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Introduction

In this introductory chapter we describe the models of one- and two-phase
flow problems that we consider, namely:

1) Navier-Stokes equations for one-phase flow (NS1),
2) Navier-Stokes equations for two-phase flow (NS2),
3) NS2 combined with transport of a dissolved species (NS2+T),
4) NS2 combined with transport of a surfactant on the interface (NS2+S).

These models are presented in Sect. 1.1 and consist of systems of coupled
partial differential equations. To obtain a well-posed problem one has to add
appropriate initial- and boundary conditions. This topic is briefly addressed in
Sect. 1.2. An illustration of the type of two-phase flows that we are interested
in is given in Sect. 1.3, where we present results of some numerical simulations.
In Sect. 1.4 we give a schematic overview of the numerical methods that will
be treated.

1.1 One- and two-phase flow models in strong
formulation

In this section we give the partial differential equations corresponding to the
models 1)-4). For ease of presentation these partial differential equations are
given in the strong formulation. The numerical methods, in particular the
finite element methods for spatial discretization, are based on the weak for-
mulation of these partial differential equations. These weak formulations are
given further on. In Sect. 1.2 we address the issue of initial and boundary
conditions used in our models.

We always assume that the physical domain Ω ⊂ R
3 is an open bounded

domain. This domain will also be the computational domain. We consider the
flow problems for a fixed time interval denoted by [0, T ].
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1.1.1 Navier-Stokes equations for one-phase flow

We derive the Navier-Stokes equations for modeling a laminar fluid flow. We
assume the fluid to be incompressible, viscous, Newtonian and pure (i. e., no
mixture of different components). Moreover we assume isothermal conditions
and therefore neglect variations of density and dynamic viscosity due to tem-
perature changes. Hence, dynamic viscosity and, due to incompressibility, also
the density are constant (and positive).

The Eulerian coordinates of a point in Ω are denoted by x = (x1, x2, x3).
We take a fixed t0 ∈ (0, T ) and consider a time interval (t0 − δ, t0 + δ), with
δ > 0 sufficiently small such that for t ∈ (t0−δ, t0+δ) the quantities introduced
below are well-defined. Let X denote a particle (also called “material point”)
in Ω at t = t0, with Eulerian coordinates ξ ∈ R

3. Let Xξ(t) denote the
Eulerian coordinates of the particle X at time t. The mapping

t → Xξ(t), t ∈ (t0 − δ, t0 + δ),

describes the trajectory of the particle X. The particles are transported by a
velocity field, which is denoted by u = u(x, t) =

(
u1(x, t), u2(x, t), u3(x, t)

)
∈

R
3. Hence

d

dt
Xξ(t) = u(Xξ(t), t). (1.1)

For the given X, the solution of the system of ordinary differential equations

d

dt
Xξ(t) = u

(
Xξ(t), t

)
, t ∈ (t0 − δ, t0 + δ), Xξ(t0) = ξ,

yields the trajectory of the particle X.
Physical processes can be modeled in different coordinate systems. For

flow problems, the two most important ones are (x, t) (“Eulerian”) and (ξ, t)
(“Lagrangian”):

• Euler coordinates (x, t): one takes an arbitrary fixed point x in space and
considers the velocity u(x, t) at x. If time evolves different particles pass
through x.

• Lagrange (or “material”) coordinates (ξ, t): one takes an arbitrary fixed
particle (material point) and considers its motion. If time evolves one thus
follows the trajectory of a fixed particle.

Related to the Lagrangian coordinates we define the so-called material deriva-
tive of a (sufficiently smooth) function f(x, t) on the trajectory of X:

ḟ(Xξ(t), t) :=
d

dt
f(Xξ(t), t).

If f is defined in a neighborhood of the trajectory we obtain from the chain
rule and (1.1):

ḟ =
∂f

∂t
+ u · ∇f. (1.2)
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The derivation of partial differential equations that model the flow problem
is based on conservation laws applied on a (small) subdomain, called a material
volume, W0 ⊂ Ω. We derive these partial differential equations in Eulerian
coordinates. Given W0, define

W (t) := {Xξ(t) : ξ ∈ W0 } .

W (t) describes the position of the particles at time t, which were located in
W0 at time t = t0. We need the following fundamental identity, which holds
for a scalar sufficiently smooth function f = f(x, t):

Reynolds’ transport theorem:

d

dt

∫

W (t)

f(x, t) dx =
∫

W (t)

ḟ(x, t) + f div u(x, t) dx

=
∫

W (t)

∂f

∂t
(x, t) + div(fu)(x, t) dx,

with ḟ :=
∂f

∂t
+ u · ∇f the material derivative.

(1.3)

First we consider the conservation of mass principle. Let ρ(x, t) be the density
of the fluid. If we take f = ρ in (1.3) this yields

0 =
d

dt

∫

W (t)

ρ dx =
∫

W (t)

∂ρ

∂t
+ div(ρu) dx,

which holds in particular for t = t0 and for an arbitrary material volume
W (t0) = W0 in Ω. Since also t0 ∈ (0, T ) is arbitrary, we obtain the partial
differential equation

∂ρ

∂t
+ div(ρu) = 0 in Ω × (0, T ).

