Chapter 10
Finite Difference Methods

Finite difference methods were used centuries ago, long before computers were
available. As we have seen in Chap. 2, these methods arise quite naturally by going
back to the definition of derivatives, and just stopping short of taking the limit as
the step size tends to zero. We shall first discuss ordinary differential equations and
then partial differential equations.

10.1 Ordinary Differential Equations

Consider an initial value problems of the type

du _
ar 8w (10.1)

u(0) = f,

where g(u) is a general function of the solution u itself, and f is a known value.
The simple method (2.9) discussed in Sect. 2.2.2 generalizes to

Upt1 =uy +gup)At, n=0,1,...,
uo=f

for our equation. The method is called the Euler method after Leonhard Euler, and
it provides a very simple formula for implementation on a computer. When u,, is
known, the value g(u,) and the right hand side can be computed. However, de-
pending on the properties of g(u), it may be necessary to use other forms of dis-
cretizations. For example, a better centering of g(u) in the interval [¢,, ,,4+1] would
improve the result. By taking the average of the end points we get the so called
trapezoidal rule

g(un) + gUny1) At

Uptl = Uy + 5 , n=0,1,...,
ug = f.
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146 10 Finite Difference Methods

However, there is one complication here. In order to compute u;1 at each step, we
must solve a nonlinear equation
Upt] — 7g(un+1) At =u, + MAL
2 2
When the new time level is involved in this way, we have an implicit method in
contrast to explicit methods. Except for very simple functions g(u), we must use
numerical methods for solving the nonlinear equation at each step. This is a typical
situation in computational mathematics. In order to obtain more accurate numerical
solutions, we may have to design more complicated numerical methods. However,
we must make sure that the increased manual effort in construction and program-
ming, results in a faster solution procedure on the computer for obtaining a certain
accuracy.
Let us now study the linear problem

du

ar " (10.2)
u(0) = 1.

It has the exponentially decreasing solution u(t) = e, and there is of course no

need to use a numerical method. But we do that anyway to illustrate some interesting
phenomena. The Euler method is

Uptl =Up —upAt, n=0,1,...,

and we try the different time steps At =2.1 and Az = 1.9. The result is shown in

Fig. 10.1 together with the true solution. Clearly, the numerical solution is com-

pletely wrong. Furthermore, for the larger time step, the amplitude of the solution is

growing, and it will never approach zero which the true solution will do for large ¢.
It is easy to see why things are going wrong. The scheme can be written as

upr1 =1 —Atu,, n=0,1,....

The number sequence {u,} is nonincreasing for increasing n if |1 — Af| < 1, i.e., if
At < 2. We call the method stable if this condition is satisfied. For 1 < At < 2 the
solution will be oscillating, but at least it will not take off without bounds.

Let us next modify the scheme such that the right hand side —u of the differential
equation is taken as —u, 4 in the interval [#,, t,,41]. Then the method becomes

Uptl =Up —Up+1 A, n=0,1,...,

or equivalently

1
1+ At
This is called the Euler backward method. We run the same cases as above, and
the result is shown Fig. 10.2. The oscillatory behavior is gone and, despite the very
large time steps, the solution looks reasonable for all ¢.

The behavior is again easy to explain. The number multiplying u,, satisfies the
stability condition |1/(1 + A#)| <1 for all A¢, and we call the method uncondition-
ally stable.

Upt1 u,, n=0,1,....
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Fig. 10.1 Solution of (10.2) 25

by the Euler method,
At=21(——)At=19(-), 2
true solution (—) 1.5

Fig. 10.2 Solution of (10.2) 25
by the Euler backward
method,

At=21(—=)At=19(—), 15} i
true solution (—)

15} ]

It seems that it should not make much difference if we choose to approximate
the right hand side —u of (10.2) by the value —u,, at one end of the interval or by
—uy,41 at the other end. But obviously it does.

For systems of ODE, the methods for scalar equations can be generalized by
simply switching to vector notation. For example, the Euler backward method for
the differential equation

du )
a5
is

Uy g =y, + 841, Weg1) AL
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This is simple enough to write down, but what does it take to solve it? The unknown
vector is w1, and it is determined by the vector equation

Uy — 8(thg1, Wep 1) AL =1y, (10.3)

This is a nonlinear system of N equations for the N unknown elements in u,4;. It
seems like a hopeless task to solve such a system for each time step, but it is not.
We shall discuss iterative solution methods for it in Chap. 13.
The analysis of a system of ODE is much harder compared to a scalar ODE, but
there are effective tools to simplify the analysis. We take a linear system
du

— = Au,
dt

where A is an N x N matrix. Assuming that A has N linearly independent eigen-
vectors, we let T be the matrix that takes A to diagonal form (see Sect. 3.4):

T~'AT = A =diag(r1, A2, ..., AN).

We now multiply the differential equation from the left by 7~!. Since T does not
depend on ¢, and T—!T = I, the differential equation can be written as

d(T!
AT W _ et gy,
dt
orwithv=T"lu.
dv
— = Av.
dt

But this is a set of scalar ODE that are independent of each other, and the analysis
has become considerably simpler.

