
3 Supervised Learning

Supervised learning has been a great success in real-world applications. It
is used in almost every domain, including text and Web domains. Super-
vised learning is also called classification or inductive learning in ma-
chine learning. This type of learning is analogous to human learning from
past experiences to gain new knowledge in order to improve our ability to
perform real-world tasks. However, since computers do not have “experi-
ences”, machine learning learns from data, which are collected in the past
and represent past experiences in some real-world applications.

There are several types of supervised learning tasks. In this chapter, we
focus on one particular type, namely, learning a target function that can be
used to predict the values of a discrete class attribute. This type of learning
has been the focus of the machine learning research and is perhaps also the
most widely used learning paradigm in practice. This chapter introduces a
number of such supervised learning techniques. They are used in almost
every Web mining application. We will see their uses from Chaps. 6–12.

3.1 Basic Concepts

A data set used in the learning task consists of a set of data records, which
are described by a set of attributes A = {A1, A2, …, A|A|}, where |A| denotes
the number of attributes or the size of the set A. The data set also has a
special target attribute C, which is called the class attribute. In our subse-
quent discussions, we consider C separately from attributes in A due to its
special status, i.e., we assume that C is not in A. The class attribute C has a
set of discrete values, i.e., C = {c1, c2, …, c|C|}, where |C| is the number of
classes and |C|  2. A class value is also called a class label. A data set for
learning is simply a relational table. Each data record describes a piece of
“past experience”. In the machine learning and data mining literature, a da-
ta record is also called an example, an instance, a case or a vector. A data
set basically consists of a set of examples or instances.

Given a data set D, the objective of learning is to produce a classifica-
tion/prediction function to relate values of attributes in A and classes in
C. The function can be used to predict the class values/labels of the future

B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,
Data-Centric Systems and Applications, DOI 10.1007/978-3-642-19460-3_3,
© Springer-Verlag Berlin Heidelberg 2011

63

64 3 Supervised Learning

data. The function is also called a classification model, a predictive mod-
el or simply a classifier. We will use these terms interchangeably in this
book. It should be noted that the function/model can be in any form, e.g., a
decision tree, a set of rules, a Bayesian model or a hyperplane.

Example 1: Table 3.1 shows a small loan application data set. It has four
attributes. The first attribute is Age, which has three possible values,
young, middle and old. The second attribute is Has_Job, which indicates
whether an applicant has a job. Its possible values are true (has a job) and
false (does not have a job). The third attribute is Own_house, which shows
whether an applicant owns a house. The fourth attribute is Credit_rating,
which has three possible values, fair, good and excellent. The last column
is the Class attribute, which shows whether each loan application was ap-
proved (denoted by Yes) or not (denoted by No) in the past.

Table 3.1. A loan application data set

ID Age Has_job Own_house Credit_rating Class
1 young false false fair No
2 young false false good No
3 young true false good Yes
4 young true true fair Yes
5 young false false fair No
6 middle false false fair No
7 middle false false good No
8 middle true true good Yes
9 middle false true excellent Yes

10 middle false true excellent Yes
11 old false true excellent Yes
12 old false true good Yes
13 old true false good Yes
14 old true false excellent Yes
15 old false false fair No

We want to learn a classification model from this data set that can be
used to classify future loan applications. That is, when a new customer
comes into the bank to apply for a loan, after inputting his/her age, whether
he/she has a job, whether he/she owns a house, and his/her credit rating,
the classification model should predict whether his/her loan application
should be approved. ▀

Our learning task is called supervised learning because the class labels
(e.g., Yes and No values of the class attribute in Table 3.1) are provided in

3.1 Basic Concepts 65

the data. It is as if some teacher tells us the classes. This is in contrast to
the unsupervised learning, where the classes are not known and the learn-
ing algorithm needs to automatically generate classes. Unsupervised learn-
ing is the topic of the next chapter.

The data set used for learning is called the training data (or the train-
ing set). After a model is learned or built from the training data by a
learning algorithm, it is evaluated using a set of test data (or unseen da-
ta) to assess the model accuracy.

It is important to note that the test data is not used in learning the classi-
fication model. The examples in the test data usually also have class labels.
That is why the test data can be used to assess the accuracy of the learned
model because we can check whether the class predicted for each test case
by the model is the same as the actual class of the test case. In order to
learn and also to test, the available data (which has classes) for learning is
usually split into two disjoint subsets, the training set (for learning) and the
test set (for testing). We will discuss this further in Sect. 3.3.

The accuracy of a classification model on a test set is defined as:

,
cases test ofnumber Total

tionsclassificacorrect ofNumber
Accuracy (1)

where a correct classification means that the learned model predicts the
same class as the original class of the test case. There are also other meas-
ures that can be used. We will discuss them in Sect. 3.3.

We pause here to raises two important questions:
1. What do we mean by learning by a computer system?
2. What is the relationship between the training and the test data?
We answer the first question first. Given a data set D representing past
“experiences”, a task T and a performance measure M, a computer system
is said to learn from the data to perform the task T if after learning the sys-
tem’s performance on the task T improves as measured by M. In other
words, the learned model or knowledge helps the system to perform the
task better as compared to no learning. Learning is the process of building
the model or extracting the knowledge.

We use the data set in Example 1 to explain the idea. The task is to pre-
dict whether a loan application should be approved. The performance
measure M is the accuracy in Equation (1). With the data set in Table 3.1,
if there is no learning, all we can do is to guess randomly or to simply take
the majority class (which is the Yes class). Suppose we use the majority
class and announce that every future instance or case belongs to the class
Yes. If the future data are drawn from the same distribution as the existing
training data in Table 3.1, the estimated classification/prediction accuracy

66 3 Supervised Learning

on the future data is 9/15 = 0.6 as there are 9 Yes class examples out of the
total of 15 examples in Table 3.1. The question is: can we do better with
learning? If the learned model can indeed improve the accuracy, then the
learning is said to be effective.

The second question in fact touches the fundamental assumption of
machine learning, especially the theoretical study of machine learning.
The assumption is that the distribution of training examples is identical to
the distribution of test examples (including future unseen examples). In
practical applications, this assumption is often violated to a certain degree.
Strong violations will clearly result in poor classification accuracy, which
is quite intuitive because if the test data behave very differently from the
training data then the learned model will not perform well on the test data.
To achieve good accuracy on the test data, training examples must be suf-
ficiently representative of the test data.

We now illustrate the steps of learning in Fig. 3.1 based on the preced-
ing discussions. In step 1, a learning algorithm uses the training data to
generate a classification model. This step is also called the training step or
training phase. In step 2, the learned model is tested using the test set to
obtain the classification accuracy. This step is called the testing step or
testing phase. If the accuracy of the learned model on the test data is satis-
factory, the model can be used in real-world tasks to predict classes of new
cases (which do not have classes). If the accuracy is not satisfactory, we
need to go back and choose a different learning algorithm and/or do some
further processing of the data (this step is called data pre-processing, not
shown in the figure). A practical learning task typically involves many it-
erations of these steps before a satisfactory model is built. It is also possi-
ble that we are unable to build a satisfactory model due to a high degree of
randomness in the data or limitations of current learning algorithms.

Fig. 3.1. The basic learning process: training and testing

From the next section onward, we study several supervised learning al-
gorithms, except Sect. 3.3, which focuses on model/classifier evaluation.

We note that throughout the chapter we assume that the training and test
data are available for learning. However, in many text and Web page re-
lated learning tasks, this is not true. Usually, we need to collect raw data,

Learning
algorithm model Accuracy Test

data
Training

data

 Step 1: Training Step 2: Testing

3.2 Decision Tree Induction 67

design attributes and compute attribute values from the raw data. The rea-
son is that the raw data in text and Web applications are often not suitable
for learning either because their formats are not right or because there are
no obvious attributes in the raw text documents or Web pages.

3.2 Decision Tree Induction

Decision tree learning is one of the most widely used techniques for classi-
fication. Its classification accuracy is competitive with other learning me-
thods, and it is very efficient. The learned classification model is repre-
sented as a tree, called a decision tree. The techniques presented in this
section are based on the C4.5 system from Quinlan [49].

Example 2: Fig. 3.2 shows a possible decision tree learnt from the data in
Table 3.1. The tree has two types of nodes, decision nodes (which are in-
ternal nodes) and leaf nodes. A decision node specifies some test (i.e.,
asks a question) on a single attribute. A leaf node indicates a class.

Fig. 3.2. A decision tree for the data in Table 3.1

The root node of the decision tree in Fig. 3.2 is Age, which basically
asks the question: what is the age of the applicant? It has three possible an-
swers or outcomes, which are the three possible values of Age. These
three values form three tree branches/edges. The other internal nodes have
the same meaning. Each leaf node gives a class value (Yes or No). (x/y)
below each class means that x out of y training examples that reach this
leaf node have the class of the leaf. For instance, the class of the left most
leaf node is Yes. Two training examples (examples 3 and 4 in Table 3.1)
reach here and both of them are of class Yes. ▀

To use the decision tree in testing, we traverse the tree top-down ac-
cording to the attribute values of the given test instance until we reach a
leaf node. The class of the leaf is the predicted class of the test instance.

Age?

Has_job? Own_house? Credit_rating?

Young middle old

 true false

Yes No
(2/2) (3/3)

 true false

Yes No
(3/3) (2/2)

fair good excellent

No Yes Yes
(1/1) (2/2) (2/2)

68 3 Supervised Learning

Example 3: We use the tree to predict the class of the following new in-
stance, which describes a new loan applicant.

Age Has_job Own_house Credit-rating Class
young false false good ?

Going through the decision tree, we find that the predicted class is No as
we reach the second leaf node from the left. ▀

A decision tree is constructed by partitioning the training data so that the
resulting subsets are as pure as possible. A pure subset is one that con-
tains only training examples of a single class. If we apply all the training
data in Table 3.1 on the tree in Fig. 3.2, we will see that the training exam-
ples reaching each leaf node form a subset of examples that have the same
class as the class of the leaf. In fact, we can see that from the x and y val-
ues in (x/y). We will discuss the decision tree building algorithm in Sect.
3.2.1.

An interesting question is: Is the tree in Fig. 3.2 unique for the data in
Table 3.1? The answer is no. In fact, there are many possible trees that can
be learned from the data. For example, Fig. 3.3 gives another decision tree,
which is much smaller and is also able to partition the training data per-
fectly according to their classes.

Fig. 3.3. A smaller tree for the data set in Table 3.1

In practice, one wants to have a small and accurate tree for many rea-
sons. A smaller tree is more general and also tends to be more accurate (we
will discuss this later). It is also easier to understand by human users. In
many applications, the user understanding of the classifier is important.
For example, in some medical applications, doctors want to understand the
model that classifies whether a person has a particular disease. It is not sat-
isfactory to simply produce a classification because without understanding
why the decision is made the doctor may not trust the system and/or does
not gain useful knowledge.

It is useful to note that in both Fig. 3.2 and Fig. 3.3, the training exam-

Has_job?

Own_house?

 true false

Yes No
(3/3) (6/6)

 true false

Yes
(6/6)

3.2 Decision Tree Induction 69

ples that reach each leaf node all have the same class (see the values of
(x/y) at each leaf node). However, for most real-life data sets, this is usu-
ally not the case. That is, the examples that reach a particular leaf node are
not of the same class, i.e., x  y. The value of x/y is, in fact, the confidence
(conf) value used in association rule mining, and x is the support count.
This suggests that a decision tree can be converted to a set of if-then rules.

Yes, indeed. The conversion is done as follows: Each path from the root
to a leaf forms a rule. All the decision nodes along the path form the condi-
tions of the rule and the leaf node or the class forms the consequent. For
each rule, a support and confidence can be attached. Note that in most
classification systems, these two values are not provided. We add them
here to see the connection of association rules and decision trees.

Example 4: The tree in Fig. 3.3 generates three rules. “,” means “and”.

Own_house = true  Class =Yes [sup=6/15, conf=6/6]
Own_house = false, Has_job = true  Class = Yes [sup=3/15, conf=3/3]
Own_house = false, Has_job = false  Class = No [sup=6/15, conf=6/6].

We can see that these rules are of the same format as association rules.
However, the rules above are only a small subset of the rules that can be
found in the data of Table 3.1. For instance, the decision tree in Fig. 3.3
does not find the following rule:

Age = young, Has_job = false  Class = No [sup=3/15, conf=3/3].

Thus, we say that a decision tree only finds a subset of rules that exist in
data, which is sufficient for classification. The objective of association rule
mining is to find all rules subject to some minimum support and minimum
confidence constraints. Thus, the two methods have different objectives.
We will discuss these issues again in Sect. 3.5 when we show that associa-
tion rules can be used for classification as well, which is obvious.

An interesting and important property of a decision tree and its resulting
set of rules is that the tree paths or the rules are mutually exclusive and
exhaustive. This means that every data instance is covered by a single rule
(a tree path) and a single rule only. By covering a data instance, we mean
that the instance satisfies the conditions of the rule.

We also say that a decision tree generalizes the data as a tree is a small-
er (more compact) description of the data, i.e., it captures the key regulari-
ties in the data. Then, the problem becomes building the best tree that is
small and accurate. It turns out that finding the best tree that models the
data is a NP-complete problem [26]. All existing algorithms use heuristic
methods for tree building. Below, we study one of the most successful
techniques.

70 3 Supervised Learning

3.2.1 Learning Algorithm

As indicated earlier, a decision tree T simply partitions the training data set
D into disjoint subsets so that each subset is as pure as possible (of the
same class). The learning of a tree is typically done using the divide-and-
conquer strategy that recursively partitions the data to produce the tree. At
the beginning, all the examples are at the root. As the tree grows, the ex-
amples are sub-divided recursively. A decision tree learning algorithm is
given in Fig. 3.4. For now, we assume that every attribute in D takes dis-
crete values. This assumption is not necessary as we will see later.

The stopping criteria of the recursion are in lines 1–4 in Fig. 3.4. The
algorithm stops when all the training examples in the current data are of
the same class, or when every attribute has been used along the current tree

 Algorithm decisionTree(D, A, T)
1 if D contains only training examples of the same class cj  C then
2 make T a leaf node labeled with class cj;
3 elseif A =  then
4 make T a leaf node labeled with cj, which is the most frequent class in D
5 else // D contains examples belonging to a mixture of classes. We select a single
6 // attribute to partition D into subsets so that each subset is purer
7 p0 = impurityEval-1(D);
8 for each attribute Ai  A (={A1, A2, …, Ak}) do
9 pi = impurityEval-2(Ai, D)
10 endfor
11 Select Ag  {A1, A2, …, Ak} that gives the biggest impurity reduction,

computed using p0 – pi;
12 if p0 – pg < threshold then // Ag does not significantly reduce impurity p0
13 make T a leaf node labeled with cj, the most frequent class in D.
14 else // Ag is able to reduce impurity p0
15 Make T a decision node on Ag;
16 Let the possible values of Ag be v1, v2, …, vm. Partition D into m

disjoint subsets D1, D2, …, Dm based on the m values of Ag.
17 for each Dj in {D1, D2, …, Dm} do
18 if Dj   then
19 create a branch (edge) node Tj for vj as a child node of T;
20 decisionTree(Dj, A{Ag}, Tj) // Ag is removed
21 endif
22 endfor
23 endif
24 endif

Fig. 3.4. A decision tree learning algorithm

3.2 Decision Tree Induction 71

path. In tree learning, each successive recursion chooses the best attribute
to partition the data at the current node according to the values of the at-
tribute. The best attribute is selected based on a function that aims to mi-
nimize the impurity after the partitioning (lines 7–11). In other words, it
maximizes the purity. The key in decision tree learning is thus the choice
of the impurity function, which is used in lines 7, 9 and 11 in Fig. 3.4.
The recursive recall of the algorithm is in line 20, which takes the subset of
training examples at the node for further partitioning to extend the tree.

This is a greedy algorithm with no backtracking. Once a node is created,
it will not be revised or revisited no matter what happens subsequently.

3.2.2 Impurity Function

Before presenting the impurity function, we use an example to show what
the impurity function aims to do intuitively.

Example 5: Fig. 3.5 shows two possible root nodes for the data in Table
3.1.

Fig. 3.5. Two possible root nodes or two possible attributes for the root node

Fig. 3.5(A) uses Age as the root node, and Fig. 3.5(B) uses Own_house
as the root node. Their possible values (or outcomes) are the branches. At
each branch, we listed the number of training examples of each class (No
or Yes) that land or reach there. Fig. 3.5(B) is obviously a better choice for
the root. From a prediction or classification point of view, Fig. 3.5(B)
makes fewer mistakes than Fig. 3.5(A). In Fig. 3.5(B), when Own_house =
true every example has the class Yes. When Own_house = false, if we take
majority class (the most frequent class), which is No, we make three mis-
takes/errors. If we look at Fig. 3.5(A), the situation is worse. If we take the
majority class for each branch, we make five mistakes (marked in bold).
Thus, we say that the impurity of the tree in Fig. 3.5(A) is higher than the
tree in Fig. 3.5(B). To learn a decision tree, we prefer Own_house to Age
to be the root node. Instead of counting the number of mistakes or errors,
C4.5 uses a more principled approach to perform this evaluation on every
attribute in order to choose the best attribute to build the tree. ▀

No: 0 No: 6
Yes: 6 Yes: 3

(B)

Own_house?

 true false

No: 3 No: 2 No: 1
Yes: 2 Yes: 3 Yes: 4

(A)

Age?

