
3

Enterprise Knowledge Structures

Basil Ell, Elena Simperl, Stephan W€olger, Benedikt K€ampgen,

Simon Hangl, Denny Vrandečić, and Katharina Siorpaes

3.1 Introduction

One of the major aims of knowledge management has always been to facilitate the

sharing and reuse of knowledge. Over the years a long list of technologies and

tools pursuing this aim have been proposed, using different types of conceptual

structures to capture the knowledge that individuals and groups communicate and

exchange. This chapter is concerned with these knowledge structures and their

development, maintenance and use within corporate environments. Enterprise

knowledge management as we know it today often follows a predominantly

community-driven approach to meet its organizational and technical challenges.

It builds upon the power of mass collaboration and social software combined with

intelligent machine-driven information management technology delivered though

formal semantics. The knowledge structures underlying contemporary enterprise

knowledge management platforms are diverse, from database tables deployed

company-wide to files in proprietary formats used by scripts, from loosely defined

folksonomies describing content through tags to highly formalized ontologies

through which new enterprise knowledge can be automatically derived. Lever-

aging such structures requires a knowledge management environment which not

only exposes them in an integrated fashion, but also allows knowledge workers

to adjust and customize them according to their specific needs. We discuss how

the Semantic MediaWiki provides such an environment - not only as an easy-to-

use, highly versatile communication and collaboration medium, but also as an

B. Ell (*) • E. Simperl • B. K€ampgen • D. Vrandečić

Karlsruhe Institute of Technology, KIT-Campus S€ud, D-76128 Karlsruhe, Germany

e-mail: basil.ell@kit.edu; elena.simperl@kit.edu; benedikt.kaempgen@kit.edu;

denny.vrandecic@kit.edu

S. W€olger • S. Hangl • K. Siorpaes
STI Innsbruck, University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria

e-mail: stephan.woelger@sti2.at; simon.scerri@deri.org; katharina.siorpaes@gmail.com

P. Warren et al. (eds.), Context and Semantics for Knowledge Management,
DOI 10.1007/978-3-642-19510-5_3, # Springer-Verlag Berlin Heidelberg 2011

29

mailto:basil.ell@kit.edu
mailto:elena.simperl@kit.edu
mailto:benedikt.kaempgen@kit.edu
mailto:denny.vrandecic@kit.edu
mailto:stephan.woelger@sti2.at
mailto:simon.scerri@deri.org
mailto:katharina.siorpaes@gmail.com


integration and knowledge engineering tool targeting the full range of enterprise

knowledge structures currently used.

This chapter is split into two parts. In the first part we undertake a comparative

analysis of the different types of knowledge structures used by knowledge workers

and enterprise IT systems for knowledge sharing and reuse purposes. In the second

part we devise a comprehensive approach to develop, manage and use such

structures in a collaborative manner. We present an ontology editor bringing

together Web 2.0-inspired paradigms and functionality such as Flickr (http://

www.flickr.com) and wikis to support laymen in organizing their knowledge as

lightweight ontologies. Integration with related knowledge resources is exemplified

through a series of methods by which arbitrary folksonomies, but also highly

popular knowledge bases such as Wikipedia (http://www.wikipedia.org/) and

Freebase (http://www.freebase.com/) are made accessible in ontological form.

To further optimize the usability of knowledge structures – an issue which becomes

particularly important in a non-expert-driven knowledge engineering scenario

integrating various resources – we design techniques to check for common fallacies

and modeling errors, which offer a solid baseline for cleansing the underlying

knowledge base. The implementation is based on Semantic MediaWiki (http://

semantic-mediawiki.org/), and has been deployed in the three case studies of the

ACTIVE project which are introduced in Chaps. 9–11.

3.2 Enterprise Knowledge Structures and How Are They Used

The question of how to optimally capture and leverage enterprise knowledge has

engaged the knowledge management community since its inception. As already

discussed in the introductory section of this chapter, the prominence of this topic is

reflected in the different types of conceptual structures which we can find behind

the scenes of enterprise knowledge management platforms, a diversity which is

multiplied by the wide spectrum of methodologies, methods and techniques pro-

posed for their development, maintenance and use. In the present day, enterprise

knowledge management essentially follows a community-driven approach,

implementing solutions for crowdsourcing and social networking in order to opti-

mize communication and collaboration – within the company and its ecosystem of

business partners and end-customers – and knowledge sharing and reuse. In addi-

tion, formal semantics provide intelligent information management technology for

capturing, accessing, managing and integrating knowledge. The approach is based

on ontologies, knowledge structures whose (community-agreed) meaning is expec-

ted to be exploitable by machines, in particular via reasoning facilities by which

implicit knowledge is derived and inconsistencies are detected.

In the following we illustrate how enterprise knowledge structures can be used,

and the various trade-offs which are associated with the different types of struc-

tures, in terms of three motivating scenarios taken from the case studies.

30 B. Ell et al.

http://www.flickr.com
http://www.flickr.com
http://www.wikipedia.org/
http://www.freebase.com/
http://semantic-mediawiki.org/
http://semantic-mediawiki.org/


3.2.1 Knowledge Management at an International Consulting
Company

The first scenario is set in a large, knowledge-intensive enterprise – a consulting

company – where employees collaborate around the globe on various topics to

provide services to clients with best efficiency.

Most enterprise knowledge management systems are set up for the ‘prototypical’

user with no specific task in mind. Especially in a large enterprise context,

employees need information for various different tasks. For instance, they may

want to find information on previous projects, get an overview of a specific tech-

nology, or they may be interested in learning about a particular group within the

company. These tasks are particularly relevant in the context of proposal develop-

ment, by which a company creates a description of the products and services it is

offering at an estimated cost to a potential customer.

Proposal writing follows standardized processes and procedures – giving

instructions about the tasks to be undertaken, the information to be gathered, the

documents to be created, etc. Equally important are less formalized practices –

calling contacts that may have information on similar projects, or searching for

similar proposals in the intranet. Often, information about previous projects cannot

simply be obtained from a central data repository. This is due to the fact that many

documents created within the context of a client project are client-proprietary, and

may not be shared within the entire company. There are also many technical

challenges related to the decentralized and heterogeneus nature of the enterprise

IT landscape, and to the limitations of keyword-based information management

technologies. Especially in an enterprise scenario, and in the context of a specific

task, it will often be useful to retrieve actual facts rather than the documents

that mention them. Such facts refer to entities, for example, to experts, locations,

clients, other companies, and relationships among them. Which facts should be

retrieved naturally depends on the task at hand: for instance, in the case of proposal

development, one might want to find clients for which the company has submitted

similar bids.

Enterprise knowledge structures are the backbone of such sophisticated infor-

mation retrieval facilities. They capture enterprise domain knowledge at various

levels of expressivity and formality. When choosing the most appropriate among

these levels, it is important to weigh the advantages and disadvantages of heavy-

weight ontology-based approaches, supporting reasoning and full-fledged semantic

search, vs. the additional costs associated with the maintenance and usage of the

knowledge structure, which should be integrated into the daily workflow and allow

user participation at large. Enterprise document repositories support bookmarking

and tagging as means to describe the content of documents. The resulting con-

ceptual structures contain knowledge which could prove extremely useful to create

rich, formal ontologies to implement more purposeful information retrieval

solutions.

3 Enterprise Knowledge Structures 31



3.2.2 Knowledge Sharing at a Large Telecom Operator

A similar scenario has been identified at a large telecom operator.

Operating in multiple projects is a reality of modern businesses. As part of their

daily work knowledge workers interact with various systems, information sources and

people. Their work is highly dependent on contextual dimensions as diverse as the

customer, the status of the sales opportunity, current project issues, and the suppliers

involved. To improve productivity, frequently used information such as contact and

customer data and product documentation should be easily available; the knowledge

worker should not have to search around for these things as they change from one

working context to another. Furthermore, as the user resumes an earlier task, her

working context should be restored without problem to the state it was before.

There is an abundance of information held within the company’s repositories,

much of which may not be easily accessible to technical consultants, solution

consultants, and sales specialists. In addition there is a wealth of tacit knowledge

which may not be being captured to best effect. The key problem here is that

knowledge workers may not be aware of earlier solutions; it is possible that

comparable solutions to similar problems are being worked on in isolation rather

than in co-operation, or even that a particular problem has already been solved.

A better awareness of the solutions to specific business problems and the business

domains in which those solutions were applied should enable common patterns of

solutions to be identified.

