
Chapter 2

Gaussian Processes

The theory of Gaussian processes and fields is rich and varied, and many
excellent books have been written on the subject, among them Bogachev [15],
Dudley [33], Fernique [39], Hida and Hitsuda [49], Janson [52], Ledoux and
Talagrand [60], Lifshits [61] and Piterbarg [68], not to mention RFG and
another old favourite of ours, another set of lecture notes, [3]. In particular, a
new book [11] by Jean-Marc Azäıs and Mario Wschebor has recently appeared
that has a lot of material similar, but generally complementary, to what
interests us.

We have no intention to go into any detail in the current notes, however,
and so will take a quick route towards defining Gaussian processes on general
parameter spaces that will get us where we need to go with the minimum of
fuss. All you will need to know to follow this is some rather basic graduate
level probability, and the definition of the multivariate Gaussian distribu-
tion.1 We shall start, however, with a very simple example which requires
nothing beyond undergraduate probability and some innovative calculus, but
which is already extremely instructive.

1 Recall that a R
d valued random variable X = (X1, . . . , Xd) is said to be multivariate

Gaussian if, for every α = (α1, . . . , αd) ∈ R
d, the real valued variable 〈α, X〉 =

∑d
i=1 αiXi

is univariate Gaussian. In this case there exists a mean vector m ∈ R
d with mj = E{Xj}

and a non-negative definite d × d covariance matrix C, with elements cij = E{(Xi −
mi)(Xj − mj)}, such that the probability density of X is given by

φd(x) =
1

(2π)d/2|C|1/2
e−(x−m)C−1(x−m)′/2, x ∈ R

d, (2.0.1)

where |C| = det(C). We write this as X ∼ N(m, C), or X ∼ Nd(m, C) if we need to
emphasise the dimension, and also adopt the standard but heavily overworked symbol φ
to denote the density φ1 of a N(0, 1) random variable.
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14 2 Gaussian Processes

2.1 The Cosine Process

Perhaps the grandfather of all smooth stochastic processes is the cosine
random process on R. It is defined as

f(t) Δ= ξ cosλt + ξ′ sin λt, (2.1.1)

where ξ and ξ′ are uncorrelated, equidistributed, random variables and λ is
a positive constant.

It is elementary trigonometry to see that the cosine process can also be
written as

f(t) = R cos(λ(t − θ)), (2.1.2)

where R2 = ξ2 + (ξ′)2 ≥ 0 and θ = arctan(ξ/ξ′) ∈ (−π, π], from whence the
name ‘cosine process’. Assuming, for convenience, that E{ξ} = 0, we have
that the covariance function of f is given by

C(s, t) = E{f(s)f(t)}
= E{(ξ cosλs + ξ′ sin λs)(ξ cosλt + ξ′ sin λt)}
= E{ξ2} cos(λ(t − s)),

on using the fact that ξ and ξ′ are uncorrelated and equidistributed. Conse-
quently, regardless of the distribution of ξ, the cosine process is stationary.
(See Sect. 2.6 below for definitions of stationarity and isotropy.)

One of the nice aspects of the cosine process is that many things that
are either difficult or impossible to compute for more general processes can
be computed exactly, and from first principles, once some assumptions are
made on the distribution of ξ. We shall therefore now assume that ξ and ξ′ are
independent, Gaussian variables, with zero mean and common variance σ2.
As an example of what can be computed, consider, for u > 0, the exceedence
probability

P

{

sup
0≤t≤T

f(t) ≥ u

}

, (2.1.3)

which we met in the Introduction.
Under the Gaussian assumption, R2 has an exponential distribution with

mean 1/(2σ2), θ has a uniform distribution on (−π, π], and R and θ are
independent. We can use this information to compute some exceedence prob-
abilities directly, and start by defining the number of upcrossings by f of the
level u in time [0, T ],

Nu = Nu(f, T ) = #{t ∈ [0, T ] : f(t) = u and df(t)/d(t) > 0}.
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It is trivial to see that the exceedence probability that we are after can
now be written as

P

{

sup
0≤t≤T

f(t) ≥ u

}

= P {f(0) ≥ u} + P {f(0) < u, Nu ≥ 1}

= Ψ
(u

σ

)
+ P {f(0) < u, Nu ≥ 1} . (2.1.4)

where

Ψ(x) Δ= 1 − Φ(x) Δ=
1√
2π

∫ x

−∞
e−u2/2 du. (2.1.5)

is the tail probability function for a standard Gaussian variable.
We now restrict attention to the case T ≤ π/λ, in which case, since f has

period 2π/λ, the event {f(0) ≥ u, Nu ≥ 1} is empty, implying that

P {f(0) < u, Nu ≥ 1} = P {Nu ≥ 1} .

Again using the fact that T < π/λ, note that Nu is either 0 or 1. In order that
it be 1, two independent events must occur. Firstly, we must have R > u,
with probability e−u2/2σ2

. Secondly (draw a picture) θ must fall in an interval
of length λT , so that the final result is

P

{

sup
0≤t≤T

f(t) ≥ u

}

= Ψ
(u

σ

)
+

λT

2πσ
e−u2/2σ2

, (2.1.6)

and the probability density of the supremum is given by

1
σ

φ
(u

σ

)
+

λTu

2πσ2
e−u2/2σ2

. (2.1.7)

This computation was so simple, that one is tempted to believe that it
must be easy to extend to many other processes. In fact, this is not the case,
and the cosine process and field, which we shall meet in a moment, are the
only differentiable, stationary, Gaussian processes for which the exceedence
probabilities are explicitly known.