As an example we take a case where all the eigenvalues A ; are real and negative.
This means that

il =1e""v; () < [v;0)], j=12,....N,
and obviously we have
vl = vl
for the vector norm. For the original ODE we get
Ol = 1TvO I < ITHvOI < IT YOI < IT T )]

For the original system there may be an increase of the norm, but an a priori bound
is known, and it is independent of #. The bound

cond(T) = | TIIT!|

is called the condition number of the matrix T, and it is going to show up again when
discussing linear systems of algebraic equations in Chap. 14. Here we conclude that
a system of ODE becomes sensitive to perturbations, and therefore harder to solve,
when the eigenvectors of the coefficient matrix A are almost linearly dependent.
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Let us now analyze the Euler backward method for the same system
Uyt = U, + Aup Al

After the same type of transformation as we used for the differential equation, we
get

Vil =V + AV, (Al

From the scalar analysis above we know that each component of v is a nonincreasing
sequence for increasing n. Obviously this leads to the inequality

Ve ll = llvoll

for the vector norm. For the original scheme we get in the same way as for the ODE
system

lwa | = 1Tvall ATVl < ITHIVOll < ITHIT " lluo ]l = cond(T) [luo.

The bound is identical to the one for the ODE system.

The conclusion from this exercise is that the eigenvalue analysis is very powerful.
It shows that when analyzing a certain difference method for a system of ODE, we
gain much knowledge by analyzing how it works for a scalar equation

du

— = Au,

dt
which goes under the name the test equation. In Sect. 6.1 this equation was discussed
briefly as a result of a Fourier transformed PDE. The number X is there the Fourier
transform of a differential operator in space, and its location in the complex plane is
essential for the properties of the original PDE. The solution is

u(t) = e“u(()),

and we note that it is nonincreasing with time if and only if ReX < 0.

But A may as well be the discrete Fourier transform of a difference operator in
space, and in that case the solution of the test equation tells something about the
semidiscrete approximation.

As another example of discretization in time, we apply the trapezoidal rule

t
Upt1 = Uy + T(un + Ung1),

or equivalently

1+ AA1/2 y
1 —AAt/2
For negative X, the sequence {u,} is nonincreasing, and we have an unconditionally
stable scheme.

The parameters A and Ar will always occur as i = A At in the right hand side for
any consistent one-step scheme for the test equation, and the general form is

Up+1=zZ(W)Uy, (10.4)

Up+1 = n-
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-2 =il

(a) Euler (b) Euler backward (¢) Trapezoidal rule

Fig. 10.3 Stability domains

where the amplification factor z(u) is a scalar function of x. From a stability point
of view the interesting question is for what values of u do we have |z(u)| < 1. We
recall that the eigenvalues of a matrix may be complex even if the matrix is real, and
it is therefore necessary to consider complex . We make the formal definition:

The stability domain for a difference method (10.4) is the set S(u) in the complex
plane which satisfies |z(un)| < 1.

The (shaded) stability domains for the Euler, Euler backward and trapezoidal
method are shown in Fig. 10.3.

Since Re(n) = Re(AAf) < 0if and only if Re A < 0, we note that the trapezoidal
rule is the only method that is stable for exactly those values of A where the true
solution is nonincreasing. The Euler method has further stability restrictions, while
the Euler backward method is “overstable”, i.e., it is stable also for certain A where
the true solution grows.

A few warnings concerning the test equation are appropriate. The assumption of
a full set of eigenvectors is not always fulfilled, and then a scalar ODE doesn’t tell
it all. Secondly, the matrix A may depend on ¢, and the diagonalization does not go
through that easily.

Even worse is of course a nonlinear ODE. In that case one can linearize the
equation, which we shall sketch for the ODE

du
ar =g(u), (10.5)
where g(u) is a nonlinear function of u. We make a small perturbation u — u + v,
where |v]| is small, and plug it into the differential equation. A Taylor expansion
gives
du dv

d
on + = =gw+v)=g)+ ﬁ(u)v +0(vP).

When using the differential equation (10.5) and neglecting the square terms, we get
the equation

dv_dg()
di du”

If we now assume that the function u = u(¢) is known, we have a linear differential
equation for v(#). In a real application we do not of course know u, since that is
the solution we want to compute. But we may know for example that the derivative
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dg/du is negative, which brings us back to the example above. By understanding
how the linear problem behaves, we know how a small perturbation of the solution
to the original problem develops with time. In the same way we gain knowledge
about the original difference scheme by studying the corresponding linear difference
scheme.

The procedure described here is known as linearization of the equation, and is a
very common analysis tool. If we know that there is a bound on small perturbations
when time increases, the computation can be done with more confidence.

A fundamental question is of course how accurate the numerical solution is. As
an example, we consider the Euler method. The first question is how well the dif-
ference scheme approximates the differential equation, and the answer is obtained
by substituting the true solution u(¢) of the differential equation into the difference
scheme. Since it cannot be expected to satisfy this scheme exactly, we have

u(ty41) = ulty) + Afg(u(tn)) +R,
and the question is how big is the remainder R? The Taylor expansion gives
At? d*u

Tﬁ([r[) + O(AP),

du
u(tyy1) =u(ty) + AIE(tn) +

and by using the differential equation du/dt = g we get
At? d%u
U(tnp1) = utn) + Arg(ty) + == —5(tn) + O(AL).

Since we are dealing with differential equations, it is natural to normalize the equa-
tion by dividing by At:
u(tp41) — u(ty) At d*u 2
— = g(¢, — —= (¢ O (At9).
< 8(tn) + 5y () + O(AF)
By letting At tend to zero, we recover the differential equation in the limit. The
error for finite but small At
At d’u
T(A) = ———(t,) + O(A1?) = O(At
(A = 2= ) + 0(AP) = 0(AD)

is called the truncation error. (The error R = O(At?) defined above is called the
local truncation error.)