To support agile knowledge working, several knowledge management features

are required: information such as contacts, relevant (technical) documentation,

emails, and customer-specific information must be captured and easy retrieval

must be enabled. Moreover, the context of a knowledge worker has to be captured.

This involves modeling of general enterprise knowledge as well as appropriate

knowledge representation formalisms, suitable from an information-management

point of view, but also tangible for knowledge workers.

3.2.3 Process Optimization at a Digital Chip Design Company

The order of the design activities during chip design is hard to determine before

process start. Usually a designer or a team decides on the best possible continuation

of the activity flow in an ad-hoc manner during the process. Problems can occur in

the case of goal changes, requirement changes, environment changes, etc.

It is important to collect data about the actual execution and sequences of design

activities in several concurrent design project flows. Ideally, this should be sup-

ported by a knowledge management application that assists in eliciting the knowl-

edge about how a sequence of design and verification activities is related to

a particular type of a designed artifact, the configurations of used design tools,

and the capabilities of design teams.

32 B. Ell et al.



The company uses a modeling framework and an upper-level ontology for repre-

senting dynamic engineering design processes and design systems as process

environments. The modeling approach is based on the understanding that an

engineering design process can be conceived as a process of knowledge transfor-

mation which passes through several states. Each state is the state of affairs in

which a particular representation of a design artifact or several representations are

added after being elaborated by a design activity leading to this state. Evidently,

the overall goal of a design process is to reach the (target) state of affairs in which

all the representations are elaborated with enough quality for meeting the require-

ments. The continuation of the process is decided by choosing an activity from the

set of admissible alternatives for that state. Engineering design processes are

situated in and factually executed by the design system comprising designers,

resources, tools, and normative regulations.

The ontology used in the chip design company is a core component of

all processes. The ontology constantly evolves and its evolution needs to be

supported by collaborative ontology engineering tools. The objective is to ensure

that the enterprise knowledge structures and the proprietary ontology suite

are aligned.

3.2.4 Trade-off Analysis

Enterprise knowledge structures vary with respect to a number of aspects, ranging

from expressivity to size, granularity and modeling paradigm followed. These

aspects influence not only the utility of (a category of) knowledge structures in

a particular scenario, but has also direct consequences on the ways in which

a knowledge structure is developed, maintained and used. This section aims to

conduct a baseline analysis of the trade-offs implied by these aspects and to

introduce methods which can be used to perform such an analysis in a systematic

manner.

Particular attention is paid to the use cases discussed above. Considering the

scenario within the large consulting company, enterprise knowledge structures can

be used to allow for the implementation of intelligent knowledge organization and

retrieval techniques. Questions related to the most adequate type of knowledge

structure, its tangible benefits, and the associated development and maintenance

costs are crucial to demonstrate the added value of the technology in this scenario.

The maintainability of knowledge structures is, besides reuse, an essential aspect of

the second scenario we investigate in the project. Here, the additional problem to be

looked into is the extent to which reusability of existing knowledge structures is

economically feasible. The chip design scenario leverages ontologies as means to

capture domain knowledge and enable communication between designers. Cost-

benefit-motivated quantitative and qualitative means are expected to optimize the

ongoing ontology engineering process (see Chap. 4).

3 Enterprise Knowledge Structures 33



Trade-offs are specified along a number of dimensions used in the literature to

classify and describe knowledge structures:

1. Formality: (Uschold and Grueninger 1996) distinguish among four levels of

formality:

– Highly informal: the domain of interest is modeled in a loose form in natural

language.

– Semi-informal: the meaning of the modeled entities is less ambiguous by the

usage of a restricted language.

– Semi-formal: the knowledge structure is implemented in a formal language.

– Rigorously formal: the meaning of the representation language is defined in

detail, with theorems and proofs for soundness or completeness.

(McGuiness 2003) defines a ‘semantic spectrum’ specifying a total order

between common types of models. This basically divides ontologies or ontology-

like structures in informal and formal as follows (Fig. 3.1):

– Informal models are ordered in ascending order of their formality degree as

controlled vocabularies, glossaries, thesauri and informal taxonomies. In this

category we can also include folksonomies, sets of terms which are the result of

collaborative tagging processes.

– Formal models are ordered in the same manner: starting with formal taxono-
mies, which precisely define the meaning of the specialization/generalization

relationship, more formal models are derived by incrementally adding formal
instances, properties/frames, value restrictions, disjointness, formal meronymy,
general logical constraints etc.

In the first category we usually encounter thesauri such as WordNet (Fellbaum

1998), taxonomies such as the Open Directory (http://www.dmoz.org) and the ACM

classification (http://www.acm.org/class/1998/) or various eCommerce standards

(Fensel 2001). Most of the available Semantic Web ontologies can be localized at

the lower end of the formal continuum (i.e. as formal taxonomies), a category which
overlaps with the semi-formal level in the previous categorizations. However, the

usage of SemanticWeb representation languages does not guarantee a certain degree

of formality: while an increasing number of applications are currently deciding to

Fig. 3.1 Semantic spectrum

(based on McGuiness [2003])

34 B. Ell et al.

http://www.dmoz.org
http://www.acm.org/class/1998/


formalize domain or application-specific knowledge using languages such as RDFS

or OWL, the resulting ontologies do not necessarily commit to the formal semantics

of these languages. By contrast, Cyc (Lenat 1995) or DOLCE (Gangemi et al. 2002)

are definitively representative for the so-called heavyweight ontologies category,

which corresponds to the upper end of the continuum.

In (Vrandečić 2009b) we offer a complete formalization of all the above types of

knowledge structures, and thus also how OWL2 (Grau et al. 2008) can be used to

represent each of the other types besides ontologies. This allows us to classify

knowledge structures automatically, and to check if they indeed meet the criteria of

a specific type of knowledge structure. What is important here is that we can use any

of the given structures without restrictions and nevertheless guarantee the integra-

tion of all these knowledge structures.

2. Shareability: due to the difficulties encountered in achieving a consensual

conceptualization of a domain of interest, most of the ontologies available today

reflect the view of a restricted group of people or of single organizations.

Standard classifications such as the Open Directory (http://www.dmoz.org),

classifications of job descriptors, products, services or industry sectors have been

developed by renowned organizations in the corresponding fields. Due to this fact,

these knowledge structures are being expected to be shared across a wide range of

applications. However, many of them have been developed in isolated settings

without an explicit focus on being shared across communities or software

platforms. Given this state of the art we distinguish among four levels of (expected)

shareability:

– Personal ontologies: the result of an individual development effort, reflecting

the view of the author(s) upon the modeled domain. Personal Semantic Web

ontologies are published online and might be accessed by interested parties, but

their impact is limited, as there is no explicit support for them being reused in

other application contexts. Depending on the complexity of the ontology, they

still might achieve a broad acceptance among a large user community.

– Application ontologies: developed in the context of a specific project for pre-

defined purposes and are assumed to reflect the view of the project team

(including the community of users) upon the modeled domain. Whilst under

circumstances made public on the Web, they are de facto intended to be used

within the original, project-related user community. Their acceptance beyond

these boundaries depends on the impact of the authoring authority in the specific

area, but also on the general reusability of the ontologies. Many of the domain

ontologies available so far can be included in this category.

– Openly developed ontologies: developed by a large, open community of users,

who are free to contribute to the content of the ontology. The ontology, as a

result of continuous refinements and extensions, emerges to a commonly agreed,

widely accepted representation of the domain of interest. The evolution of the

Open Directory classification is a good example for collaborative, Web-based

ontology development: the core structure of the topic classification, originally

proposed by Yahoo! (http://dir.yahoo.com/) and used in slightly modified form

3 Enterprise Knowledge Structures 35

http://www.dmoz.org
http://dir.yahoo.com/


by various search engines, was extended by users, who also played an crucial

role in the instantiation of the ontology with Web documents. Another promi-

nent example is the Gene Ontology (Gene Ontology Consortium 2000).

– Standardontologies: developed for standardization purposes by key organizations

in the field, usually being the result of an extended agreement process in order to

satisfy a broad range of requirements arisen from various user communities. The

majority of standard ontology-like structures currently available are situated in the

area of eCommerce: The United Nations Standard Products and Services Codes

UNSPSC (http://www.unspsc.org), the RosettaNet classification (http://www.

rosettanet.org) or the North American Industry Classification System NAICS

(http://www.census.gov/epcd/www/naics.html). Another example is the FOAF

ontology (http://xmlns.com/foaf/0.1/). The simple ontology describing common

inter-human relationships enjoys significant visibility, not only as a result of the

standardization efforts of the FOAF development team.