Due to the assumption ρ = const this simplifies to

div u = 0 in Ω × (0, T ), (1.4)

which is often called mass conservation equation or continuity equation.
We now consider conservation of momentum. The momentum of mass

contained in W (t) is given by

M(t) =
∫

W (t)

ρu dx.

Due to Newton’s law the change of momentum M(t) is equal to the force
F (t) acting on W (t). This force is decomposed in a volume force F1(t) and a
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boundary force F2(t). We restrict ourselves to the case where the only volume
force acting on the volume W (t) is gravity:

F1(t) =
∫

W (t)

ρg dx,

where g ∈ R
3 is the vector of gravitational acceleration. The boundary force

F2(t) is used to describe internal forces, i.e., forces that a fluid exerts on itself.
These include pressure and the viscous drag that a fluid element W (t) gets
from the adjacent fluid. These internal forces are contact forces: they act on
the boundary ∂W (t) of the fluid element W (t). Let �t denote this internal force
vector, also called traction vector. Then we have

F2(t) =
∫

∂W (t)

�t ds.

Cauchy derived fundamental principles of continuum mechanics and in par-
ticular he derived the following law (often called Cauchy’s theorem):

�t is a linear function of n,

where n = n(x, t) ∈ R
3 is the outer unit normal on ∂W (t). For more expla-

nation on this we refer to introductions to continuum mechanics, for exam-
ple [130]. Thus it follows that there is a matrix σ = σ(x, t) ∈ R

3×3, called the
stress tensor, such that the boundary force can be represented as

F2(t) =
∫

∂W (t)

σn ds. (1.5)

Using these force representations in Newton’s law and applying Stokes’ theo-
rem for F2(t) we get

d

dt
M(t) = F1(t) + F2(t) (1.6)

=
∫

W (t)

ρg + div σ dx.

For a matrix A(x) ∈ R
3, x ∈ R

3, its divergence is defined by

div A(x) =

⎛

⎝
div(a11 a12 a13)
div(a21 a22 a23)
div(a31 a32 a33)

⎞

⎠ ∈ R
3.

Using the transport theorem (1.3) in the left-hand side of (1.6) with f = ρ ui,
i = 1, 2, 3, we obtain

∫

W (t)

∂ρ ui

∂t
+ div(ρ ui u) dx =

∫

W (t)

ρ gi + div σi dx, i = 1, 2, 3,
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with σi the i-th row of σ and gi the i-th component of g. In vector notation,
with u ⊗ u = (uiuj)1≤i,j≤3,

∫

W (t)

∂ρu
∂t

+ div(ρu ⊗ u) dx =
∫

W (t)

ρg + div σ dx, (1.7)

which holds in particular for t = t0 and for an arbitrary material volume
W (t0) = W0 in Ω. Since t0 ∈ (0, T ) is arbitrary, we obtain the partial differ-
ential equations

∂ρu
∂t

+ div(ρu⊗ u) = ρg + div σ in Ω × (0, T ).

Note that div(ρu ⊗ u) = ρ(u · ∇)u + ρu div u and due to the continuity
equation (1.4), the last summand vanishes, yielding the so-called momentum
equation

ρ
∂u
∂t

+ ρ (u · ∇)u = ρg + div σ. (1.8)

For viscous Newtonian fluids one assumes that the stress tensor σ is of the
form

σ = −pI + L(D), (1.9)

where p is the pressure,

D(u) = ∇u + (∇u)T

is the deformation tensor, ∇u :=
(
∇u1 ∇u2 ∇u3

)
, and L is assumed to be a

linear mapping. Based on this structural model for the stress tensor and using
the additional assumptions that the medium is isotropic (i.e. its properties
are the same in all space directions) and the action of the stress tensor is
independent of the specific frame of reference (“invariance under a change in
observer”) it can be shown ([130, 107]) that the stress tensor must have the
form

σ = −pI + λdiv u I + μD(u). (1.10)

Further physical considerations lead to relations for the parameters μ, λ, e.g.,
μ > 0 (for a viscous fluid), λ ≥ − 2

3μ or even λ = − 2
3μ. For the case of an

incompressible fluid, i.e., div u = 0, the relation for the stress tensor simplifies
to

σ = −pI + μD(u), (1.11)

with μ > 0 the dynamic viscosity. Hence, we obtain the fundamental Navier-
Stokes equations for incompressible flow:

ρ
(∂u

∂t
+ (u · ∇)u

)
= −∇p + div(μD(u)) + ρg in Ω

div u = 0 in Ω.
(1.12)



6 1 Introduction

These equations are considered for t ∈ [0, T ]. Initial and boundary conditions
corresponding to these Navier-Stokes equations are discussed in Sect. 1.2.

Remark 1.1.1 Using the assumption that μ is a strictly positive constant
and the relation divu = 0 we get

div(μD(u)) = μΔu = μ

⎛

⎝
Δu1

Δu2

Δu3

⎞

⎠ .