 Young middle old

72 3 Supervised Learning

The most popular impurity functions used for decision tree learning are
information gain and information gain ratio, which are used in C4.5 as
two options. Let us first discuss information gain, which can be extended
slightly to produce information gain ratio.

The information gain measure is based on the entropy function from in-
formation theory [55]:

,1)Pr(

)Pr(log)Pr()(

||

1

||

1
2













C

j
j

j

C

j
j

c

ccDentropy

(2)

where Pr(cj) is the probability of class cj in data set D, which is the number
of examples of class cj in D divided by the total number of examples in D.
In the entropy computation, we define 0log0 = 0. The unit of entropy is
bit. Let us use an example to get a feeling of what this function does.

Example 6: Assume we have a data set D with only two classes, positive
and negative. Let us see the entropy values for three different compositions
of positive and negative examples:

1. The data set D has 50% positive examples (Pr(positive) = 0.5) and 50%
negative examples (Pr(negative) = 0.5).

.15.0log5.05.0log5.0)(22 Dentropy

2. The data set D has 20% positive examples (Pr(positive) = 0.2) and 80%
negative examples (Pr(negative) = 0.8).

.722.08.0log8.02.0log2.0)(22 Dentropy

3. The data set D has 100% positive examples (Pr(positive) = 1) and no
negative examples, (Pr(negative) = 0).

.00log01log1)(22 Dentropy

We can see a trend: When the data becomes purer and purer, the entropy
value becomes smaller and smaller. In fact, it can be shown that for this
binary case (two classes), when Pr(positive) = 0.5 and Pr(negative) = 0.5
the entropy has the maximum value, i.e., 1 bit. When all the data in D be-
long to one class the entropy has the minimum value, 0 bit. ▀

It is clear that the entropy measures the amount of impurity or disorder
in the data. That is exactly what we need in decision tree learning. We now
describe the information gain measure, which uses the entropy function.

3.2 Decision Tree Induction 73

Information Gain

The idea is the following:

1. Given a data set D, we first use the entropy function (Equation 2) to
compute the impurity value of D, which is entropy(D). The impuri-
tyEval-1 function in line 7 of Fig. 3.4 performs this task.

2. Then, we want to know which attribute can reduce the impurity most if
it is used to partition D. To find out, every attribute is evaluated (lines
8–10 in Fig. 3.4). Let the number of possible values of the attribute Ai be
v. If we are going to use Ai to partition the data D, we will divide D into
v disjoint subsets D1, D2, …, Dv. The entropy after the partition is

.)(
||
||

)(
1




v

j
j

j
A Dentropy

D

D
Dentropy

i
 (3)

 The impurityEval-2 function in line 9 of Fig. 3.4 performs this task.
3. The information gain of attribute Ai is computed with:

).()(),(DentropyDentropyADgain
iAi  (4)

Clearly, the gain criterion measures the reduction in impurity or disorder.
The gain measure is used in line 11 of Fig. 3.4, which chooses attribute Ag
resulting in the largest reduction in impurity. If the gain of Ag is too small,
the algorithm stops for the branch (line 12). Normally a threshold is used
here. If choosing Ag is able to reduce impurity significantly, Ag is em-
ployed to partition the data to extend the tree further, and so on (lines 15–
21 in Fig. 3.4). The process goes on recursively by building sub-trees using
D1, D2, …, Dm (line 20). For subsequent tree extensions, we do not need Ag
any more, as all training examples in each branch has the same Ag value.

Example 7: Let us compute the gain values for attributes Age, Own_house
and Credit_Rating using the whole data set D in Table 3.1, i.e., we evaluate
for the root node of a decision tree.

First, we compute the entropy of D. Since D has 6 No class training ex-
amples, and 9 Yes class training examples, we have

.971.0
15
9log

15
9

15
6log

15
6)(22 Dentropy

We then try Age, which partitions the data into 3 subsets (as Age has
three possible values) D1 (with Age=young), D2 (with Age=middle), and D3
(with Age=old). Each subset has five training examples. In Fig. 3.5, we al-
so see the number of No class examples and the number of Yes examples
in each subset (or in each branch).

74 3 Supervised Learning

.888.0722.0
15
5971.0

15
5971.0

15
5

)(
15
5)(

15
5)(

15
5)(321



 DentropyDentropyDentropyDentropyAge

Likewise, we compute for Own_house, which partitions D into two sub-
sets, D1 (with Own_house=true) and D2 (with Own_house=false).

.551.0 918.0
15
90

15
6

)(
15
9)(

15
6)(21_



 DentropyDentropyDentropy houseOwn

Similarly, we obtain entropyHas_job(D) = 0.647, and entropyCredit_rating(D)
= 0.608. The gains for the attributes are:

gain(D, Age) = 0.971  0.888 = 0.083
gain(D, Own_house) = 0.971  0.551 = 0.420
gain(D, Has_job) = 0.971  0.647 = 0.324
gain(D, Credit_rating) = 0.971  0.608 = 0.363.

Own_house is the best attribute for the root node. Fig. 3.5(B) shows the
root node using Own_house. Since the left branch has only one class (Yes)
of data, it results in a leaf node (line 1 in Fig. 3.4). For Own_house = false,
further extension is needed. The process is the same as above, but we only
use the subset of the data with Own_house = false, i.e., D2. ▀

Information Gain Ratio

The gain criterion tends to favor attributes with many possible values. An
extreme situation is that the data contain an ID attribute that is an identifi-
cation of each example. If we consider using this ID attribute to partition
the data, each training example will form a subset and has only one class,
which results in entropyID(D) = 0. So the gain by using this attribute is
maximal. From a prediction point of review, such a partition is useless.

Gain ratio (Equation 5) remedies this bias by normalizing the gain us-
ing the entropy of the data with respect to the values of the attribute. Our
previous entropy computations are done with respect to the class attribute:















s

j

jj

i
i

D

D

D

D
ADgain

ADgainRatio

1 ||
||

log
||
||

),(),(
2

 (5)

where s is the number of possible values of Ai, and Dj is the subset of data

3.2 Decision Tree Induction 75

that has the jth value of Ai. |Dj|/|D| corresponds to the probability of Equa-
tion (2). Using Equation (5), we simply choose the attribute with the high-
est gainRatio value to extend the tree.

This method works because if Ai has too many values the denominator
will be large. For instance, in our above example of the ID attribute, the
denominator will be log2|D|. The denominator is called the split info in
C4.5. One note is that the split info can be 0 or very small. Some heuristic
solutions can be devised to deal with it (see [49]).

3.2.3 Handling of Continuous Attributes

It seems that the decision tree algorithm can only handle discrete attrib-
utes. In fact, continuous attributes can be dealt with easily as well. In a real
life data set, there are often both discrete attributes and continuous attrib-
utes. Handling both types in an algorithm is an important advantage.

To apply the decision tree building method, we can divide the value
range of attribute Ai into intervals at a particular tree node. Each interval
can then be considered a discrete value. Based on the intervals, gain or
gainRatio is evaluated in the same way as in the discrete case. Clearly, we
can divide Ai into any number of intervals at a tree node. However, two in-
tervals are usually sufficient. This binary split is used in C4.5. We need to
find a threshold value for the division.

Clearly, we should choose the threshold that maximizes the gain (or
gainRatio). We need to examine all possible thresholds. This is not a prob-
lem because although for a continuous attribute Ai the number of possible
values that it can take is infinite, the number of actual values that appear in
the data is always finite. Let the set of distinctive values of attribute Ai that
occur in the data be {v1, v2, …, vr}, which are sorted in ascending order.
Clearly, any threshold value lying between vi and vi+1 will have the same
effect of dividing the training examples into those whose value of attribute
Ai lies in {v1, v2, …, vi} and those whose value lies in {vi+1, vi+2, …, vr}.
There are thus only r1 possible splits on Ai, which can all be evaluated.

The threshold value can be the middle point between vi and vi+1, or just
on the “right side” of value vi, which results in two intervals Ai  vi and Ai
> vi. This latter approach is used in C4.5. The advantage of this approach is
that the values appearing in the tree actually occur in the data. The thresh-
old value that maximizes the gain (gainRatio) value is selected. We can
modify the algorithm in Fig. 3.4 (lines 8–11) easily to accommodate this
computation so that both discrete and continuous attributes are considered.

A change to line 20 of the algorithm in Fig. 3.4 is also needed. For a
continuous attribute, we do not remove attribute Ag because an interval can

76 3 Supervised Learning

be further split recursively in subsequent tree extensions. Thus, the same
continuous attribute may appear multiple times in a tree path (see Example
9), which does not happen for a discrete attribute.

From a geometric point of view, a decision tree built with only continu-
ous attributes represents a partitioning of the data space. A series of splits
from the root node to a leaf node represents a hyper-rectangle. Each side of
the hyper-rectangle is an axis-parallel hyperplane.

Example 8: The hyper-rectangular regions in Fig. 3.6(A), which partitions
the space, are produced by the decision tree in Fig. 3.6(B). There are two
classes in the data, represented by empty circles and filled rectangles. ▀

Fig. 3.6. A partitioning of the data space and its corresponding decision tree

Handling of continuous (numeric) attributes has an impact on the effi-
ciency of the decision tree algorithm. With only discrete attributes the al-
gorithm grows linearly with the size of the data set D. However, sorting of
a continuous attribute takes |D|log|D| time, which can dominate the tree
learning process. Sorting is important as it ensures that gain or gainRatio
can be computed in one pass of the data.

3.2.4 Some Other Issues

We now discuss several other issues in decision tree learning.

Tree Pruning and Overfitting: A decision tree algorithm recursively par-
titions the data until there is no impurity or there is no attribute left. This
process may result in trees that are very deep and many tree leaves may
cover very few training examples. If we use such a tree to predict the train-
ing set, the accuracy will be very high. However, when it is used to clas-
sify unseen test set, the accuracy may be very low. The learning is thus not
effective, i.e., the decision tree does not generalize the data well. This

X

Y

2.6
2.5
 2

0 2 3 4

X

Y

 2 > 2

Y
 2 > 2

X
 3 > 3

X

Y

 4 > 4

 2.5 > 2.5

 2.6 > 2.6

(A) A partition of the data space (B). The decision tree

3.2 Decision Tree Induction 77

phenomenon is called overfitting. More specifically, we say that a classi-
fier f1 overfits the data if there is another classifier f2 such that f1 achieves a
higher accuracy on the training data than f2, but a lower accuracy on the
unseen test data than f2 [45].

Overfitting is usually caused by noise in the data, i.e., wrong class val-
ues/labels and/or wrong values of attributes, but it may also be due to the
complexity and randomness of the application domain. These problems
cause the decision tree algorithm to refine the tree by extending it to very
deep using many attributes.

To reduce overfitting in the context of decision tree learning, we per-
form pruning of the tree, i.e., to delete some branches or sub-trees and re-
place them with leaves of majority classes. There are two main methods to
do this, stopping early in tree building (which is also called pre-pruning)
and pruning the tree after it is built (which is called post-pruning). Post-
pruning has been shown more effective. Early-stopping can be dangerous
because it is not clear what will happen if the tree is extended further
(without stopping). Post-pruning is more effective because after we have
extended the tree to the fullest, it becomes clearer which branches/sub-
trees may not be useful (overfit the data). The general idea of post-pruning
is to estimate the error of each tree node. If the estimated error for a node
is less than the estimated error of its extended sub-tree, then the sub-tree is
pruned. Most existing tree learning algorithms take this approach. See [49]
for a technique called the pessimistic error based pruning.

Example 9: In Fig. 3.6(B), the sub-tree representing the rectangular region

 X  2, Y > 2.5, Y  2.6

in Fig. 3.6(A) is very likely to be overfitting. The region is very small and
contains only a single data point, which may be an error (or noise) in the
data collection. If it is pruned, we obtain Fig. 3.7(A) and (B). ▀

Fig. 3.7. The data space partition and the decision tree after pruning

X

Y

2.6
2.5
 2

0 2 3 4

X

Y

 2 > 2

 2 > 2

X
 3 > 3

X
 4 > 4

 (A) A partition of the data space (B). The decision tree

78 3 Supervised Learning

Another common approach to pruning is to use a separate set of data
called the validation set, which is not used in training and neither in test-
ing. After a tree is built, it is used to classify the validation set. Then, we
can find the errors at each node on the validation set. This enables us to
know what to prune based on the errors at each node.

Rule Pruning: We noted earlier that a decision tree can be converted to a
set of rules. In fact, C4.5 also prunes the rules to simplify them and to re-
duce overfitting. First, the tree (C4.5 uses the unpruned tree) is converted
to a set of rules in the way discussed in Example 4. Rule pruning is then
performed by removing some conditions to make the rules shorter and
fewer (after pruning some rules may become redundant). In most cases,
pruning results in a more accurate rule set as shorter rules are less likely to
overfit the training data. Pruning is also called generalization as it makes
rules more general (with fewer conditions). A rule with more conditions is
more specific than a rule with fewer conditions.

Example 10: The sub-tree below X  2 in Fig. 3.6(B) produces these rules:

Rule 1: X  2, Y > 2.5, Y > 2.6 
Rule 2: X  2, Y > 2.5, Y  2.6  O
Rule 3: X  2, Y  2.5 

Note that Y > 2.5 in Rule 1 is not useful because of Y > 2.6, and thus Rule
1 should be

Rule 1: X  2, Y > 2.6 

In pruning, we may be able to delete the conditions Y > 2.6 from Rule 1 to
produce:

X  2 

Then Rule 2 and Rule 3 become redundant and can be removed. ▀

A useful point to note is that after pruning the resulting set of rules may
no longer be mutually exclusive and exhaustive. There may be data
points that satisfy the conditions of more than one rule, and if inaccurate
rules are discarded, of no rules. An ordering of the rules is thus needed to
ensure that when classifying a test case only one rule will be applied to de-
termine the class of the test case. To deal with the situation that a test case
does not satisfy the conditions of any rule, a default class is used, which is
usually the majority class.

Handling Missing Attribute Values: In many practical data sets, some at-
tribute values are missing or not available due to various reasons. There
are many ways to deal with the problem. For example, we can fill each

3.3 Classifier Evaluation 79

missing value with the special value “unknown” or the most frequent value
of the attribute if the attribute is discrete. If the attribute is continuous, use
the mean of the attribute for each missing value.

The decision tree algorithm in C4.5 takes another approach. At a tree
node, it distributes the training example with missing value for the attrib-
ute to each branch of the tree proportionally according to the distribution
of the training examples that have values for the attribute.

Handling Skewed Class Distribution: In many applications, the propor-
tions of data for different classes can be very different. For instance, in a
data set of intrusion detection in computer networks, the proportion of in-
trusion cases is extremely small (< 1%) compared with normal cases. Di-
rectly applying the decision tree algorithm for classification or prediction
of intrusions is usually not effective. The resulting decision tree often con-
sists of a single leaf node “normal”, which is useless for intrusion detec-
tion. One way to deal with the problem is to over sample the intrusion ex-
amples to increase its proportion. Another solution is to rank the new cases
according to how likely they may be intrusions. The human users can then
investigate the top ranked cases.

3.3 Classifier Evaluation

After a classifier is constructed, it needs to be evaluated for accuracy. Ef-
fective evaluation is crucial because without knowing the approximate ac-
curacy of a classifier, it cannot be used in real-world tasks.

There are many ways to evaluate a classifier, and there are also many
measures. The main measure is the classification accuracy (Equation 1),
which is the number of correctly classified instances in the test set divided
by the total number of instances in the test set. Some researchers also use
the error rate, which is 1 – accuracy. Clearly, if we have several classifi-
ers, the one with the highest accuracy is preferred. Statistical significance
tests may be used to check whether one classifier’s accuracy is signifi-
cantly better than that of another given the same training and test data sets.
Below, we first present several common methods for classifier evaluation,
and then introduce some other evaluation measures.

3.3.1 Evaluation Methods

Holdout Set: The available data D is divided into two disjoint subsets, the
training set Dtrain and the test set Dtest, D = Dtrain  Dtest and Dtrain  Dtest =
. The test set is also called the holdout set. This method is mainly used

80 3 Supervised Learning

when the data set D is large. Note that the examples in the original data set
D are all labeled with classes.

As we discussed earlier, the training set is used for learning a classifier
and the test set is used for evaluating the classifier. The training set should
not be used in the evaluation as the classifier is biased toward the training
set. That is, the classifier may overfit the training data, which results in
very high accuracy on the training set but low accuracy on the test set. Us-
ing the unseen test set gives an unbiased estimate of the classification ac-
curacy. As for what percentage of the data should be used for training and
what percentage for testing, it depends on the data set size. 50–50 and two
thirds for training and one third for testing are commonly used.