3. Domain and scope: according to (Guarino 1998) ontologies can be classified

into four categories:

– Upper-level/top-level ontologies: they describe general-purpose concepts and

their properties. Examples are the Top-Elements Classification by Sowa (Sowa

1995), the Suggested Upper Level Merged Ontology SUMO (Pease et al. 2002)

or the Descriptive Ontology for Linguistic and Cognitive Engineering DOLCE

(Gangemi et al. 2002).

– Domain ontologies: they are used to model specific domains in medicine or

academia. A typical example in this area is the Gene Ontology developed by the

Gene Ontology Consortium (2000).

– Task ontologies: they describe general or domain-specific activities.

– Application ontologies: they are extensions of domain ontologies having regard

to particular application-related task ontologies and application requirements.

A last category of ontologies, which was not covered by the classifications

mentioned so far, are the so-calledmeta-ontologies or (knowledge) representation

ontologies. They describe the primitives which are used to formalize knowledge in

conformity with a specific representation paradigm. Well-known in this category

are the Frame Ontology (Gruber 1993) or the representation ontologies of the W3C

Semantic Web languages RDFS and OWL (http://www.w3.org/2000/01/

rdf-schema, http://www.w3.org/2002/07/owl).

When describing the scope of an ontology, the types of knowledge that should be

available to the engineering team to build the domain conceptualization are highly

relevant. In principle, one can distinguish between ontologies capturing common

and expert knowledge, and based on this distinction determine the composition of

the team engineering a particular ontology.

4. Representation language: a wide range of knowledge structures emerged in

a pre-Semantic Web era. In order to overcome this syntactic and semantic barrier

a plethora of approaches investigate the compatibility between different forma-

lisms, while the aforementioned representation ontologies are intended to capture

36 B. Ell et al.

http://www.unspsc.org
http://www.rosettanet.org
http://www.rosettanet.org
http://www.census.gov/epcd/www/naics.html
http://xmlns.com/foaf/0.1/
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl


these differences explicitly. The most popular representation paradigms regarding

ontologies are Frames, Description Logics and UML-MOF.1

On the Semantic Web, the classic trade-offs regarding expressivity have been

decidability and complexity. For a language to be decidable, a reasoner can be

implemented such that all questions that can be asked against a knowledge base

that are expressed using that language have an answer. Decidability as a property of

languages is highly desirable: it guarantees that all questions that can be asked can be

answered, and that the associated reasoning algorithms are effectively imple-

mentable. Research in Description Logics explores the borders of decidability.

Besides decidability, which guarantees the effective implementation of reason-

ing algorithms, we further need to regard the complexity of the algorithms that

can answer questions against the knowledge structures. In general it can be said

that the more expressive a language is, the higher the complexity. Since neither

expressivity nor complexity are continuous spectra, it can happen that we can

increase expressivity but retain the same complexity.

In the context of the scenarios introduced earlier, OWL DL fulfills the require-

ment with regards to decidability, but both decidable OWL languages (OWL DL

and OWL Lite) have an exponential (or worse) complexity (Horrocks and Patel-

Schneider 2004), which makes it possibly unsuitable for our use cases – since we

have to expect to deal with a high number of instances. Languages that allow the

use of algorithms that can be implemented with a tractable complexity are consid-

ered more suitable in cases where we can expect such a high number of instances as

in enterprise settings. OWL2 introduces language profiles (Motik et al. 2008),

which are well-defined subsets of the OWL2 constructs. These profiles have

specific properties that are also guaranteed for all models adhering to these profiles.

Other aspects not mentioned in this classification, but relevant when describing

an ontology, or every other knowledge structure, are covered by so-called meta-

ontologies and metadata schemes thereof. Metadata schemes such as OMV

(Hartmann et al. 2005) cover general information about ontologies, such as the

size in terms of specific types of ontological primitives, the domain described, the

usage scenarios, the support software and techniques, and so on. Many of these

aspects are interrelated and can be traded against each other, as it will be elaborated

later in this section. Potential developers and users of ontologies should be made

aware of the trade-offs associated to engineering and using a particular type of

knowledge structure. More precisely, these tasks require specific expertise, soft-

ware and infrastructure, as well as the compliance with processes and methodo-

logies, all under circumstances related to considerable costs.

These trade-offs are summarized in Table 3.1.

The considerations presented in Table 3.1 can be used as general guidelines to be

taken into account and applied in the process of engineering an ontology. Their

operationalization has to rely on methods which allow a quantification of costs and

1 http://www.omg.org/technology/documents/modeling_spec_catalog.htm

3 Enterprise Knowledge Structures 37

http://www.omg.org/technology/documents/modeling_spec_catalog.htm


benefits involved and their analysis (see Chapter ‘Using Cost-Benefit Information

in Ontology Engineering Projects’).

3.3 How are Enterprise Knowledge Structures Being Built

In this section, we first give a short overview of the wiki technology Semantic

MediaWiki (SMW) (Kr€otzsch et al. 2007) as a flexible tool for dealing with

enterprise knowledge structures. Then we describe in more detail selected aspects

of knowledge structure editing, leveraging, and repair.

Social software as a tool for knowledge sharing and collaboration is gaining

more and more relevance in the enterprise world (Drakos et al. 2009). This is

especially true for so-called enterprise wikis, that, just as wikis in the public Web,

Table 3.1 General trade-offs

Formality A formal ontology is useful in areas which require sophisticated processing

of background knowledge and automatic inferencing. This assumes the

availability of mature tooling for these tasks. In addition, the more formal

an ontology should be the higher the level of expertise and the costs of the

ontology development processes. Finally, heavyweight ontologies can

not be acquired automatically, as properties and axioms can not be

feasibly learned from unstructured knowledge structures using the

present software.

Shareability The main advantage of a shared ontology is its capability to enable

interoperability at the data and interoperability levels. Developing

a commonly agreed ontology implies, however, additional overhead

in terms of the development process to be followed, including

methodological support and software to support the discussions and

consensus reaching task. In addition, a shared ontology will not be able to

optimally match very specific needs of many usage scenarios in which it

is involved. Thus additional overhead to understand and adapt is required.

Domain and scope First there is the aforementioned trade-off between the scope and the

reusability of particular categories of ontologies. In addition, higher-level

ontologies tend to be more costly, as they require specific expertise. The

same applies for ontologies dealing with expert knowledge, such as those

in areas of chip design. The size of a knowledge artifact (expressed, let’s

say, in the number of concepts, properties, axioms and fixed instances) is

an important factor to be aware of, not only because of the direct

relationship to the development and maintenance costs, but also because

of the difficulties associated with the processing of large artifacts by

reasoners and alike. There is a trade-off between the domain coverage of

an ontology and the additional effort required to build, revise and use it.

Representation

language

Besides to the link to the formality dimension, the choice of a representation

language has consequences with respect to the ways an ontology can be

used in knowledge inferencing tasks and the extent to which particular

aspects of the knowledge domain can or can not be captured by the

ontology. In addition, formal, logics-based representation languages

require specific expertise within the ontology development and

maintenance team.

38 B. Ell et al.



provide their advantages of low usage-barriers and direct benefits within a company

intranet. However, the simple provision of a Wikipedia-like internal page does not

guarantee acceptance by employees; such wiki software needs to be customized

to the specificities of the corporate context.

SMW provides this customization by combining the complementary

technologies of Web 2.0 and the Semantic Web (Ankolekar et al. 2007). It enhances

the popular open-source wiki software MediaWiki (http://www.mediawiki.org/

wiki/MediaWiki) with semantic capabilities. In addition its functionality can be

enriched with general-purpose extensions developed by the community2 as well as

custom extensions tailored to the needs of specific enterprise scenarios. The usage

of the Semantic Web standards RDF, RDFS and OWL, and of ontologies enables

the realization of comprehensive knowledge-management solutions, which provide

integrated means to formally describe the meaning and organization of the content

and to retrieve, present and navigate information.

In the following, we describe how enterprise knowledge structures are collabo-

ratively built, enriched, and exploited using SMW.