It is important to distinguish between the truncation error on one hand, describing
the error in the approximation of the differential equation, and the error u, — u(t,)
in the approximate solution on the other hand. It can be shown that they are of the
same order under the important condition that the difference scheme is stable in a
certain sense. We shall not go into those details here. For linear ODE the analysis is
not very difficult. For the Euler and Euler backward schemes one can show that the
error is of the order O(Ar), while it is & (Ar?) for the trapezoidal rule.

In general, if T (At) = O(At?) with p > 0, then the difference scheme is con-
sistent, and we say that the difference scheme has order of accuracy p. If we also
have |u, — u(t,)| = C(At?) with p > 0, then the numerical solution converges to
the true solution as At — 0, i.e., for any fixed time r = T we have

lim |MT/AI — M(T)| =0.
At—0



152 10 Finite Difference Methods

We say that the difference scheme is convergent.

In practical computations one can of course never reach the limit Az = 0. How-
ever, the theoretical concept of convergence is still fundamental. If a certain compu-
tation gives a result that is not accurate enough, we would like to get a more accurate
result if the computation is repeated with a smaller time step. This can be expected
with a convergent difference scheme.

The examples we have discussed so far have order of accuracy one or two. The
difference methods used in practice are often of higher order. There are essentially
two ways of achieving this. One is to aim for one-step methods where only one time
level t, is used for computing u,1. This requires several stages in the computation,
and we arrive at the large class of Runge—Kutta methods, named after the German
mathematicians Carl Runge (1856-1927) and Martin Wilhelm Kutta (1867-1944).
The most common method is the fourth order version

kl = g(”n)a

At

ky = g(un + —k1>,
2
At

k3 = g(’/‘n + 7k2>7

ky = g(un + Atks),
At
Upyl = Uy + ?(kl + 2ky + 2k3 + kyq).

It may seem like a strange formula, but the simple test equation du/dt = Au indi-

cates how it is derived. For this equation we have
du N d*u 32 d?u 53 d*u 54
- =AU, V5 = u, V2 = u, Vi u,
dt dt? dr3 drt

and by Taylor expansion

u(t + At) = u(t) + Atau(t) + 5 Azu(t)

+ A_p (1) + A—,\“u(t) +0(AP).

6 24
The Runge—Kutta method for our equation is
kl = )"una
At
ky = ()\. + —Xz)un
2
= AZ ,\3
4
N 3
At At
=(r+Aam?+ =23+ =% )u
< 2 4
A2, AP 5 At
Upt1 = 1+Al‘)\.+—)\ +?)§ +H)» Uy,
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Fig. 10.4 Stability domains
for Runge—Kutta methods 3 3
2 2
1r 1
0 0
-1 -1
-2t -2
-3r -3
3 2 1 0 1 3 2 1 0 1
(a) 3rd order (b) 4th order

i.e., exactly the Taylor expansion above. After dividing by Az, we find that the
truncation error is &(Ar*) as it should be. After a little more work for the general
nonlinear differential equation, the result is the same. The Runge—Kutta method
presented here has fourth order accuracy.

Note that it is a one-step method in the sense that the solution u, at only one
time level is required in order to compute u,1. But there are several stages in the
computational procedure.

The stability domain S(i) is obtained by finding the values of u for which

u? oot
lz(uw) = 1 +p+ 2 + c +24 <L
In Fig. 10.4 S(u) is shown for both the third and fourth order Runge—Kutta methods.
In the third order case, z(i) has the same expansion as in the fourth order case,
except for the last term, which is not present.

Runge—Kutta type methods of very high order have been derived over the years.
They all have the same structure as above, but the number of stages grows with
higher order of accuracy (more expressions k; to be stored).

The method above is explicit, but there are also implicit Runge—Kutta methods.
They have the same overall structure but, in the formula for &, the same quantity & ;
occurs also in the right hand side in the argument v of g(v). This requires the solu-
tion of a nonlinear equation at each stage for each step u,, — u,+1. The advantage
is that the stability properties improve.

Another way of constructing high order methods is to involve more than two
time levels when advancing the solution one step. The simplest such method is the
second order accurate leap-frog method

Upyl = Up—1 +2A18(uy).

It is a special case of a linear multistep method, and it requires two initial values to
get started. If u¢ is a given initial value for the differential equation, we need also u.
That value must be computed by a one-step method.
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A general linear multistep method has the form

UmUn+m + Ump—1Un4+m—1 + .-+ aguy,
= Atg(ﬂmbﬁr{-m + ﬁm_lun_;’_m_l —|— e + ﬁouo)

The word “linear” in the name for this class refers to the fact that g(u) occurs in a
linear way in the formula (not as g% (u) for example), and has nothing to do with
the type of function g(u), which may very well be nonlinear. One can also use the
different form

OmUntm + Am—1Untm—1 + -+ - + coUp
= Al(ﬂmg(un+m) + Bn-18Wnym—1)+ -+ /3()8(140)),

which has the same order of accuracy. There is a significant flexibility in the choice
of coefficients ; and B;. For a given order of accuracy, there are many ways of
choosing the coefficients. If 8,4, is nonzero, the method is implicit but, if we want
to keep the simpler explicit structure obtained with 8,4, = 0 while keeping the
order of accuracy, we have to add more time levels at the other end.