1.1.2 Navier-Stokes equations for two-phase flow

We now consider two-phase flows, i. e., Ω contains two different immiscible
incompressible phases (liquid-liquid or liquid-gas) which may move in time
and have different material properties ρi and μi, i = 1, 2. For each point
in time, t ∈ [0, T ], Ω is partitioned into two open subdomains Ω1(t) and
Ω2(t), Ω = Ω1(t) ∪ Ω2(t), Ω1(t) ∩ Ω2(t) = ∅, each of them containing one of
the phases, respectively. These phases are separated from each other by the
interface Γ (t) = Ω1(t) ∩ Ω2(t), cf. Fig. 1.1. As mentioned before, we assume
isothermal conditions and both phases to be pure substances. Furthermore,
we do not consider reaction, mass transfer or phase transition.

Ω1

Ω2

Γ

Fig. 1.1. 2D illustration of a domain Ω consisting of two phases Ω1 and Ω2 and
interface Γ .

In each of the phases conservation of mass and momentum has to hold,
yielding separate Navier-Stokes equations in the two domains Ωi, i = 1, 2:

⎧
⎨

⎩
ρi(

∂u
∂t

+ (u · ∇)u) = div σi + ρig

div u = 0
in Ωi, i = 1, 2, (1.13)
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with σi = −pI + μi

(
∇u + (∇u)T

)
. We now derive coupling conditions at the

interface. As the phases are viscous and no phase transition takes place, the
velocity can be assumed to be continuous at the interface:

[u] = 0 on Γ. (1.14)

Here for x ∈ Γ and a function f defined in a neighborhood of Γ we define the
jump across Γ by

[f ](x) = [f ]Γ (x) := lim
h↓0

(
f
(
x − hnΓ (x)

)
− f

(
x + hnΓ (x)

))
, (1.15)

where nΓ (x) denotes the unit normal on Γ at x, pointing from Ω1 to Ω2.

Remark 1.1.2 In the definition of the jump across the interface in (1.15)
the normal is pointing from Ω1 into Ω2 and the jump is defined as the value
close to the interface in Ω1 minus the value close to the interface in Ω2. In the
literature sometimes the other sign convention (value in Ω2 minus value in Ω1)
is used, leading to another sign in the interface condition (1.19) derived below.
We choose this sign convention, since it is consistent with the standard form
of the classical Laplace-Young pressure jump relation [p]Γ = τκn, discussed
in Remark 1.1.5.

Consider a fluid volume W = W1∪W2 as illustrated in Fig. 1.2 which contains
a part γ of the interface Γ .

Γ

γ

W1

W2

x

Fig. 1.2. 2D illustration of a neighborhood W = W1 ∪ W2 for an interface point
x ∈ Γ .

At the interface acts a surface tension force which is due to the fact that
on both sides of Γ there are different molecules that have different attractive
forces. The surface tension force acting on the interface segment γ can be
modeled by (cf. [225, 47, 219] and Sect. 1.1.5)

F3(t) = −τ

∫

γ(t)

κnΓ ds. (1.16)

The parameter τ is the surface tension coefficient, which is a material property
of the two-phase system. To simplify the presentation we assume τ to be
constant. For many two-phase systems this is a reasonable assumption. The
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case of a variable surface tension coefficient τ is discussed in Remark 1.1.3.
The scalar function κ(x), x ∈ Γ , is the mean curvature, cf. Chap. 14, for which

κ(x) = div nΓ (x), x ∈ Γ,

holds. Note that if at x ∈ Γ the subdomain Ω1 is locally convex, then κ
is positive. This additional force term F3(t) has to be taken into account
if we consider conservation of momentum, cf. Sect. 1.1.1. For a fluid volume
W = W1 ∪ W2 as in Fig. 1.2, instead of (1.5), (1.6) we now have

d

dt
M(t) = F1(t) + F2(t) + F3(t) (1.17)

=
∫

W (t)

ρg dx +
∫

∂W (t)

σn ds − τ

∫

γ(t)

κnΓ ds.

Since the stress tensor σ is not necessarily smooth across Γ we split ∂W into
∂W1 and ∂W2

∫

∂W (t)

σn ds =
∫

∂W1(t)

σ1n1 ds +
∫

∂W2(t)

σ2n2 ds −
∫

γ(t)

[σ]nΓ ds,

and apply the Stokes’ theorem on W1 and W2 separately. Note that ni is the
outward normal on ∂Wi and nΓ the normal at Γ , pointing from Ω1 in Ω2.
Thus we obtain, cf. (1.7),
∫

W (t)

ρ
(∂u

∂t
+ (u · ∇) · u

)
dx =

∫

W1(t)

div σ1 dx +
∫

W2(t)

div σ2 dx

+
∫

W (t)

ρg dx −
∫

γ(t)

[σ]nΓ ds − τ

∫

γ(t)

κnΓ ds.

This yields,

∑

i=1,2

∫

Wi(t)

ρi

(∂u
∂t

+ (u · ∇) · u
)
− div σi − ρi g dx = −

∫

γ(t)

τκnΓ + [σ]nΓ ds.