Creating Structured Information Information stored in SMW can be converted

into machine-readable RDF. In other words, it is possible to have property-value

pairs explicitly assigned to wiki pages. Such a property-value pair can indicate

a named link (a so-called object property) to another page, e.g., ‘locatedInCountry’,
or a typed attribute (a so-called datatype property), e.g., String ‘hasTag’, Date

‘hasFoundingDate’, and Number ‘hasHeight’. Such properties can be freely

inserted into a page via wiki syntax or forms. Enterprise knowledge structures

can be defined through categories (so-called classes) of pages with certain

properties and encoded as an ontology in RDFS and OWL. The resulting ontology

can be automatically or manually applied to the wiki (Vrandečić and Kr€otzsch
2006), for instance, in the form of categories, pages, wiki templates, forms and

properties.

Retrieving Information The availability of machine-processable information

facilitates the realization of concept-based search, presentation and navigation

features going beyond traditional keyword-based approaches. The user can issue

structured queries, addressing certain properties of a page, e.g., the customer of a

proposal. All pages belonging to a category having certain properties can be listed

as an overview, including links to those pages, e.g., all products within a specific

price range. Various result formats can be used, starting from simple tables to more

advanced calendars, time lines, and maps. Through facetted search one can incre-

mentally filter lists of pages via keywords and property-ranges. More complex, but

still user-friendly, querying following similar patterns as the standard Semantic

Web querying language SPARQL (http://www.w3.org/TR/rdf-sparql-query/) is

supported as well. When the user enters a keyword, the system looks for

connections between pages described with the keywords and lists those pages

2Openly available at http://www.mediawiki.org/wiki/Extension_Matrix (MediaWiki) and http://

semantic-mediawiki.org/wiki/Help:Extensions (SMW)

3 Enterprise Knowledge Structures 39

http://www.mediawiki.org/wiki/MediaWiki
http://www.mediawiki.org/wiki/MediaWiki
http://www.w3.org/TR/rdf-sparql-query/
http://semantic-mediawiki.org/wiki/Help:Extensions
http://semantic-mediawiki.org/wiki/Help:Extensions
http://semantic-mediawiki.org/wiki/Help:Extensions


(Haase et al. 2009) In SMW, these queries are possible through forms on special

pages, but can also be embedded as so-called inline queries in single pages.

Integrating External Information External sources can be integrated and their

content merged with existing enterprise knowledge structures. The results can be

organized as new pages or properties, referenced from other pages, and visualized

in new ways.

Enterprise knowledge is rarely represented in RDF, but there are many tools

available that deal with such transformations from established formats and

standards, most notably tabular ones. The same applies to online knowledge sources

such as Freebase (http://www.freebase.com), other SMW installations or the

Linked Open Data cloud, for which a growing number of Web services delivering

RDF are available (http://www.linkedopenservices.org). Orthogonal to the transla-

tion to RDF is the question of how to map specific elements of the source

knowledge structure into the wiki model. Simply creating a page for each element

within an external source and copying the data into the wiki may prove suboptimal

for subsequent data usage. In Sect. 3.3.2 we provide additional details on SMW’s

integration features.

Improving Information Quality SMW specifically targets scenarios where

knowledge is created in a decentralized manner – be that by exposing and

integrating external sources, or by supporting collaborative editing and interaction.

In such scenarios information quality can quickly become a problem. A prominent

dimension we discuss here is consistency, both with respect to the primary sources

and with respect to the domain at hand. For the former, SMW adheres to a regime in

which users may only refer to, and comment upon the primary sources from within

the wiki, while changes may only be undertaken at the level of these sources. For

the latter, one can use an inference service operating on the wiki knowledge base.

Deduction methods on the enterprise knowledge structures can provide insights

about the wrong usage of categories, pages, and properties (Vrandečić 2009a). Most

such errors cannot be automatically repaired, but at least, made visible to the users

or administrators. For example, if the imported data contains information about a

proposal with customer X and a wiki page exists about X, which is not a member of

the customer category, adding that page to the category can be automatically

suggested to the administrator. In addition, visualizing information in a structured

way may lead to the identification of missing and incorrect information, which

applies to both genuine wiki content and content from external sources. Users may

not directly correct the latter, but they can rate it, and comment on it for revision.

In Sect. 3.3.2 we will discuss a number of simple measurements whose results

can indicate specific quality issues.

Interplay with other Enterprise Tools To maximize its added value for knowl-

edge workers, SMW should not be used in isolation from existing enterprise

systems and workflows. This is enabled by the information integration functionality

presented earlier, and by a number of additional features targeting application

integration. The content of a semantic wiki can be exported as RDF, as well as

many other structured data formats, e.g., JSON, vCard, and BibTeX. Results of

queries can be monitored for new pages and modified properties, and published as

40 B. Ell et al.

http://www.freebase.com
http://www.linkedopenservices.org


RSS feeds and send per e-mail. Using HTTP requests to the wiki, external

applications such as office productivity tools can access, add, and modify pages

and properties.

In the following sections we go into more details of how enterprise knowledge

structures can be edited, leveraged, and repaired.

3.3.1 Building Knowledge Structures Manually

The SMW OntologyEditor is an extension of Semantic MediaWiki for developing

and maintaining knowledge structures (so-called vocabularies). As such it inherits

many of the features and the mode of operation of Semantic MediaWiki. It targets

Semantic MediaWiki users, but it also provides a comfortable interface for people

less experienced in using wikis, in particular the wiki syntax. In this section we will

briefly introduce the functionality of this extension – a more detailed account is

given in (Simperl et al. 2010).

Main Page The main page is the entry point of the SMW OntologyEditor (see

Fig. 3.2). It contains the primary navigation structure and links to important pieces

of functionality, including the creation of new vocabularies consisting of categories

and properties, the integration of other knowledge structures, such as folksonomies

and external vocabularies encoded in RDFS and OWL, and knowledge repair (see

Sect. 3.3.2). In addition, the user is provided with a short introduction to the

tool, important links, as well as an overview of the content of the current wiki

installation, in terms of namespaces of the individual vocabularies and a tag cloud.

Vocabulary Creation To create a new vocabulary one can use the corresponding

link in the primary navigation menu, which leads to a form (see Fig. 3.3). There the

user can enter a vocabulary name and a description and add categories and

properties. Once the vocabulary is created the user is presented with a vocabulary

overview, which contains automatically added metadata such as Flickr images in

addition to the information manually provided by the user and a link to the Create
Category Form (see Fig. 3.4).

The Create Category Form includes a short explanation and a number of input

fields. They are autocompletion-enabled, by which the user is presented with a list

of entities with a similar name to the one she is about to type-in (see Fig. 3.4). The

user can enter a name for the category, refer to an existing vocabulary, define sub-

and super-categories, and add new and existing properties to the category. Subse-

quently the system displays the category overview page illustrated in Fig. 3.5,

including a tag cloud to easily access category instances (so-called entities) as

well as the most interesting images on Flickr related to the category. Categories and

entities are visualized in a tree-like hierarchy, which can be altered by clicking on

the Edit links which open pop-ups for inline editing (see Fig. 3.6).

Knowledge Repair The knowledge repair algorithms can be accessed as so-

called SpecialPages in the wiki.

3 Enterprise Knowledge Structures 41



After clicking on Category Statistics the system provides the user with a com-

prehensive overview of all categories available in the system, and potential model-

ing issues (see Fig. 3.11). At the top there is a table with explanations followed by

a table with minimum, maximum and average values serving as basis for error

detection. An additional table displays the corresponding values for all categories.

Colors and symbols are used to direct the user focus to potential problems. If the

user is not interested in all categories, but rather in a specific one she can click on

the tab repair on the category page which will lead to an overview page of the

specific category displaying similar information (see Fig. 3.10).

The SpecialPage Categories in cycles, shown in Fig. 3.9 lists cycles in a category
hierarchy. The user then has to decide whether the specific cycle will be accepted or

not. Redundancies in the hierarchy are displayed in the SpecialPage Categories
with redundant subcategory relations (see Fig. 3.9). The user can decide which

link is indeed redundant and delete it on-the-fly. The SpecialPage Entities with
similar names provides the user with information about entities with similar

names (Fig. 3.9). For each entity the system calculates the Levenshtein distance

(Leveshtein 1966) to other categories and displays the results. In Sect. 3.3.2

Fig. 3.2 Main page

42 B. Ell et al.



Fig. 3.3 Create vocabulary form and overview page

Fig. 3.4 Create category form

3 Enterprise Knowledge Structures 43



we introduce additional knowledge repair features, such as the Category Histo-
gram, the Property Histogram, Categories with similar property sets and Unsub-
categorized categories.