The leap-frog method above has a symmetric and simple structure, and it is
tempting to generalize it to higher order. By Taylor expansion it is easy to show
that

d—u(t) = L(—iu(t +2At) + %u(t + Af) — gu(r — At) + iu(t - 2At)>
dt At 12 3 3 12
+ O(Arh, (10.6)
which leads to the simple fourth order method
1 2 2 1
gt + FUn+3 = Ul + i = Atg(up42). (10.7)

In order to find out about the stability domain for the test equation, g(u,47) is re-
placed by Au, 5. It is easy to determine when a given one-step method is stable as
we saw above, but here we encounter a new difficulty. When more time levels are
involved, how do we analyze stability? We write a general difference equation as

Cmlntm + Cm—1Unym—1 + -+ coup = 0.
The key to the analysis is the roots z; of the characteristic equation
em?™ + o2 e =0,

which is formally obtained by substituting u,, = z" and then dividing by z". If all
the roots are distinct, then the general solution has the form

u, =a1z] +amzs + -+ amz,,

where the constants a; are determined by the m initial conditions. For stability we
require that the solution has no growing component, and obviously the condition is
|zj| <1 forall j.If there is a double root z1, the form of the solution is

up = (a1 +aon)z| + a3z + -+ amz),.
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If |z1| = 1, the solution will grow without bound when 7 increases. If on the other
hand |z1| < 1, then the component a;nz| will grow initially as n increases, but then
it will decrease. This means that the solution stays bounded by a constant K which is
independent of n. If there is a root with multiplicity higher than two, the polynomial
multiplying it will be of higher degree, but the conclusion is again that the solution
stays bounded independent of n if |z1| < 1.

For the test equation, the roots will be functions of . = AAt. The definition of
the stability domain for linear multistep methods is:

S ={u: all roots z; () satisfy |z; ()| < 1, multiple roots satisfy |z;(u)| < 1}.
Let us now go back to the leap-frog method. The characteristic equation is

2 —2uz—1=0

Zi2=pE 41

It is easily shown that the stability domain is just the line segment

with the roots

{n:Rep=0, |[Imu| <1}

on the imaginary axis. However, it is not as bad as it looks. Many problems are such
that the coefficient matrix of the linearized system of ODE has purely imaginary
eigenvalues. A simple example is

du dv .

—-— =V, — =—u,
dt dt

which can be written as

du u 0 1
E:Au, u=|:v], A=|:—l O:| (10.8)

The eigenvalues of A are given by
A2+1=0,
i.e., A1 2 = %i. Accordingly, the leap-frog scheme
W, =UW,—1 +2AtAu,.

is stable for Ar < 1.

Next we take a look at the fourth order method (10.7) derived above. A mini-
mal requirement is that it should be stable for u = 0 corresponding to a constant
solution u# independent of time. For the fourth order method above, it turns out that
one of the roots is 71 = 7.873 showing that the method is completely useless. The
same conclusion follows for any symmetric method of the same type with accuracy
6,8, .... Here we have a case where increasing the formal order of accuracy has a
negative effect. The stability is a key concept that always must be kept in mind.
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Fig. 10.5 Solution of (10.9) 1.6

by the Euler method,
At =0.001 (=), 1.4+ ]
At =0.01025 (—)
1.2+ u
LI SN A
A 'AAVVA" "" l
| ’
0.6
0.4}
0.2+ ]
0

Finally we shall discuss an important class of ODE that is quite common in
applications. Consider the initial value problem

d[ul [—100 9997,
d;[v]_ 99.9 —100 [v}
u(0) =1,
v(0) = 0.99.

(10.9)

We apply the Euler method with the two different time-steps At = 0.001 and At =
0.01025, and the result is shown in Fig. 10.5 for u(¢). The dashed curve with the
shorter time step is smooth, and as we will see below, it is close to the true solution.
The solution with the larger time step goes completely wrong. Obviously we have
again a case with an instability, but there is actually a new observation to be made
here.

We go back to the scalar problem (10.2) with the true solution shown in Fig. 10.2.
In this case the stability limit is not a severe restriction, since the time steps have to
be relatively small anyway in order to resolve the solution properly at the beginning
of the time interval. Actually, a time step of the order At = 0.1 seems quite rea-
sonable when looking at the graph, and this is far below the stability limit At = 2.
The solution of (10.9) is very smooth, and a time step of the order At = 0.1 is
certainly enough to get a good resolution. What is the reason for the severe time
restriction?

The coefficient matrix has the two eigenvalues A} = —0.1 and A = —199.9, i.e.,
they are far apart. Such a system of ODE is called stiff, and it is very common in
many different types of applications. One of them occurs in chemistry when dealing
with a number of components where the chemical reactions take place on different
time scales. Another application is obtained when discretizing partial differential
equations as we shall see later on.
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With the new variables ¢ = (1 + v)/2 and ¥ = (v — v)/2 in (10.9) we get

do dyr
— =-0.19¢, — =—199.9v,
dt ¢ dt 4

#(0)=0.995,  (0) = 0.005,

which is a direct way of diagonalizing the system. The function v (f) = 0.005¢ =19
is almost zero all the time, and the other function ¢ (¢) = 0.995¢~0-17 jg very smooth.
By going back to the original variables u = ¢ + ¢ and v = ¢ — y, we see that
they are very smooth as well. However, the crucial point is that the eigenvalue
A2 &~ —200, entering in the form of e 200t , is present all the time, even if it is an-
nihilated for the true solution by the choice of initial values. The discrete solution
introduces perturbations triggering the “parasitic” solution, which cannot be han-
dled by the Euler scheme if the time steps are not extremely small.

In the example above, a good approximation would be to assume from the be-
ginning that u — v = 0 all the time. For the general case, such a type of assumption
leads to a new type of system. Let u(z) and v(¢) be two vector functions with m and
n components respectively. A general differential-algebraic system has the form

du

- = f 3 3
r (a,v)
g(u,v)=0.