Due to momentum conservation in Wi, i = 1, 2, the left-hand side equals zero,
cf. (1.13). Since W (t) can be varied we thus obtain the coupling condition:

[σnΓ ] = [σ]nΓ = −τκnΓ on Γ. (1.18)

Finally, in view of the immiscibility assumption we introduce the normal ve-
locity VΓ = VΓ (x, t) ∈ R, which denotes the size of the velocity of the interface
Γ at x ∈ Γ (t) in normal direction, i.e., the movement of Γ in normal direction
is given by VΓ n. The immiscibility assumption is modeled by the condition
that the normal velocity of the interface should equal the normal component
of the flow field at the interface, i.e. VΓ = u · nΓ at the interface. Summariz-
ing, the latter condition, the equations in (1.13) and the coupling conditions
in (1.14) and (1.18) lead to the following standard model for two-phase flows:
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⎧
⎨

⎩
ρi(

∂u
∂t

+ (u · ∇)u) = div σi + ρig

div u = 0
in Ωi, i = 1, 2, (1.19)

[σnΓ ] = −τκnΓ , [u] = 0 on Γ, (1.20)
VΓ = u · nΓ on Γ. (1.21)

We recall the Newtonian stress tensor model: σi = −pI + μi

(
∇u + (∇u)T

)
.

The density and viscosity, ρi and μi, i = 1, 2, are assumed to be constant in
each phase.

Remark 1.1.3 In certain cases, for example in systems with significant sur-
factants (“surface active agents”) one has to take a variable surface tension
coefficient τ into account, cf. Sect. 1.1.5. In that case the surface tension force
in (1.16) has to be replaced by its generalization

F3(t) = −
∫

γ

τκnΓ −∇Γ τ ds, (1.22)

where ∇Γ = P∇, with P = I − nΓ nT
Γ , is the tangential derivative. The

interface condition in (1.18) then generalizes to

[σnΓ ] = −τκnΓ + ∇Γ τ. (1.23)

In the remainder we often write n instead of nΓ .

1.1.3 Two-phase flow with transport of a dissolved species

We consider a two-phase flow problem as described above. We assume that
one or both phases contain a dissolved species that is transported due to
convection and molecular diffusion and does not adhere to the interface. The
concentration of this species is denoted by c(x, t). This flow problem can be
modeled by the equations (1.19)-(1.21) for the flow variables and a convection-
diffusion equation for the concentration c. At the interface we need interface
conditions for c. The first interface condition comes from mass conservation,
which implies flux continuity. The second condition results from a constitutive
equation known as Henry’s law, which states that the solubility of a gas in
a liquid at a particular temperature is proportional to the pressure of that
gas above the liquid. In mathematical terms this relation (at constant tem-
perature) can be formulated as p = kH c where p is the partial pressure of the
solute in the gas above the solution, c is the concentration of the solute and
kH is known as the Henry’s law constant and depends on the solute, the sol-
vent and the temperature. The same solute in different solvents (at the same
temperature) corresponds to different Henry constants, reflecting the different
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solubility properties of the two solvents. From this it can be deduced, that in
a two-phase system with a solute, assuming instantaneous local equilibrium
at the interface, there is a constant ratio between the concentrations of the so-
lute on the two sides of the interface. Thus one obtains the following standard
model:

Two-phase flow model (1.19)− (1.21) combined with:
∂c

∂t
+ u · ∇c = div(Di∇c) in Ωi, i = 1, 2, (1.24)

[Di∇c · n]Γ = 0 on Γ,

c1 = CHc2 on Γ.

The diffusion coefficient Di is piecewise constant. In the interface condition we
use the notation ci for c|Ωi

restricted to the interface. The constant CH > 0 is
given (Henry’s constant). The Henry interface condition can also be written
as [Ĉc] = 0, with Ĉ = 1 in Ω1, Ĉ = CH in Ω2. The model has to be combined
with suitable initial and boundary conditions, cf. Sect. 1.2. In the formulation
in (1.24) there is a coupling between fluid dynamics and mass transport only
in one direction, in the sense that the velocity is used in the mass transport
equation, but the concentration c does not influence the fluid dynamics. In
certain systems it may be appropriate to consider a dependence of the surface
tension coefficient on c, i.e. τ = τ(c). In that case there is a coupling in two
directions between fluid dynamics and mass transport.

1.1.4 Two-phase flow with transport of a surfactant on the
interface

We consider a two-phase flow problem as described above in Sect. 1.1.2. We
assume that there is a species (called tenside or surfactant) which adheres to
the interface and is transported at the interface due to convection (movement
of the interface) and due to diffusion (molecular diffusion on the interface). For
simplicity we assume that there are no adsorption and desorption effects (i.e.
no sources or sinks). The concentration of this surfactant is denoted by S(x, t),
x ∈ Γ (t). A partial differential equation for this quantity can be derived from
the conservation of mass principle (on subsets γ(t) of the moving interface
Γ (t)). For t0 ∈ (0, T ), let γ0 be a connected bounded subset of Γ (t0) and
γ(t) = {Xξ(t) : ξ ∈ γ0 } ⊂ Γ (t), t ∈ (t0 − δ, t0 + δ), with δ > 0 sufficiently
small. The conservation of mass property yields

d

dt

∫

γ(t)

S ds = −
∫

∂γ(t)

q · n ds̃,

with n the unit normal to ∂γ(t) lying in a tangent plane and pointing out of
γ(t).
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Γ

γ

n

Fig. 1.3. Interface Γ and subset γ ⊂ Γ , with vector n which is normal to ∂γ and
tangential to Γ .

