
Preface

The main theme of these notes is the study, from the standpoint of s-numbers, of
operators of Hardy type and related Sobolev embeddings. More precisely, let p,q ∈
(1,∞) and suppose that I is the interval (a,b), where −∞ < a < b < ∞. Maps T :
Lp(I) → Lq(I) of the form

(T f )(x) = v(x)
∫ x

a
u(t) f (t)dt, (1)

where u and v are prescribed functions satisfying some integrability conditions, are
said to be of Hardy type. They are of importance in connection with ‘small ball’
problems in probability theory [87] and also in the theory of embeddings of Sobolev
spaces when the underlying subset Ω of R

n is a generalised ridged domain, which
means crudely that Ω has a central axis (the generalised ridge) that is the image
of a tree under a Lipschitz map [42]. In addition, the literature on such maps T
has grown to such an extent that the topic has acquired an independent life. Our
object is, so far as we are able, to give an account of the present state of know-
ledge in this area in the hope that it will stimulate further work. In addition to the
main theme, topics that arise naturally include the geometry of Banach spaces, gen-
eralised trigonometric functions and the p-Laplacian, and we have not hesitated to
develop these subsidiary melodies beyond the strict requirements of Hardy opera-
tors when the intrinsic interest warranted it. We hope that the resulting contrapuntal
effect will appeal to the reader.

Chapter 1 supplies basic information about bases of Banach spaces and such
geometric concepts as strict and uniform convexity, uniform smoothness and super-
reflexivity. It also gives an account of very recent work (see [44]) on the represen-
tation of compact linear operators S : X → Y, where X and Y are reflexive Banach
spaces with strictly convex duals. What emerges is the existence of a sequence (xn)
in the unit sphere of X and a sequence (λn) of positive numbers in terms of which
the action of S can be described and points x ∈ X represented, under suitable con-
ditions; the λn are norms of the restrictions of S to certain subspaces. These results
provide an analogue in Banach spaces of the celebrated Hilbert space results of
Erhard Schmidt. As a byproduct we have (in Chap. 3) a proof of the existence of an
infinite sequence of ‘eigenvectors’ of the Dirichlet problem for the p-Laplacian in
an arbitrary bounded domain in R

n.
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The next chapter gives an account of generalised trigonometric functions. To
explain what is involved here, let p ∈ (1,∞), put

πp =
2π

psin(π/p)

and let Fp : [0,1] → R be given by

Fp(x) =
∫ x

0
(1− t p)−1/pdt.

Then the generalised sine function sinp is the function defined on [0,πp/2] to be
the inverse of Fp and extended to the whole of R in a natural way so as to be
2πp-periodic. Plainly sin2 = sin . Moreover, p-analogues of the other trigonomet-
ric functions may easily be given: for example, cosp is defined to be the derivative
of sinp, from which it follows quickly that

∣∣sinp x
∣∣p +

∣∣cosp x
∣∣p = 1 for all x ∈ R.

After establishing the main properties of these p-functions and some of the identities
obtainable by their use, such as a new representation of the Catalan constant, the
chapter finishes with a proof of the fact (first given in [9]) that if p is not too close
to 1, then the functions sinp(nπpt) form a basis in Lq(0,1) for all q ∈ (1,∞). The
usefulness of such p-functions is underlined in Chap. 3, where it is shown how sinp

and cosp arise naturally in the study of initial- and boundary-value problems for the
one-dimensional p-Laplacian on an interval.

Chapter 4 provides necessary and sufficient conditions for the boundedness and
compactness of the Hardy operator T of (1) acting between Lebesgue spaces. The
norm of T0, the particular form of T when u = v = 1, is determined explicitly and is
shown to be attained at functions expressible in terms of generalised trigonometric
functions. After this preparation, Chap. 5 is devoted to the s-numbers of T0, together
with the calculation of s-numbers of the basic Sobolev embedding on intervals. We
remind the reader that in the theory of s-numbers, to every bounded linear map
S : X → Y, where X and Y are Banach spaces, is attached a non-increasing sequence
(sn(S))n∈N

of non-negative numbers with a view to classifying operators according
to the behaviour of sn(S) as n → ∞. The approximation numbers are particularly
important examples: the nth approximation number of S is defined to be

an(S) = inf‖S−F‖ ,

where the infimum is taken over all linear maps F : X → Y with rank less than n.
These are special cases of the so-called “strict” s-numbers, further examples of
which are provided by the Bernstein, Gelfand, Kolmogorov and Mityagin numbers.
As might be expected, the results obtained regarding T0 are especially sharp when
p = q. In fact, it then turns out that all the strict s-numbers of T0 coincide, the nth
such number sn(T0) being given by the formula
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sn(T0) =
(b−a)γp

n + 1/2
, where γp =

1
2π

p1/p′(p′)1/p sin(π/p).

Chapter 6 deals with the general case of the operator T given by (1), in which
u and v are merely required to satisfy certain integrability conditions. The precision
of the results for T0 is not obtainable for T : Lp(I) → Lp(I), but it emerges that if
1 < p < ∞, then again all the strict s-numbers of T coincide, and that this time the
asymptotic formula

lim
n→∞

nsn(T ) = γp

∫ b

a
|u(t)v(t)|dt

holds, where sn(T ) denote the common value of the nth strict s-number of T. The
cases p = 1 and ∞ present particular difficulties, but even then upper and lower
estimates for the approximation numbers of T are obtained. The next chapter devel-
ops the theme of Chap. 6: it includes the derivation of more precise asymptotic
information about the strict s-numbers of T, given additional restrictions on u and v.

So far, knowledge of the behaviour of the s-numbers of T has been obtained
only for the case in which T acts from Lp(I) to itself. When T is viewed as a
map from Lp(I) to Lq(I) and p �= q, special problems arise and new techniques
are required. Chapter 8 deals with this situation and obtains results by consideration
of the variational problem of determining

sup
g∈T (B)

‖g‖q ,

where B is the closed unit ball in Lp(I). When 1 < q < p < ∞, the asymp-
totic behaviour of the approximation numbers and the Kolmogorov numbers is
established: thus

lim
n→∞

nan(T ) = C(p,q)
(∫ b

a
|u(t)v(t)|r dt

)1/r

,

where C(p,q) is an explicitly known function of p and q, and r = 1/q + 1/p′.
Moreover, when 1 < p < q < ∞, a corresponding formula is shown to hold for
the Bernstein numbers of T. In both cases connections are made between the
s-numbers of T and ‘eigenvalues’ of the variational problem mentioned above. We
stress the key rôle played in the arguments presented in Chaps. 5–8 by the gener-
alised trigonometric functions; Chap. 8 also uses more topological ideas, such as
the Borsuk antipodal theorem.

The final chapter extends the discussion of the Hardy operator to the situation in
which it acts on spaces with variable exponent, the Lp(·) spaces. Here p is a given
function with values in (1,∞) : if p is a constant function the space coincides with the
usual Lp space. Such spaces have attracted a good deal of interest lately because they
occur naturally in various physical contexts and in variational problems involving
integrands with non-standard growth properties.
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