Here the vector f has m components, and g has n components.

Differential-algebraic systems are limits of stiff systems and can be handled as
such when solving them numerically, but in general special methods are used.

Stiff systems and differential-algebraic systems have been studied extensively,
and very effective numerical methods are available today.

Modern variants of finite difference methods work with variable step size and
even variable order of accuracy. The algorithm contains various types of sensors
that are estimating the error. If a local fast change of the solution occurs, the solver
works hard to reduce the time step in order to produce a well resolved solution.

There are many ODE-solvers on the market today. The MATLAB system has
at least seven solvers, mainly divided into stiff and nonstiff classes. The ode45-
function is the standard solver, using a Runge—Kutta method.

Exercise 10.1 When analyzing the linear ODE du/dt = A(t)u, it is of interest to
know the limit max, |A(¢)|. Derive the linearized form of the nonlinear ODE

du_ 1
dr — u2+1’

and determine the limit of the coefficient that corresponds to A (7).

(10.10)

Exercise 10.2 Consider the initial value problem (10.2) with the solution u(z) = e~

Prove that the difference scheme

Upyl =Up—1 — 2Atuy,
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is unstable for any At, while
Upyl =Up—1 — At (Upg1 +ty—1)

is stable for all At.

Exercise 10.3 Use the MATLAB ODE-solvers ode45 and ode23 (see Sect. 18.2)
for solving (10.10) with the initial value u(0) = 0. Compare the choice of time steps
for the two methods.

10.2 Partial Differential Equations

Let us now turn to partial differential equations and the so-called transport equation
(2.18) with ¢ = 1. We introduce the two-dimensional grid (x;,t,) = (jAx, nAt)
and the grid function u;f as an approximation of u(j Ax, nAt), see Fig. 10.6.

Note that we have switched notation from the previous section by changing the
subscript n indicating time level #,, to a superscript. In this way it is easier to distin-
guished from the subscript j indicating the grid point in space. One has to be careful
though, not to confuse the superscript n with the power notation.

At a certain point (x;, #,) we substitute

u - u;l'+1 - M’}

k]

ax Ax
n+l _ n
LN S
ot At
in the differential equation and obtain
At
u;!+1 :u;!—E u']’-H—u;'-). (10.11)

If the initial function u(j) =u(xj, 0) is known, we can compute u ; for all j, then u?
and so on.

Let us now try an experiment. An initial pulse is defined as in Sect. 9.2 with its
center at x = 0.2 as

u(x,0) = £—800x—0.2)>

The solution at time ¢ is

w(x, 1) = e—800(x—t—0.2)2’

i.e., the pulse has moved a distance ¢ to the right. We do the computation in the x-
interval [0, 1] with N = 1/Ax grid points, and choose At = 0.8 Ax. Figure 10.7(a)
shows the result at t = 0.038 for N = 400. It is centered properly at x = 0.238, but
the peak is too high. It is reasonable to assume that a finer grid should give better
results, since the difference scheme approximates the differential equation more
closely. However, we are in for a surprise. With half the step size in both directions,
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Fig. 10.6 Computational t
grid
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we get the result shown in Fig. 10.7(b). The solution goes completely wrong and
shows strange oscillations. What has happened?

We have defined the derivative as a limit of a forward difference (u(x + Ax,t) —
u(x,t))/Ax. As noted earlier it is of course also possible to define it as a limit of a
backward difference (u(x,t) —u(x — Ax,t))/Ax. When using this as the basis for
our difference approximation, we get

At
u7+1 = u;‘ — E(u; — u’}._l). (10.12)

It turns out that the numerical solution now behaves well, and we can compute it
over long time. Figure 10.8 shows the result at r = 0.4 with the same data as above.
For N = 400 the pulse is centered at the right position x = 0.6, but the top is too
low. With half the step size we get a better result as shown in Fig. 10.8(b).

The first computation with forward differences in the approximation is an exam-
ple of an unstable computation, while the second one with backward differences is
a stable computation. Actually, there is a simple explanation for the bad behavior of
the first one. At any given grid point (x;, #,41) the approximation doesn’t use any
point to the left at the previous time level. Since the pulse is moving to the right,
we must know what is coming in from the left. The second approximation takes this
into account.

Actually, there is not plain sailing with the second approximation either. We do
the same computation with Az = 1.2Ax, and the result is shown in Fig. 10.9 at
t = 0.32. Severe oscillations have occurred, even quite far from the pulse, and ob-
viously the numerical solution is useless. Apparently, the time step must be chosen
small enough in order to retain the stability. This is in accordance with the discus-
sion about stability domains for ODE. For PDE the theoretical analysis is harder
but, by using Fourier analysis to be presented in the next section, one can show that
stability requires the condition Ar < Ax.

Let us next compute the solution to the heat conduction problem (2.20). We con-
struct a difference scheme by using the three point expression used in the definition
of the second derivative 32u/dx? and a forward finite difference for du/d¢. With
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Fig. 10.10 Computational stencils for the heat equation

N + 1 grid points in the x-direction including the boundary points, the resulting
scheme is

+1

wit =u +—(u =2 ul ),
]_1,2,..., -1, n=0,1,...,
+1

=,

+1

uyt =1,

u = fix)),

as illustrated in Fig. 10.10(a). With 4% known for all j, u can be computed for all
j, and so on until we reach the final time level.