However, before we leave it, we can use the cosine process to motivate a
more general approach. Note first that since, as noted above, Nu is either 0
or 1 when T < π/λ, we can rewrite (2.1.4) as

P

{

sup
0≤t≤T

f(t) ≥ u

}

= Ψ
(u

σ

)
+ E{Nu}. (2.1.8)

Thus, rather than arguing as above, we could concentrate on finding an
expression for the mean number of upcrossings.
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More importantly, note that for any T , and, indeed, for any differentiable
random process, the above argument always gives

P

{

sup
0≤t≤T

f(t) ≥ u

}

≤ P {f(0) ≥ u) + E{Nu}. (2.1.9)

Thus there would seem to be a close relationship between exceedence prob-
abilities and level crossing rates, that actually becomes exact for the cosine
process over certain intervals. In fact, since, for a one dimensional set, its
Euler characteristic is given by the number of its connected components,
the expectation in the right hand sides of both (2.1.8) and (2.1.9) could be
written as E{ϕ(Au(f, T ))}, where ϕ is the Euler characteristic.

2.2 The Cosine Field

The cosine field is a straightforward extension to R
N of the cosine process,

and has the representation

f(t) = f(t1, . . . , tN ) Δ=
1√
N

N∑

k=1

fk(λktk), (2.2.1)

where each fk is the process on R given by

fk(t) = ξk cos t + ξ′k sin t.

The λk are fixed, and the ξk and ξ′k are taken to be identically distributed
and uncorrelated.

Again, it is a simple exercise to check that the cosine field is both sta-
tionary and isotropic but it is somewhat harder to compute its exceedence
probabilities. To see what can be done, we restrict attention to the cosine pro-
cess on a rectangle of the form T =

∏N
k=1[0, Tk]. Then, given the structure

of the cosine field as a sum, it is immediate that

sup
t∈T

f(t) =
1√
N

N∑

k=1

sup
0≤tk≤Tk

fk(t).

If we assume that the ξk and ξ′k are all independent N(0, σ2), then the
suprema of the individual fk are also independent. Further assuming that
each Tk ∈ (0, π/λk], (2.1.6) and (2.1.7) give their individual distributions.
The distribution of the supremum of the cosine field is then the convolution
of these. The computations involved in actually doing the convolution are not
easy, but Piterbarg [68] showed that, if pN (u) is the density function of the



2.2 The Cosine Field 17

supremum, φ the standard Gaussian density and φ(k) its k-derivative, then
there are simple constants, Cnk, depending only on n and k, such that

pN (u) = φ
(u

σ

)
+

N∑

k=1

(−1)kCnkφ(k)
(u

σ

) ∑

j1...jk

k∏

i=1

λjiTji

σ
. (2.2.2)

The inner sum here is over the
(
N
k

)
subsets of size k of {1, . . . , N}.

Now assume that all the λj are identical. Then, appropriately rewritten,
this result will recall the Gaussian kinematic formula. Setting σ2 = 1 for
convenience, and recalling the definition of the Lipschitz-Killing curvatures
of rectangles at (1.2.12), we can write

pN (u) =
N∑

k=0

(−1)kC′
nk φ(k)(u)λkLj(T ). (2.2.3)

Going a little further, integrating over u, and applying some non-trivial
asymptotics (cf. Sect. 2.5 of [68]) one finds that

P

{

sup
t∈T

f(t) ≥ u

}

= e−u2/2
N∑

k=0

C′′
nkHk−1(u)λkLk(T ) + o

(
e−(1+η)u2/2

)
,

(2.2.4)
for some η > 0, The Hermite polynomials Hn are defined by

Hn(x) = n!
�n/2�∑

j=0

(−1)jxn−2j

j! (n − 2j)! 2j
, n ≥ 0, x ∈ R. (2.2.5)

where �a� is the largest integer less than or equal to a and

H−1(x) Δ=
√

2πex2/2Ψ(x), (2.2.6)

where Ψ is the tail probability (2.1.5) of a standard normal.
The easily checked fact that

dj

dxj
e−x2/2 = (−1)jHj(x)e−x2/2, (2.2.7)

along with (2.2.3) explains why Hermite polynomials arise in the exceedence
probabilities of the cosine field.

In fact, it turns out Hermite polynomials will arise in expressions for excee-
dence probabilities of all real valued C2 Gaussian fields. Furthermore, along
with the factor e−u2/2, they can be written in terms of Gaussian Minkowski
functionals, a fact that we shall prove in Sect. 3.5. Thus the main term in the
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right hand side of (2.2.4) is now very reminiscent of the right hand side of
the Gaussian kinematic formula.

However, even as a stand-alone result, it is already fascinating in that it
links exceedence probabilities to the geometry of the parameter space.

2.3 Constructing Gaussian Processes

Since the construction of cosine processes and fields as a sum of deterministic
functions with random amplitudes worked so well, we now try something
similar in general. Thus, with M a potential parameter space, choose a finite
or infinite set of functions ϕ1, ϕ2, . . . , ϕj : M → R satisfying only

∑

j

ϕ2
j(t) < ∞, for all t ∈ M. (2.3.1)

Let ξ1, ξ2, . . . be a sequence of independent, mean zero, variance 1, Gaussian
random variables, and define the random field f : M → R by

f(t) =
∑

j

ξjϕj(t). (2.3.2)

That the sum converges in L2, for each fixed t ∈ M , is a consequence of
(2.3.1). How f behaves, as a function of t, is another issue, that we shall
turn to later. Clearly, though, the smoother the ϕj are, the better behaved
f will be.