Versioning The versioning SpecialPage gives an overview of the history of

changes of vocabularies and categories. When a vocabulary or category is selected,

a pop-up with detailed versioning information is displayed. On the left-hand side

the user can choose between Vocabulary Structure Changes and Category
Changes. Different versions are displayed (via AJAX) on the right-hand side of

the pop-up. A selected version can be restored by clicking the Restore Selected
Version button, as depicted in Fig. 3.7.

Import and export One of the advantages of Semantic MediaWiki as a knowl-

edge management platform is its ability to provide integrated access to a multitude

of knowledge structures, most prominently folksonomies and ontologies. The

folkosonomy import relies on the technique described in Sect. 3.3.2 thus the

Fig. 3.5 Category overview

Fig. 3.6 Changing parameters via inline editing

44 B. Ell et al.



associated information – a collection of tagged resources such as bookmarks or

conventional documents – has to be organized in a specific XML format. Given

this, the folksonomy is enriched with additional structuring information and is

transformed in a lightweight ontology which can be explored and further revised

in the editor just as any other vocabulary. When importing an existing OWL

ontology – for instance, one that was developed in a different ontology engineering

environment – the system uploads the OWL file specified by the users, extracts all

ontological entities and creates corresponding wiki content following the

instructions defined in a so-called meta-model. This meta-model describes the

types of ontological primitives supported by the editor – in this case, as we are

dealing with lightweight knowledge structures, a subset of OWL consisting of

classes, instances and properties, in particular specialization-generalization – and

how they are mapped to SMW artifacts. Once this step is concluded, the resulting

vocabulary can be further processed in a collaborative fashion in our tool. Every

vocabulary can be locally stored as an OWL file using the export tab on the

vocabulary overview page.

3.3.2 Leveraging External Knowledge Sources

Enterprise knowledge structures come in various forms, from database tables,

standardized taxonomies and loosely defined folksonomies to strictly organized

knowledge bases. To optimally support knowledge management tasks in a corpo-

rate environment Semantic MediaWiki needs to provide mechanisms to access,

Fig. 3.7 Versioning

3 Enterprise Knowledge Structures 45



integrate and use all these different formats. This is important for its acceptance as

a knowledge management solution – as it builds upon established resources and

platforms – and for its efficient use – as reusing existing resources can reduce

costs and improve the quality of the resulting enterprise knowledge structures.

In the previous section we have explained how such knowledge structures can be

manually created and maintained. The techniques introduced in the following are

complementary to this functionality. The first one adds a critical mass of formal

semantics to folksonomies in order to overcome some of their typical limitations,

such as the usage of abbreviations and alternative spelling, synonyms and different

natural languages to tag the same resource. The resulting lightweight ontology can

be explored, further developed and used in Semantic MediaWiki. In contrast, the

focus of the second technique is on leveraging existing knowledge bases, which

might contain significant amounts of (instance) data which could be useful within

SMW. The implementation is based on Freebase as one of most visible collections

of structured knowledge created in recent years; however, the mediator-based

approach underlying the implementation can be equally applied to other knowledge

bases.

3.3.2.1 Turning Folksonomies into Ontologies

This section gives an overview of our approach to extract lightweight ontologies

from folksonomies. The approach consists of 12 steps that have to be carried out in

the given order (see Table 3.2).

Step 1: Filter Irrelevant Tags In the first step, we eliminate tags, which do not

improve the information content, but have a downgrading effect on the quality of

the data basis. Unusual tags, which do not start with a letter are therefore filtered

out. Additionally, uncommon tags are dismissed. In this context a certain tag is

uncommon, if it is used less than a predefined threshold.

Step 2: Group Tags Using Levenshtein Metric The process of annotating

a certain resource with tags is an uncontrolled operation, which means that no

spell-checking or any other input verification can be assumed to take place. As

a consequence typing errors, mixing of plural and singular forms, annotations in

different languages and other possible minor discrepancies between tags are likely

to occur. The Levenshtein similarity metric (Leveshtein 1966) is used to discover

morphologically similar tags.

Step 3: Enrich Tags with WordnetWordnet is a rich resource of lexical informa-

tion (Fellbaum 1998). The database is organized in so-called synsets and can be

accessed locally or remotely over a simple user interface. If a certain tag can be

found in Wordnet, one can expect the tag to be a valid English term. All tags which

are covered by Wordnet are assigned a flag containing the exact number of

occurrences in Wordnet synsets.

Step 4: Enrich Tags with Wikipedia Wikipedia is a large, high-quality, and up-

to-date online encyclopedia. If a certain tag can be mapped to a Wikipedia article,

this tag can be considered a correct natural language term. In addition, we can

46 B. Ell et al.



benefit from the redirect pages functionality implemented in Wikipedia, so that

even when a tag is incorrectly spelled or abbreviated, there is a high chance to find

the correct corresponding Wikipedia article.

Step 5: Spell-check and Translate Spell checking and translating single words

(not sentences or pieces of text) can be done automatically at a high precision. We

apply this additional step because after the Levenshtein similarity check and the

exploitation of Wikipedia redirects, not all tags can be related to these resources.

This might occur when a tag is misspelled, or a tag is not in English.

Table 3.2 The 12 steps of our method

Step Title Description

1 Filter irrelevant tags Consider only tag data that is shared between

a sufficiently high number of users to increase

the community representativeness of the prospected

ontology.

2 Group tags using Levenshtein

metric

Compare relevant tags using the Levenshtein similarity

metric and group the highly similar ones. Tags

within the same group are considered to have

equivalent meaning and differences are assumed to

be the result of spelling mistakes.

3 Enrich tags with Wordnet

information

Check whether a tag is covered by the Wordnet

thesaurus, which we consider a feasible indicator for

a valid English term.

4 Enrich tags with Wikipedia

information

Use information available on Wikipedia to enrich the

tags.

5 Spell-check and translate Perform English spell-checking and translate those tags

that were neither found in Wordnet, nor inWikipedia

from foreign languages.

6 Update group assignments Update the tag groups created in step 2 based on the

additional information gathered in steps 3–5.

7 Find representative for each

group

Select representative for each tag group based on its

quality.

8 Create co-occurrence matrix Create symmetric square matrix containing information

on the frequency with which two tags (or tag groups,

respectively) were used to annotate the same

resource.

9 Calculate similarities Apply vector-based algorithm (Pearson correlation

coefficient) in order to detect similarities between

vectors in the co-occurrence matrix.

10 Enrich co-occurrence matrix with

co-actoring information

Augment co-occurrence matrix with the information

about the frequency with which two tags (or tag

groups, respectively) were used by the same author.

11 Create clusters Create clusters of tags (or tag groups, respectively) on

the basis of the calculated correlation coefficients

and co-actoring information.

12 Create ontologies Transform the tag clusters created in step 11 into SKOS

ontologies exploiting all information gathered in the

previous steps.

3 Enterprise Knowledge Structures 47



Step 6: Update Group Assignments In this step we update the tag groups defined in
step 2 based on the information collected in steps 3–5 and eventually decide which

tags are relevant for the ontology to be created. The step can be further divided into

3 activities: (1) the re-grouping based on spell-checking and translation results;

(2) the re-grouping based on Wikipedia results; and (3) the selection of relevant tags.

Re-grouping based on spell-checking and translation results The first group

update is triggered by the mapping defined according to spell-checking and trans-

lation results. In order to ensure consistent groups after this update, four different

scenarios for mappings of the type tagA – > tagB have to be considered:

1. Neither tagA nor tagB are assigned to a group: in this case tagA and tabB,
plus all other tags mapped to any of them, form a new group.

2. tagA is assigned to a group, but tagB is not: in this case tagB, and all other

tags mapped to it, are included into the group of tagA.
3. tagB is assigned to a group, but tagA is not: just as in the previous case, tagA,

and all other tags mapped to it, are included into the group of tagB.
4. Both tags are already assigned to the same or different groups: in addition to the

group updates, those tags, which are already assigned to one of the corres-

ponding groups, have to be considered as well. Existing group members of

tagA will be assigned to the group of tagB.