To partition D into training and test sets, we can use a few approaches:

1. We randomly sample a set of training examples from D for learning and
use the rest for testing.

2. If the data is collected over time, then we can use the earlier part of the
data for training/learning and the later part of the data for testing. In
many applications, this is a more suitable approach because when the
classifier is used in the real-world the data are from the future. This ap-
proach thus better reflects the dynamic aspects of applications.

Multiple Random Sampling: When the available data set is small, using
the above methods can be unreliable because the test set would be too
small to be representative. One approach to deal with the problem is to
perform the above random sampling n times. Each time a different training
set and a different test set are produced. This produces n accuracies. The
final estimated accuracy on the data is the average of the n accuracies.

Cross-Validation: When the data set is small, the n-fold cross-validation
method is very commonly used. In this method, the available data is parti-
tioned into n equal-size disjoint subsets. Each subset is then used as the
test set and the remaining n1 subsets are combined as the training set to
learn a classifier. This procedure is then run n times, which gives n accura-
cies. The final estimated accuracy of learning from this data set is the aver-
age of the n accuracies. 10-fold and 5-fold cross-validations are often used.

A special case of cross-validation is the leave-one-out cross-validation.
In this method, each fold of the cross validation has only a single test ex-
ample and all the rest of the data is used in training. That is, if the original
data has m examples, then this is m-fold cross-validation. This method is
normally used when the available data is very small. It is not efficient for a
large data set as m classifiers need to be built.

In Sect. 3.2.4, we mentioned that a validation set can be used to prune a
decision tree or a set of rules. If a validation set is employed for that pur-

3.3 Classifier Evaluation 81

pose, it should not be used in testing. In that case, the available data is di-
vided into three subsets, a training set, a validation set and a test set. Apart
from using a validation set to help tree or rule pruning, a validation set is
also used frequently to estimate parameters in learning algorithms. In such
cases, the values that give the best accuracy on the validation set are used
as the final values of the parameters. Cross-validation can be used for pa-
rameter estimating as well. Then a separate validation set is not needed.
Instead, the whole training set is used in cross-validation.

3.3.2 Precision, Recall, F-score and Breakeven Point

In some applications, we are only interested in one class. This is particu-
larly true for text and Web applications. For example, we may be inter-
ested in only the documents or web pages of a particular topic. Also, in
classification involving skewed or highly imbalanced data, e.g., network
intrusion and financial fraud detection, we are typically interested in only
the minority class. The class that the user is interested in is commonly
called the positive class, and the rest negative classes (the negative classes
may be combined into one negative class). Accuracy is not a suitable
measure in such cases because we may achieve a very high accuracy, but
may not identify a single intrusion. For instance, 99% of the cases are
normal in an intrusion detection data set. Then a classifier can achieve
99% accuracy (without doing anything) by simply classifying every test
case as “not intrusion”. This is, however, useless.

Precision and recall are more suitable in such applications because they
measure how precise and how complete the classification is on the positive
class. It is convenient to introduce these measures using a confusion ma-
trix (Table 3.2). A confusion matrix contains information about actual and
predicted results given by a classifier.

Table 3.2. Confusion matrix of a classifier

 Classified positive Classified negative
Actual positive TP FN
Actual negative FP TN

where
TP: the number of correct classifications of the positive examples (true positive)
FN: the number of incorrect classifications of positive examples (false negative)
FP: the number of incorrect classifications of negative examples (false positive)
TN: the number of correct classifications of negative examples (true negative)

Based on the confusion matrix, the precision (p) and recall (r) of the posi-
tive class are defined as follows:

82 3 Supervised Learning

. .
FNTP

TP
 r

FPTP

TP
p





 (6)

In words, precision p is the number of correctly classified positive ex-
amples divided by the total number of examples that are classified as posi-
tive. Recall r is the number of correctly classified positive examples di-
vided by the total number of actual positive examples in the test set. The
intuitive meanings of these two measures are quite obvious.

However, it is hard to compare classifiers based on two measures, which
are not functionally related. For a test set, the precision may be very high
but the recall can be very low, and vice versa.

Example 11: A test data set has 100 positive examples and 1000 negative
examples. After classification using a classifier, we have the following
confusion matrix (Table 3.3),

Table 3.3. Confusion matrix of a classifier

 Classified positive Classified negative
Actual positive 1 99
Actual negative 0 1000

This confusion matrix gives the precision p = 100% and the recall r = 1%
because we only classified one positive example correctly and classified
no negative examples wrongly. ▀

Although in theory precision and recall are not related, in practice high
precision is achieved almost always at the expense of recall and high recall
is achieved at the expense of precision. In an application, which measure is
more important depends on the nature of the application. If we need a sin-
gle measure to compare different classifiers, the F-score is often used:

.2
rp

pr
F


 (7)

The F-score (also called the F1-score) is the harmonic mean of precision
and recall.

.11
2

rp

F


 (8)

The harmonic mean of two numbers tends to be closer to the smaller of
the two. Thus, for the F-score to be high, both p and r must be high.

There is also another measure, called precision and recall breakeven
point, which is used in the information retrieval community. The break-

3.3 Classifier Evaluation 83

even point is when the precision and the recall are equal. This measure as-
sumes that the test cases can be ranked by the classifier based on their like-
lihoods of being positive. For instance, in decision tree classification, we
can use the confidence of each leaf node as the value to rank test cases.

Example 12: We have the following ranking of 20 test documents. 1
represents the highest rank and 20 represents the lowest rank. “+” (“”)
represents an actual positive (negative) document.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
+ + +  +  +  + +   +    +   +

Assume that the test set has 10 positive examples.
At rank 1: p = 1/1 = 100% r = 1/10 = 10%
At rank 2: p = 2/2 = 100% r = 2/10 = 20%
… … …
At rank 9: p = 6/9 = 66.7% r = 6/10 = 60%
At rank 10: p = 7/10 = 70% r = 7/10 = 70%

The breakeven point is p = r = 70%. Note that interpolation is needed if
such a point cannot be found. ▀

3.3.3 Receiver Operating Characteristic Curve

A receiver operating characteristic (ROC) curve is a plot of the true posi-
tive rate against the false positive rate. It is also commonly used to evalu-
ate classification results on the positive class in two-class classification
problems. The classifier needs to rank the test cases according to their like-
lihoods of belonging to the positive class with the most likely positive case
ranked at the top. The true positive rate (TPR) is defined as the fraction of
actual positive cases that are correctly classified,

.
FNTP

TP
TPR


 (9)

The false positive rate (FPR) is defined as the fraction of actual negative
cases that are classified to the positive class,

.
FPTN

FP
FPR


 (10)

TPR is basically the recall of the positive class and is also called sensitiv-
ity in statistics. There is also another measure in statistics called specific-
ity, which is the true negative rate (TNR), or the recall of the negative
class. TNR is defined as follows:

84 3 Supervised Learning

.
FPTN

TN
TNR


 (11)

From Equations (10) and (11), we can see the following relationship,

.1 yspecificitFPR  (12)

Fig. 3.8 shows the ROC curves of two example classifiers (C1 and C2) on
the same test data. Each curve starts from (0, 0) and ends at (1, 1). (0, 0)
represents the situation where every test case is classified as negative, and
(1, 1) represents the situation where every test case is classified as positive.
This is the case because we can treat the classification result as a ranking
of the test cases in the positive class, and we can partition the ranked list at
any point into two parts with the upper part assigned to the positive class
and the lower part assigned to the negative class. We will see shortly that
an ROC curve is drawn based on such partitions. In Fig. 3.8, we also see
the main diagonal line, which represents random guessing, i.e., predicting
each case to be positive with a fixed probability. In this case, it is clear that
for every FPR value, TPR has the same value, i.e., TPR = FPT.

For classifier evaluation using the ROC curves in Fig. 3.8, we want to
know which classifier is better. The answer is that when FPR is less than
0.43, C1 is better, and when FPR is greater than 0.43, C2 is better.

However, sometimes this is not a satisfactory answer because we cannot
say any one of the classifiers is strictly better than the other. For an overall
comparison, researchers often use the area under the ROC curve (AUC).
If the AUC value for a classifier Ci is greater than that of another classifier
Cj, it is said that Ci is better than Cj. If a classifier is perfect, its AUC value
is 1. If a classifier makes all random guesses, its AUC value is 0.5.

C2

C1

Fig. 3.8. ROC curves for two classifiers (C1 and C2) on the same data

3.3 Classifier Evaluation 85

Let us now describe how to draw an ROC curve given the classification
result as a ranking of test cases. The ranking is obtained by sorting the test
cases in decreasing order of the classifier’s output values (e.g., posterior
probabilities). We then partition the rank list into two subsets (or parts) at
every test case and regard every test case in the upper part (with higher
classifier output value) as a positive case and every test case in the lower
part as a negative case. For each such partition, we compute a pair of TPR
and FPR values. When the upper part is empty, we obtain the point (0, 0)
on the ROC and when the lower part is empty, we obtain the point (1, 1).
Finally, we simply connect the adjacent points.

Example 13: We have 10 test cases. A classifier has been built, and it has
ranked the 10 test cases as shown in the second row of Table 3.4 (the num-
bers in row 1 are the rank positions, with 1 being the highest rank and 10
the lowest). The second row shows the actual class of each test case. “+”
means that the test case is from the positive class, and “–” means that it is
from the negative class. All the results needed for drawing the ROC curve
are shown in rows 3–8 in Table 3.4. The ROC curve is given in Fig. 3.9.

Table 3.4. Computations for drawing an ROC curve

Rank 1 2 3 4 5 6 7 8 9 10
Actual class + + – – + – – + – –

TP 0 1 2 2 2 3 3 3 4 4 4
FP 0 0 0 1 2 2 3 4 4 5 6
TN 6 6 6 5 4 4 3 2 2 1 0
FN 4 3 2 2 2 1 1 1 0 0 0

TPR 0 0.25 0.5 0.5 0.5 0.75 0.75 0.75 1 1 1
FPR 0 0 0 0.17 0.33 0.33 0.50 0.67 0.67 0.83 1

Fig. 3.9. ROC curve for the data shown in Table 3.4 ▀

86 3 Supervised Learning

3.3.4 Lift Curve

The lift curve (also called the lift chart) is similar to the ROC curve. It is
also for evaluation of two-class classification tasks, where the positive
class is the target of interest and usually the rare class. It is often used in
direct marketing applications to link classification results to costs and prof-
its. For example, a mail order company wants to send promotional materi-
als to potential customers to sell an expensive watch. Since printing and
postage cost money, the company needs to build a classifier to identify
likely buyers, and only sends the promotional materials to them. The ques-
tion is how many should be sent. To make the decision, the company needs
to balance the cost and profit (if a watch is sold, the company makes a cer-
tain profit, but to send each letter there is a fixed cost). The lift curve pro-
vides a nice tool to enable the marketer to make the decision.

Like an ROC curve, to draw a lift curve, the classifier needs to produce
a ranking of the test cases according to their likelihoods of belonging to the
positive class with the most likely positive case ranked at the top. After the
ranking, the test cases are divided into N equal-sized bins (N is usually 10
– 20). The actual positive cases in each bin are then counted. A lift curve is
drawn with the x-axis being the percentages of test data (or bins) and the y-
axis being the percentages of cumulative positive cases from the first bin
to the current bin. A lift curve usually also includes a line (called the base-
line) along the main diagonal [from (0, 0) to (100, 100)] which represents
the situation where the positive cases in the test set are uniformly (or ran-
domly) distributed in the N bins (no learning), i.e., each bin contains 100/N
percent of the positive cases. If the lift curve is above this baseline, learn-
ing is said to be effective. The greater the area between the lift curve and
the baseline, the better the classifier.

Example 14: A company wants to send promotional materials to potential
buyers to sell an expensive brand of watches. It builds a classification
model and tests it on a test data of 10,000 people (test cases) that they col-
lected in the past. After classification and ranking, it decides to divide the
test data into 10 bins with each bin containing 10% of the test cases or
1,000 cases. Out of the 1,000 cases in each bin, there are a certain number
of positive cases (e.g., past buyers). The detailed results are listed in Table
3.5, which includes the number (#) of positive cases and the percentage
(%) of positive cases in each bin, and the cumulative percentage for that
bin. The cumulative percentages are used in drawing the lift curve which is
given in Fig. 3.10. We can see that the lift curve is way above the baseline,
which means that the learning is highly effective.

Suppose printing and postage cost $1.00 for each letter, and the sale of
each watch makes $100 (assuming that each buyer only buys one watch).

3.4 Rule Induction 87

If the company wants to send promotional letters to 3000 people, it will
make $36,000, i.e.,

 $100 × (210 + 120 + 60)  $3,000 = $36,000

Table 3.5. Classification results for the 10 bins

Bin 1 2 3 4 5 6 7 8 9 10
of test cases 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

of positive cases 210 120 60 40 22 18 12 7 6 5
% of positive cases 42.0% 24.0% 12% 8% 4.4% 3.6% 2.4% 1.4% 1.2% 1.0%

% cumulative 42.0% 66.0% 78.0% 86.0% 90.4% 94.0% 96.4% 97.8% 99.0% 100.0%

Fig. 3.10. Lift curve for the data shown in Table 3.5 ▀

3.4 Rule Induction

In Sect. 3.2, we showed that a decision tree can be converted to a set of
rules. Clearly, the set of rules can be used for classification as the tree. A
natural question is whether it is possible to learn classification rules di-
rectly. The answer is yes. The process of learning such rules is called rule
induction or rule learning. We study two approaches in the section.

3.4.1 Sequential Covering

Most rule induction systems use a learning strategy called sequential cov-
ering. A rule-based classifier built with this strategy typically consists of a
list of rules, which is also called a decision list [51]. In the list, the order-
ing of the rules is significant.

88 3 Supervised Learning

The basic idea of sequential covering is to learn a list of rules sequen-
tially, one at a time, to cover the training data. After each rule is learned,
the training examples covered by the rule are removed. Only the remaining
data are used to find subsequent rules. Recall that a rule covers an example
if the example satisfies the conditions of the rule. We study two specific
algorithms based on this general strategy. The first algorithm is based on
the CN2 system [9], and the second algorithm is based on the ideas in
FOIL [50], I-REP [21], REP [7], and RIPPER [106] systems. Many ideas
are also taken from [45].

Algorithm 1 (Ordered Rules)

This algorithm learns each rule without pre-fixing a class. That is, in each
iteration, a rule of any class may be found. Thus rules of different classes
may intermix in the final rule list. The ordering of rules is important.

This algorithm is given in Fig. 3.11. D is the training data. RuleList is
the list of rules, which is initialized to empty set (line 1). Rule is the best
rule found in each iteration. The function learn-one-rule-1() learns the Rule
(lines 2 and 6). The stopping criteria for the while-loop can be of various
kinds. Here we use D =  or Rule is NULL (a rule is not learned). Once a
rule is learned from the data, it is inserted into RuleList at the end (line 4).
All the training examples that are covered by the rule are removed from
the data (line 5). The remaining data is used to find the next rule and so on.
After rule learning ends, a default class is inserted at the end of RuleList.
This is because there may still be some training examples that are not cov-
ered by any rule as no good rule can be found from them, or because some
test cases may not be covered by any rule and thus cannot be classified.
The final list of rules is as follows:

<r1, r2, …, rk, default-class> (13)

where ri is a rule.

Algorithm 2 (Ordered Classes)

This algorithm learns all rules for each class together. After rule learning
for one class is completed, it moves to the next class. Thus all rules for
each class appear together in the rule list. The sequence of rules for each
class is unimportant, but the rule subsets for different classes are ordered.
Typically, the algorithm finds rules for the least frequent class first, then
the second least frequent class and so on. This ensures that some rules are
learned for rare classes. Otherwise, they may be dominated by frequent
classes and end up with no rules if considered after frequent classes.

3.4 Rule Induction 89

The algorithm is given in Fig. 3.12. The data set D is split into two sub-
sets, Pos and Neg, where Pos contains all the examples of class c from D,
and Neg the rest of the examples in D (line 3). c is the class that the algo-
rithm is working on now. Two stopping conditions for rule learning of
each class are in line 4 and line 6. The other parts of the algorithm are
quite similar to those of the first algorithm in Fig. 3.11. Both learn-one-
rule-1() and learn-one-rule-2() functions are described in Sect. 3.4.2.

Use of Rules for Classification

To use a list of rules for classification is straightforward. For a test case,
we simply try each rule in the list sequentially. The class of the first rule

Algorithm sequential-covering-1(D)
1 RuleList  ;
2 Rule  learn-one-rule-1(D);
3 while Rule is not NULL AND D   do
4 RuleList  insert Rule at the end of RuleList;
5 Remove from D the examples covered by Rule;
6 Rule  learn-one-rule-1(D)
7 endwhile
8 insert a default class c at the end of RuleList, where c is the majority class

in D;
9 return RuleList

Fig. 3.11. The first rule learning algorithm based on sequential covering

Algorithm sequential-covering-2(D, C)
1 RuleList  ; // empty rule set at the beginning
2 for each class c  C do
3 prepare data (Pos, Neg), where Pos contains all the examples of class

c from D, and Neg contains the rest of the examples in D;
4 while Pos   do
5 Rule  learn-one-rule-2(Pos, Neg, c);
6 if Rule is NULL then
7 exit-while-loop
8 else RuleList  insert Rule at the end of RuleList;
9 Remove examples covered by Rule from (Pos, Neg)
10 endif
11 endwhile
12 endfor
13 return RuleList

Fig. 3.12. The second rule learning algorithm based on sequential covering

90 3 Supervised Learning

that covers this test case is assigned as the class of the test case. Clearly, if
no rule applies to the test case, the default class is used.