Even if the solution is obtained by stepping forward in time, one could still use an
approximation based on the Euler backward scheme, just as for ordinary differential
equations discussed above. The forward difference in time is replaced by a backward
difference, which gives

n+1 __ n+1 n+1 n+1
wj = iy ( uj /+l)
j—1,2,..., —1,n=o,1,...,
+1
uy =1,
ﬂ+1 _1
) = fi(x)), (10.13)

see Fig. 10.10(b). This is an implicit scheme, and it requires more computation for
each time step. Since all grid points at the new time level 7,4 are coupled to each
other, this complication is more severe compared to ODE. We must solve a large
system of equations for each time step.

For a well posed problem, there is still a possibility that the numerical scheme
goes wrong as we saw for the equation du /9t 4+ du/dx = 0 above. We run the first
explicit approximation above with two different time steps. Figure 10.11 shows the
result for the step size At =0.000310 and At = 0.000315.

Apparently there is a critical limit somewhere in between these two values. In-
deed, by using analytical tools the theoretical stability limit on At can be found. In
the next section we shall describe how this can be done.
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Fig. 10.11 The heat equation

The implicit scheme above does not have any stability restriction on the time
step. It is unconditionally stable, which is typical for implicit schemes.

The consistency and convergence concepts can be defined in analogy with ordi-
nary differential equations. A consistent difference scheme approaches formally the
differential equation as Ax — 0 and At — 0. It is convergent if for any fixed t =T
the numerical solution converges to the true solution:

T/At
J

|lu —u(x;, T)|—>0 asAx—0, At — 0.

The norm is a measure of the discrete function at a given time level corresponding
to vector norms.

The consistency is usually easy to verify by a direct application of Taylor expan-
sions, but convergence is not. However, there is a fundamental theorem saying that
a consistent scheme is convergent if it is stable. Therefore, stability analysis is the
key to the construction of accurate difference schemes. In the next section we shall
indicate how it can be carried out by using a Fourier technique.

Exercise 10.4 Show that the difference method (10.13) requires the solution of a
tridiagonal system (see Sect. 3.3) for each time step. Write down the system in
detail.

Exercise 10.5 Suggest a difference method for du /3t = 9%u/dx? that uses a com-
bination of (u;_; —2u/; +u7+1)/Ax2 and (u;‘f} — 2u;f+1 —i—u?i%)/A)ﬂ for approx-
imation of 8%u/dx>.

10.3 Fourier Stability Analysis
In this section we shall describe how one can analyze a given difference scheme for

a partial differential equation with respect to its stability properties. We shall limit
ourselves to the simplest form of analysis, which is based on the Fourier transform.
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Even if the solutions are nonperiodic, it turns out that the analysis of a modified
problem with periodic solutions gives significant information about the stability. Let
us discuss the solution of the heat equation above, and the difference scheme

n+] n n
u; —i——(u] 1 2uj+uj+1),

j=0,1,....,N, n=0,1,..., (10.14)
u(]) = f,

Here we have canceled the boundary conditions, and assume periodicity instead:
u’} ING1 = u;’ For difference methods, only the grid values are accounted for. There-
fore, the solution at any time level #, can be represented as a discrete Fourier series
as was demonstrated in Sect. 6.2. We write the series in the form

N/2

Z cZeik"-f, j=0,1,..., N,

k=—N/2

where the coefficients are defined by

The coefficients ¢}, are now time dependent, and the idea is to investigate how these
coefficients are behaving when time increases.

At a first glance, it seems like a complication to study these coefficients instead
of the original grid values u . But there are two facts that show why it is a good
idea:

1. The difference scheme takes a particularly simple form when it is formulated in
terms of the Fourier coefficients.

2. The behavior of the Fourier coefficients is directly related to the behavior of the
original grid values via the discrete Parseval’s relation (6.10).

We introduce the Fourier series into the difference approximation of the second
space derivative and obtain

N/2

== D R 26

=—N/2

N/2

> cpe*iqe),

k=—N/2
where
gE&)=e —24¢%, £=kAx.

The whole difference scheme can now be written as
N/2

Z <n+l (1+0q))c )ika:O’

k=—N/2
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where o = Ar/Ax?. In Sect. 6.2 it was demonstrated that the N + 1 grid func-
tions e’**j (which can also be considered as vectors) are linearly independent. By
definition this means that each one of the coefficients in the sum must be zero, i.e.,

M =(1+0q®)c}, k=0,1,....N, [g|<m. (10.15)

This is quite a simplification! The original difference scheme couples neighboring
points in space to each other, and the whole set of variables must be treated together.
On the contrary, there is no coupling between the Fourier coefficients for different
k-values, and the development with time can be handled separately for each one
of them. This is in exact analogy with the “continuous” Fourier transform and dif-
ferential operators as discussed in Sect. 6.1. A differential operator is replaced by
multiplication by a number by using the Fourier transform also in that case.

Knowledge about the behavior of the Fourier coefficients is transferred to the
solution of the difference scheme by the discrete Parseval’s relation. If we can make
sure that the Fourier coefficients do not grow with time, i.e.,

lept < 1efl, k=0,1,...,N,
then
N N/2 N/2
1,2 1,2 2
Zm’;ﬂm:zn Z lcp 2 <2m Z Il |
j=0 k=—N/2 k=—N/2

N N
= Z |u’;|2Ax <...< Z |u?|2Ax.
j=0 j=0

If we order the grid values u’J’ in a vector u”, then the norm is defined by

N
2 2
o[> = " |ut* Ax,
ot

and we have
2 0,2
u (| < lu”~.

This could be used as the definition of stability. However, a more reasonable defini-
tion is to allow a constant in the estimate:

A difference approximation is stable if the solution satisfies
0
o[l < K[u”|l,
where K is a constant independent of n and u°.