Re-grouping based on Wikipedia results The second group update is perfor-

med if two tags are assigned to the same Wikipedia article. Just as in the previous

update step based on spell-checking and translation results, we consider existing

groups and its members, which means that also other group members may be

affected by this update operation.

The selection of relevant tags We assume that all tags, or groups of tags,

containing either a Wikipedia or a Wordnet reference, are relevant for the genera-

tion of ontologies. The relevancy of the remaining tags and groups thereof is based

on their frequency of occurrence in the folksonomy, i.e., on their usage. If this

frequency is below a certain threshold, the tag or the tag group will not be

considered. All affected tags will, therefore, be marked with a corresponding flag,

indicating that the tag is not relevant for future steps towards the generation of

ontologies. If the frequency of usage is above the given threshold, the tag, or tag

group, will be considered to describe a new term created by the tagging community.

Step 7: Find Representative for Each Group This step is about finding the most

representative tag in a tag group. This decision is taken as follows: the tag groups

defined in the previous steps can contain many single tags. By definition all tags in

a group are equivalent to each other, regardless of whether they are misspelled,

occur with a certain lower or higher frequency, or are translations from other natural

languages. For the generation of ontologies, however, we need to identify which of

these tags is the most representative for the meaning of the corresponding tag group.

Preference is given to tags occurring in Wordnet and Wikipedia references, in this

order. If neither is the case, the decision is based on the highest frequency of usage.

Step 8: Create Co-occurrence Matrix Co-occurrence matrices provide the means

to derive some kind of semantic relation between two entities. Amongst many

48 B. Ell et al.



others, this approach was chosen by (Begelman et al. 2006; Cattuto et al. 2007a, b;

Simpson 2008; Specia andMotta 2007) to analyze connections between tag entities.

The symmetric n � n co-occurrence matrix M contains information about how

frequently two tag entities are used to annotate the same resource. The value mij,

representing the intersection of (entityi, entityj) for 1 � i, j � n, corresponds to the

frequency with which the two tag-entities entityi and entityj were used to annotate

the same resource. The diagonal elements mij, where i ¼ j, of the matrixM contain

information on how often the tag-entity entityi was used at all. This serves as

a starting point for steps 9–11.

Step 9: Calculate Similarities The co-occurrence matrix is a starting point to

derive relations between tag entities. From a simplistic point of view, the relation

between co-occurrence values and the total frequency of tag entries (as proposed

by (Begelman et al. 2006)) can be seen as a good indicator for the relation of two tag

entities. This approach, however, has one important disadvantage: it does not take

into account similarities of the two tags to other tags or tag groups. A vector-based

similarity measurement, as proposed in (Specia and Motta 2007), resolves this issue.

A vector represents a row (or column) of the co-occurrence matrix. The similarity

measure is based in our case on the Pearson correlation coefficient. Algorithm 1

below shows how the Pearson correlation coefficient is calculated for two variables

X and Y, the means �X and �Y and standard deviations Sx and Sy, respectively.
Algorithm 1 Pearson Correlation Coefficient

r ¼
Pn
i¼1

ðXi � �XÞ � ðYi � �YÞ
ðn� 1Þ � Sx � Sy

A positive coefficient value is evidence for a general tendency that large values

of X are related to large values of Y and that small values of X are related to small

values of Y. A correlation above 0.5 is an indicator that the two vectors are strongly

correlated.

Step 10: Enrich the Co-occurrence Matrix with Co-actoring Information The

outcomes of step 9 do not allow us to derive relations between tags. This holds in

particular for tags that are used frequently, but only by a limited number of users.

Usually the insertion of tags by spam robots is causing this phenomenon. Even

though there are many related tags with correlation values below 0.5, the threshold

can not be lowered any further without taking the risk to derive faulty relations as

well. To cope with this issue we enrich with so-called “co-actoring information”.

This key-figure can be calculated in a manner similar to the co-occurence informa-

tion, the only difference being the fact that the focus lies rather on the users instead

of tags. As such, the co-actoring information for two tags is defined as the total

number of users who used both tags.

Step 11: Create Clusters In this step, we aim at creating sets of strongly related

tags that we refer to as “clusters”. To do so we calculate the relation of a tag entity

to the total number of usage and the co-occurrence/co-actoring information and

raise the correlation coefficient if the relation proportions are high enough.

3 Enterprise Knowledge Structures 49



Algorithm 2 shows the exact formula, where ccoff denotes the correlation coeffi-

cient of two tag entities, #(tag1) and #(tag2), denote the total usage of a certain tag,
coac(tag1,tag2) stands for the co-actoring information of the tag tag1 and tag2
and cooc(tag1,tag2) represents the co-occurrence value of the two tags.

Algorithm 2 Correlation Coefficient Strengthener

r ¼ ccoeff � coacðtag1;tag2Þ
#ðtag1Þþ#ðtag2Þ�coacðtag1;tag2Þ

� �
� coocðtag1;tag2Þ

#ðtag1Þþ#ðtag2Þ�coocðtag1;tag2Þ
� �

� 100

The algorithm minimizes the problem of spam entries and related tags with

lower correlation coefficients dramatically. Tag pairs with either a basis correlation

above the defined threshold th1 or with a strengthened correlation coefficient to

reach the threshold are then automatically considered to be related and form the

basis for a cluster.

Tags are merged into one cluster only if the calculated correlations between tag

entities, which are indirectly connected by the transitive law, are above another

threshold th2. This means, only if cooc(tag1,tag2) � th1, cooc(tag2,tag3) � th1
and cooc(tag1,tag3) � th2, the three tag entities belong to the same cluster. Addi-

tional tag entities are added to a cluster only if all correlation values, with respect to

the other tags in the cluster, exceed the defined threshold th2.
While useful, applying this strategy results in a relatively high number of very

similar clustering differing only in one or two elements. To solve this issue we

apply two smoothing heuristics as follows.

1. If one cluster is completely contained in another one, the smaller cluster is

deleted.

2. If the differences between two clusters are within a small margin and, addition-

ally, the number of elements of both clusters exceeds a certain percentage with

respect to the total number of elements of both clusters, the smaller cluster is

deleted and the tags not included in the larger one are added to it.

The second smoothing heuristics is depicted in Algorithm 3, where #(cl1) and
#(cl2) denote the number of elements within the clusters cl1 and cl2, respectively.
The relevant threshold in this algorithm is thcl.

Algorithm 3 Second Smoothing Heuristics for Two Clusters

if
#ðcl1\cl2Þ
#ðcl1[cl2Þ � thcl

and thcl � #ðcl1Þ
#ðcl1Þþ#ðcl2Þ

and thcl � #ðcl2Þ
#ðcl1Þþ#ðcl2Þ

then remove(cl1), remove(cl2)
and insert(cl1\cl2)

Step 12: Create OntologiesAll the terms occurring in a cluster are assumed to be

related to each other in some way. The concrete type of the inter-tag connections is,

nevertheless, hardly resolvable. We consider this limitation to be of less importance

for creating lightwight ontologies. We use the SKOS standard (http://www.w3.org/

50 B. Ell et al.

http://www.w3.org/2004/02/skos/


2004/02/skos/), which allows establishing associative links between concepts with-

out the need to further specify their semantics. More precisely, the SKOS property

skos:related can be used to designate all kinds of relationships amongst terms

within one cluster. The clusters themselves are considered to be the domain of the

ontology, for which meta-properties (e.g., by using Dublin Core) can be included.

In SKOS, skos:ConceptScheme is used to identify a certain ontology. As

a consequence, all entities within this scheme have to include a reference to this

scheme; this is achieved through the construct skos:inScheme. The terms

within a cluster represent the entities the ontology consists of. This direct mapping

is possible as within the SKOS language, there is no distinction between classes and

instances. The construct to designate these entities is skos:Concept (Fig. 3.8).
The SKOS constructs previously mentioned allow us to define the basis structure

of the ontologies. The information that was collected with respect to translations,

spell-checks, and so on, is used to enrich the ontologies. The preferred label for

a concept is the respective representative of a tag group, which is denoted by

skos:prefLabel. If there are other terms within the same group of tags,

which do occur in Wordnet, the corresponding term can be considered as a valid

substitute for the preferred label, information which is captured through the skos:
altLabel construct. As SKOS does allow language distinctions, this feature is

Fig. 3.8 Example ontology created through our method

3 Enterprise Knowledge Structures 51

http://www.w3.org/2004/02/skos/


also used for both preferred labels and alternative labels. If a translation was found

for a tag, this information is attached to the label, otherwise the label is considered

to be English. This is done by using standard XML annotation, e.g., skos:
prefLabel xml:lang ¼ “EN”. All other tags of a certain group are considered
to be “hidden labels” for the corresponding concept. The set of labels marked by

skos:hiddenLabel comprises common spelling mistakes.