3.4.2 Rule Learning: Learn-One-Rule Function

We now present the function learn-one-rule(), which works as follows: It
starts with an empty set of conditions. In the first iteration, one condition is
added. In order to find the best condition to add, all possible conditions are
tried, which form candidate rules. A condition is of the form Ai op v,
where Ai is an attribute and v is a value of Ai. We also called it an attrib-
ute-value pair. For a discrete attribute, op is “=”. For a continuous attrib-
ute, op  {>, }. The algorithm evaluates all the candidates to find the best
one (the rest are discarded). After the first best condition is added, it tries
to add the second condition and so on in the same fashion until some stop-
ping condition is satisfied. Note that we omit the rule class here because it
is implied, i.e., the majority class of the data covered by the conditions.

This is a heuristic and greedy algorithm in that after a condition is add-
ed, it will not be changed or removed through backtracking. Ideally, we
would want to try all possible combinations of attributes and values. How-
ever, this is not practical as the number of possibilities grows exponen-
tially. Hence, in practice, the above greedy algorithm is used. However, in-
stead of keeping only the best set of conditions, we can improve the
function a little by keeping k best sets of conditions (k > 1) in each itera-
tion. This is called the beam search (k beams), which ensures that a larger
space is explored. Below, we present two specific implementations of the
algorithm, namely learn-one-rule-1() and learn-one-rule-2(). learn-one-
rule-1() is used in the sequential-covering-1 algorithm, and learn-one-rule-
2() is used in the sequential-covering-2 algorithm.

Learn-One-Rule-1
This function uses beam search (Fig. 3.13). The number of beams is k.
BestCond stores the conditions of the rule to be returned. The class is omit-
ted as it is the majority class of the data covered by BestCond. candidate-
CondSet stores the current best condition sets (which are the frontier
beams) and its size is less than or equal to k. Each condition set contains a
set of conditions connected by “and” (conjunction). newCandidateCondSet
stores all the new candidate condition sets after adding each attribute-value
pair (a possible condition) to every candidate in candidateCondSet (lines
5–11). Lines 13–17 update the BestCond. Specifically, an evaluation func-
tion is used to assess whether each new candidate condition set is better
than the existing best condition set BestCond (line 14). If so, it replaces the

3.4 Rule Induction 91

current BestCond (line 15). Line 18 updates candidateCondSet, which se-
lects k new best condition sets (new beams).

Once the final BestCond is found, it is evaluated to see if it is signifi-
cantly better than without any condition () using a threshold (line 20). If
yes, a rule will be formed using BestCond and the most frequent (or the
majority) class of the data covered by BestCond (line 21). If not, NULL is
returned to indicate that no significant rule is found.

Function learn-one-rule-1(D)
1 BestCond  ; // rule with no condition.
2 candidateCondSet  {BestCond};
3 attributeValuePairs  the set of all attribute-value pairs in D of the form

(Ai op v), where Ai is an attribute and v is a value or an interval;
4 while candidateCondSet   do
5 newCandidateCondSet  ;
6 for each candidate cond in candidateCondSet do
7 for each attribute-value pair a in attributeValuePairs do
8 newCond  cond  {a};
9 newCandidateCondSet  newCandidateCondSet  {newCond}
10 endfor
11 endfor
12 remove duplicates and inconsistencies, e.g., {Ai = v1, Ai = v2};
13 for each candidate newCond in newCandidateCondSet do
14 if evaluation(newCond, D) > evaluation(BestCond, D) then
15 BestCond  newCond
16 endif
17 endfor
18 candidateCondSet  the k best members of newCandidateCondSet

according to the results of the evaluation function;
19 endwhile
20 if evaluation(BestCond, D) – evaluation(, D) > threshold then
21 return the rule: “BestCond  c” where is c the majority class of the data

covered by BestCond
22 else return NULL
23 endif

Fig. 3.13. The learn-one-rule-1 function

Function evaluation(BestCond, D)
1 D  the subset of training examples in D covered by BestCond;
2  


||

1 2)Pr(log)Pr()'(C

j
jj ccDentropy ;

3 return – entropy(D’) // since entropy measures impurity.

Fig. 3.14. The entropy based evaluation function

92 3 Supervised Learning

The evaluation() function (Fig. 3.14) uses the entropy function as in the
decision tree learning. Other evaluation functions are possible too. Note
that when BestCond = , it covers every example in D, i.e., D = D.

Learn-One-Rule-2

In the learn-one-rule-2() function (Fig. 3.14), a rule is first generated and
then it is pruned. This method starts by splitting the positive and negative
training data Pos and Neg, into growing and pruning sets. The growing
sets, GrowPos and GrowNeg, are used to generate a rule, called BestRule.
The pruning sets, PrunePos and PruneNeg are used to prune the rule be-
cause BestRule may overfit the data. Note that PrunePos and PruneNeg
are actually validation sets discussed in Sects. 3.2.4 and 3.3.1.

growRule() function: growRule() generates a rule (called BestRule) by
repeatedly adding a condition to its condition set that maximizes an
evaluation function until the rule covers only some positive examples in
GrowPos but no negative examples in GrowNeg. This is basically the
same as lines 4–17 in Fig. 3.13, but without beam search (i.e., only the best
rule is kept in each iteration). Let the current partially developed rule be R:

R: av1, .., avk  class

where each avj is a condition (an attribute-value pair). By adding a new
condition avk+1, we obtain the rule R+: av1, .., avk, avk+1 class. The evalu-
ation function for R+ is the following information gain criterion (which is
different from the gain function used in decision tree learning):
















00

0

11

1
1 22 loglog),(

np

p

np

p
pRRgain (14)

where p0 (respectively, n0) is the number of positive (negative) examples
covered by R in Pos (Neg), and p1 (n1) is the number of positive (negative)
examples covered by R+ in Pos (Neg). The GrowRule() function simply re-

Function learn-one-rule-2(Pos, Neg, class)
1 split (Pos, Neg) into (GrowPos, GrowNeg) and (PrunePos, PruneNeg)
2 BestRule  GrowRule(GrowPos, GrowNeg, class) // grow a new rule
3 BestRule  PruneRule(BestRule, PrunePos, PruneNeg) // prune the rule
4 if the error rate of BestRule on (PrunePos, PruneNeg) exceeds 50% then
5 return NULL
6 endif
7 return BestRule

Fig. 3.15. The learn-one-rule-2() function

3.5 Classification Based on Associations 93

turns the rule R+ that maximizes the gain.

PruneRule() function: To prune a rule, we consider deleting every subset
of conditions from the BestRule, and choose the deletion that maximizes:

,),,(
np

np
PruneNegPrunePosBestRulev




 (15)

where p (respectively n) is the number of examples in PrunePos (Prune-
Neg) covered by the current rule (after a deletion).

3.4.3 Discussion

Separate-and-Conquer vs. Divide-and-Conquer: Decision tree learning
is said to use the divide-and-conquer strategy. At each step, all attributes
are evaluated and one is selected to partition/divide the data into m disjoint
subsets, where m is the number of values of the attribute. Rule induction
discussed in this section is said to use the separate-and-conquer strategy,
which evaluates all attribute-value pairs (conditions) (which are much lar-
ger in number than the number of attributes) and selects only one. Thus,
each step of divide-and-conquer expands m rules, while each step of sepa-
rate-and-conquer expands only one rule. Due to both effects, the separate-
and-conquer strategy is much slower than the divide-and-conquer strategy.
Rule Understandability: If-then rules are easy to understand by human
users. However, a word of caution about rules generated by sequential
covering is in order. Such rules can be misleading because the covered da-
ta are removed after each rule is generated. Thus the rules in the rule list
are not independent of each other. A rule r may be of high quality in the
context of the data D from which r was generated. However, it may be a
weak rule with a very low accuracy (confidence) in the context of the
whole data set D (D  D) because many training examples that can be
covered by r have already been removed by rules generated before r. If
you want to understand the rules and possibly use them in some real-world
tasks, you should be aware of this fact.

3.5 Classification Based on Associations

In Sect. 3.2, we showed that a decision tree can be converted to a set of
rules, and in Sect. 3.4, we saw that a set of rules may also be found directly
for classification. It is thus only natural to expect that association rules, in
particular class association rules (CAR), may be used for classification

94 3 Supervised Learning

too. Yes, indeed! In fact, normal association rules can be employed for
classification as well as we will see in Sect. 3.5.3. CBA, which stands for
Classification Based on Associations, is the first reported system that uses
association rules for classification [39]. Classifiers built using association
rules are often called associative classifiers. In this section, we describe
three approaches to employing association rules for classification:

1. Using class association rules for classification directly.
2. Using class association rules as features or attributes.
3. Using normal (or classic) association rules for classification.

The first two approaches can be applied to tabular data or transactional
data. The last approach is usually employed for transactional data only. All
these methods are useful in the Web environment as many types of Web
data are in the form of transactions, e.g., search queries issued by users,
and Web pages clicked by visitors. Transactional data sets are difficult to
handle by traditional classification techniques, but are very natural for as-
sociation rules. Below, we describe the three approaches in turn. We
should note that various sequential rules can be used for classification in
similar ways as well if sequential data sets are involved.

3.5.1 Classification Using Class Association Rules

Recall that a class association rule (CAR) is an association rule with only a
class label on the right-hand side of the rule as its consequent (Sect. 2.5).
For instance, from the data in Table 3.1, the following rule can be found:

Own_house = false, Has_job = true  Class = Yes [sup=3/15, conf=3/3],

which was also a rule from the decision tree in Fig. 3.3. In fact, there is no
difference between rules from a decision tree (or a rule induction system)
and CARs if we consider only categorical (or discrete) attributes (more on
this later). The differences are in the mining processes and the final rule
sets. CAR mining finds all rules in data that satisfy the user-specified min-
imum support (minsup) and minimum confidence (minconf) constraints. A
decision tree or a rule induction system finds only a subset of the rules
(expressed as a tree or a list of rules) for classification.

Example 15: Recall that the decision tree in Fig. 3.3 gives the following
three rules:

Own_house = true  Class =Yes [sup=6/15, conf=6/6]
Own_house = false, Has_job = true  Class=Yes [sup=3/15, conf=3/3]
Own_house = false, Has_job = false  Class=No [sup=6/15, conf=6/6].

3.5 Classification Based on Associations 95

However, there are many other rules that exist in data, e.g.,

Age = young, Has_job = true  Class=Yes [sup=2/15, conf=2/2]
Age = young, Has_job = false  Class=No [sup=3/15, conf=3/3]
Credit_rating = fair  Class=No [sup=4/15, conf=4/5]

and many more, if we use minsup = 2/15 = 13.3% and minconf = 70%. ▀

In many cases, rules that are not in the decision tree (or a rule list) may
be able to perform classification more accurately. Empirical comparisons
reported by several researchers show that classification using CARs can
perform more accurately on many data sets than decision trees and rule in-
duction systems (see Bibliographic Notes for references).
 The complete set of rules from CAR mining is also beneficial from a
rule usage point of view. In some applications, the user wants to act on
some interesting rules. For example, in an application for finding causes of
product problems, more rules are preferred to fewer rules because with
more rules, the user is more likely to find rules that indicate causes of the
problems. Such rules may not be generated by a decision tree or a rule in-
duction system. A deployed data mining system based on CARs is re-
ported in [41]. We should, however, also bear in mind of the following:

1. Decision tree learning and rule induction do not use the minsup or min-
conf constraint. Thus, some rules that they find can have very low sup-
ports, which, of course, are likely to be pruned because the chance that
they overfit the training data is high. Although we can set a low minsup
for CAR mining, it may cause combinatorial explosion. In practice, in
addition to minsup and minconf, a limit on the total number of rules to
be generated may be used to further control the CAR generation proc-
ess. When the number of generated rules reaches the limit, the algorithm
stops. However, with this limit, we may not be able to generate long
rules (with many conditions). Recall that the Apriori algorithm works in
a level-wise fashion, i.e., short rules are generated before long rules. In
some applications, this might not be an issue as short rules are often pre-
ferred and are sufficient for classification or for action. Long rules nor-
mally have very low supports and tend to overfit the data. However, in
some other applications, long rules can be useful.

2. CAR mining does not use continuous (numeric) attributes, while deci-
sion trees deal with continuous attributes naturally. Rule induction can
use continuous attributes as well. There is still no satisfactory method to
deal with such attributes directly in association rule mining. Fortunately,
many attribute discretization algorithms exist that can automatically dis-
cretize the value range of a continuous attribute into suitable intervals
[16, 19], which are then considered as discrete values.

96 3 Supervised Learning

Mining Class Association Rules for Classification
There are many techniques that use CARs to build classifiers. Before de-
scribing them, let us first discuss some issues related to CAR mining for
classification. Since a CAR mining algorithm has been discussed in Sect.
2.5, we will not repeat it here.

Rule Pruning: CAR rules are highly redundant, and many of them are not
statistically significant (which can cause overfitting). Rule pruning is thus
needed. The idea of pruning CARs is basically the same as that in decision
tree building or rule induction. Thus, we will not discuss it further (see [36,
39] for some of the pruning methods).

Multiple Minimum Class Supports: As discussed in Sect. 2.5.3, a single
minsup is inadequate for mining CARs because many practical classifica-
tion data sets have uneven class distributions, i.e., some classes cover a
large proportion of the data, while others cover only a very small propor-
tion (which are called rare or infrequent classes).

Example 16: Suppose we have a dataset with two classes, Y and N. 99% of
the data belong to the Y class, and only 1% of the data belong to the N
class. If we set minsup = 1.5%, we will not find any rule for class N. To
solve the problem, we need to lower down the minsup. Suppose we set
minsup = 0.2%. Then, we may find a huge number of overfitting rules for
class Y because minsup = 0.2% is too low for class Y. ▀

Multiple minimum class supports can be applied to deal with the prob-
lem. We can assign a different minimum class support minsupi for each
class ci, i.e., all the rules of class ci must satisfy minsupi. Alternatively, we
can provide one single total minsup, denoted by t_minsup, which is then
distributed to each class according to the class distribution:

minsupi = t_minsup  sup(ci) (16)

where sup(ci) is the support of class ci in training data. The formula gives
frequent classes higher minsups and infrequent classes lower minsups.
Parameter Selection: The parameters used in CAR mining are the mini-
mum supports and the minimum confidences. Note that a different mini-
mum confidence may also be used for each class. However, minimum con-
fidences do not affect the classification much because classifiers tend to
use high confidence rules. One minimum confidence is sufficient as long
as it is not set too high. To determine the best minsupi for each class ci, we
can try a range of values to build classifiers and then use a validation set to
select the final value. Cross-validation may be used as well.

3.5 Classification Based on Associations 97

Data Formats: The algorithm for CAR mining given in Sect. 2.5.2 is for
mining transaction data sets. However, many classification data sets are in
the table format. As we discussed in Sect. 2.3, a tabular data set can be eas-
ily converted to a transaction data set.

Classifier Building

After all CAR rules are found, a classifier is built using the rules. There are
many existing approaches, which can be grouped into three categories.

Use the Strongest Rule: This is perhaps the simplest strategy. It simply
uses CARs directly for classification. For each test instance, it finds the
strongest rule that covers the instance. Recall that a rule covers an instance
if the instance satisfies the conditions of the rule. The class of the strongest
rule is then assigned as the class of the test instance. The strength of a rule
can be measured in various ways, e.g., based on confidence, 2 test, or a
combination of both support and confidence values.

Select a Subset of the Rules to Build a Classifier: The representative me-
thod of this category is the one used in the CBA system. The method is
similar to the sequential covering method, but applied to class association
rules with additional enhancements as discussed above.

Let the set of all discovered CARs be S. Let the training data set be D.
The basic idea is to select a subset L ( S) of high confidence rules to cov-
er the training data D. The set of selected rules, including a default class, is
then used as the classifier. The selection of rules is based on a total order
defined on the rules in S.

Definition: Given two rules, ri and rj, ri rj (also called ri precedes rj or ri

has a higher precedence than rj) if
1. the confidence of ri is greater than that of rj, or
2. their confidences are the same, but the support of ri is greater than

that of rj, or
3. both the confidences and supports of ri and rj are the same, but ri is

generated earlier than rj.

A CBA classifier L is of the form:
 L = <r1, r2, …, rk, default-class>

where ri  S, ra rb if b > a. In classifying a test case, the first rule that
satisfies the case classifies it. If no rule applies to the case, it takes the de-
fault class (default-class). A simplified version of the algorithm for build-
ing such a classifier is given in Fig. 3.16. The classifier is the RuleList.

98 3 Supervised Learning

This algorithm can be easily implemented by making one pass through
the training data for every rule. However, this is extremely inefficient for
large data sets. An efficient algorithm that makes at most two passes over
the data is given in [39].