We restrict to the case of a diffusive flux q := −DΓ∇Γ S. Recall that the
tangential derivative is defined by ∇Γ := P∇ with P = I − nnT . Note that
the normal n = nΓ differs from the normal n. Using integration by parts on
the manifold γ(t) we obtain

∫

∂γ(t)

q · n ds̃ =
∫

γ(t)

divΓ q ds.

A variant of the transport theorem in (1.3), cf. (14.21b) and Remark 14.2.3,
yields

d

dt

∫

γ(t)

S ds =
∫

γ(t)

Ṡ + S divΓ u ds

and thus we obtain
∫

γ(t)

Ṡ + S divΓu + divΓ q ds = 0,

which holds in particular for γ(t0) = γ0 arbitrary. Hence we obtain the fol-
lowing model for transport of surfactants:

Two-phase flow model (1.19)− (1.21) combined with:

Ṡ + S divΓu = divΓ (DΓ∇Γ S) on Γ. (1.25)

If the diffusion coefficient DΓ is constant on Γ we can reformulate the diffu-
sion part as divΓ (DΓ∇Γ S) = DΓ ΔΓ S. Using the definition of the material
derivative the convection-diffusion equation in (1.25) can be written as

∂S

∂t
+ u · ∇S + S divΓ u = DΓ ΔΓ S on Γ.

In this formulation, for the partial derivatives ∂
∂t and u ·∇ to be well-defined,

one assumes that S is smoothly extended in a small neighborhood of Γ . For
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this surfactant transport equation no boundary conditions are needed if the
interface Γ is a surface without boundary. In case of a stationary interface,
i.e. u · n = 0 on Γ , we have Pu = u and thus u · ∇S + S divΓ u = u · ∇Γ S +
S divΓu = divΓ (uS). Hence, we obtain the (simplified) diffusion equation
∂S
∂t + divΓ (uS) − DΓ ΔΓ S = 0.

In the formulation in (1.25) there is a coupling between fluid dynamics
and surfactant transport only in one direction, in the sense that the velocity
is used in the surfactant transport equation, but the surfactant concentration
S does not influence the fluid dynamics. In many systems with surfactants,
there is a dependence of the surface tension coefficient on S, i.e. τ = τ(S).
In that case there is a coupling in two directions between fluid dynamics and
surfactant transport.

1.1.5 Modeling of interfacial phenomena

The notion of interfacial transport phenomena usually refers to mass, mo-
mentum and energy transfer within a neighborhood of an interface, including
the thermodynamics of the interface. Physico-chemical interfacial phenomena
play a crucial role in high-tech applications like, for example, lab-on-a-chip
systems, multiphase reactors in chemical engineering and micro process engi-
neering. We refer to the (chemical) engineering literature for a treatment of
these topics, e.g. [40], in which particle-stabilized foams and emulsions and
new materials derived from such systems are studied. The understanding of
most of these interfacial phenomena is still very poor. In particular there is a
strong lack of (validated) mathematical models that describe interfacial pro-
cesses appropriately. Research on modeling of interfacial transport phenomena
is a very active and rapidly growing field. We do not treat modeling aspects
in this monograph. In this section we only give a very brief introduction into
basics related to the modeling of interfacial processes in two-phase incom-
pressible immiscible flows. An extensive treatment of this topic and many
references are given in [225].

Dividing surface and clean interface

There are continuum models in which an interface is represented as a three-
dimensional region of very small thickness. One of the first models of this type
was introduced by Korteweg [158]. The so-called phase field (or diffusive inter-
face) models, treated in Sect. 6.2.4, belong to this class. More often models are
used in which the interface is modeled by a (non-physical) two-dimensional
dividing surface. This approach was first proposed by Gibbs. In such a sharp
interface model for incompressible flows it is assumed that the dividing sur-
face separates two homogeneous phases which both have a constant density.
The effect of the interfacial region is taken into account by introducing so-
called excess quantities (e.g., mass and energy) which are assigned to the
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dividing surface. We explain this by considering the excess mass density, de-
noted by ρΓ . For a given time t let W (t) be a material volume, illustrated in
Fig. 1.4, which contains two phases and an interfacial region of finite thickness.
This interfacial region, denoted by RI , is bounded by the surfaces Γ1 and Γ2

and is such that outside of RI we have homogeneous phases, i.e., in the two
subvolumes W (t) \RI , denoted by Ri, we have constant densities ρi, i = 1, 2.
We choose a dividing surface Γ and assume the three surfaces to be parallel.
The dividing surface is assumed to be transported with the flow velocity field
u(x, t), x ∈ Γ = Γ (t). In the interfacial region RI we have a mixture of the
two phases. The density of this mixture (total mass per volume) is denoted
by ρI . Note that in general this density is not constant in RI . This density
function can be naturally extended outside RI by ρI = ρi in Ri, i = 1, 2.

Γ1

Γ2

Γ

γ
RI

R2

R1

γ

RI

n

n

Γ

Ω1

Ω2

Fig. 1.4. Illustration of cylinder RI in 2D (left) and 3D (right).