3.3.2.2 Integrating Freebase into Semantic MediaWiki

This section gives a brief overview of an extension to SMW that allows the use of

inline queries to query Freebase (http://www.freebase.com) content via a mediator.

The mediator creates an MQL query (Metaweb Query Language, the query lan-

guage used in Freebase), handles the communication with Freebase, and returns

query results in the same way as for conventional SMW inline queries. A full

documentation of the extension is available in (Ell 2009).

Imagine you want to create a list of all European countries and their populations

within your SMW-based knowledge management system. This information is

available in general-purpose knowledge bases such as Freebase, and can be impor-

ted into the local SMW installation. The query statement could look as follows,

where the source argument is an extension of the original AskQL syntax indicating

the external knowledge base to be used.

{{#ask: [[Category:Country]] [[Located in::Europe]]

| ?Population
| source ¼ freebase

}}

The AskQL query has to be translated into an MQL query, which could look

as follows.

[{

"/type/object/name" : null,
"/location/statistical_region/population" : [{

"number" : null
}],
"/type/object/type" : "/location/country",
"/location/location/containedby" : [{

"/type/object/name" : "Europe"
}]

}]

In order to be able to perform this translation additional information is needed.

In this case it is necessary to know that

52 B. Ell et al.

http://www.freebase.com


1. the category Country maps to /location/country,
2. the property Located in maps to /location/location/containedby, and
3. the print request Population maps to /location/statistical_region/population

where the field storing the value has the name number.

The transformation, which essentially follows a local-as-view approach, is

presented in detail in (Ell 2009). Mapping information is stored in pages via

properties, thus being editable and reusable for various inline queries.

Category mapping information is stored on category pages using the property

freebase category mapping. For example the page Category:City (the page
describing this category in the category namespace) may contain the statement

[[freebase category mapping::/location/citytown]].
Page mapping information is stored on pages in the main namespace using the

property freebase page mapping. For example the page Karlsruhe may contain the

statement [[freebase page mapping::#9202a8c04000641f800-
00000000b283e]].

Property mapping information is stored on property pages using the properties

freebase property mapping and freebase property type. For example the page

Property:Population (the page describing this property in the property namespace)

may contain the statements [[freebase property mapping::/loca-
tion/statistical_region/population ;number]] and [[free-
base property type::number]]. Path elements are separated by ‘;’. If
no type mapping is specified then the standard type string is assumed per default.

Print request mapping information is stored on property pages since print

requests relate to properties. For storing the mapping information the property

freebase pr mapping is used. For example the property page Property:Located in
may contain the statement [[freebase pr mapping::/location/loca-
tion/containedby]].

In case the mapping information is missing or can not be properly interpreted,

the extension behaves as follows.

Ambiguities The page where mapping information is expected to be contained

may contain the mapping property multiple times. For example a category page

may contain several properties with the property name freebase category mapping.
In this situation the mapping information is ambiguous and only the first result

returned by the SMW database is used.

Property type If the property type of a property is not given using freebase
property type then type string is assumed.

Page mapping information missing If no page mapping exists for page P then

an MQL query is created where an entity is requested with name P. If the query is

specified with parameter language ¼ L then an MQL query is created that requests

an entity that has the name P in language L.
Category mapping information missing If no category mapping information

is found then the category statement and all subordinated statements in the descrip-

tion object tree returned by the query processor are ignored.

3 Enterprise Knowledge Structures 53



Property mapping information missing If no property mapping information

is found then the property statement and all subordinated statements in the descrip-

tion object tree returned by the query processor are ignored.

This behavior is robust since missing mapping information is ignored. In case

of ambiguities or missing mapping information, a warning is displayed to the user.

Thereby a step-by-step development and improvement of the query is supported.

3.3.3 Repairing Knowledge Structures

Quality issues are a natural consequence of the collaborative, integrated knowledge

engineering approach followed by Semantic MediaWiki and its extensions. There-

fore, our solution also includes techniques to support users in detecting and

correcting potential modeling errors or missing information. This section provides

an overview of the types of quality issues we deal with and the implementation of

the associated knowledge repair functionality.

Similar Names In an ontology we have different types of entities. A common

issue with adding entities to an ontology is that a user might overlook that the entity

she intends to add is already in the ontology with a name slightly different from the

name the user would have chosen. By adding the entity, the user introduces

redundancy to the ontology which makes the ontology unnecessarily larger, and

more error prone. To avoid such issues we measure similarities between entities via

the Levenshtein distance, and present the results to the user, who then has to decide

whether the entities under consideration represent the same and thus should be

merged, or whether they do not represent the same and therefore should be kept

separately in the ontology.

Similar Property Sets The idea here is to compare the property sets of ontology

classes in order to identify potential similarities. The ontology editor introduced in

Sect. 3.3 displays all the sibling categories which have at least 50% of their

properties in common (see Fig. 3.12) for the user to decide for appropriate action.

Cycles and Redundancies This measurement identifies cycles within a special-

ization-generalization hierarchy (see Fig. 3.9). Similarly the knowledge repair

functionality includes means to identify redundant is-a relationships, which are

presented as decision support to the user.

Missing Properties The underlying rationale for this metric is the inherent

difficulties experienced by knowledge modelers in distinguishing between the

data and the schema level of an ontology. Here we display those ontological

primitives that do not have any successors in the hierarchy, thus indicating missing

specialization-generalization properties or misclassifications of specific entities

as classes or instances.

Category knowledge repair The previously discussed attempts to solve

problems are used primarily by certain users who aim at keeping the knowledge

base consistent. The methods mentioned enable the user to get an idea which

categories are part of a problem of the knowledge base no matter which taxonomy

54 B. Ell et al.



they belong to. However, there are also users who create an ontology because

the domain under consideration is a domain of interest of such a user. Therefore

the user might be keen on creating an error-free ontology. Instead of using each

approach sequentially in order to resolve the issues about a certain category, the

user also has the possibility to get all information about one category at a time.

Besides the previously mentioned methods the user gets also information about

minimum, average and maximum values which can be compared to the values of

the category under consideration as well as information about the meaning of

certain figures, which is useful for the non experienced users. In order to guide

the attention of the user to severe problems these are marked with a symbol or red

color. Minor problems are marked and all the other information is not marked

(see Fig. 3.10).

Category statistics Some of the previously described methods provide the

user with information of all categories regarding one specific type of problem.

The method Category knowledge repair in contrast provides the user with informa-

tion of all the types of problems regarding one specific category. This approach

combines these two types of problem solving attempts. It displays all categories

together with the results of each problem solving attempt. Therefore the user gets

all information about issues regarding all categories. The use of this approach is to

have a global view on the situation of taxonomies and the categories. Without such

a comprehensive view it can be rather difficult to solve issues which spread over

many categories. Then a user would have to jump from one category to another

many times to resolve an issue. This gets more complicated if the branching of the

category under consideration is more complex than it is with a category only having

one supercategory and one subcategory. So far, the user gets quite the same

information for all categories, as he does when using the Category knowledge

repair approach for one specific category. In order to guide the attention of the

Fig. 3.9 Categories in cycles, categories with redundant relationships and entities with similar

names

3 Enterprise Knowledge Structures 55



Fig. 3.10 Category knowledge repair

Fig. 3.11 Category statistics

56 B. Ell et al.



user to severe problems these are eye-catchingly marked. Minor problems are

highlighted and all the other information is not marked as seen in the figure (see

Fig. 3.11).

Category and Property Histogram In an ontology we have many entities

starting with different letters. In order to get an overview of the distribution of

entities starting with a specific letter in the ontology in relation to the alphabet

a histogram can be very useful. It provides a comprehensive view on how many

entities start with a specific letter in comparison to other letters (see Fig. 3.12).

A normalized histogram can point out unusual things, however this requires that

there is a certain number of entities in the database. The more entities there are

the more likely they will follow a specific distribution regarding their first letters.

3.4 Conclusions

The chapter has covered the area of enterprise knowledge structures, starting from

the requirements and research questions derived from use cases all the way to

methodologies and implementations to bridge the different heterogenous structures

that are in use today.