The mean of f is zero, and its covariance function is given by

C(s, t) = E{f(s)f(t)} =
∑

j

ϕj(s)ϕj(t). (2.3.3)

So we have seen how to go from a sum like (2.3.2) to a covariance func-
tion. Usually, however, Gaussian processes are defined by their covariance
functions, rather than vice versa, so let’s make a couple of calculations and
then try to work backwards. Firstly, define a class of functions

S =
{

u : M → R : u(·) =
n∑

i=1

aiC(si, ·), ai real, si ∈ M, n ≥ 1
}
. (2.3.4)

Define an inner product on S by

(u, v)H =
( n∑

i=1

aiC(si, ·),
m∑

j=1

bjC(tj , ·)
)

H



2.3 Constructing Gaussian Processes 19

=
n∑

i=1

m∑

j=1

aibjC(si, tj). (2.3.5)

It is easy to check that if u ∈ S, then the following unusual property holds:

(u(·), C(t, ·))H = u(t). (2.3.6)

This is known as the reproducing kernel property. The completion of S under
this above inner product is known as the reproducing kernel Hilbert space
(RKHS) of f , and all its elements also satisfy the reproducing property.

What is most interesting in this construction is that it also works in the
other direction. That is, given a positive definite function C on a space M , one
can define the completion of the space S of (2.3.4) under the inner product of
(2.3.5), find a an orthonormal basis {ϕk} for H(C) and define the Gaussian
process (2.3.2). This will have C as its covariance function. The RKHS is now
associated with C rather than f , and is denoted by H(C).

For further details see RFG (or virtually any of the other texts mentioned
at the beginning of this chapter) where you will also find a proof of the
following, harder and much deeper, result, which holds under the implicit
assumption, assumed throughout these notes, that we are dealing only with
separable random processes.2

Theorem 2.3.1. Suppose that C is a bounded, positive definite function,
continous on M × M , and that

sup
s,t∈M

∣
∣C(s, s) + C(t, t) − 2C(s, t)

∣
∣ < ∞. (2.3.7)

Let f be defined from C as above. Then f is a.s. continuous, if, and only if,
the sum (2.3.2) converges uniformly on M , with probability one.

For the French among you, here is an (almost familiar) example. The
Brownian sheet is the zero mean, Gaussian, random field on the positive
orthant [0,∞)N with covariance function

E{W (s)W (t)} = (s1 ∧ t1) × · · · × (sN ∧ tN ). (2.3.8)

Replacing each j in the above sums by a multi-index j = (j1, . . . , jN ), it is
then not too hard to check that the ϕj for W are given, for W restricted

2 Recall that a real valued random process is called separable if there exists a countable
dense subset D of M and a fixed event N with P{N} = 0 such that, for any closed B ⊂ R

and open I ⊂ T ,

{ω : f(t, ω) ∈ B, ∀t ∈ I} Δ {ω : f(t, ω) ∈ B, ∀t ∈ I ∩ D} ⊂ N,

where Δ denotes the usual symmetric difference operator.
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to [0, 1]N , by

ϕj(t) = 2N/2
N∏

i=1

2
(2ji + 1)π

sin
(

1
2 (2ji + 1)πti

)
.

When N = 1, W is the completely familiar Brownian motion. The corre-
sponding expansion is due to Lévy, and the corresponding RKHS is known
as Cameron–Martin space.

The message of this section should, by now, be clear. When dealing with
continuous Gaussian processes, we lose no generality whatsoever by treat-
ing them as sums of deterministic functions with independent Gaussian
coefficients. This will be important throughout these notes.

2.4 The Canonical Process on S(Rl)

There is a school of thought that takes the basic ideas of the previous section
even further. Note that, for any t ∈ M , the sequence ϕ̃(t) = {ϕ1(t), ϕ2(t), . . . }
belongs to �2. (cf. (2.3.1).) Consider the image of M in �2 under the mapping
t → x = ϕ̃(t), denote it by B, and define a new Gaussian process f̃ by setting

f̃(x) = f
(
ϕ̃−1(x)

)
, (2.4.1)

assuming always that ϕ is one to one.3 Note that

E

{
f̃(x)f̃(y)

}
= E

{
f

(
ϕ̃−1(x)

)
f

(
ϕ̃−1(y)

)}

=
∑

j

ϕj

(
ϕ̃−1(x)

)
ϕj

(
ϕ̃−1(y)

)

=
∑

j

xjyj

= 〈x, y〉�2 . (2.4.2)

3 This is actually a perfectly reasonable assumption. If there are two different points s, t ∈
M mapping to the same point in S(Rl), then we must have

E
{
[f(t) − f(s)]2

}
=

�∑

1

[ϕj(t) − ϕj(s)]
2 = 0,

which implies that f(t) and f(s) are, almost surely, identical, and so one of the points s, t
can be dropped from the parameter set.
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In other words, there is really only one Gaussian process. It is defined on a
subset of �2 and its covariance function is the natural inner product on �2. It
is known as the isonormal process, and all of its properties must be properties
only of the parameter set B, and so accessible via the techniques of Banach
spaces.

While we shall not exactly adopt this approach, and, to some extent, it
would fail us if we did, it will be particularly helpful in certain special cases.

In particular, suppose that f has constant variance, which for notational
simplicity we take to be one, and, somewhat more restrictively, that the
expansion (2.3.2) is finite. Consequently,

f(t) =
l∑

j=1

ξjϕj(t), (2.4.3)

for some 1 ≤ l < ∞ and

k∑

j−1

ϕ2
j (t) = E

{
f2(t)

}
= 1. (2.4.4)

Thus, the set B = ϕ̃(M) of the previous section is now embedded in S(Rl), the
unit sphere of R

l, and the random field defined on it can be easily extended to
the entire sphere. The corresponding field is known as canonical (isotropic)
process on S(Rl). It has covariance C(s, t) = 〈s, t〉, and can be realised as

f̃(t) =
�∑

j=1

tjξj . (2.4.5)

The isotropy comes from the fact that C(s, t) is function of only the (geodesic)
distance between s and t. (cf. Sect. 2.6 for a definition and discussion of
isotropy.)