The mass conservation property is modeled by

d

dt

∫

W (t)

ρI dx = 0. (1.26)

Let ρ be the piecewise constant function with constant values ρ1, ρ2 in the two
subvolumes of W (t) separated by the dividing surface Γ , which are denoted
by Wi(t), i = 1, 2. From (1.26) we obtain

d

dt

(∫

W (t)

ρ dx +
∫

RI

(ρI − ρ) dx
)

= 0. (1.27)

For a sharp interface model, with a dividing surface Γ and a piecewise constant
density ρ, to be a good approximation of the model with an interfacial region
and density ρI , we introduce a surface mass density ρΓ . Mass conservation in
the sharp interface model then takes the form

d

dt

(∫

W (t)

ρ dx +
∫

γ(t)

ρΓ ds
)

= 0, (1.28)
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with γ(t) := Γ ∩ W (t) the part of the dividing surface contained in W (t).
Comparing (1.27) with (1.28) we see that we obtain the following relation
between ρΓ and ρI − ρ:

∫

γ(t)

ρΓ ds =
∫

RI

(ρI − ρ) dx. (1.29)

To elaborate this further we assume that the shape of the material volume
is such that the line segment ∂RI ∩ ∂W (t) in Fig. 1.4 (a manifold in the 3D
case) is orthogonal to Γ . Then we have (for the 3D case)

∫

RI

(ρI − ρ) dx =
∫

γ(t)

∫ λ+

λ−
(ρI − ρ)(1 − κ1λ)(1 − κ2λ) dλ ds,

where λ is the signed distance to the dividing surface Γ . The thickness λ+−λ−
of the local region RI can be assumed to be very small, and therefore it is
reasonable to assume |κiλ| � 1 for λ ∈ [λ−, λ+]. This reasoning suggests that
we may identify

ρΓ =
∫ λ+

λ−
(ρI − ρ) dλ, (1.30)

which shows that the surface mass density ρΓ can be interpreted as an excess
quantity. Note that ρΓ in (1.30) is not necessarily constant or positive on Γ .
In the sharp interface model there still is some freedom with respect to the
choice of the location of the dividing surface. Different choices imply different
excess quantities ρΓ . The most popular choice is as follows. For t = 0 it is
assumed that Γ can be taken such that

∫ λ+

λ−
(ρI−ρ) dλ = 0, hence ρΓ (x, 0) = 0

for x ∈ Γ (0). For t > 0 the dividing surface is transported by the velocity field
u. From (1.28), Reynolds’ transport theorem, the interface transport formula
(14.21b) and ρ̇ = 0 in Wi(t) we obtain

2∑

i=1

∫

Wi(t)

ρ div u dx +
∫

γ(t)

ρ̇Γ + ρΓ divΓu ds = 0.

The first term vanishes due to the assumption of incompressibility, i.e. div u =
0, in Wi(t). Note that in general div u = 0 in Wi(t) does not imply divΓu = 0.
For the excess mass density ρΓ we thus obtain the equation

ρ̇Γ + ρΓ divΓu = 0 on Γ = Γ (t).

This equation and the initial condition ρΓ (x, 0) = 0 are fulfilled if we take
ρΓ ≡ 0. This derivation motivates the so-called clean interface assumption:
in the sharp interface model the excess mass density corresponding to the
dividing surface is equal to zero. Then the mass conservation equation (1.28)
can be simplified to d

dt

∫
W (t) ρ dx = 0, which is consistent with the continuity

equations div u = 0 in Ωi, which are used in the sharp interface model (1.19).
This clean interface assumption is a standard one in sharp interface models
without tensides.
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Surface tension as a contact force

In (1.16) we introduced surface tension as a force acting in a direction orthog-
onal to the (sharp) interface Γ . This orthogonality property holds only if we
assume that the surface tension coefficient τ is constant, cf. Remark 1.1.3. We
summarize some basic facts related to surface tension and from that derive
the forces given in (1.16) and (1.22).

Surface tension is an excess force resulting from the fact that on both
sides of Γ these are different phases with different molecular forces. Consider
a two-phase system in equilibrium, with an interface Γ . Let γ be a (small)
connected subset of Γ with boundary ∂γ and a normal, denoted by n, which
is orthogonal to ∂γ and tangential to Γ , cf. Fig. 1.3. Surface tension is defined
as a force per unit of length on ∂γ in the direction n.

This surface tension force is given by Fs = τ n, with τ the surface tension
coefficient. Note that τ is the magnitude of the surface tension force. The SI
unit of τ is Newton per meter. From this definition of Fs it follows that the
surface tension force is a contact force within the interface Γ . Note, however,
that this force is not an intrinsic property of Γ but induced by the two phases
on both sides of Γ .

Remark 1.1.4 An equivalent definition of surface tension can be given in
terms of energy. Considering the different molecular forces in the two phases
it follows that the creation of more interface area is energetically costly and
thus the two-phase system will try to (locally) minimize interface area. The
amount of work needed to (locally) increase an interface area by an amount δA
is given by τ δA, with the same surface tension coefficient τ as in the definition
used above. In this characterization the surface tension coefficient measures
energy per unit of area and the SI unit is joule per square meter.

Let W be a fluid volume which is intersected by the interface Γ and define
the interface segment γ = W ∩ Γ . Surface tension exerts a contact force Fs

on ∂γ. Using the partial integration rule (14.18) the total contact force Fs on
∂γ can be rewritten as a force on Γ :

∫

∂γ

τn ds̃ = −
∫

γ

τκn ds +
∫

γ

∇Γ τ ds. (1.31)

Thus for the case of a constant surface tension coefficient τ we obtain the
force as in (1.16) and for the general case the one in (1.22).