We are now in a very good position. By making sure that the Fourier coefficients
satisfy the von Neumann condition

1
I < Iegl,

we have a final stability estimate for the solution. But (10.15) shows that this condi-
tion is satisfied if

IT+oq@)] =1
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By using the trigonometric interpretation of ¢'s, we get
gE)=e — 2465 =2cos& -2,
leading to the inequality
[1—20(1 —cosé&)| <1.

Since cos & never exceeds one, the critical point is cos € = —1. This leads to the final
condition
At 1
o=—5<-.
Ax2 ~ 2
The difference scheme is stable if the time step is chosen small enough:
Ax?
At < —.
2
It may seem that the periodicity assumption on the solutions is too restrictive, mak-
ing the stability result of little value. But it is not. It is actually a necessary stability
condition, and it is often sufficient as well. The heat conduction problem above with
the temperature specified at both boundaries is such an example. Furthermore, if the
heat conduction coefficient depends on x and ¢, so that the differential equation is

ou 0 u
== a@.n
ot 0x 0x

with a(x, t) > 0, then the corresponding generalized difference scheme has the sta-
bility limit
Ax?
At < ——.
2maxy ;a(x,t)

Let us take another look at the transformation procedure used above. If the grid
functions are organized as vectors

n
Uy
then we can consider the difference scheme as a relation between the two vectors
u” and u"*! connected by a matrix Q:
un—H — Qlln.
For our example with periodic solutions, the matrix is

1 —20 o o
o 1—-20 o
o 1-20 o

o 1—20 o
o o 1—20_
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In Sect. 6.2 we introduced the matrix F for the Fourier transform, and we multi-
ply with it from the left, getting

Fu'"t' = FQF ' Fu".
With the new vector v' = Fu” and A = FQF !, we get
Vn+1 — AV".

The vector v" is the Fourier transform of u”, and it has the elements c;’. Conse-
quently we have a system of equations for each one of the Fourier coefficients ¢},
and by (10.15) we can see that A = FQF~! is a diagonal matrix:

=g oa( (- )ar). 1= (-5 1)) o
oo ar))

By these arguments we have shown that the application of the Fourier transform
is equivalent to diagonalizing the corresponding vector/matrix formulation of the
scheme. It is then very easy to do the analysis, since we are now dealing with a set
of scalar equations.

For more general initial-boundary value problems, a different kind of theory is
required. However, the Fourier type stability analysis is still very powerful. Indeed it
is often the only type of analysis that is done for many realistic application problems,
and quite often it leads to the correct stability limit on At.

Exercise 10.6 Consider the PDE du /3t = 8%u/dx> with periodic boundary condi-
tions. Prove that the ODE system that is obtained by discretizing in space by using
the standard second order difference operator is stiff (see definition in Sect. 10.1).

Exercise 10.7 Write down the Euler backward difference scheme corresponding
to (10.13), but now for the periodic case. Derive the exact form of the system of
equations that must be solved for advancing this scheme one step. Compare the
form to the nonperiodic case (Exercise 10.4).

Exercise 10.8 Use the Fourier method to prove that the Euler backward method in
Exercise 10.7 is unconditionally stable.

Exercise 10.9 Consider the PDE 0u/d¢t = adu/dx and the leap-frog difference

scheme
At
n+l _  n—1 n _n
w; =u; —I—a—Ax(ujJrl ui_y)-

Use Fourier analysis to derive the stability condition.
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10.4 Several Space Dimensions

Problems in one space dimension are almost exclusively used as model problems
for analysis and preliminary investigations. Real life problems have almost always
at least two space dimensions, and we shall make a few comments on these.
The differential equation has the form
ou

o P(0x, dy)u

with proper initial and boundary conditions. Finite difference methods are not
well suited for problems where the computational domain is irregular, since both
the construction of the computational grid and the analysis become more compli-
cated. However, for regular geometries, we can use structured grids, and the easiest
2D-case is arectangle 0 <x <a, 0 <y < b. The grid is defined by

(xj,,¥j) = (j1Ax, 2Ay), j1=0,1,...,Ni, NjAx =a,
j2=0,1,..., N2, NoAy=b,

in the x, y-plane, see Fig. 10.12.
The solution u(xj,, yj,, ;) is approximated by u’}l Ix The Fourier analysis is eas-
ily generalized from 1D. The grid function is transformed as

N2 N2

l(k1X;1+k2y;2)
Gp= D ) Chi

k1=—N1/2 kp=—N;/2
=0,1,...,N1, j»=0,1,..., Ny,

where the coefficients are defined by

N1 Ny

n —i(kyxj +kayj,)
k2 T o2 Z Z Wjijr® / PIAxAy.
(QTF)
J1=0j2=0

The wave numbers k; and k» correspond to the wave number & in 1D. After dis-
cretization in time and Fourier transformation of the difference scheme in space, we
get a number of scalar relations of the type

g ", 0<|&,In <,

where & = k1 Ax, n = ko Ay. Also in the 2D-case we have obtained a number of sim-
ple algebraic equations instead of a difficult partial differential equation. We simply
have to make sure that the amplification factor satisfies the inequality |g (£, )| <1
for 0 < &, n < 2m, making the difference scheme stable.

Difference schemes can be used for other computational domains than rectangles.
As long as we can map the domain to a rectangle we are in good shape. For example,
if the boundaries are circular, we use the well known polar coordinates r and 6
defined by

X =rcosf, y=rsin6.
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Fig. 10.12 Two-dimensional y
grid b
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using polar coordinates

Figure 10.13 shows the mapping for a domain between two circles with radius a
and b respectively (the scales are changed in the right figure). The computation is
done on the computational grid in the r, 6-plane to the right.