The diagram of Fig. 1.1.1 can now be modified somewhat. In fact, if we
take d independent copies of f and f̃ so that now f = (f1, . . . , fd) and
f̃ = (f̃1, . . . , f̃d), we can write

f(t) = f̃ (ϕ̃(t)) =
(
f̃ ◦ ϕ̃

)
(t).

The picture is now as in Fig. 2.4.1, where we have neglected the final mapping
F in Fig. 1.1.1.

It turns out that for many purposes it suffices to work with the second
half of the figure, from ϕ̃ → R

d. In the following two subsections we shall see
two examples of this.
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Fig. 2.4.1 The new setting with the canonical process on S(R�) intervening

2.4.1 The Canonical Processes and Exceedence
Probabilities

We are now going to look at the exceedence probabilities and continue the
process of connecting them to geometry. The underlying technique is known
as the tube method and has its roots in a pair of papers by Hotelling [50] and
Weyl [86] in 1939. In the setting in which we shall apply it, it was developed
primarily in [53, 58, 77].

Retaining the notation of the previous section, it is trivial that

sup
t∈M

f(t) ≡ sup
x∈ϕ̃(M)

f̃(x), (2.4.6)

so that in computing exceedence probabilities for unit variance, finite expan-
sion Gaussian fields, we can concentrate first on treating only the canonical
process over subsets of S(Rl). Thus, for the moment, let f be the canon-
ical process on S(Rl), and let M ∈ S(Rl) be a nice set. Adopting the
representation (2.4.5), we write f(t) as 〈ξ, t〉, for ξ ∼ N(0, I�×�) and t ∈ S(Rl).

Then we can argue as follows, writing P|ξ| for the distribution of |ξ|:

P

{

sup
t∈M

ft ≥ u

}

=
∫ ∞

0

P

{

sup
t∈M

ft ≥ u
∣
∣
∣ |ξ| = r

}

P|ξ|(dr)

=
∫ ∞

0

P

{

sup
t∈M

〈ξ, t〉 ≥ u
∣
∣
∣ |ξ| = r

}

P|ξ|(dr)

=
∫ ∞

u

P

{

sup
t∈M

〈ξ, t〉 ≥ u
∣
∣
∣ |ξ| = r

}

P|ξ|(dr)

=
∫ ∞

u

P

{

sup
t∈M

〈ξ/r, t〉 ≥ u/r
∣
∣
∣ |ξ| = r

}

P|ξ|(dr).

(2.4.7)

Consider the integrand here. Since ξ is multivariate Gaussian, it is standard
fare that the vector ξ/|ξ| is uniformly distributed on S(Rl), independently
of |ξ|, which is distributed as the square root of a χ2

l random variable. If
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we now write ηl to denote the uniform measure over S(Rl), we can rewrite
the integrand as a simple volume computation, once we take a moment to
consider tubes on spheres.

Our definition (1.2.6) of tubes extends from the simple Euclidean setting
to subsets of spheres by adopting the standard geodesic metric on S(Rl)
given by

τ(s, t) = cos−1 (〈s, t〉) .

Thus the tube of radius ρ around a closed set M ∈ S(Rl) is given by

Tube(M, ρ) =
{
t ∈ S(Rl) : τ(t, M) ≤ ρ

}

=
{
t ∈ S(Rl) : ∃ s ∈ M such that 〈s, t〉 ≥ cos(ρ)

}

=
{

t ∈ S(Rl) : sup
s∈M

〈s, t〉 ≥ cos(ρ)
}

.

(2.4.8)

With this behind us, we can now continue the development of (2.4.7) to
obtain

P

{

sup
t∈M

ft ≥ u

}

=
∫ ∞

u

ηl

(
Tube(M, cos−1(u/r))

)
P|ξ|(dr) (2.4.9)

Thus, the exceedence probability that we seek is weighted average of the
volume of tubes around M of varying radii, and if we could compute

ηl (Tube(M, ρ))

for all ρ ≤ 1 we would, basically, be done, since the averaging, over the square
root of a χ2

l random variable is, in principle, straightforward.
This approach – almost – works.
Firstly, not surprisingly, there are analogues of Steiner’s formula (1.2.7),

now called a tube formula, for subsets of spheres, with the Lipschitz-Killing
curvatures appearing in the Euclidean case replaced by their spherical coun-
terparts. We shall treat these in some detail in Chap. 3.4.2, but, for the
moment, let us write them as L1

j(M) so that, assuming the existence of a
tube formula, (2.4.9) becomes

P

{

sup
t∈M

ft ≥ u

}

=
dim M∑

j=0

C�jL1
j (M)

∫ ∞

u

(
cos−1(u/r))

)�−j
P|ξ|(dr),

=
dim M∑

j=0

C�jL1
j (M)G�j(u) (2.4.10)
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for some identifiable constants C�j and functions G�j . Note that the final
expression here is starting to take on the form of the right hand side of the
Gaussian kinematic formula.

Where this argument breaks down is that the tube formula only works for
small enough ρ or, in our case, small enough r. If r is large in the integrand
of (2.4.7) then the tube around M has radius close to π/2, and it becomes
easy, and, indeed, typical, for the tube to intersect itself ‘on the other side’
of the sphere in which it is embedded. Once a self-intersection of this kind
occurs, tube formulae are no longer valid.