Remark 1.1.5 Using the surface tension force representation Fs = τn intro-
duced above we derive the classical Laplace-Young law, which for a two-phase
system in equilibrium and with a spherical interface relates the pressure dif-
ference to the mean curvature. We consider a ball with center at the origin
and radius R, the boundary of which is the interface of a two-phase system
at equilibrium. The constant pressures within and outside the ball are given
by p1 and p2, respectively. Note that [p] = p1 − p2 > 0. We use spherical
coordinates:
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(x1, x2, x3) = r
(
sin θ cosφ, sin θ sinφ, cos θ

)
, r ≥ 0, θ ∈ [0, π], φ ∈ [0, 2π).

We consider the upper half of the interface, i.e. the hemisphere given by
S =

{
(r, θ, φ) : r = R, θ ∈ [0, 1

2π], φ ∈ [0, 2π)
}
. There are (only) two forces

exerted on S, namely a pressure difference force acting at each point of S
and a surface tension force on ∂S. The former is in normal direction and
has size [p], the latter has direction (0, 0,−1)T and size τ , cf. Fig. 1.5. The
x3-component of the pressure force is given by cos θ[p]. The resulting total
force in x3 direction must be equal to zero, i.e.

2πRτ = [p]
∫

S

cos θ ds = [p]
∫ 2π

0

∫ 1
2π

0

cos θ sin θR2 dθdφ = [p]πR2

must hold. From this we obtain the Laplace-Young law [p] = 2τ
R = τκ, with

κ = 2
R the mean curvature of the sphere with radius R.

∂S fs

fp

θ

ϕ

Fig. 1.5. Pressure force fp and surface tension foce fs.

Variable surface tension coefficient: Langmuir model

It is generally accepted and experimentally verified that in many two-phase
systems a surfactant changes the properties of the interface and through this
can have a significant impact on the fluid dynamics of the system. One very
important effect is that a surfactant can cause a change of the surface tension
forces. In a system with a clean interface the surface tension coefficient τ is
usually assumed to be constant, whereas in a system with surfactants the
surface tension coefficient is often considered to be dependent on the local
concentration of the surfactant, i.e, τ = τ(S). A relatively simple and very
popular model for τ(S) is due to Langmuir (also called Langmuir-Szyszkowski
model in the literature). We briefly address the main ideas underlying this
model. Consider a system consisting of one bulk phase and its surface Γ . In
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the bulk phase a component is dissolved which is adsorbed at the surface.
We assume that there is no fluid dynamics and that at a given surface point
x ∈ Γ the surface surfactant concentration is locally constant. This surface
concentration is denoted by S(t) = S(x, t). Also the bulk concentration of
the dissolved component is assumed to be locally constant, and is denoted by
Sb(t) = Sb(x, t). There is a maximal surface coverage denoted by S∞. A very
simple model for describing the ad- and desorption is given by

dS

dt
= kadSb(t)

(
1 − S(t)

S∞

)
− kdes

S(t)
S∞

,

with positive constants kad, kdes. In equilibrium we have dS
dt = 0. Let Se =

limt→∞ Sb(t) be the equilibrium local bulk concentration. For the equilibrium
local surface concentration, denoted by S, we obtain S = kad

kdes
Se(S∞−S) and

thus
S = S∞

Se

kq + Se
, with kq :=

kdes

kad
. (1.32)

Hence we have a simple relation between the equilibrium states S (on Γ )
and Se (in the bulk phase). A relation between S, Se and the surface tension
energy τ is obtained from the Gibbs adsorption equation (or Gibbs isotherm),
which is often used to relate the changes in concentration of a component in
contact with a surface with changes in the surface tension. For S 
 Se, which
is the case for most surfactants, and assuming a constant temperature T , this
Gibbs adsorption equation is given by

dτ

d ln Se
= −RTS,

with R the gas constant. Using d ln Se = S−1
e dSe and the result in (1.32) we

obtain
dτ

dSe
=

−RTS∞
kq + Se

,

and thus
τ = τ0 − RTS∞ ln(1 + Se/kq).

From (1.32) we get 1 + Se/kq = (1 − S/S∞)−1 and thus we get the following
relation between the surface tension coefficient τ and the surfactant concen-
tration S:

τ = τ0 + RTS∞ ln(1 − S/S∞), (1.33)

which is the Langmuir model. Here τ0 is the constant surface tension coeffi-
cient for the system with a clean interface. Note that τ = τ(S) is a decreasing
function of S, i.e., surface tension decreases if the concentration of the sur-
factant increases. In a realistic two-phase flow system with surfactant the
concentration S will not be constant on the interface and based on this model
one obtains a varying surface tension coefficient with a relatively small value



18 1 Introduction

in those parts of the interface where the surfactant concentration is relatively
high.

Other models for τ = τ(S) are derived in the literature, e.g. the Frumkin
isotherm τ(S) = τ0+RTS∞

(
ln(1−S/S∞)−K

(
S

S∞

)2
)
, where K is a measure

for the interactions among the adsorbed surfactant particles with K < 0
(K > 0) if there are significant cohesive (repulsive) forces.