Combine Multiple Rules: Like the first approach, this approach does not
take any additional step to build a classifier. At the classification time, for
each test instance, the system first finds the subset of rules that covers the
instance. If all the rules in the subset have the same class, the class is as-
signed to the test instance. If the rules have different classes, the system
divides the rules into groups according to their classes, i.e., all rules of the
same class are in the same group. The system then compares the aggre-
gated effects of the rule groups and finds the strongest group. The class la-
bel of the strongest group is assigned to the test instance. To measure the
strength of each rule group, there again can be many possible techniques.
For example, the CMAR system uses a weighted 2 measure [36].

3.5.2 Class Association Rules as Features

In the above two methods, rules are directly used for classification. In this
method, rules are used as features to augment the original data or simply
form a new data set, which is then fed to a classification algorithm, e.g.,
decision trees or the naïve Bayesian method. Such features were found to
be particularly effective for text-based classification applications.

To use CARs as features, only the conditional part of each CAR rule is
needed, and it is often treated as a Boolean feature/attribute. If a data in-
stance in the original data contains the conditional part, the value of the
feature/attribute is set to 1, otherwise it is set to 0. Several applications of
this method have been reported [2, 13, 27, 31]. The reason that such CAR-
based features are helpful is that they capture multi-attribute or multi-item

Algorithm CBA(S, D)
1 S = sort(S); // sorting is done according to the precedence
2 RuleList = ; // the rule list classifier
3 for each rule r  S in sequence do
4 if D   AND r classifies at least one example in D correctly then
5 delete from D all training examples covered by r;
6 add r at the end of RuleList
7 endif
8 endfor
9 add the majority class as the default class at the end of RuleList

Fig. 3.16. A simple classifier building algorithm

3.5 Classification Based on Associations 99

correlations with class labels, which are useful for classification but are not
considered by many classification algorithms (e.g., naïve Bayesian).

3.5.3 Classification Using Normal Association Rules

Not only can class association rules be used for classification, but also
normal association rules. For example, association rules are commonly
used in e-commerce Web sites for product recommendations, which work
as follows: When a customer purchases some products, the system will
recommend him/her some other related products based on what he/she has
already purchased (see Chap. 12).

Recommendation is essentially a classification or prediction problem. It
predicts what a customer is likely to buy. Association rules are naturally
applicable to such applications. The classification process is as follows:

1. The system first uses previous purchase transactions (the same as mar-
ket basket transactions) to mine association rules. In this case, there are
no fixed classes. Any item can appear on the left-hand side or the right-
hand side of a rule. For recommendation purposes, usually only one
item appears on the right-hand side of a rule.

2. At the prediction (e.g., recommendation) time, given a transaction (e.g.,
a set of items already purchased by a customer), all the rules that cover
the transaction are selected. The strongest rule is chosen and the item on
the right-hand side of the rule (i.e., the consequent) is then the predicted
item and is recommended to the user. If multiple rules are very strong,
multiple items can be recommended.

This method is basically the same as the “use the strongest rule” method
described in Sect. 3.5.1. Again, the rule strength can be measured in vari-
ous ways, e.g., confidence, 2 test, or a combination of both support and
confidence. For example, in [38], the product of support and confidence is
used as the rule strength. Clearly, the other two methods discussed in Sect.
3.5.1 can be applied as well.

The key advantage of using association rules for recommendation is that
they can predict any item since any item can be the class item on the right-
hand side. Traditional classification algorithms only work with a single
fixed class attribute, and are not easily applicable to recommendations.

Finally, we note that multiple minimum supports (Sect. 2.4) can be of
significant help. Otherwise, rare items will never be recommended, which
causes the coverage problem (see Sect. 12.3.3). It is shown in [46] that us-
ing multiple minimum supports can dramatically increase the coverage.

100 3 Supervised Learning

3.6 Naïve Bayesian Classification

Supervised learning can be naturally studied from a probabilistic point of
view. The task of classification can be regarded as estimating the class
posterior probabilities given a test example d, i.e.,

Pr(C= cj | d). (17)

We then see which class cj is more probable. The class with the highest
probability is assigned to the example d.

Formally, let A1, A2, …, A|A| be the set of attributes with discrete values
in the data set D. Let C be the class attribute with |C| values, c1, c2, …, c|C|.
Given a test example d with observed attribute values a1 through a|A|,
where ai is a possible value of Ai (or a member of the domain of Ai), i.e.,

 d = <A1=a1, , A|A|=a|A|>.

The prediction is the class cj such that Pr(C=cj | A1=a1, , A|A|=a|A|) is
maximal. cj is called a maximum a posteriori (MAP) hypothesis.

By Bayes’ rule, the above quantity (17) can be expressed as

.
)Pr()|,...,Pr(

)Pr()|,...,Pr(
),...,Pr(

)Pr()|,...,Pr(

),...,|Pr(

||

1
||||11

||||11

||||11

||||11

||||11
















C

k
kkAA

jjAA

AA

jjAA

AAj

cCcCaAaA

cCcCaAaA

aAaA

cCcCaAaA

aAaAcC

 (18)

Pr(C=cj) is the class prior probability of cj, which can be estimated from
the training data. It is simply the fraction of the data in D with class cj.

If we are only interested in making a classification, Pr(A1=a1, ...,
A|A|=a|A|) is irrelevant for decision making because it is the same for every
class. Thus, only Pr(A1=a1, ..., A|A|=a|A| | C=cj) needs to be computed,
which can be written as

Pr(A1=a1, ..., A|A|=a|A| | C=cj)
= Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj)Pr(A2=a2, ..., A|A|=a|A| | C=cj).

(19)

Recursively, the second term above (i.e., Pr(A2=a2, ..., A|A|=a|A||C=cj))
can be written in the same way (i.e., Pr(A2=a2|A3=a3 ..., A|A|=a|A|, C=cj)
Pr(A3=a3, ..., A|A|=a|A||C=cj)), and so on. However, to further our derivation,
we need to make an important assumption.
Conditional independence assumption: We assume that all attributes are
conditionally independent given the class C = cj. Formally, we assume,

3.6 Naïve Bayesian Classification 101

Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj) = Pr(A1=a1 | C=cj) (20)

and similarly for A2 through A|A|. We then obtain





||

1
||||11)|Pr()|,...,Pr(

A

i
jiijAA cCaAcCaAaA (21)

.
)|Pr()Pr(

)|Pr()Pr(

),...,|Pr(

||

1

||

1

||

1

||||11

 



 










C

k

A

i
kiik

A

i
jiij

AAj

cCaAcC

cCaAcC

aAaAcC

(22)

Next, we need to estimate the prior probabilities Pr(C=cj) and the conditional
probabilities Pr(Ai=ai | C=cj) from the training data, which are straightforward.

set data in the examples ofnumber total
 class of examples ofnumber

)Pr(j
j

c
cC  (23)

.
 class of examples ofnumber

 class and with examples ofnumber
)|Pr(

j

jii
jii c

caA
cCaA


 (24)

If we only need a decision on the most probable class for each test in-
stance, we only need the numerator of Equation (22) since the denominator
is the same for every class. Thus, given a test case, we compute the follow-
ing to decide the most probable class for the test case:





||

1

)|Pr()Pr(maxarg
A

i
jiij

c
cCaAcCc

j

 (25)

Example 17: Suppose that we have the training data set in Fig. 3.17,
which has two attributes A and B, and the class C. We can compute all the
probability values required to learn a naïve Bayesian classifier.

A B C
m b t
m s t
g q t
h s t
g q t
g q f
g s f
h b f
h q f
m b f

Fig. 3.17. An example of a training data set

102 3 Supervised Learning

Pr(C = t) = 1/2, Pr(C= f) = 1/2

Pr(A=m | C=t) = 2/5 Pr(A=g | C=t) = 2/5 Pr(A=h | C=t) = 1/5
Pr(A=m | C=f) = 1/5 Pr(A=g | C=f) = 2/5 Pr(A=h | C=f) =2/5
Pr(B=b | C=t) = 1/5 Pr(B=s | C=t) = 2/5 Pr(B=q | C=t) = 2/5
Pr(B=b | C=f) = 2/5 Pr(B=s | C=f) = 1/5 Pr(B=q | C=f) = 2/5

Now we have a test example:
 A = m B = q C = ?

We want to know its class. Equation (25) is applied. For C = t, we have

.
25
2

5
2

5
2

2
1)|Pr()Pr(

2

1

 
j

jj tCaAtC

For class C = f, we have

.
25
1

5
2

5
1

2
1)|Pr()Pr(

2

1

 
j

jj fCaAfC

Since C = t is more probable, t is the predicted class of the test case. ▀

It is easy to see that the probabilities (i.e., Pr(C=cj) and Pr(Ai=ai | C=cj))
required to build a naïve Bayesian classifier can be found in one scan of
the data. Thus, the algorithm is linear in the number of training examples,
which is one of the great strengths of the naïve Bayes, i.e., it is extremely
efficient. In terms of classification accuracy, although the algorithm makes
the strong assumption of conditional independence, several researchers
have shown that its classification accuracies are surprisingly strong. See
experimental comparisons of various techniques in [15, 29, 40].

To learn practical naïve Bayesian classifiers, we still need to address
some additional issues: how to handle numeric attributes, zero counts, and
missing values. Below, we deal with each of them in turn.

Numeric Attributes: The above formulation of the naïve Bayesian learn-
ing assumes that all attributes are categorical. However, most real-life data
sets have numeric attributes. Therefore, in order to use the naïve Bayeisan
algorithm, each numeric attribute needs to be discretized into intervals.
This is the same as for class association rule mining. Existing discretiza-
tion algorithms in [16, 19] can be used.

Zero Counts: It is possible that a particular attribute value in the test set
never occurs together with a class in the training set. This is problematic
because it will result in a 0 probability, which wipes out all the other prob-
abilities Pr(Ai=ai | C=cj) when they are multiplied according to Equation

3.7 Naïve Bayesian Text Classification 103

(25) or Equation (22). A principled solution to this problem is to incorpo-
rate a small-sample correction into all probabilities.

Let nij be the number of examples that have both Ai = ai and C = cj. Let nj
be the total number of examples with C=cj in the training data set. The un-
corrected estimate of Pr(Ai=ai | C=cj) is nij/nj, and the corrected estimate is

ij

ij
jii mn

n
cCaA







)|Pr((26)

where mi is the number of values of attribute Ai (e.g., 2 for a Boolean at-
tribute), and  is a multiplicative factor, which is commonly set to  = 1/n,
where n is the total number of examples in the training set D [15, 29].
When  = 1, we get the well known Laplace’s law of succession [23]. The
general form of correction (also called smoothing) in Equation (26) is
called the Lidstone’s law of succession [37]. Applying the correction  =
1/n, the probabilities of Example 17 are revised. For example,

Pr(A=m | C=t) = (2+1/10) / (5 + 3*1/10) = 2.1/5.3 = 0.396
Pr(B=b | C=t) = (1+1/10) / (5 + 3*1/10) = 1.1/5.3 = 0.208.

Missing Values: Missing values are ignored, both in computing the prob-
ability estimates in training and in classifying test instances.

3.7 Naïve Bayesian Text Classification

Text classification or categorization is the problem of learning classifica-
tion models from training documents labeled with pre-defined classes.
That learned models are then used to classify future documents. For exam-
ple, we have a set of news articles of three classes or topics, Sport, Politics,
and Science. We want to learn a classifier that is able to classify future
news articles into these classes.

Due to the rapid growth of online documents in organizations and on the
Web, automated document classification is an important problem. Al-
though the techniques discussed in the previous sections can be applied to
text classification, it has been shown that they are not as effective as the
methods presented in this section and in the next two sections. In this sec-
tion, we study a naïve Bayesian learning method that is specifically formu-
lated for texts, which makes use of text specific characteristics. However,
the ideas are similar to those in Sect. 3.6. Below, we first present a prob-
abilistic framework for texts, and then study the naïve Bayesian equations
for their classification. There are several slight variations of this model.
This section is mainly based on the formulation given in [42].

104 3 Supervised Learning

3.7.1 Probabilistic Framework

The naïve Bayesian learning method for text classification is derived based
on a probabilistic generative model. It assumes that each document is
generated by a parametric distribution governed by a set of hidden pa-
rameters. Training data is used to estimate these parameters. The parame-
ters are then applied to classify each test document using Bayes rule by
calculating the posterior probability that the distribution associated with
a class (represented by the unobserved class variable) would have gener-
ated the given document. Classification then becomes a simple matter of
selecting the most probable class.

The generative model is based on two assumptions:

1. The data (or the text documents) are generated by a mixture model.
2. There is a one-to-one correspondence between mixture components and

document classes.

A mixture model models the data with a number of statistical distribu-
tions. Intuitively, each distribution corresponds to a data cluster and the pa-
rameters of the distribution provide a description of the corresponding
cluster. Each distribution in a mixture model is also called a mixture
component (the distribution can be of any kind). Fig. 3.15 plots two
probability density functions of a mixture of two Gaussian distributions
that generate a 1-dimensional data set of two classes, one distribution per
class, whose parameters (denoted by i) are the mean (i) and the standard
deviation (i), i.e., i = (i, i).

Fig. 3.18. Probability density functions of two distributions in a mixture model

Let the number of mixture components (or distributions) in a mixture
model be K, and the jth distribution has the parameters j. Let  be the set
of parameters of all components,  = {1, 2, …, K, 1, 2, …, K}, where
j is the mixture weight (or mixture probability) of the mixture compo-
nent j and j is the set of parameters of component j. The mixture weights

class 1 class 2

3.7 Naïve Bayesian Text Classification 105

are subject to the constraint .11  
K

j j The meaning of mixture weights (or
probabilities) will be clear below.

Let us see how the mixture model generates a collection of documents.
Recall the classes C in our classification problem are c1, c2, …, c|C|. Since
we assume that there is a one-to-one correspondence between mixture
components and classes, each class corresponds to a mixture component.
Thus |C| = K, and the jth mixture component can be represented by its cor-
responding class cj and is parameterized by j. The mixture weights are
class prior probabilities, i.e., j = Pr(cj|). The mixture model generates
each document di by:

1. first selecting a mixture component (or class) according to class prior
probabilities (i.e., mixture weights), j = Pr(cj|);

2. then having this selected mixture component (cj) generate a document di
according to its parameters, with distribution Pr(di|cj; ) or more pre-
cisely Pr(di|cj; j).

The probability that a document di is generated by the mixture model can
be written as the sum of total probability over all mixture components.
Note that to simplify the notation, we use cj instead of C = cj as in the pre-
vious section:

). ;|Pr()Θ|Pr()|Pr(
||

1
 



C

j
jiji cdcd (27)

Since each document is attached with its class label, we can now derive the
naïve Bayesian model for text classification. Note that in the above prob-
ability expressions, we include  to represent their dependency on  as we
employ a generative model. In an actual implementation, we need not be
concerned with , i.e., it can be ignored.

3.7.2 Naïve Bayesian Model

A text document consists of a sequence of sentences, and each sentence
consists of a sequence of words. However, due to the complexity of mod-
eling words sequence and their relationships, several assumptions are
made in the derivation of the Bayesian classifier. That is also why we call
the final classification model, the naïve Bayesian classification model.

Specifically, the naïve Bayesian classification treats each document as a
“bag” of words. Apart from the mixture model assumptions described
above, the generative model also makes the following words and document
length based assumptions:

106 3 Supervised Learning

1. Words of a document are generated independently of their context, that
is, independently of the other words in the same document given the
class label. This is the familiar naïve Bayesian assumption used before.

2. The probability of a word is independent of its position in the document.
For example, the probability of seeing the word “student” in the first po-
sition of the document is the same as seeing it in any other position.

3. Document length is independent of the document class.

With these assumptions, each document can be regarded as generated by a
multinomial distribution. In other words, each document is drawn from a
multinomial distribution of words with as many independent trials as the
length of the document. The words are from a given vocabulary V = {w1,
w2, …, w|V|}, |V| being the number of words in the vocabulary. To see why
this is a multinomial distribution, we give a short introduction to the multi-
nomial distribution.

A multinomial trial is a process that can result in any of k outcomes,
where k  2. Each outcome of a multinomial trial has a probability of oc-
currence. The probabilities of the k outcomes are denoted by p1, p2, …, pk.
For example, the rolling of a die is a multinomial trial, with six possible
outcomes 1, 2, 3, 4, 5, 6. For a fair die, p1 = p2 = … = pk = 1/6.

Now assume n independent trials are conducted, each with the k possi-
ble outcomes and the k probabilities, p1, p2, …, pk. Let us number the out-
comes 1, 2, 3, …, k. For each outcome, let Xt denote the number of trials
that result in that outcome. Then, X1, X2, …, Xk are discrete random vari-
ables. The collection of X1, X2, …, Xk is said to have the multinomial dis-
tribution with parameters, n, p1, p2, …, pk.