One way around this, which we shall not adopt in these notes, is to note
that since the problems arise only for large r, and these have small probability
under P|ξ|, one can ignore the tail of the integral, in a u-dependent fashion,
and estimate the error involved in doing so. Then, however, (2.4.10) becomes
an approximation rather than an exact result. We prefer to use the Euler
characteristic approximation of (1.3.7) and will justify it later. In most cases,
the two approaches yield identical approximations (cf. [78].)

The second problem with approaching everything via the canonical process
on the sphere is that most random fields do not live in the sphere, and
although the mapping from M → ϕ̃(M) is natural one, in the final analysis
one would like to have answers that depend not on the structure of ϕ̃(M),
but rather on the structure of M and the covariance structure of f . This is,
in fact, not too hard to do, and we shall see later how to relate the L1

j (ϕ̃(M))
to the Lj(M).

The final problem with this approach, however, is highly non-trivial: Not
all random fields have orthogonal expansions with only a finite number of
terms. In fact, this is the exception rather than the rule. For example, no
isotropic random field on R

N has a finite expansion! Nevertheless, the isonor-
mal process on the sphere turns out to be the key example for generating
results for general processes, as we shall see later.

2.4.2 The Canonical Process and Geometry

Returning now to the original random field f on M , consider how the
excursion sets of f relate to those of f̃ . That is, what is the relation between

AD = {t ∈ M : f(t) ∈ D} and ÃD = {x ∈ ϕ̃(M) : f̃(x) ∈ D}?

The first thing to notice is that since ϕ̃ is one-one (already assumed) and
if we assume that it is C2 or smoother (in fact, it will always be at least
C4 for us) then the fact that ϕ̃ is a diffeomorphism implies that the Euler
characteristics of AD and ÃD will be identical. Consequently,

E
{L0

(
AD

)}
= E

{L0

(
ÃD

)}
, (2.4.11)
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so that if we can compute the expected Euler characteristics of excursion
sets for the canonical process on spheres, then we can, at least in principle,
compute them for all Gaussian random fields with finite expansions.

Of course, we shall still face the same two problems that we faced above.
The answers will depend on the structure of ϕ̃(M), rather than on the struc-
ture of M and the covariance structure of f , and they will only hold for
random fields with finite expansions.

Furthermore, it is not at all clear if one can extend (2.4.11) to Lipschitz-
Killing curvatures other than the Euler characteristic. For example, it is
certainly not true in general that

LN

(
AD

) ≡ HN

(
AD

)
= HN

(
ÃD

) ≡ LN

(
ÃD

)
,

where HN (AD) is the Euclidean volume of AD but HN (ÃD) is the surface
area of ÃD as a subset of the sphere. That there is nevertheless a way to
obtain the general Gaussian kinematic formula, which gives an expression for
means of all the Lj(AD) from a parallel result for the canonical process, is one
of the mysteries that will be unravelled as you proceed through these notes.

2.5 The Basic Theory of Gaussian Fields

To make the lecture course for which these notes were prepared complete and
self-contained, we would have needed another 24 h or so to give a mini-course
on Gaussian processes. Thus, for example, if you look at RFG (and by now
you should have ordered a personal copy from Springer) you will see that the
first third of the book is devoted to this material.

Clearly this was not possible. On the other hand, we do need some results
from the general theory, and some specific moment results, for later use,
and so they are collected in the following sections, with no attempt to prove
anything. Everything is proven in RFG in full detail.

In fact, if you are reading through these notes by yourself, and have an
impatient nature, you can actually skip these sections for now, go directly to
the geometry of Chap. 3, and return later, as needed.

We should really begin by actually defining real valued Gaussian (random)
fields or Gaussian (random) processes, something which have not actually
done yet, as being a random fields for which the (finite dimensional) distri-
butions of (ft1 , . . . , ftn) are multivariate Gaussian for each 1 ≤ n < ∞ and
each collection (t1, . . . , tn) ∈ Mn.

Since multivariate Gaussian distributions are determined by means and
covariances, it is immediate that Gaussian random fields are determined by
their mean and covariance functions defined, respectively, by

m(t) = E{f(t)} (2.5.1)
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and

C(s, t) = E {(f(s) − m(s)) (f(t) − m(t))} . (2.5.2)

In fact, this is one of the main reasons, beyond ubiquitous but not always jus-
tified appeals to the central limit theorem, that Gaussian processes are such
popular and useful choices for models for random processes on general spaces.

2.5.1 Regularity for Gaussian Process

We have already spoken about continuous and differentiable fields, but have
said nothing about conditions that ensure this. In the Gaussian case, every-
thing is dependent on the size of the parameter space, which we shall measure
via the canonical metric.4

The canonical metric, d, of a zero mean Gaussian field on a topological
space M , is defined by setting

d(s, t) Δ=
[
E
{(

f(s) − f(t)
)2}] 1

2 , (2.5.3)

in a notation that will henceforth remain fixed.5 A ball in this metric, of
radius ε and centered at a point t ∈ M is denoted by

Bd(t, ε)
Δ= {s ∈ M : d(s, t) ≤ ε} . (2.5.4)

Assume that M is d-compact, in the sense that

diam(M) Δ= sup
s,t∈M

d(s, t) < ∞. (2.5.5)

Fix ε > 0 and let N(M, d, ε) ≡ N(ε) denote the smallest number of d-balls
of radius ε whose union covers M . Set

H(M, d, ε) ≡ H(ε) = ln (N(ε)) . (2.5.6)

Then N and H are called the (metric) entropy and log-entropy functions for
M (or f).