When changing the coordinate system, we must also change the dependent vari-
ables and the differential equation. If u(x, y) is a given function, then we get a new
function by

u(x,y) —> u(rcosd,rsinf) — v(r, ).

The new differential equation is obtained by using the relations

v Jdu dx  du dy ou . du
—=——+—-"—=c0s0— +sinf—,
ar  d0x or  Qdy or ax a

y
dv  du dx  du dy . ou
=—— — =—rsinf— +rcos6
X

ou
90 9x 90 Ay o 9 '

dy
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leading to
ou 1 dv . o0v
— =—|rcos@— —sinf— ).
ox r ar 00
ou 1 . dv v
— =—rsin0— +cosf— ).
ay r or a6

These relations can be further differentiated to obtain higher order derivatives in the
new coordinates.

In Sect. 2.3 we introduced the gradient of a function. We must be careful when
transferring this concept to a new coordinate system. The direct translation [v;, vo]T
doesn’t work. The definition of the gradient is that it is the vector pointing in the
direction where the function has the strongest growth, and with a magnitude that
equals this growth rate. Then we must take into account the geometric properties of
the new system, and for polar coordinates it turns out that the gradient is

%mm}

19
Loy, 6)

Vu(r,0) = |:

‘We now go back to the heat equation

du _ 0%u N 9%u (10.16)
ar  ax2 9y’ ’

and change variables such that
v(r,0,t)= u(x(r, 0), y(r,0), t).
Then it can be shown that the equation takes the form

v 92 19 1 92

ot o2 rar T r2aer
The boundaries would be difficult to represent by a rectangular grid in the original
(x, y)-coordinates, and the mapping makes it possible to represent the boundaries
exactly while still keeping a structured grid.

There is a technical difficulty with these coordinates if the computational domain
contains the center point r = 0, since the coefficients 1/r and 1/r2 become infinite
there. Since the physics doesn’t know anything about coordinate systems, this sin-
gularity has to be an artificial effect caused by the choice of coordinates. One can
avoid the problem by excluding the point r = 0 from the computational grid. How-
ever, one should be aware that these coordinates are no good anyway, since the
coordinate lines in the original Cartesian system converge at the center point result-
ing in a very small step size A9. We shall discuss this further in Sect. 17.4, where
the same type of problem occurs at the poles of the globe when doing atmospheric
simulations.

There are classic coordinate systems for many different types of geometry, and
these should of course be used for computing. We saw above that the differential
equation got a different and more complicated form. In Appendix A.2, the most
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Fig. 10.14 Part of irregular
domain and computational
domain y

common differential operators are listed in polar, cylindrical and spherical coordi-
nates.

It may be possible to use structured grids even for other domains where no obvi-
ous coordinate system is available. In 2D, a general transformation is

§=£&(x,y), n=n(x,y),

with a unique inverse transformation

x=x&,n), y=y(&,n).

The transformed differential equation contains derivatives of the variables x, y with
respect to &, n and, if the transformation has been constructed by some numerical
procedure, these are not known by any explicit expression. However, they can be
approximated by finite differences, and in this way we can still keep a structured
grid. If the final computation can be carried out on a uniform rectangular grid, we are
in good shape, since the algebraic operations can be organized in an efficient way.
This usually outweighs the extra complication caused by the fact that the differential
equation contains more terms. There is also the advantage that the boundary can be
represented exactly, with the exact form of boundary conditions. Figure 10.14 shows
part of a domain with a curved boundary, and part of the computational domain.

In many applications, the solution varies on a much smaller scale in some parts
of the domain than in others, which means that an efficient method should use a
finer grid in those parts. A typical application where this occurs is fluid dynamics,
where the solution may have very sharp gradients near solid walls. These are called
boundary layers, and they require a fine grid. Figure 10.15 shows such a case with
a simple geometry with the original coordinates to the left, and the computational
coordinates to the right.

There is actually another way of handling irregular domains with curved bound-
aries. The problem is to construct a grid that is structured all over the domain. This
difficulty is partially avoided by constructing a local grid near the boundary, and
then couple it to one or more rectangular grids in the remaining part of the domain
without requiring that the grid points match each other at the edges. This is called
overlapping grids, and an example is shown in Fig. 10.16.



10.4  Several Space Dimensions 171

Fig. 10.15 Boundary layer
grid

Fig. 10.16 Overlapping grids

The grid nearest the boundary is called a curvilinear grid, and is constructed such
that the boundary conditions are easy to approximate. But there is now a new prob-
lem. Each one of computational domains has a new boundary, and since they are
located in the inner part of the domain, there are no boundary conditions to pick up
from the original problem. This is of course as it should be, since each grid must be
coupled to the other one, and that coupling is obtained through new boundary con-
ditions at these artificial boundaries. The most straightforward method is to define
the boundary values by interpolation from the other grid. A certain point at the inner
edge of the curvilinear grid (filled circle) is given a value that is interpolated from
the nearest surrounding points in the rectangular grid. In the same way, a point at the
outer edge of the rectangular grid (open circle) is interpolated from the nearest sur-
rounding points in the curvilinear grid. The number of points used for interpolation
is determined by the accuracy of the main difference scheme. A higher order scheme
requires higher order interpolation using more points, otherwise the accuracy goes
down.

Exercise 10.10 Write down the explicit difference scheme corresponding to (10.14)
but now for the two-dimensional equation (10.16). Derive the stability condition.
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