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Abstract. We give a quick tour through some topics in analytic prime
number theory, focusing in particular on the strange mixture of order and
chaos in the primes. For instance, while primes do obey some obvious patterns
(e.g. they are almost all odd), and have a very regular asymptotic distribution
(the prime number theorem), we still do not know a deterministic formula
to quickly generate large numbers guaranteed to be prime, or to count even
very simple patterns in the primes, such as twin primes p, p+2. Nevertheless,
it is still possible in some cases to understand enough of the structure and
randomness of the primes to obtain some quite nontrivial results.

1 Introduction

The prime numbers 2, 3, 5, 7, . . . are one of the oldest topics studied in math-
ematics. We now have a lot of intuition as to how the primes should behave,
and a great deal of confidence in our conjectures about the primes... but we
still have a great deal of difficulty in proving many of these conjectures! Ulti-
mately, this is because the primes are believed to behave pseudorandomly in
many ways, and not to follow any simple pattern. We have many ways of es-
tablishing that a pattern exists... but how does one demonstrate the absence
of a pattern?

In this article I will try to convince you why the primes are believed to
behave pseudorandomly, and how one could try to make this intuition rig-
orous. This is only a small sample of what is going on in the subject; I am
omitting many major topics, such as sieve theory or exponential sums, and
am glossing over many important technical details.
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2 Finding Primes

It is a paradoxical fact that the primes are simultaneously very numerous,
and hard to find. On the one hand, we have the following ancient theorem [2]:

Theorem 1 (Euclid’s Theorem). There are infinitely many primes.

In particular, given any k, there exists a prime with at least k digits. But
there is no known quick and deterministic way to locate such a prime! (Here,
“quick” means “computable in a time which is polynomial in k”.) In par-
ticular, there is no known (deterministic) formula that can quickly generate
large numbers that are guaranteed to be prime. Currently, the largest known
prime is 243,112,609 − 1, about 13 million digits long [3].

On the other hand, one can find primes quickly by probabilistic methods.
Indeed, any k-digit number can be tested for primality quickly, either by prob-
abilistic methods [10, 12] or by deterministic methods [1]. These methods are
based on variants of Fermat’s little theorem, which asserts that an ≡ a mod n
whenever n is prime. (Note that an mod n can be computed quickly, by first
repeatedly squaring a to compute a2j

mod n for various values of j, and then
expanding n in binary and multiplying the indicated residues a2j

mod n to-
gether.)

Also, we have the following fundamental theorem [8, 14, 16]:

Theorem 2 (Prime Number Theorem). The number of primes less than
a given integer n is (1 + o(1)) n

log n , where o(1) tends to zero as n → ∞.

(We use log to denote the natural logarithm.) In particular, the probability
of a randomly selected k-digit number being prime is about 1

k log 10 . So one
can quickly find a k-digit prime with high probability by randomly selecting
k-digit numbers and testing each of them for primality.

Is Randomness Really Necessary? To summarize: We do not know a
quick way to find primes deterministically. However, we have quick ways to
find primes randomly.

On the other hand, there are major conjectures in complexity theory, such
as P = BPP, which assert (roughly speaking) that any problem that can
be solved quickly by probabilistic methods can also be solved quickly by
deterministic methods.1

These conjectures are closely related to the more famous conjecture
P �= NP, which is a USD $ 1 million Clay Millennium prize problem.2

1 Strictly speaking, the P = BPP conjecture only applies to decision problems —
problems with a yes/no answer —, rather than search problems such as the task of
finding a prime, but there are variants of P = BPP, such as P = promise-BPP, which
would be applicable here.
2 The precise definitions of P, NP, and BPP are quite technical; suffice to say that
P stands for “polynomial time”, NP stands for “non-deterministic polynomial time”,
and BPP stands for “bounded-error probabilistic polynomial time”.
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Many other important probabilistic algorithms have been derandomised
into deterministic ones, but this has not been done for the problem of finding
primes. (A massively collaborative research project is currently underway to
attempt this [11].)

3 Counting Primes

We’ve seen that it’s hard to get a hold of any single large prime. But it is
easier to study the set of primes collectively rather than one at a time.

An analogy: it is difficult to locate and count all the grains of sand in a box,
but one can get an estimate on this count by weighing the box, subtracting
the weight of the empty box, and dividing by the average weight of a grain
of sand. The point is that there is an easily measured statistic (the weight of
the box with the sand) which reflects the collective behaviour of the sand.