4 There is also a more powerful approach based on the notion of majorising measures which
we shall not adopt. For information on this approach see RFG and the far more serious
treatment in [60].
5 Actually, d is only a pseudo-metric, since although it satisfies all the other demands of a
metric, d(s, t) = 0 does not necessarily imply s = t.
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Here then is the main result about Gaussian continuity and boundedness,
due originally, more or less in the form given below, to Richard Dudley [31,
32]. It is not the latest word in the topic, but it will more than suffice for
our purposes. Note how the topological and geometric structure of M blend
together with the covariance structure of f to give a measure, the metric
entropy, which determines everything in this result.

This blending of the geometry of the parameter space together with a
metric derived from the random field will also lie at the heart of the Gaussian
kinematic formula, although it will be different geometry and a different
metric.

Theorem 2.5.1. Let f be a centered Gaussian field on a d-compact M , d
the canonical metric, and H the corresponding log-entropy. Then there exists
a universal constant K such that

E

{

sup
t∈M

ft

}

≤ K

∫ diam(M)

0

H1/2(ε) dε, (2.5.7)

and

E {ωf,d(δ)} ≤ K

∫ δ

0

H1/2(ε) dε, (2.5.8)

where

ωf,d(δ)
Δ= sup

d(s,t)≤δ

|f(t) − f(s)| , δ > 0, (2.5.9)

Furthermore, there exists a random η ∈ (0,∞) and a universal constant K
such that

ωf,d(δ) ≤ K

∫ δ

0

H1/2(ε) dε,

for all δ < η.

A complement to this result states that f is also stationary, then

f is a.s. continuous on M ⇐⇒ f is a.s. bounded on M

⇐⇒
∫ δ

0

H1/2(ε) dε < ∞, ∀δ > 0. (2.5.10)

For necessary and sufficient conditions in the general case one needs to turn
to the notion of majorising measures mentioned above.
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2.5.2 Gaussian Fields on R
N

The entropy conditions above yield very simple sufficient conditions for con-
tinuity of centered Gaussian fields on compact sets M of R

N . In fact, it is
easy to check that, defining

p2(u) Δ= sup
|s−t|≤u

E
{|fs − ft|2

}
, (2.5.11)

a.s. continuity and boundedness follow if, for some δ > 0, either

∫ δ

0

(− ln u)
1
2 dp(u) < ∞ or

∫ ∞

δ

p
(
e−u2

)
du < ∞. (2.5.12)

Furthermore, there exists a constant K ′, dependent only on the dimension
N , and a random δo > 0, such that, for all δ < δo,

ωf(δ) ≤ K ′
∫ p(δ)

0

(− lnu)
1
2 dp(u), (2.5.13)

where the modulus of continuity ωf is as in (2.5.9), but taken with respect to
the usual Euclidean metric rather than the canonical one. A similar bound,
in the spirit of (2.5.8), holds for E{ωf(δ)}.

A sufficient condition for either integral in (2.5.12) to be finite is that, for
some 0 < K < ∞ and α, η > 0,

E
{|fs − ft|2

} ≤ K

|log |s − t| |1+α ,

for all s, t with |s− t| < η. Related conditions hold on the spectral density in
the stationary case. See RFG for details.

In practical situations, it is rare indeed that one even gets close to the
logarithmic behavior of (2.5.14). The more common situation is that the
covariance function has a power series representation of the form

C(s, t) = C(t, t) + (t − s)Λt(t − s)′ + o
(|t − s|2+δ

)
, (2.5.14)

for |t − s| small and some δ > 0, or, in the stationary case

C(t) = C(0) + tΛt′ + o
(|t|2+δ

)
, (2.5.15)

for t in the neighborhood of the origin. The matrices Λt and Λ are N × N
and positive definite.
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2.5.3 Differentiability

Since we shall also be requiring that our random functions are a.s. C2, a few
words on this condition are also in order. Firstly, unlike continuity, which
requires nothing of the parameter space M other than it have a topology (so
one can talk about continuity) differentiability requires that M itself has a
differentiable structure. For the moment, we limit ourselves to R

N with its
usual structure.

It then turns out that, at least in the Gaussian scenario, differentiability
can be handled within the framework of continuity since derivatives, if they
exist, must still be Gaussian. Since this is an important observation, that has
been missed by many authors in the past, we shall deviate from the policy of
this section and actually give details of how to do things.

To start, we need to define L2 derivatives. Choose a point t ∈ R
N and a

sequence of k ‘directions’ t′1, . . . , t
′
k in R

N , and write these as t′ = (t′1, . . . , t
′
k).

We say that f has a k-th order L2 partial derivative at t, in the direction t′,
if the limit

Dk
L2f(t, t′) Δ= lim

h1,...,hk→0

1
∏k

i=1 hi

Δkf (t, t′, h) (2.5.16)

exists in mean square, where h = (h1, . . . , hk). Here Δkf(t, t′, h) is the
symmetrized difference

Δkf(t, t′, h) =
∑

s∈{0,1}k

(−1)k−∑ k
i=1 si f

(
t +

k∑

i=1

sihit
′
i

)

and the limit in (2.5.16) is interpreted sequentially, i.e. first send h1 to 0,
then h2, etc. Note that if f is Gaussian then so are its L2 derivatives, when
they exist.