In our context, n corresponds to the length of a document, and the out-
comes correspond to all the words in the vocabulary V (k = |V|). p1, p2, …,
pk correspond to the probabilities of occurrence of the words in V in a doc-
ument, which are Pr(wt|cj; ). Xt is a random variable representing the
number of times that word wt appears in a document. We can thus directly
apply the probability function of the multinomial distribution to find the
probability of a document given its class (including the probability of doc-
ument length, Pr(|di|), which is assumed to be independent of the class):







||

1 !
);|Pr(

|!||)Pr(|);|Pr(
V

t ti

N
jt

iiji N

cw
ddcd

ti

, (28)

where Nti is the number of times that word wt occurs in document di,

||
||

1
i

V

t
ti dN 



, and 



||

1
1);|Pr(

V

t
jt cw . (29)

3.7 Naïve Bayesian Text Classification 107

The parameters j of the generative component for each class cj are the
probabilities of all words wt in V, written as Pr(wt|cj; ), and the probabili-
ties of document lengths, which are the same for all classes (or mixture
components) due to our assumption.

Parameter Estimation: The parameters can be estimated from the train-
ing data D = {D1, D2, …, D|C|}, where Dj is the subset of documents for
class cj (recall |C| is the number of classes). The vocabulary V is the set of
all distinctive words in D. Note that we do not need to estimate the prob-
ability of each document length as it is not used in our final classifier. The
estimate of  is written as ̂ . The parameters are estimated based on em-
pirical counts.

The estimated probability of word wt given class cj is simply the number
of times that wt occurs in the training data Dj (of class cj) divided by the to-
tal number of word occurrences in the training data for that class:

.
)|Pr(

)|Pr(
)ˆ;|Pr(||

1

||

1

||

1

 

 


V

s

D

i ijsi

D

i ijti

jt
dcN

dcN
cw (30)

In Equation (30), we do not use Dj explicitly. Instead, we include Pr(cj|di)
to achieve the same effect because Pr(cj|di) = 1 for each document in Dj
and Pr(cj|di) = 0 for documents of other classes. Again, Nti is the number of
times that word wt occurs in document di.

In order to handle 0 counts for infrequently occurring words that do not
appear in the training set, but may appear in the test set, we need to smooth
the probability to avoid probabilities of 0 or 1. This is the same problem as
in Sect. 3.6. The standard way of doing this is to augment the count of
each distinctive word with a small quantity  (0    1) or a fraction of a
word in both the numerator and the denominator. Thus, any word will have
at least a very small probability of occurrence.

.
)|Pr(||

)|Pr(
)ˆ;|Pr(||

1

||

1

||

1

 


 








V

s

D

i ijsi

D

i ijti

jt
dcNV

dcN
cw




 (31)

This is called the Lidstone smoothing (Lidstone’s law of succession).
When  = 1, the smoothing is known as the Laplace smoothing. Many
experiments have shown that  < 1 works better for text classification [1].
The best  value for a data set can be found through experiments using a
validation set or through cross-validation.

Finally, class prior probabilities, which are mixture weights j, can be
easily estimated using the training data as well,

108 3 Supervised Learning

.
||

)|Pr(
)ˆ|Pr(

||

1

D

dc
c

D

i ij

j

  (32)

Classification: Given the estimated parameters, at the classification time,
we need to compute the probability of each class cj for the test document
di. That is, we compute the probability that a particular mixture component
cj generated the given document di. Using the Bayes rule and Equations
(27), (28), (31), and (32), we have

,
)ˆ;|Pr()ˆ|Pr(

)ˆ;|Pr()ˆ|Pr(

)ˆ|Pr(
)ˆ;|Pr()ˆ|Pr(

)ˆ;|Pr(

||

1

||

1 ,

||

1 ,

 


 













C

r

d

k rkdr

d

k jkdj

i

jij
ij

i

i

i

i

cwc

cwc

d

cdc
dc

(33)

where wdi,k is the word in position k of document di (which is the same as
using wt and Nti). If the final classifier is to classify each document into a
single class, the class with the highest posterior probability is selected:

).ˆ;|Pr(maxarg  ijCc dc
j

 (34)

3.7.3 Discussion

Most assumptions made by naïve Bayesian learning are violated in prac-
tice. For example, words in a document are clearly not independent of each
other. The mixture model assumption of one-to-one correspondence be-
tween classes and mixture components may not be true either because a
class may contain documents from multiple topics. Despite such viola-
tions, researchers have shown that naïve Bayesian learning produces very
accurate models.

Naïve Bayesian learning is also very efficient. It scans the training data
only once to estimate all the probabilities required for classification. It can
be used as an incremental algorithm as well. The model can be updated
easily as new data comes in because the probabilities can be conveniently
revised. Naïve Bayesian learning is thus widely used for text classification.

The naïve Bayesian formulation presented here is based on a mixture of
multinomial distributions. There is also a formulation based on multi-
variate Bernoulli distributions in which each word in the vocabulary is a
binary feature, i.e., it either appears or does not appear in a document.

3.8 Support Vector Machines 109

Thus, it does not consider the number of times that a word occurs in a doc-
ument. Experimental comparisons show that multinomial formulation con-
sistently produces more accurate classifiers [42].

3.8 Support Vector Machines

Support vector machines (SVM) is another type of learning system [57],
which has many desirable qualities that make it one of most popular algo-
rithms. It not only has a solid theoretical foundation, but also performs
classification more accurately than most other algorithms in many applica-
tions, especially those applications involving very high dimensional data.
For instance, it has been shown by several researchers that SVM is perhaps
the most accurate algorithm for text classification. It is also widely used in
Web page classification and bioinformatics applications.

In general, SVM is a linear learning system that builds two-class clas-
sifiers. Let the set of training examples D be

{(x1, y1), (x2, y2), …, (xn, yn)},

where xi = (xi1, xi2, …, xir) is a r-dimensional input vector in a real-valued
space X  

r, yi is its class label (output value) and yi  {1, -1}. 1 denotes

the positive class and -1 denotes the negative class. Note that we use
slightly different notations in this section. We use y instead of c to repre-
sent a class because y is commonly used to represent a class in the SVM
literature. Similarly, each data instance is called an input vector and de-
noted by a bold face letter. In the following, we use bold face letters for all
vectors.

To build a classifier, SVM finds a linear function of the form

f(x) = w  x + b (35)

so that an input vector xi is assigned to the positive class if f(xi)  0, and to
the negative class otherwise, i.e.,









0if1
0if1

b

b
y

i

i
i xw

xw
 (36)

Hence, f(x) is a real-valued function f: X   r . w = (w1, w2, …, wr) 
 r is called the weight vector. b   is called the bias. w  x is the dot
product of w and x (or Euclidean inner product). Without using vector
notation, Equation (35) can be written as:

110 3 Supervised Learning

f(x1, x2, …, xr) = w1x1+w2x2 + … + wrxr + b,

where xi is the variable representing the ith coordinate of the vector x. For
convenience, we will use the vector notation from now on.

In essence, SVM finds a hyperplane

w  x + b = 0 (37)

that separates positive and negative training examples. This hyperplane is
called the decision boundary or decision surface.

Geometrically, the hyperplane w  x + b = 0 divides the input space in-
to two half spaces: one half for positive examples and the other half for
negative examples. Recall that a hyperplane is commonly called a line in a
2-dimensional space and a plane in a 3-dimensional space.

Fig. 3.19(A) shows an example in a 2-dimensional space. Positive in-
stances (also called positive data points or simply positive points) are rep-
resented with small filled rectangles, and negative examples are repre-
sented with small empty circles. The thick line in the middle is the
decision boundary hyperplane (a line in this case), which separates positive
(above the line) and negative (below the line) data points. Equation (35),
which is also called the decision rule of the SVM classifier, is used to
make classification decisions on test instances.

 (A) (B)

Fig. 3.19. (A) A linearly separable data set and (B) possible decision boundaries

Fig. 3.19(A) raises two interesting questions:

1. There are an infinite number of lines that can separate the positive and
negative data points as illustrated by Fig. 3.19(B). Which line should we
choose?

2. A hyperplane classifier is only applicable if the positive and negative
data can be linearly separated. How can we deal with nonlinear separa-
tions or data sets that require nonlinear decision boundaries?

w  x + b = 0

y = 1

y = -1

3.8 Support Vector Machines 111

The SVM framework provides good answers to both questions. Briefly, for
question 1, SVM chooses the hyperplane that maximizes the margin (the
gap) between positive and negative data points, which will be defined for-
mally shortly. For question 2, SVM uses kernel functions. Before we dive
into the details, we want to stress that SVM requires numeric data and only
builds two-class classifiers. At the end of the section, we will discuss how
these limitations may be addressed.

3.8.1 Linear SVM: Separable Case

This sub-section studies the simplest case of linear SVM. It is assumed that
the positive and negative data points are linearly separable.

From linear algebra, we know that in w  x + b = 0, w defines a direc-
tion perpendicular to the hyperplane (see Fig. 3.20). w is also called the
normal vector (or simply normal) of the hyperplane. Without changing
the normal vector w, varying b moves the hyperplane parallel to itself.
Note also that w  x + b = 0 has an inherent degree of freedom. We can
rescale the hyperplane to w  x + b = 0 for    + (positive real num-
bers) without changing the function/hyperplane.

Fig. 3.20. Separating hyperplanes and margin of SVM: Support vectors are circled

Since SVM maximizes the margin between positive and negative data
points, let us find the margin. Let d+ (respectively d) be the shortest dis-
tance from the separating hyperplane (w  x + b = 0) to the closest posi-
tive (negative) data point. The margin of the separating hyperplane is
d++d. SVM looks for the separating hyperplane with the largest margin,
which is also called the maximal margin hyperplane, as the final deci-
sion boundary. The reason for choosing this hyperplane to be the decision

w  x + b = 0
y = 1

y = -1

w

||||
||

w

b
H+: w  x + b = 1

H----: w  x + b = -1

x----

x+
d d+

margin

112 3 Supervised Learning

boundary is because theoretical results from structural risk minimization in
computational learning theory show that maximizing the margin mini-
mizes the upper bound of classification errors.

Let us consider a positive data point (x+, 1) and a negative data point (x----,

-1) that are closest to the hyperplane <w  x> + b = 0. We define two paral-

lel hyperplanes, H+ and H----, that pass through x+ and x---- respectively. H+ and

H---- are also parallel to <w  x> + b = 0. We can rescale w and b to obtain

H+: w  x+ + b = 1 (38)

H----: w  x---- + b = -1 (39)

such that w  xi + b  1 if yi = 1
 w  xi + b  -1 if yi = -1,

which indicate that no training data fall between hyperplanes H+ and H----.
Now let us compute the distance between the two margin hyperplanes

H+ and H----. Their distance is the margin (d+ + d). Recall from vector space
in linear algebra that the (perpendicular) Euclidean distance from a point xi
to a hyperplane w  x + b = 0 is:

||||
||

w

xw bi  , (40)

where ||w|| is the Euclidean norm of w,

22
2

2
1 ...|||| rwww  www . (41)

To compute d+, instead of computing the distance from x+ to the separat-
ing hyperplane w  x + b = 0, we pick up any point xs on w  x + b = 0
and compute the distance from xs to w  x+ + b = 1 by applying Equation
(40) and noticing that w  xs + b = 0,

||||
1

||||
|1|

ww

xw s 



b

d . (42)

Likewise, we can compute the distance from xs to w  x+ + b = -1 to ob-
tain d = 1/||w||. Thus, the decision boundary w  x + b = 0 lies half way
between H+ and H----. The margin is thus

3.8 Support Vector Machines 113

||||
2
w

  ddmargin (43)

In fact, we can compute the margin in many ways. For example, it can
be computed by finding the distances from the origin to the three hyper-
planes, or by projecting the vector (x2---- x1

+) to the normal vector w.
Since SVM looks for the separating hyperplane that maximizes the mar-

gin, this gives us an optimization problem. Since maximizing the margin is
the same as minimizing ||w||2/2 = w  w/2. We have the following linear
separable SVM formulation.

Definition (Linear SVM: Separable Case): Given a set of linearly sepa-
rable training examples,

D = {(x1, y1), (x2, y2), …, (xn, yn)},

learning is to solve the following constrained minimization problem,

niby ii ..., 2, 1, ,1)(:Subject to
2

 :Minimize





xw

ww
 (44)

Note that the constraint niby ii ..., 2, 1, ,1)( xw summarizes:

 w  xi + b  1 for yi = 1
 w  xi + b  -1 for yi = -1.

Solving the problem (44) will produce the solutions for w and b, which in turn
give us the maximal margin hyperplane w  x + b = 0 with the margin 2/||w||.

A full description of the solution method requires a significant amount
of optimization theory, which is beyond the scope of this book. We will
only use those relevant results from optimization without giving formal de-
finitions, theorems, or proofs.

Since the objective function is quadratic and convex and the constraints
are linear in the parameters w and b, we can use the standard Lagrange
multiplier method to solve it.

Instead of optimizing only the objective function (which is called un-
constrained optimization), we need to optimize the Lagrangian of the prob-
lem, which considers the constraints at the same time. The need to con-
sider constraints is obvious because they restrict the feasible solutions.
Since our inequality constraints are expressed using “”, the Lagrangian
is formed by the constraints multiplied by positive Lagrange multipliers
and subtracted from the objective function, i.e.,

114 3 Supervised Learning

]1)([
2
1

1
 



byL i

n

i
iiP xwww  , (45)

where i  0 are the Lagrange multipliers.
The optimization theory says that an optimal solution to (45) must sat-

isfy certain conditions, called Kuhn–Tucker conditions, which play a
central role in constrained optimization. Here, we give a brief introduction
to these conditions. Let the general optimization problem be

nibg

f

ii ..., 2, 1, ,)(:Subject to
)(:Minimize

x

x (46)

where f is the objective function and gi is a constraint function (which is
different from yi in (44) as yi is not a function but a class label of 1 or -1).
The Lagrangian of (46) is,

)])([)(
1

i

n

i
iiP bgfL  



xx  (47)

An optimal solution to the problem in (46) must satisfy the following
necessary (but not sufficient) conditions:

rj
x

L

j

P ..., ,2 ,1 ,0 

 (48)

nibg ii ..., 2, 1, ,0)(x (49)
nii ..., 2, 1, ,0  (50)

nigb iiii ..., 2, 1, ,0))(( x (51)

These conditions are called the Kuhn–Tucker conditions. Note that
(49) is simply the original set of constraints in (46). The condition (51) is
called the complementarity condition, which implies that at the solution
point,

If i > 0 then gi(x) = bi.
If gi(x) > bi then i = 0.

These mean that for active constraints, i > 0, whereas for inactive con-
straints, i = 0. As we will see later, they give some very desirable proper-
ties to SVM.

Let us come back to our problem. For the minimization problem (44),
the Kuhn–Tucker conditions are (52)–(56):

3.8 Support Vector Machines 115

rjxyw
w

L n

i
ijiij

j

P ..., ,2 ,1 ,0
1



 



 (52)

0
1



 



n

i
ii

P y
b

L  (53)

niby ii ..., 2, 1, ,01)( xw (54)
nii ..., 2, 1, ,0  (55)

niby iii ..., 2, 1, ,0)1)(( xw (56)

Inequality (54) is the original set of constraints. We also note that although
there is a Lagrange multiplier i for each training data point, the comple-
mentarity condition (56) shows that only those data points on the margin
hyperplanes (i.e., H+ and H----) can have i > 0 since for them yi(w  xi + b)
– 1 = 0. These data points are called support vectors, which give the name
to the algorithm, support vector machines. All the other data points have
i = 0.

In general, Kuhn–Tucker conditions are necessary for an optimal solu-
tion, but not sufficient. However, for our minimization problem with a
convex objective function and a set of linear constraints, the Kuhn–Tucker
conditions are both necessary and sufficient for an optimal solution.

Solving the optimization problem is still a difficult task due to the ine-
quality constraints. However, the Lagrangian treatment of the convex op-
timization problem leads to an alternative dual formulation of the problem,
which is easier to solve than the original problem, which is called the pri-
mal problem (LP is called the primal Lagrangian).

The concept of duality is widely used in the optimization literature. The
aim is to provide an alternative formulation of the problem which is more
convenient to solve computationally and/or has some theoretical signifi-
cance. In the context of SVM, the dual problem is not only easy to solve
computationally, but also crucial for using kernel functions to deal with
nonlinear decision boundaries as we do not need to compute w explicitly
(which will be clear later).

Transforming from the primal to its corresponding dual can be done by
setting to zero the partial derivatives of the Lagrangian (45) with respect to
the primal variables (i.e., w and b), and substituting the resulting relations
back into the Lagrangian. This is to simply substitute (52), which is

116 3 Supervised Learning

rjxyw
n

i
ijiij ..., ,2 ,1 ,

1




 (57)

and (53), which is

,0
1




n

i
iiy (58)

into the original Lagrangian (45) to eliminate the primal variables, which
gives us the dual objective function (denoted by LD),

.
2
1

1,1
 


ji

n

ji
jiji

n

i
iD yyL xx (59)

LD contains only dual variables and must be maximized under the simpler
constraints, (52) and (53), and i  0. Note that (52) is not needed as it has
already been substituted into the objective function LD. Hence, the dual of
the primal Equation (44) is

Maximize: .
2
1

1,1
 


ji

n

ji
jiji

n

i
iD yyL xx

Subject to:
. ..., ,2 ,1 ,0

0
1

ni

y

i

n

i
ii










(60)

This dual formulation is called the Wolfe dual. For our convex objec-
tive function and linear constraints of the primal, it has the property that
the i’s at the maximum of LD gives w and b occurring at the minimum of
LP (the primal).