For instance, from the fundamental theorem of arithmetic one can establish
Euler’s product formula

∞∑

n=1

1
ns

=
∏

p prime

(
1 +

1
ps

+
1

p2s
+

1
p3s

+ . . .

)
=

∏

p prime

(
1 − 1

ps

)−1

(1)

for any s > 1 (and also for other complex values of s, if one defines one’s
terms carefully enough).

The formula (1) links the collective behaviour of the primes to the be-
haviour of the Riemann zeta function

ζ(s) :=
∞∑

n=1

1
ns

,

thus ∏

p prime

(
1 − 1

ps

)
=

1
ζ(s)

. (2)

One can then deduce information about the primes from information about
the zeta function (and in particular, its zeroes).

For instance, from the divergence of the harmonic series
∑∞

n=1
1
n = +∞

we see that 1
ζ(s) goes to zero as s approaches 1 (from the right, at least).

From this and (2) we already recover Euclid’s theorem (Theorem 1), and in
fact obtain the stronger result of Euler that the sum

∑
p

1
p of reciprocals of

primes diverges also.3

In a similar spirit, one can use the techniques of complex analysis, com-
bined with the (non-trivial) fact that ζ(s) is never zero for s ∈ C when

3 Observe that log 1/ζ(s) = log
Q

p(1 − p−s) =
P

p log(1 − p−s) ≥ −2
P

p p−s.
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Re(s) ≥ 1, to establish the prime number theorem (Theorem 2) [16]; indeed,
this is how the theorem was originally proved [8, 14] (and one can conversely
use the prime number theorem to deduce the fact about the zeroes of ζ).

The famous Riemann hypothesis asserts that ζ(s) is never zero when4

Re(s) > 1/2. It implies a much stronger version of the prime number theorem,
namely that the number of primes less than an integer n > 1 is given by
the more precise formula5

∫ n

0
dx

log x + O(n1/2 log n), where O(n1/2 log n) is a
quantity which is bounded in magnitude by Cn1/2 log n for some absolute
constant C (for instance, one can take C = 1

8π once n is at least 2657 [13]).
The hypothesis has many other consequences in number theory; it is another
of the USD $ 1 million Clay Millennium prize problems. More generally, much
of what we know about the primes has come from an extensive study of the
properties of the Riemann zeta function and its relatives, although there are
also some questions about primes that remain out of reach even assuming
strong conjectures such as the Riemann hypothesis.

4 Modeling Primes

A fruitful way to think about the set of primes is as a pseudorandom set —
a set of numbers which is not actually random, but behaves like one.

For instance, the prime number theorem asserts, roughly speaking, that a
randomly chosen large integer n has a probability of about 1/ log n of being
prime. One can then model the set of primes by replacing them with a random
set of integers, in which each integer n > 1 is selected with an independent
probability of 1/ log n; this is Cramér’s random model.

This model is too crude, because it misses some obvious structure in the
primes, such as the fact that most primes are odd. But one can improve the
model to address this, by picking a model where odd integers n are selected
with an independent probability of 2/ log n and even integers are selected
with probability 0.

One can also take into account other obvious structure in the primes, such
as the fact that most primes are not divisible by 3, not divisible by 5, etc.
This leads to fancier random models which we believe to accurately predict
the asymptotic behaviour of primes.

4 A technical point: the sum
P∞

n=1
1

ns does not converge in the classical sense when
Re(s) ≤ 1, so one has to interpret this sum in a fancier way, or else use a different
definition of ζ(s) in this case; but I will not discuss these subtleties here.
5 The Prime Number Theorem in the version of Theorem 2 says that, as n → ∞, the
number of correct decimal digits in the estimate n/ log n tends to infinity, but it does
not relate the number of correct digits to the total number of digits of π(n). If the
Riemann hypothesis is correct, then

R n
0 dx/ log x correctly predicts almost half of the

digits in π(n).
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For example, suppose we want to predict the number of twin primes n,
n + 2, where n ≤ N for a given threshold N . Using the Cramér random
model, we expect, for any given n, that n, n+2 will simultaneously be prime
with probability 1

log n log(n+2) , so we expect the number of twin primes to be
about6

N∑

n=1

1
log n log(n + 2)

≈ N

log2 N
.

