A fascinating account of early
work on generalisations of trigonometric functions is given by Lindqvist and Peetre
in [93].

2.2 Basis Properties

We have already remarked in 1.1.1 that (sin(nπ ·))n∈N is a basis in Lq(0,1) for any
q ∈ (1,∞). It is natural to ask whether the functions sinp(nπ ·) have a similar prop-
erty: the answer, given in [9], is that they do, at least if p is not too close to 1,
and we now give an account of this result. For simplicity the action will take place
in Lq(0,1) rather than Lq(a,b), and for this reason we introduce the functions fn,p

defined by

fn,p(t) = sinp(nπpt) (n ∈ N,1 < p < ∞, t ∈ R). (2.28)

When p = 2 these functions are simply the usual sine functions, and we write
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en(t) = fn,2(t) = sin(nπt). (2.29)

Since each fn,p is continuous on [0,1] it has a Fourier sine expansion:

fn,p(t) =
∞

∑
k=1

f̂n,p(k)sin(kπt), f̂n,p(k) = 2
∫ 1

0
fn,p(t)sin(kπt)dt. (2.30)

From the symmetry of f1,p about t = 1/2 it follows that f̂1,p(k) = 0 when k is even
and that

f̂n,p(k) = 2
∫ 1

0
f1,p(nt)sin(kπt)dt = 2

∞

∑
m=1

f̂1,p(m)
∫ 1

0
sin(kπt)sin(mnπt)dt

=
{

f̂1,p(m) if mn = k for some odd m,

0 otherwise.
(2.31)

For brevity put τm(p) = f̂1,p(m). As all the Fourier coefficients of the fn,p may be
expressed in terms of the τm(p), we concentrate on the behaviour of these numbers,
beginning with their decay properties as m → ∞. For even m, τm(p) = 0. If m is odd,
integration by parts and the substitution s = cosp(πpt) show that

τm(p) = 4
∫ 1/2

0
f1,p(t)sin(mπt)dt =

4πp

mπ

∫ 1/2

0
cosp(πpt)cos(mπt)dt

= − 4πp

m2π2

∫ 1/2

0
sin(mπt)

d
dt

cosp(πpt)dt

=
4πp

m2π2

∫ 1

0
sin

(
mπ
πp

cos−1
p s

)
ds. (2.32)

In a similar way we have, for odd m,

τm(p) =
4

mπ

∫ 1

0
cos

(
mπ
πp

sin−1
p s

)
ds. (2.33)

From (2.32) we obtain the estimate

|τm(p)| ≤ 4πp/(πm)2 (m odd). (2.34)

Next we consider the dependence of sinp(nπpt) on p.

Proposition 2.5. Suppose that 1 < p < q < ∞. Then the function f defined by

f (t) =
sin−1

q (t)

sin−1
p (t)

is strictly decreasing on (0,1).
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Proof. Let

g(t) =
(1− tq)1/q

(1− t p)1/p
(0 < t < 1).

For all t ∈ (0,1),

g′(t) = g(t)
{−tq−1

1− tq +
t p−1

1− t p

}
=

(t p − tq)g(t)
t(1− tq)(1− t p)

> 0.

Put
G(t) = sin−1

p (t)−g(t)sin−1
q (t)

and observe that
G′(t) = −(sin−1

q t)g′(t) < 0 in (0,1).

Hence G(t) < 0 in (0,1), so that

f ′(t)=
G(t)

(sin−1
q t)2(1− tq)1/q

< 0 in (0,1). ��

From this we immediately have

Corollary 2.1. (i) If 1 < p < q < ∞, then

1 >
sin−1

q (t)

sin−1
p (t)

≥ πq

πp
in (0,1].

(ii) If 1 < p ≤ q < ∞, then

sin−1
p (t) ≥ sin−1

q (t) and
1
πq

sin−1
q (t) ≥ 1

πp
sin−1

p (t) in [0,1].

(iii) If 1 < p ≤ q < ∞, then

sinp(πpt) ≥ sinq(πqt) in [0,1/2].

The following analogue of the classical Jordan inequality will also be useful.

Proposition 2.6. Let 1 < p < ∞. For all θ ∈ (0,πp/2],

2
πp

≤ sinp θ
θ

< 1.

Proof. Change of variable shows that

sin−1
p x = x

∫ 1

0
(1− xpsp)−1/pds,
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and so

θ = (sinp θ )
∫ 1

0
(1− (sinp θ )psp)−1/pds.

Since

1 ≤
∫ 1

0
(1− (sinp θ )psp)−1/pds ≤ πp

2

for all θ ∈ (0,πp/2], the result follows. ��
Corollary 2.2. For all p ∈ (1,∞) and all t ∈ (0,1/2),

sinp(πpt) > 2t.

Proof. By Proposition 2.6, sinp θ > 2θ/πp if 0 < θ < πp/2. Now put θ = πpt. ��

Given any function f on [0,1], we extend it to a function f̃ on R+ := [0,∞) by
setting

f̃ (t) = − f̃ (2k− t) for t ∈ [k,k + 1],k ∈ N. (2.35)

With this understanding, we define maps Mm : Lq(0,1) → Lq(0,1) (1 < q < ∞) by

Mmg(t) = g̃(mt), m ∈ N, t ∈ (0,1). (2.36)

Note that Mmen = emn.