Solving (60) requires numerical techniques and clever strategies beyond
the scope of this book. After solving (60), we obtain the values for i,
which are used to compute the weight vector w and the bias b using Equa-
tions (52) and (56) respectively. Instead of depending on one support vec-
tor (i > 0) to compute b, in practice all support vectors are used to com-
pute b, and then take their average as the final value for b. This is because
the values of i are computed numerically and can have numerical errors.
Our final decision boundary (maximal margin hyperplane) is

0 


byb
svi

iii xxxw  , (61)

where sv is the set of indices of the support vectors in the training data.

3.8 Support Vector Machines 117

Testing: We apply (61) for classification. Given a test instance z, we clas-
sify it using the following:

.)(







 

svi
iii bysignbsign zxzw  (62)

If (62) returns 1, then the test instance z is classified as positive; otherwise,
it is classified as negative.

3.8.2 Linear SVM: Non-separable Case

The linear separable case is the ideal situation. In practice, however, the
training data is almost always noisy, i.e., containing errors due to various
reasons. For example, some examples may be labeled incorrectly. Fur-
thermore, practical problems may have some degree of randomness. Even
for two identical input vectors, their labels may be different.

For SVM to be useful, it must allow noise in the training data. However,
with noisy data the linear separable SVM will not find a solution because
the constraints cannot be satisfied. For example, in Fig. 3.21, there is a
negative point (circled) in the positive region, and a positive point in the
negative region. Clearly, no solution can be found for the problem.

Recall that the primal for the linear separable case was:

. ..., 2, 1, ,1)(:Subject to
2

 :Minimize

niby ii 



xw

ww
 (63)

To allow errors in data, we can relax the margin constraints by introduc-
ing slack variables, i ( 0) as follows:

 w  xi + b  1  i for yi = 1
 w  xi + b  1 + i for yi = -1.

Thus we have the new constraints:

Subject to: yi(w  xi + b)  1  i, i =1, 2, …, n,
 i  0, i =1, 2, …, n.

The geometric interpretation is shown in Fig. 3.21, which has two error da-
ta points xa and xb (circled) in wrong regions.

118 3 Supervised Learning

Fig. 3.21. The non-separable case: xa and xb are error data points

We also need to penalize the errors in the objective function. A natural
way is to assign an extra cost for errors to change the objective function to

kn

i
iC 









 
12

 :Minimize ww , (64)

where C  0 is a user specified parameter. The resulting optimization prob-
lem is still a convex programming problem. k = 1 is commonly used,
which has the advantage that neither i nor its Lagrangian multipliers ap-
pear in the dual formulation. We only discuss the k = 1 case below.

The new optimization problem becomes:

. ..., 2, 1, ,0
 ..., 2, 1, ,1)(:Subject to

2
 :Minimize

1

ni

niby

C

i

iii

n

i
i





 








xw

ww

(65)

This formulation is called the soft-margin SVM. The primal Lagrangian
(denoted by LP) of this formulation is as follows





n

i
iiii

n

i
ii

n

i
iP byCL

111
]1)([

2
1  xwww , (66)

where i, i  0 are the Lagrange multipliers. The Kuhn–Tucker condi-
tions for optimality are the following:

rjxyw
w

L n

i
ijiij

j

P ..., ,2 ,1 ,0
1



 



 (67)

w  x + b = 0

||||
||

w

b

w

||||w
b

xb

||||w
a

xa

3.8 Support Vector Machines 119

0
1



 



n

i
ii

P y
b

L  (68)

niC
L

ii
i

P ..., ,2 ,1 ,0 






 (69)

niby iii ..., 2, 1, ,01)( xw (70)
nii ..., 2, 1, ,0  (71)
nii ..., 2, 1, ,0  (72)
nii ..., 2, 1, ,0  (73)

niby iiii ..., 2, 1, ,0)1)((  xw (74)
niii ..., 2, 1, ,0  (75)

As the linear separable case, we then transform the primal to its dual by
setting to zero the partial derivatives of the Lagrangian (66) with respect to
the primal variables (i.e., w, b and i), and substituting the resulting rela-
tions back into the Lagrangian. That is, we substitute Equations (67), (68)
and (69) into the primal Lagrangian (66). From Equation (69), C  i  i
= 0, we can deduce that i  C because i  0. Thus, the dual of (65) is

Maximize:  


ji

n

ji
jiji

n

i
iD yyL xxα

1,1 2
1)(

Subject to:
. ..., ,2 ,1 ,0

0
1

niC

y

i

n

i
ii










(76)

Interestingly, i and its Lagrange multipliers i are not in the dual and the
objective function is identical to that for the separable case. The only dif-
ference is the constraint i  C (inferred from Cii = 0 and i  0).

The dual problem (76) can also be solved numerically, and the resulting
i values are then used to compute w and b. w is computed using Equation
(67) and b is computed using the Kuhn–Tucker complementarity condi-
tions (74) and (75). Since we do not have values for i, we need to get around
it. From Equations (69), (74) and (75), we observe that if 0 < i < C then both
i = 0 and .0)1)( iii by xw Thus, we can use any training data
point for which 0 < i < C and Equation (74) (with i = 0) to compute b:

.1
1

 


j

n

i
iii

i

y
y

b xx (77)

120 3 Supervised Learning

Again, due to numerical errors, we can compute all possible b’s and
then take their average as the final b value.

Note that Equations (69), (74) and (75) in fact tell us more:

i = 0  yi(w  xi + b)  1 and i = 0
0 < i < C  yi(w  xi + b) = 1 and i = 0
i = C  yi(w  xi + b)  1 and i  0

(78)

Similar to support vectors for the separable case, (78) shows one of the
most important properties of SVM: the solution is sparse in i. Most train-
ing data points are outside the margin area and their i’s in the solution are
0. Only those data points that are on the margin (i.e., yi(w  xi + b) = 1,
which are support vectors in the separable case), inside the margin (i.e., i
= C and yi(w  xi + b) < 1), or errors are non-zero. Without this sparsity
property, SVM would not be practical for large data sets.

The final decision boundary is (we note that many i’s are 0)

.0
1

 


byb
n

i
iii xxxw  (79)

The decision rule for classification (testing) is the same as the separable
case, i.e., sign(w  x + b). We notice that for both Equations (79) and
(77), w does not need to be explicitly computed. This is crucial for using
kernel functions to handle nonlinear decision boundaries.

Finally, we still have the problem of determining the parameter C. The
value of C is usually chosen by trying a range of values on the training set
to build multiple classifiers and then to test them on a validation set before
selecting the one that gives the best classification result on the validation
set. Cross-validation is commonly used as well.

3.8.3 Nonlinear SVM: Kernel Functions

The SVM formulations discussed so far require that positive and negative
examples can be linearly separated, i.e., the decision boundary must be a
hyperplane. However, for many real-life data sets, the decision boundaries
are nonlinear. To deal with nonlinearly separable data, the same formula-
tion and solution techniques as for the linear case are still used. We only
transform the input data from its original space into another space (usually
a much higher dimensional space) so that a linear decision boundary can
separate positive and negative examples in the transformed space, which is
called the feature space. The original data space is called the input space.

Thus, the basic idea is to map the data in the input space X to a feature
space F via a nonlinear mapping ,

3.8 Support Vector Machines 121

).(
:

xx 
 FX 

 (80)

After the mapping, the original training data set {(x1, y1), (x2, y2), …,
(xn, yn)} becomes:

{((x1), y1), ((x2), y2), …, ((xn), yn)}. (81)

The same linear SVM solution method is then applied to F. Fig. 3.19 illus-
trates the process. In the input space (figure on the left), the training exam-
ples cannot be linearly separated. In the transformed feature space (figure
on the right), they can be separated linearly.

Fig. 3.22. Transformation from the input space to the feature space

With the transformation, the optimization problem in (65) becomes

. ..., 2, 1, ,0
 ..., 2, 1, ,1))((:Subject to

2
 :Minimize

1

ni

niby

C

i

iii

n

i
i





 








xw

ww

(82)

Its corresponding dual is

Maximize: .)()(
2
1

1,1
 


ji

n

ji
jiji

n

i
iD yyL xx 

Subject to:
. ..., ,2 ,1 ,0

0
1

niC

y

i

n

i
ii










(83)

The final decision rule for classification (testing) is

by
n

i
iii 

1
)()(xx  (84)



x
Input space X

x

x

x
x

o

Feature space F

o

o
o

(x)
(x)
(x) (x)

(x)
(o)

(o) (o) (o)

122 3 Supervised Learning

Example 18: Suppose our input space is 2-dimensional, and we choose the
following transformation (mapping):

)2 , ,() ,(21
2

2
2

121 xxxxxx (85)

The training example ((2, 3), -1) in the input space is transformed to the
following training example in the feature space:

 ((4, 9, 8.5), -1). ▀

The potential problem with this approach of transforming the input data
explicitly to a feature space and then applying the linear SVM is that it
may suffer from the curse of dimensionality. The number of dimensions in
the feature space can be huge with some useful transformations (see be-
low) even with reasonable numbers of attributes in the input space. This
makes it computationally infeasible to handle.

Fortunately, explicit transformations can be avoided if we notice that in
the dual representation both the construction of the optimal hyperplane
(83) in F and the evaluation of the corresponding decision/classification
function (84) only require the evaluation of dot products (x)  (z) and
never the mapped vector (x) in its explicit form. This is a crucial point.

Thus, if we have a way to compute the dot product (x)  (z) in the
feature space F using the input vectors x and z directly, then we would not
need to know the feature vector (x) or even the mapping function  itself.
In SVM, this is done through the use of kernel functions, denoted by K,

K(x, z) = (x)  (z), (86)

which are exactly the functions for computing dot products in the trans-
formed feature space using input vectors x and z. An example of a kernel
function is the polynomial kernel,

K(x, z) = x  zd. (87)

Example 19: Let us compute this kernel with degree d = 2 in a 2-
dimensional space. Let x = (x1, x2) and z = (z1, z2).

,)()(
)2()2(

2

)(

21
2

2
2

121
2

2
2

1

2
2

2
22211

2
1

2
1

2
2211

2








zx

zx


zz,z,zxx,x,x

zxzxzxzx

zxzx

(88)

3.8 Support Vector Machines 123

where),2()(21
2

2
2

1 xx,x,x x  which shows that the kernel x  z2 is a
dot product in the transformed feature space. The number of dimensions in
the feature space is 3. Note that (x) is actually the mapping function used
in Example 18. Incidentally, in general the number of dimensions in the
feature space for the polynomial kernel function x  zd is 







 
d

dr 1 , which

is a huge number even with a reasonable number (r) of attributes in the in-
put space. Fortunately, by using the kernel function in (87), the huge num-
ber of dimensions in the feature space does not matter. ▀

The derivation in (88) is only for illustration purposes. In fact, we do not
need to find the mapping function. We can simply apply the kernel func-
tion directly. That is, we replace all the dot products (x)  (z) in (83)
and (84) with the kernel function K(x, z) (e.g., the polynomial kernel in
(87)). This strategy of directly using a kernel function to replace dot prod-
ucts in the feature space is called the kernel trick. We never need to ex-
plicitly know what  is.

However, the question is, how do we know whether a function is a ker-
nel without performing the derivation such as that in (88)? That is, how do
we know that a kernel function is indeed a dot product in some feature
space? This question is answered by a theorem called the Mercer’s theo-
rem, which we will not discuss here. See [12] for details.

It is clear that the idea of kernel generalizes the dot product in the input
space. The dot product is also a kernel with the feature map being the identity

K(x, z) = x  z. (89)

Commonly used kernels include

Polynomial: dK)(),( zxzx (90)

Gaussian RBF: 2|||| 2
),(zxzx  eK (91)

where   , d  N, and  > 0.

Summary

SVM is a linear learning system that finds the maximal margin decision
boundary to separate positive and negative examples. Learning is formu-
lated as a quadratic optimization problem. Nonlinear decision boundaries
are found via a transformation of the original data to a much higher dimen-
sional feature space. However, this transformation is never explicitly done.

124 3 Supervised Learning

Instead, kernel functions are used to compute dot products required in
learning without the need to even know the transformation function.

Due to the separation of the learning algorithm and kernel functions,
kernels can be studied independently from the learning algorithm. One can
design and experiment with different kernel functions without touching the
underlying learning algorithm.

SVM also has some limitations:

1. It works only in real-valued space. For a categorical attribute, we need
to convert its categorical values to numeric values. One way to do this is
to create an extra binary attribute for each categorical value, and set the
attribute value to 1 if the categorical value appears, and 0 otherwise.

2. It allows only two classes, i.e., binary classification. For multiple class
classification problems, several strategies can be applied, e.g., one-
against-rest, and error-correcting output coding [14].

3. The hyperplane produced by SVM is hard to understand by users. It is
difficult to picture where the hyperplane is in a high-dimensional space.
The matter is made worse by kernels. Thus, SVM is commonly used in
applications that do not required human understanding.

3.9 K-Nearest Neighbor Learning

All the previous learning methods learn some kinds of models from the
training data, e.g., decision trees, sets of rules, posterior probabilities, and
hyperplanes. These learning methods are often called eager learning me-
thods as they learn models of the data before testing. In contrast, k-nearest
neighbor (kNN) is a lazy learning method in the sense that no model is
learned from the training data. Learning only occurs when a test example
needs to be classified. The idea of kNN is extremely simple and yet quite
effective in many applications, e.g., text classification.

It works as follows: Again let D be the training data set. Nothing will be
done on the training examples. When a test instance d is presented, the al-
gorithm compares d with every training example in D to compute the simi-
larity or distance between them. The k most similar (closest) examples in
D are then selected. This set of examples is called the k nearest neighbors
of d. d then takes the most frequent class among the k nearest neighbors.
Note that k = 1 is usually not sufficient for determining the class of d due
to noise and outliers in the data. A set of nearest neighbors is needed to ac-
curately decide the class. The general kNN algorithm is given in Fig. 3.23.

3.9 K-Nearest Neighbor Learning 125

2 Choose the k examples in D that are nearest to d, denote the set by P ( D);
3 Assign d the class that is the most frequent class in P (or the majority class).

Fig. 3.23. The k-nearest neighbor algorithm

The key component of a kNN algorithm is the distance/similarity func-
tion, which is chosen based on applications and the nature of the data. For
relational data, the Euclidean distance is commonly used. For text docu-
ments, cosine similarity is a popular choice. We will introduce these dis-
tance functions and many others in the next chapter.

The number of nearest neighbors k is usually determined by using a va-
lidation set, or through cross validation on the training data. That is, a
range of k values are tried, and the k value that gives the best accuracy on
the validation set (or cross validation) is selected. Fig. 3.21 illustrates the
importance of choosing the right k.

Example 20: In Fig. 3.24, we have two classes of data, positive (filled
squares) and negative (empty circles). If 1-nearest neighbor is used, the
test data point  will be classified as negative, and if 2-nearest neighbors
are used, the class cannot be decided. If 3-nearest neighbors are used, the
class is positive as two positive examples are in the 3-nearest neighbors.

Fig. 3.24. An illustration of k-nearest neighbor classification

Despite its simplicity, researchers have showed that the classification
accuracy of kNN can be quite strong and in many cases as accurate as
those elaborated methods. For instance, it is showed in [62] that kNN per-
forms equally well as SVM for some text classification tasks. kNN is also
very flexible. It can work with any arbitrarily shaped decision boundaries.

kNN is, however, slow at the classification time. Due to the fact that
there is no model building, each test instance is compared with every train-
ing example at the classification time, which can be quite time consuming
especially when the training set D and the test set are large. Another disad-
vantage is that kNN does not produce an understandable model. It is thus
not applicable if an understandable model is required in the application.

1-nearst neighbor
2-nearst neighbor
3-nearst neighbor

Algorithm kNN(D, d, k)
1 Compute the distance between d and every example in D;

126 3 Supervised Learning

3.10 Ensemble of Classifiers

So far, we have studied many individual classifier building techniques. A
natural question to ask is: can we build many classifiers and then combine
them to produce a better classifier? Yes, in many cases. This section de-
scribes two well known ensemble techniques, bagging and boosting. In
both these methods, many classifiers are built and the final classification
decision for each test instance is made based on some forms of voting of
the committee of classifiers.

3.10.1 Bagging

Given a training set D with n examples and a base learning algorithm, bag-
ging (for Bootstrap Aggregating) works as follows [4]:

Training:

1. Create k bootstrap samples S1, S2, and Sk. Each sample is produced by
drawing n examples at random from D with replacement. Such a sample
is called a bootstrap replicate of the original training set D. On aver-
age, each sample Si contains 63.2% of the original examples in D, with
some examples appearing multiple times.