We expect that a common language for representing knowledge structures will

foster further development and research in this area. The research results presented

in this chapter are examples of what can be achieved once some foundational

questions (such as the representation language or the necessary expressivity) have

been settled, and we can move forward towards unifying knowledge management

Fig. 3.12 Category histogram and categories with similar property sets

3 Enterprise Knowledge Structures 57



tools and methodologies, further integrating results from heterogeneous areas in

order to support the knowledge worker to the fullest possible extent.

Enterprise knowledge structures are heterogeneous in nature, and their inte-

grated use requires a framework that allows understanding the trade-offs between

different structures, and optimizes for given scenarios.

Many enterprises may already apply folksonomy-like systems. We have shown

how folksonomies can be used as the foundation for developing lightweight

ontologies which can then be in turn used to connect to further knowledge sources.

Besides tagging, we have explored further Web 2.0 inspired paradigms, and imple-

mented extensions to a wiki-based system that allows for the seamless integration

of external data sources like Flickr or a company database. This system allows

for explicit but lightweight management of an ontology within the wiki-interface,

and powerful gardening and knowledge quality assessment tools.

References

Ankolekar A, Kr€otzsch M, Tran T, Vrandečić D (2007) The two cultures: mashing up web 2.0 and

the semantic web. In: WWW ’07: proceedings of the 16th international conference on world

wide web, ACM Press, New York, pp 825–834, ISBN 9781595936547. doi: 10.1145/

1242572.1242684, URL http://dx.doi.org/10.1145/1242572.1242684. 2007

Begelman G, Keller P, Smadja F (2006) Automated tag clustering: improving search and explora-

tion in the tag space. In: Proceedings of the collaborative web tagging workshop co-located

with the 15th international world wide web conference (WWW2006), 2006

Cattuto C, Loreto V, Pletronero L (2007a) Semiotic dynamics and collaborative tagging. Proc Nat

Acad Sci U S A 104(5):1461

Cattuto C, Schmitz C, Baldassarri A, Servedio VDP, Loreto V, Hotho A, Grahl M, Stumme G

(2007b) Network properties of folksonomies. AI Commun 20(4):245–262

DrakosN,Rozwell C,BradleyA,Mann J (2009)Magic quadrant for social software in theworkplace.

Gartner RAS core research note G00171792, Gartner. http://www.gartner.com/technology/

media-products/reprints/microsoft/vol10/article4/article4.html. Accessed date Jan 2010

Ell B (2009) Integration of external data in semanticwikis.Master thesis, Hochschule,Mannheim, 2009

Fellbaum C (1998) WordNet: an electronic lexical database. MIT Press, Cambridge, MA

Fensel D (2001) Ontologies: silver bullet for knowledge management and electronic commerce.

Springer, Berlin

Gangemi A, Guarino N, Masolo C, Oltramari A, Schneider L (2002) Sweetening ontologies with

DOLCE. vol 2473 of Lecture notes in artificial intelligence (LNAI), Springer, Siguenza, Spain,

pp 166–181, ISBN 3-540-44268-5

Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet

25:25–30

Grau BC, Horrocks I, Motik B, Parsia B, Patel-Schneider P, Sattler U (2008) OWL 2: the next step

for OWL. Web Semant Sci Serv Agent World Wide Web 6(4):309–322. ISSN 1570–8268. doi:

http://dx.doi.org/10.1016/j.websem.2008.05.001

Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5

(2):199–220

Guarino N (1998) Formal ontology and information systems. In: Guarino N (ed) Proceedings

of the first international conference on formal ontologies in information systems (FOIS),

vol 46 of Frontiers in artificial intelligence and applications, IOS-Press, Trento, Italy, 1998

58 B. Ell et al.

http://www.gartner.com/technology/media-products/reprints/microsoft/vol10/article4/article4.html.
http://www.gartner.com/technology/media-products/reprints/microsoft/vol10/article4/article4.html.
http://dx.doi.org/10.1016/j.websem.2008.05.001


Haase P, Herzig DM, Musen M, Tran DT (2009) Semantic wiki search. In: 6th annual european

semantic web conference, ESWC2009, vol 5554 of LNCS. Springer Verlag, Heraklion, Crete,

Greece, pp 445–460, Juni 2009

Hartmann J, Sure Y, Haase P, Palma R, Suárez-Figueroa MC (2005) OMV – Ontology metadata

vocabulary. In: Welty C (ed) Ontology patterns for the semantic web workshop, Galway,

Ireland, 2005

Horrocks I, Patel-Schneider PF (2004) Reducing OWL entailment to description logic

satisfiability. J Web Semant 1(4):7–26

Kr€otzsch M, Vrandečić D, V€olkel M, Haller H, Studer R (2007) Semantic wikipedia. J Web

Semant 5:251–261

Lenat DB (1995) CYC: a large-scale investment in knowledge infrastructure. Commun ACM 38

(11):33–38

Leveshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals.

Soviet Physics Doklady 10:707–710

McGuiness DL (2003) Ontologies come of age. In: Fensel D, Hendler J, Lieberman H, Wahlster W

(eds) Spinning the semantic web: bringing the world wide web to its full potential. MIT Press,

Cambridge, MA

Motik B, Grau BC, Horrocks I, Wu Z, Fokoue A, Lutz C (2008) OWL2 web ontology language:

profiles. W3C Working Draft 2 December 2008, Available at http://www.w3.org/TR/2008/

WD-owl2-profiles-20081202/.

Pease A, Niles I, Li J (2002) The suggested upper merged ontology: a large ontology for the

semantic web and its applications. In: Working notes of the AAAI-2002 workshop on

ontologies and the semantic web, 2002

Simperl E, W€olger S, B€urger T, Siorpaes K, Han S-K, Luger M (2010) An ontology authoring tool

for the enterprise 3.0. Taylor and Francis Publishing, 2010, London

Simpson E (2008) Clustering tags in enterprise and web folksonomies. Technical Report HPL-

2008-18, HP Labs, 2008

Sowa JF (1995) Top-level ontological categories. International Journal of Human-Computer

Studies 43(5/6):669–685. ISSN 1071–5819. doi: http://dx.doi.org/10.1006/ijhc.1995.1068

Specia L, Motta E (2007) Integrating folksonomies with the semantic web. In: Proceedings of the

4th European semantic web conference (ESWC2007), pp 624–639, 2007

Uschold M, Grueninger M (1996) Ontologies Principles, Methods and Applications. Knowledge

Engineering Review 11(2):93–155

Vrandečić D (2009) Towards automatic content quality checks in semantic wikis. In: Social

semantic web: where web 2.0 meets web 3.0, AAAI spring symposium, Springer, Stanford,

CA, March 2009a

Vrandečić D (2009) Ontology evaluation. PhD thesis, Karlsruhe Institute for Technology,

Germany, 2009b

Vrandečić D, Kr€otzsch M (2006) Reusing ontological background knowledge in semantic wikis.

In: V€olkel M, Schaffert S (eds) Proceedings of the first workshop on semantic wikis – from

wiki to semantics, Workshop on Semantic Wikis. AIFB, ESWC2006, June 2006. URL http://

www.aifb.uni-karlsruhe.de/Publikationen/showPublikation?publ_id¼1211

3 Enterprise Knowledge Structures 59

http://www.w3.org/TR/2008/WD-owl2-profiles-20081202/.
http://www.w3.org/TR/2008/WD-owl2-profiles-20081202/.
http://dx.doi.org/10.1006/ijhc.1995.1068
http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation?publ_id=1211
http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation?publ_id=1211
http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation?publ_id=1211


http://www.springer.com/978-3-642-19509-9


	3: Enterprise Knowledge Structures
	3.1 Introduction
	3.2 Enterprise Knowledge Structures and How Are They Used
	3.2.1 Knowledge Management at an International Consulting Company
	3.2.2 Knowledge Sharing at a Large Telecom Operator
	3.2.3 Process Optimization at a Digital Chip Design Company
	3.2.4 Trade-off Analysis

	3.3 How are Enterprise Knowledge Structures Being Built
	3.3.1 Building Knowledge Structures Manually
	3.3.2 Leveraging External Knowledge Sources
	3.3.2.1 Turning Folksonomies into Ontologies
	3.3.2.2 Integrating Freebase into Semantic MediaWiki

	3.3.3 Repairing Knowledge Structures

	3.4 Conclusions
	References