By choosing t′ = (ei1 , . . . , eik
), where ei is the vector with i-th element 1

and all others zero, we can talk of the mean square partial derivatives

∂k

∂ti1 . . . ∂tik

f(t) Δ= Dk
L2f (t, (ei1 , . . . , eik

)) (2.5.17)

of f of various orders.
Moving now to almost sure differentiability, first endow the space R

N ×
⊗k

R
N with the norm

‖(s, s′)‖N,k
Δ= |s| + ‖s′‖⊗kRN = |s| +

( k∑

i=1

|s′i|2
)1/2

,
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and write BN,k(y, h) for the ball centered at y = (t, t′) and of radius h in the
metric induced by ‖ · ‖N,k. Furthermore, write

Mk,ρ
Δ= M × {t′ : ‖t′‖⊗kRN ∈ (1 − ρ, 1 + ρ)}

for the product of M with the ρ-tube around the unit sphere in ⊗k
R

N . This
is enough to allow us to formulate

Theorem 2.5.1. Suppose f is a centered Gaussian random field on an open
M ∈ R

N , possessing k-th order partial derivatives in the L2 sense in all
directions everywhere inside M . Suppose, furthermore, that there exists 0 <
K < ∞, and ρ, δ, h0 > 0 such that for 0 < η1, η2, h < h0,

E

{[
η−k
1 Δkf(t, t′, η11) − η−k

2 Δkf(s, s′, η21)
]2

}
(2.5.18)

< K
∣
∣ ln

(‖(t, t′) − (s, s′)‖N,k + |η1 − η2|
)∣
∣−(1+δ)

,

for all

((t, t′), (s, s′)) ∈ Mk,ρ × Mk,ρ : (s, s′) ∈ BN,k((t, t′), h),

where ηj1 denotes the k-vector all of whose elements are ηj . Then, with
probability one, f is k times continuously differentiable.

Proof. Recalling that we have assumed the existence of L2 derivatives, we
can define the Gaussian field

f̂(t, t′, η) =

{
Δkf(t, ηt′) η �= 0,

Dk
L2f(t, t′) η = 0,

where Dk
L2f is the mean square derivative (2.5.16). This process is defined

on the parameter space M̂
Δ= Mk,ρ × (−h, h), an open subset of the finite

dimensional vector space R
N ×⊗k

R
N × R, with norm

‖(t, t′, η)‖N,k,1 = ‖(t, t′)‖N,k + |η|.

Whether or not f is k times differentiable on M is clearly the same issue as
whether or not f̂ is continuous in M̂ , with the issue of the continuity of f̂
really being only on the hyperplane where η = 0. But this puts us back into
the setting of the previous subsection, and it is easy to check that condition
(2.5.14) there translates to (2.5.18) in the current scenario. ��

As for continuity, it is rare in practice to get close to the upper bound in
(2.5.18), and this condition will easily be satisfied if, in analogy to (2.5.14)
and (2.5.15), the covariance function has a Taylor series expansion of up to
order 2k with a remainder of o(|h|2k+η) for some η > 0.
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2.6 Stationarity, Isotropy, and Constant Variance

Although we have already met both stationarity and isotropy more than once,
the time has now come to define them properly and list some of their basic
properties.

We start by noting that a random field on a general parameter space M is
called (second order) stationary, or homogeneous, if it has constant means
and the covariance function C(s, t) is a function of the difference s − t only.
With some abuse of notation, we shall write C(s, t) = C(s − t).

Of course, if M is general, there is no reason why s, t ∈ M implies that s−t
is also in M , and so it is necessary to assume that M has a group structure.
In these notes, when discussing stationarity, we shall be concerned only with
the cases M = R

N or M = Sλ(RN ). Note that for Gaussian processes this
definition of stationarity also implies what is known as strong stationarity,
which is that the finite dimensional distributions of the field are invariant
under translations.

A stationary field is called isotropic if the covariance function is direction
independent, in the sense that C(t) = C(|t|).

We now restrict attention to random fields on R
N . There are two basic

results in the theory of stationary processes. One is known as the spectral
distribution theorem and one as the spectral representation theorem. The first,
which is the only one that we shall need in these notes, is due originally
to Bochner in a non-probabilistic setting. For fields on R

N it states that
if a continuous function C : R

N → R is non-negative definite, and so the
covariance function of a stationary random field, if and only if there exists a
finite measure ν on the Borel σ-field B

N of R
N such that

C(t) =
∫

RN

ei〈t,λ〉 ν(dλ), (2.6.1)

for all t ∈ R
N .

The measure ν is called the spectral measure and, since C is real, must
be symmetric, in the sense that ν(A) = ν(−A) for all A ∈ B

N . Similarly,
if C is isotropic then ν must be spherically symmetric, in the sense that
ν(A) = ν(ΘA) for all A ∈ B

N and any rotation Θ.

2.6.1 Spectral Moments and Derivatives
of Random Fields

Given the spectral representation (2.6.1) we define the spectral moments

λi1...iN

Δ=
∫

RN

λi1
1 · · ·λiN

N ν(dλ), (2.6.2)
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for all (i1, . . . , iN ) with ij ≥ 0. Note that, since ν is symmetric, the odd
ordered spectral moments, when they exist, are zero; i.e.

λi1...iN = 0, if
N∑

j=1

ij is odd. (2.6.3)

Spectral moments turn out to be closely related to the variances and
covariances of derivatives of random fields.

Recalling the notion of mean square partial derivatives from (2.5.17) it is a
straightforward exercise to check that, in general, their covariance functions
are be given by

E

{
∂kf(s)

∂si1∂si1 . . . ∂sik

∂kf(t)
∂ti1∂ti1 . . . ∂tik

}

=
∂2kC(s, t)

∂si1∂ti1 . . . ∂sik
∂tik

. (2.6.4)

When f is stationary, the corresponding variances and covariances also
have a nice representation in terms of spectral moments. For example, if f
has mean square partial derivatives of orders α + β and γ + δ for α, β, γ, δ ∈
{0, 1, 2, . . .}, then

E

{
∂α+βf(t)
∂αti∂βtj

∂γ+δf(t)
∂γtk∂δtl

}

= (−1)α+β ∂α+β+γ+δ

∂αti∂βtj∂γtk∂δtl
C(t)

∣
∣
∣
t=0

(2.6.5)

= (−1)α+β iα+β+γ+δ

∫

RN

λα
i λβ

j λγ
kλδ

l ν(dλ).