This prediction is inaccurate; for instance, the same argument would also
predict plenty of pairs of consecutive primes n, n + 1, which is absurd. But if
one uses the refined model where odd integers n are prime with an indepen-
dent probability of 2/ log n and even integers are prime with probability 0,
one gets the slightly different prediction

∑

1≤n≤N
n odd

2
log n

× 2
log(n + 2)

≈ 2
N

log2 N
.

More generally, if one assumes that all numbers n divisible by some prime
less than a small threshold w are prime with probability zero, and are prime
with a probability of

∏
p<w(1 − 1

p )−1 × 1
log n otherwise, one is eventually led

to the prediction

2

⎛

⎜⎝
∏

p<w
p odd

p − 2
p

(
1 − 1

p

)−2

⎞

⎟⎠
N

log2 N
= 2

⎛

⎜⎝
∏

p<w
p odd

(
1 − 1

(p − 1)2

)
⎞

⎟⎠
N

log2 N

(for p an odd prime, among p consecutive integers, only p − 2 have a chance
to be the smaller number in a pair of twin primes). Sending w → ∞, one is
led to the asymptotic prediction

Π2
N

log2 N

for the number of twin primes less than N , where Π2 is the twin prime
constant

Π2 := 2
∏

p odd prime

(
1 − 1

(p − 1)2

)
≈ 1.32032 . . . .

For N = 1010, this prediction is accurate to four decimal places, and is be-
lieved to be asymptotically correct. (This is part of a more general conjecture,
known as the Hardy-Littlewood prime tuples conjecture [9].)

6 We use the symbol ≈ in the sense that the quotient of the two quantities tends to
1 as N → ∞.
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Similar arguments based on random models give convincing heuristic sup-
port for many other conjectures in number theory, and are backed up by
extensive numerical calculations.

5 Finding Patterns in Primes

Of course, the primes are a deterministic set of integers, not a random one,
so the predictions given by random models are not rigorous. But can they be
made so?

There has been some progress in doing this. One approach is to try to
classify all the possible ways in which a set could fail to be pseudorandom
(i.e. it does something noticeably different from what a random set would
do), and then show that the primes do not behave in any of these ways.

For instance, consider the odd Goldbach conjecture: every odd integer
larger than five is the sum of three primes. If, for instance, all large primes
happened to have their last digit equal to one, then Goldbach’s conjecture
could well fail for some large odd integers whose last digit was different from
three. Thus we see that the conjecture could fail if there was a sufficiently
strange “conspiracy” among the primes.

However, one can rule out this particular conspiracy by using the prime
number theorem in arithmetic progressions, which tells us that (among other
things) there are many primes whose last digit is different from 1. (The proof
of this theorem is based on the proof of the classical prime number theorem.)

Moreover, by using the techniques of Fourier analysis (or more precisely,
the Hardy-Littlewood circle method), we can show that all the conspiracies
which could conceivably sink Goldbach’s conjecture (for large integers, at
least) are broadly of this type: an unexpected “bias” for the primes to prefer
one remainder modulo 10 (or modulo another base, which need not be an
integer), over another.

Vinogradov [15] eliminated each of these potential conspiracies, and estab-
lished Vinogradov’s theorem: every sufficiently large odd integer is the sum
of three primes.7 This method has since been extended by many authors, to
cover many other types of patterns; for instance, related techniques were used
by Ben Green and myself [4] to establish that the primes contain arbitrarily
long arithmetic progressions, and in subsequent work of Ben Green, myself,
and Tamar Ziegler [5, 6, 7] to count a wide range of other additive patterns
also. (Very roughly speaking, known techniques can count additive patterns
that involve two independent parameters, such as arithmetic progressions
a, a + r, . . . , a + (k − 1)r of a fixed length k.)

7 Vinogradov himself could not specify explicitly what “sufficiently large” is. Soon
after, his student Borozdin showed that numbers greater than 3315 ≈ 106 846 169 are
“sufficiently large”. Meanwhile, this bound has been lowered to e3 100 ≈ 101 346 —
still far beyond reach for computer tests for the smaller numbers.
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Unfortunately, “one-parameter” patterns, such as twins n, n + 2, remain
stubbornly beyond current technology. There is still much to be done in the
subject!
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bres premiers. Annales de la Société scientifique de Bruxelles 20, 183–256 (1896)

[15] Ivan M. Vinogradov, The method of trigonometrical sums in the theory of num-
bers (Russian). Travaux de l’Institut Mathématique Stekloff 10 (1937)
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