2. Build a classifier based on each sample Si. This gives us k classifiers.
All the classifiers are built using the same base learning algorithm.

Testing: Classify each test (or new) instance by voting of the k classifiers
(equal weights). The majority class is assigned as the class of the instance.

Bagging can improve the accuracy significantly for unstable learning
algorithms, i.e., a slight change in the training data resulting in a major
change in the output classifier. Decision tree and rule induction methods
are examples of unstable learning methods. k-nearest neighbor and naïve
Bayesian methods are examples of stable techniques. For stable classifiers,
Bagging may sometime degrade the accuracy.

3.10.2 Boosting

Boosting is a family of ensemble techniques, which, like bagging, also
manipulates the training examples and produces multiple classifiers to im-
prove the classification accuracy [53]. Here we only describe the popular
AdaBoost algorithm given in [20]. Unlike bagging, AdaBoost assigns a
weight to each training example.

3.10 Ensemble of Classifiers 127

Training: AdaBoost produces a sequence of classifiers (also using the
same base learner). Each classifier is dependent on the previous one, and
focuses on the previous one’s errors. Training examples that are incor-
rectly classified by the previous classifiers are given higher weights.

Let the original training set D be {(x1, y1), (x2, y2), …, (xn, yn)}, where xi
is an input vector, yi is its class label and yi  Y (the set of class labels).
With a weight attached to each example, we have, {(x1, y1, w1), (x2, y2, w2),
…, (xn, yn, wn)}, and i wi = 1. The AdaBoost algorithm is given in Fig. 3.25.

The algorithm builds a sequence of k classifiers (k is specified by the
user) using a base learner, called BaseLeaner in line 3. Initially, the weight
for each training example is 1/n (line 1). In each iteration, the training data
set becomes Dt, which is the same as D but with different weights. Each it-
eration builds a new classifier ft (line 3). The error of ft is calculated in line
4. If it is too large, delete the iteration and exit (lines 5–7). Lines 9–11 up-
date and normalize the weights for building the next classifier.

AdaBoost(D, Y, BaseLeaner, k)
1. Initialize D1(wi)  1/n for all i; // initialize the weights
2. for t = 1 to k do
3. ft  BaseLearner(Dt); // build a new classifier ft
4. 




iitt yDfi

itt wDe
))((:

)(
x

; // compute the error of ft

5. if et > ½ then // if the error is too large,
6. k  k – 1; // remove the iteration and
7. exit-loop // exit
8. else
9. t  et / (1 et);

10 Dt+1(wi)  Dt(wi)  ;
 otherwise1

))((if



  iittt yDf x // update the weights

11. Dt+1(wi) 
  


n

i it

it

wD

wD

1 1

1

)(
)(// normalize the weights

12. endif
13. endfor

14. 



yft tYy

final

t

f
)(:

1logmaxarg)(
x

x


 // the final output classifier

Fig. 3.25. The AdaBoost algorithm

128 3 Supervised Learning

Testing: For each test case, the results of the series of classifiers are com-
bined to determine the final class of the test case, which is shown in line
14 of Fig. 3.25 (a weighted voting).

Boosting works better than bagging in most cases as shown in [48]. It
also tends to improve performance more when the base learner is unstable.

Bibliographic Notes

Supervised learning has been studied extensively by the machine learning
community. The book by Mitchell [45] covers most learning techniques
and is easy to read. Duda et al.’s pattern classification book is also a great
reference [17]. Most data mining books have one or two chapters on su-
pervised learning, e.g., those by Han and Kamber [24], Hand et al. [25],
Tan et al. [56], and Witten and Frank [59].

For decision tree induction, Quinlan’s book [49] has all the details and
the code of his popular decision tree system C4.5. Other well-known sys-
tems include CART by Breiman et al. [6] and CHAD by Kass [28]. Scal-
ing up of decision tree algorithms was also studied in several papers. These
algorithms can have the data on disk, and are thus able to run with huge
data sets. See [22] for an algorithm and also additional references.

Rule induction algorithms generate rules directly from the data. Well-
known systems include AQ by Michalski et al. [44], CN2 by Clark and
Niblett [9], FOIL by Quinlan [50], FOCL by Pazzani et al. [47], I-REP by
Furnkranz and Widmer [21], and RIPPER by Cohen [10].

Using association rules to build classifiers was proposed by Liu et al. in
[39], which also reported the CBA system. CBA selects a small subset of
class association rules as the classifier. Other classifier building techniques
include combining multiple rules by Li et al. [36], using rules as features
by Meretakis and Wüthrich [43], Antonie and Zaiane [2], Deshpande and
Karypis [13], and Lesh et al. [31], generating a subset of rules by Cong et
al. [11], Wang et al. [58], Yin and Han [63], and Zaki and Aggarwal [64].
Additional systems include those by Li et al. [35], Yang et al. [61], etc.

The naïve Bayesian classification model described in Sect. 3.6 is based
on the papers by Domingos and Pazzani [15], Kohavi et al. [29] and Lang-
ley et al [30]. The naïve Bayesian classification for text discussed in Sect.
3.7 is based on the multinomial formulation given by McCallum and Ni-
gam [42]. This model was also used earlier by Lewis and Gale [33], and Li
and Yamanishi [34]. Another formulation of naïve Bayesian classification
is based on the multivariate Bernoulli model, which was used by Lewis
[32], and Robertson and Sparck-Jones [52].

Bibliography 129

Support vector machines (SVM) was first introduced by Vapnik and his
colleagues in 1992 [3]. Further details are given in his 1995 book [57].
Two other books on SVM and kernel methods are those by Cristianini and
Shawe-Taylor [12] and Scholkopf and Smola [54]. The discussion on
SVM in this chapter is heavily influenced by Cristianini and Shawe-
Taylor’s book and the tutorial paper by Burges [8]. Two popular SVM sys-
tems are SVMLight (available at http://svmlight.joachims.org/) and LIBSVM
(available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

Existing classifier ensemble methods include bagging by Breiman [4],
boosting by Schapire [53] and Freund and Schapire [20], random forest al-
so by Breiman [5], stacking by Wolpert [60], random trees by Fan [18],
and many others.

Bibliography

1. Agrawal, R., R. Bayardo, and R. Srikant. Athena: Mining-based interactive
management of text databases. Advances in Database Technology—EDBT
2000, 2000: p. 365-379.

2. Antonie, M. and O. Zaïane. Text document categorization by term
association. In Proceedings of IEEE International Conference on Data Minig
(ICDM-2002), 2002.

3. Boser, B., I. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of Fifth Annual Workshop on Computational
Learning Theory, 1992.

4. Breiman, L. Bagging predictors. Machine learning, 1996, 24(2): p. 123-140.
5. Breiman, L. Random forests. Machine learning, 2001, 45(1): p. 5-32.
6. Breiman, L., J.H. Friedman, R. Olshen, and C.L. Stone. Classification and

Regression Trees. 1984: Chapman and Hall.
7. Brunk, C. and M. Pazzani. An investigation of noise-tolerant relational

concept learning algorithms. In Proceedings of International Workshop on
Macine Learning, 1991.

8. Burges, C. A tutorial on support vector machines for pattern recognition. Data
mining and knowledge discovery, 1998, 2(2): p. 121-167.

9. Clark, P. and T. Niblett. The CN2 induction algorithm. Machine learning,
1989, 3(4): p. 261-283.

10. Cohen, W. Fast effective rule induction. In Proceedings of International
Conference on Machine Learning (ICML-1995), 1995.

11. Cong, G., A. Tung, X. Xu, F. Pan, and J. Yang. Farmer: Finding interesting
rule groups in microarray datasets. In Proceedings of ACM SIGMOD
Conference on Management of Data (SIGMOD-2004), 2004.

12. Cristianini, N. and J. Shawe-Taylor. An introduction to support Vector
Machines: and other kernel-based learning methods. 2000: Cambridge Univ
Press.

http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

130 3 Supervised Learning

13. Deshpande, M. and G. Karypis. Using conjunction of attribute values for
classification. In Proceedings of ACM Intl. Conf. on Information and
Knowledge Management (CIKM-2002), 2002.

14. Dietterich, T. and G. Bakiri. Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research, 1995, 2.

15. Domingos, P. and M. Pazzani. On the optimality of the simple Bayesian
classifier under zero-one loss. Machine learning, 1997, 29(2): p. 103-130.

16. Dougherty, J., R. Kohavi, and M. Sahami. Supervised and unsupervised
discretization of continuous features. In Proceedings of International
Conference on Machine Learning (ICML-1995), 1995.

17. Duda, R., P. Hart, and D. Stork. Pattern classification. 2001: John Wiley &
Sons Inc.

18. Fan, W. On the optimality of probability estimation by random decision trees.
In Proceedings of National Conf. on Artificial Intelligence (AAAI-2004),
2004.

19. Fayyad, U. and K. Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the Intl. Joint Conf. on
Artificial Intelligence (IJCAI-1993), 1993.

20. Freund, Y. and R. Schapire. Experiments with a new boosting algorithm. In
Proceedings of International Conference on Machine Learning (ICML-1996),
1996.

21. Fürnkranz, J. and G. Widmer. Incremental reduced error pruning. In
Proceedings of International Conference on Machine Learning (ICML-1994),
1994.

22. Gehrke, J., R. Ramakrishnan, and V. Ganti. RainForest—a framework for fast
decision tree construction of large datasets. Data mining and knowledge
discovery, 2000, 4(2): p. 127-162.

23. Good, I. The estimation of probabilities: an essay on modern Bayesian
methods. 1965: MIT Press.

24. Han, J. and M. Kamber. Data mining: concepts and techniques. 2006:
Morgan Kaufmann Publishers.

25. Hand, D., H. Mannila, and P. Smyth. Principles of data mining. 2001: MIT
Press.

26. Hyafil, L. and R. Rivest. Constructing optimal binary decision trees is NP-
complete. Information Processing Letters, 1976, 5(1): p. 15-17.

27. Jindal, N. and B. Liu. Identifying comparative sentences in text documents. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-2006), 2006.

28. Kass, G. An exploratory technique for investigating large quantities of
categorical data. Applied statistics, 1980, 29(2): p. 119-127.

29. Kohavi, R., B. Becker, and D. Sommerfield. Improving simple bayes. In
Proceedings of European Conference on Machine Learning (ECML-1997),
1997.

30. Langley, P., W. Iba, and K. Thompson. An analysis of Bayesian classifiers. In
Proceedings of National Conf. on Artificial Intelligence (AAAI-1992), 1992.

Bibliography 131

31. Lesh, N., M. Zaki, and M. Ogihara. Mining features for sequence
classification. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1999), 1999.

32. Lewis, D. An evaluation of phrasal and clustered representations on a text
categorization task. In Proceedings of ACM SIGIR Conf. on Research and
Development in Information Retrieval (SIGIR-1992), 1992.

33. Lewis, D. and W. Gale. A sequential algorithm for training text classifiers. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-1994), 1994.

34. Li, H. and K. Yamanishi. Document classification using a finite mixture
model. In Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL-1997), 1997.

35. Li, J., G. Dong, K. Ramamohanarao, and L. Wong. DeEPs: A new instance-
based lazy discovery and classification system. Machine learning, 2004,
54(2): p. 99-124.

36. Li, W., J. Han, and J. Pei. CMAR: Accurate and efficient classification based
on multiple class-association rules. In Proceedings of IEEE International
Conference on Data Mining (ICDM-2001), 2001.

37. Lidstone, G. Note on the General Case of the Bayes-Laplace formula for
Inductive or a Posteriori Probabilities. Transaction of the Faculty of
Actuuaries, 1920, 8: p. 182-192.

38. Lin, W., S. Alvarez, and C. Ruiz. Efficient adaptive-support association rule
mining for recommender systems. Data mining and knowledge discovery,
2002, 6(1): p. 83-105.

39. Liu, B., W. Hsu, and Y. Ma. Integrating classification and association rule
mining. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1998), 1998.

40. Liu, B., Y. Ma, and C. Wong. Classification using association rules:
weaknesses and enhancements. Data mining for scientific applications, 2001.

41. Liu, B., K. Zhao, J. Benkler, and W. Xiao. Rule interestingness analysis using
OLAP operations. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2006), 2006.

42. McCallum, A. and K. Nigam. A comparison of event models for naive bayes
text classification. In Proceedings of AAAI–98 Workshop on Learning for
Text Categorization, 1998.

43. Meretakis, D. and B. Wuthrich. Extending na ve Bayes classifiers using long
itemsets. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-1999), 1999.

44. Michalski, R., I. Mozetic, J. Hong, and N. Lavrac. The multi-purpose
incremental learning system AQ15 and its testing application to three medical
domains. In Proceedings of National Conf. on Artificial Intelligence (AAAI-
86), 1986.

45. Mitchell, T. Machine Learning. 1997: McGraw Hill.
46. Mobasher, B., H. Dai, T. Luo, and M. Nakagawa. Effective personalization

based on association rule discovery from web usage data. In Proceedings of
ACM Workshop on Web Information and Data Management, 2001.

132 3 Supervised Learning

47. Pazzani, M., C. Brunk, and G. Silverstein. A knowledge-intensive approach to
learning relational concepts. In Proceedings of Intl. Workshop on Machine
Learning (ML-1991), 1991.

48. Quinlan, J. Bagging, boosting, and C4. 5. In Proceedings of National Conf. on
Artificial Intelligence (AAAI-1996), 1996.

49. Quinlan, J. C4. 5: programs for machine learning. 1993: Morgan Kaufmann
Publishers.

50. Quinlan, J. Learning logical definitions from relations. Machine learning,
1990, 5(3): p. 239-266.

51. Rivest, R. Learning decision lists. Machine learning, 1987, 2(3): p. 229-246.
52. Robertson, S. and K. Jones. Relevance weighting of search terms. Journal of

the American Society for Information Science, 1976, 27(3): p. 129-146.
53. Schapire, R. The strength of weak learnability. Machine learning, 1990, 5(2):

p. 197-227.
54. Scholkopf, B. and A. Smola. Learning with kernels. 2002: MIT Press.
55. Shannon, E. A mathematical theory of communication. Bell System

Technical Journal, 1948, 27: p. 379–423.
56. Tan, P., M. Steinbach, and V. Kumar. Introduction to data mining. 2006:

Pearson Addison Wesley Boston.
57. Vapnik, V. The nature of statistical learning theory. 1995: Springer Verlag.
58. Wang, K., S. Zhou, and Y. He. Growing decision trees on support-less

association rules. In Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2000), 2000: ACM.

59. Witten, I. and E. Frank. Data Mining: Practical machine learning tools and
techniques. 2005: Morgan Kaufmann Publishers.

60. Wolpert, D. Stacked Generalization. Neural Networks, 1992, 5: p. 241–259.
61. Yang, Q., T. Li, and K. Wang. Building association-rule based sequential

classifiers for web-document prediction. Data mining and knowledge
discovery, 2004, 8(3): p. 253-273.

62. Yang, Y. and X. Liu. A re-examination of text categorization methods. In
Proceedings of ACM SIGIR Conf. on Research and Development in
Information Retrieval (SIGIR-1999), 1999.

63. Yin, X. and J. Han. CPAR: Classification based on predictive association
rules. In Proceedings of SIAM International Conference on Data Mining
(SDM-2003), 2003.

64. Zaki, M. and C. Aggarwal. XRules: an effective structural classifier for XML
data. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2003), 2003.

http://www.springer.com/978-3-642-19459-7

	3 Supervised Learning
	3.1 Basic Concepts
	3.2 Decision Tree Induction
	3.2.1 Learning Algorithm
	3.2.2 Impurity Function
	Information Gain
	Information Gain Ratio

	3.2.3 Handling of Continuous Attributes
	3.2.4 Some Other Issues

	3.3 Classifier Evaluation
	3.3.1 Evaluation Methods
	3.3.2 Precision, Recall, F-score and Breakeven Point
	3.3.3 Receiver Operating Characteristic Curve
	3.3.4 Lift Curve

	3.4 Rule Induction
	3.4.1 Sequential Covering
	Algorithm 1 (Ordered Rules)
	Algorithm 2 (Ordered Classes)
	Use of Rules for Classification

	3.4.2 Rule Learning: Learn-One-Rule Function
	Learn-One-Rule-1
	Learn-One-Rule-2

	3.4.3 Discussion

	3.5 Classification Based on Associations
	3.5.1 Classification Using Class Association Rules
	Mining Class Association Rules for Classification
	Classifier Building

	3.5.2 Class Association Rules as Features
	3.5.3 Classification Using Normal Association Rules

	3.6 Naïve Bayesian Classification
	3.7 Naïve Bayesian Text Classification
	3.7.1 Probabilistic Framework
	3.7.2 Naïve Bayesian Model
	3.7.3 Discussion

	3.8 Support Vector Machines
	3.8.1 Linear SVM: Separable Case
	3.8.2 Linear SVM: Non-separable Case
	3.8.3 Nonlinear SVM: Kernel Functions
	Summary

	3.9 K-Nearest Neighbor Learning
	3.10 Ensemble of Classifiers
	3.10.1 Bagging
	3.10.2 Boosting

	Bibliographic Notes
	Bibliography