Note that although this equation seems to have some asymmetries in the
powers, these disappear due to the fact that all odd ordered spectral moments,
like all odd ordered derivatives of C, are identically zero.

Here are some important special cases of the above, for which we adopt
the shorthand fj = ∂f/∂tj and fij = ∂2f/∂ti∂tj along with a corresponding
shorthand for the partial derivatives of C.

(a) fj has covariance function −Cjj and thus variance λ2ej = −Cjj(0), where
ej is the vector with a 1 in the j-th position and zero elsewhere.

(b) In view of (2.6.3), and taking α = γ = δ = 0, β = 1 in (2.6.5)

f(t) and fj(t) are uncorrelated, (2.6.6)

for all j and all t. If f is Gaussian, this is equivalent to independence. Note
that (2.6.6) does not imply that f and fj are uncorrelated as processes.
In general, for s �= t, we will have that E{f(s)fj(t)} = −Cj(s − t) �= 0.

(c) Taking α = γ = δ = 1, β = 0 in (2.6.5) gives that

fi(t) and fkl(t) are uncorrelated (2.6.7)
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for all i, k, l and all t. Again, if f is Gaussian, this is equivalent to
independence.

Under the additional condition of isotropy, with its implication of spherical
symmetry for the spectral measure, the structure of the spectral moments
simplifies significantly, as do the correlations between various derivatives of f .
In particular, it follows immediately from (2.6.5) that

E {fi(t)fj(t)} = −E {f(t)fij(t)} = λ2δij (2.6.8)

where δij is the Kronecker delta and λ2 is the second spectral moment

λ2
Δ=

∫

RN

λ2
i ν(dλ), (2.6.9)

which, because of isotropy, is independent of the value of i. Consequently, if
f is Gaussian, then the first order derivatives of f are independent of one
another, in addition to being independent of f itself.

Finally, we note that a similar argument shows that even if f is neither
stationary nor isotropic, but does have constant variance, then it is still true
that f and its first order derivatives are uncorrelated.

2.6.2 Local Isotropy and the Induced Metric

Of all the relationships between spectral moments in the previous subsection,
the most important is probably (2.6.8), which describes the lack of correlation
between first order derivatives of random fields under isotropy. It turns out
that, in the case of Gaussian fields, this makes many computations that are,
a priori, quite forbidding actually quite easy. Thus it is not surprising that
the theory of Gaussian fields began with the isotropic case.

It is not in general possible to transform non-isotropic fields to isotropic
ones, but there are a number of ways to ensure that first order derivatives are
uncorrelated. This property is important enough that we shall give it a name,
defining random fields with constant mean and variance, and uncorrelated
first order derivatives, to be locally isotropic.

It turns out that it is easy to transform non-isotropic but stationary ran-
dom fields f on R

N to locally isotropic ones. If Λ is the N × N matrix of
second spectral moments λij , then it is trivial to check that the field defined
by f̃(t) = f(Λ−1/2t) is locally isotropic. (cf. (2.5.14).)

In the non-stationary case there is no such simple transformation available.
However, there is a trick, based on Riemannian geometry, that allows one to
change the Riemannian structure of the parameter space by introducing a
Riemannian metric related to the covariance function that makes all first
order Riemannian derivatives uncorrelated. It was this trick that, in many
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ways, was one of the most important themes of RFG, and is what allows one
to move from a theory of stationary random fields on subsets of R

N to non-
stationary fields on stratified manifolds. We shall see how this works later, in
Sect. 4.5 when we introduce this special (induced) metric at (4.5.1).

2.7 Three Gaussian Facts

We close this chapter with three facts about multivariate Gaussian random
variables that we shall need later. All are well known and easy to check, and
we include them now only so that they will be easy to refer back to later.

It follows from the form (2.0.1) of the multivariate Gaussian density that
if X ∼ Nd(m, C) then its characteristic function is given by

φ(θ) = E{ei〈θ,X〉} = ei〈θ,m〉−θCθ′/2, (2.7.1)

where θ ∈ R
d. From this follows the fact that, if A is a d × d matrix, then

XA ∼ N(mA, A′CA). (2.7.2)

Next, if n < d, make the partitions

X =
(
X1, X2

)
= ((X1, . . . , Xn), (Xn+1, . . . Xd)) ,

m =
(
m1, m2

)
= ((m1, . . . , mn), (mn+1, . . .md)),

C =
(

C11 C12

C21 C22

)

,

where C11 is an n×n matrix. Then each X i is N(mi, Cii) and the conditional
distribution of X i given Xj is also Gaussian, with mean vector

mi|j = mi + (Xj − mj)C−1
jj Cji (2.7.3)

and covariance matrix

Ci|j = Cii − CijC
−1
jj Cji. (2.7.4)

Finally, we quote a fundamental moment result known as Wick’s for-
mula. This states that if X = (X1, X2, . . . , Xd) ∼ N(0, C) then, for any
non-negative integer m,
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E {X1X2 · · ·X2m+1} = 0, (2.7.5)

E {X1X2 · · ·X2m} =
∑

E{Xi1Xi2} · · ·E{Xi2m−1Xi2m}
=

∑
C(i1, i2) · · ·C(i2m−1, i2m), (2.7.6)

where the sum is taken over the (2m)! /m! 2m different ways of group-
ing X1, . . . , X2m into m pairs. Wick’s formula can be proven by successive
differentiation of the characteristic function (2.7.1).
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