Lemma 2.1. For all m ∈ N and all q ∈ (1,∞) the map Mm : Lq(0,1) → Lq(0,1) is
isometric and linear.

Proof. Let g ∈ Lq(0,1). Then

∫ 1

0
|Mmg(t)|q dt = m−1

∫ m

0
|g̃(s)|q ds = m−1

m

∑
k=1

∫ k

k−1
|g̃(s)|q ds

= m−1
m

∑
k=1

∫ k

k−1
|g(s)|q ds =

∫ 1

0
|g(s)|q ds. ��

The maps Mm are introduced because they help to construct a linear homeomor-
phism T of Lq(0,1) onto itself that maps each en to fn,p : once this is done it will
follow from general considerations that the fn,p form a basis of Lq(0,1). The map T
is defined by

Tg(t) =
∞

∑
m=1

τmMmg(t). (2.37)

Lemma 2.2. Let p,q ∈ (1,∞). The map T is a bounded linear map of Lq(0,1) to
itself with ‖T‖ ≤ πp/2. For all n ∈ N, Ten = fn,p.
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Proof. From (2.31), (2.34) and Lemma 2.1 we see that

‖T‖ ≤
∞

∑
m=1

4πp

(2m−1)2π2 = πp/2.

A second application of (2.31) shows that

Ten =
∞

∑
m=1

τmemn =
∞

∑
m=1

f̂1,p(m)emn =
∞

∑
k=1

f̂n,p(k)ek = fn,p. ��

Lemma 2.3. There exists p0 ∈ (1,2) such that if p > p0, then for all q ∈ (1,∞),
T : Lq(0,1) → Lq(0,1) has a bounded inverse.

Proof. Since M1 is the identity map id, we have from (2.31) and Lemma 2.1 that

‖T − τ1id‖ ≤
∞

∑
j=1

∣∣τ2 j+1(p)
∣∣ ,

and so the invertibility of T will follow from Theorem II.1.2 of [123] if we can show
that

∞

∑
j=1

∣∣τ2 j+1(p)
∣∣ < |τ1(p)| . (2.38)

From (2.34) we have, for all p ∈ (1,∞),

∞

∑
j=1

∣∣τ2 j+1(p)
∣∣ ≤ 4πp

π2

(
π2

8
−1

)
. (2.39)

To estimate |τ1(p)| , note that by Corollary 2.2,

τ1(p) = 4
∫ 1/2

0
sinp(πpt)sin(πt)dt > 4

∫ 1/2

0
2t sin(πt)dt = 8/π2,

from which (2.38) follows if 2 ≤ p < ∞ since πp ≤ π .
If 1 < p < 2, then the monotonic dependence of sinp(πpt) on p given by

Corollary 2.1 (iii) shows that

τ1(p) > 4
∫ 1/2

0
sin2(πt)dt = 1.

Now define p0 by

πp0 =
π2

4
/

(
π2

8
−1

)
.

Then if p > p0,



48 2 Trigonometric Generalisations

4πp

π2

(
π2

8
−1

)
< 1,

and again we have (2.38).

We summarise these results in the following theorem.

Theorem 2.1. The map T is a homeomorphism of Lq(0,1) onto itself for every
q ∈ (1,∞) if p0 < p < ∞, where p0 is defined by the equation

πp0 =
2π2

π2 −8
. (2.40)

Remark 2.1. Numerical solution of (2.40) shows that p0 is approximately equal
to 1.05.

Theorem 2.2. Let p ∈ (p0,∞) and q ∈ (1,∞). Then the family ( fn,p)n∈N forms a
Schauder basis of Lq(0,1) and a Riesz basis of L2(0,1).

Proof. Since the en form a basis of Lq(0,1) and T is a linear homeomorphism of
Lq(0,1) onto itself with Ten = fp,n (n ∈ N), it follows from [73], p. 75 or [114],
Theorem 3.1, p. 20 that the fn,p form a Schauder basis of Lq(0,1). When q = 2 the
argument is similar and follows [67], Sect. VI.2. ��

The condition p > p0 > 1 in this theorem arises from the techniques used in the
proof: a discussion of this is given in [20]. Whether the result remains true for all
p > 1 appears to be unknown at the moment.

Notes

Note 2.1. As the literature contains various different definitions of the sinp and cosp

functions, confusion about the nature of such functions is possible. Our choice was
largely motivated by the wish to have available the identity

∣∣sinp x
∣∣p +

∣∣cosp x
∣∣p = 1,

while other authors attached greater importance to different properties. Power series
expansions for his versions of sinp, cosp and tanp are given by Linqvist [90]; see
also the detailed work in this direction on related functions by Peetre [104]. No
sensible addition formulae (e.g. for sinp(x + y)) seem to be known. Further details
of properties of p-trigonometric functions are given in [20].

Note 2.2. The only work on the basis properties of the sinp functions of which we
are aware is that of [9]. Our treatment gives the modification of their proof presented
in [20], which in particular seals a gap in the proof of Corollary 2.1(iii) given in [9].

Completeness properties of certain function sequences of the form { f (nx)}n∈N

have been investigated by Bourgin ([16]; see also [17]) in an L2 setting and by
Szász [119] in the context of Lr. However, these papers require properties, such as
orthogonality or specified behaviour of the Fourier coefficients of f , that are not
available when f = sinp.
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