Surface viscosity: Boussinesq-Scriven model

If surfactants are present which cause a variable surface tension coefficient
τ = τ(S) this results in an effective elasticity of the interface. For certain two-
phase flow systems, e.g. with suspended (nano)particles that reside on the
interface, it is known that significant other effects also occur. Due to new
high-tech applications (e.g., particle-stabilized emulsion, new materials) such
systems with colloidal particles at liquid interfaces have attracted a strongly
growing interest in the past decade. For modeling the rheological properties
of such particle-laden interfaces one often introduces an effective surface vis-
cosity, [168, 170]. The standard mathematical description of this is by means
of the so-called Boussinesq-Scriven model which we now introduce, cf. also
[225, 45, 219]. First we recall that for the bulk fluid, based on the Cauchy stress
principle and assuming the Newtonian stress tensor form σ = −pI+L(D(u)),
with a linear operator L, one can derive the stress tensor representation as in
(1.10), i.e.,

σ = −pI + λdiv u I + μD(u). (1.34)

The Boussinesq-Scriven model starts from the (rheological) assumption that
the interface behaves like a two-dimensional Newtonian fluid. Recall that sur-
face tension can be characterized as a contact force of the form

∫
∂γ τn ds̃,

cf. (1.31). In analogy with the approach for a Newtonian fluid in the bulk
phase, we start from the structural assumption that on each (small) con-
nected surface segment γ ⊂ Γ , cf. Fig. 1.3, there is a contact force on ∂γ of
the form

σΓ n, with σΓ = τP + L(DΓ (u)), DΓ (u) := P
(
∇Γu + (∇Γ u)T

)
P,

with L a linear operator. Recall that P = I−nnT is the orthogonal projection
onto Γ . This projection is used, since σΓ n = σΓPn should represent only
contact forces that are tangential to the surface. Note that for L = 0 this
contact force reduces to the surface tension contact force σΓ n = τPn = τn.
Using the same principles (isotropy, independence of the frame of reference)
as in the derivation of (1.34) it can be shown, cf. [225, 15], that the interface
stress tensor σΓ must have the following form:

σΓ = τP + λ̃Γ divΓ uP + μΓ DΓ (u), (1.35)

with parameters λ̃Γ , μΓ . This is the interface analogon of the bulk stress tensor
representation in (1.34). Note that in general divΓ u �= 0, even if div u = 0
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holds. In case of viscous behavior of the interface one takes μΓ > 0. For certain
cases one can derive conditions on the parameter λ̃Γ , for example λ̃Γ > −μΓ

([225] Sect. 4.9.5). Therefore the interface stress tensor is also written in the
form

σΓ = τP + (λΓ − μΓ ) divΓ uP + μΓDΓ (u), (1.36)

and one often assumes λΓ = λ̃Γ +μΓ > 0. The parameters μΓ and λΓ , which
we assume to be constants, are referred to as the interface shear viscosity
and interface dilatational viscosity, respectively. In the momentum balance
we need the interface force as a force on the interface segment γ. Using the
formula

∫
γ divΓ GP ds =

∫
∂γ Gn ds̃, cf. (14.19), we obtain from (1.36) the

interfacial force

F3 =
∫

∂γ

σΓ n ds̃

=
∫

γ

divΓ

(
τP) + (λΓ − μΓ ) divΓ

(
divΓ uP

)
+ μΓ divΓ

(
DΓ (u)

)
ds.

Using this interface force F3 and following the derivation in Sect. 1.1.2 we
obtain a generalization of the interface condition in (1.20):

[σnΓ ] = divΓ

(
τP) + (λΓ − μΓ ) divΓ

(
divΓ uP

)
+ μΓ divΓ

(
DΓ (u)

)
(1.37)

on Γ . This is the Boussinesq-Scriven model. For λΓ = μΓ = 0 this model
reduces to the one in (1.23) (or (1.20), if τ is constant) since

divΓ (τP) = τ divΓ P + ∇Γ τ = −τκn + ∇Γ τ,

cf. (14.10). The generalized formulation (1.37) is used to model viscous effects
in the interface.

1.2 Initial and boundary conditions

In this section we describe initial and boundary conditions that can be used
in the models 1)-4) to make the problem well-posed.

For the NS1 model one needs suitable initial and boundary conditions only
for the velocity u. The initial condition is u(x, 0) = u0(x) with a given func-
tion u0, which usually comes from the underlying physical problem. For the
boundary conditions we distinguish between essential and natural boundary
conditions. Let ∂Ω be subdivided into two parts ∂Ω = ∂ΩD ∪ ∂ΩN with
∂ΩD ∩ ∂ΩN = ∅. We use essential boundary conditions on ∂ΩD that are
of Dirichlet type. In applications these describe inflow conditions or con-
ditions at walls (e.g., no-slip). Such Dirichlet conditions are of the form
u(x, t) = uD(x, t) for x ∈ ∂ΩD, with a given function uD. If, for exam-
ple, ∂ΩD corresponds to a fixed wall, then a no-slip boundary condition is
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given by u(x, t) = 0 for x ∈ ∂ΩD. On ∂ΩN we prescribe natural boundary
conditions, which are often used to describe outflow conditions. These natural
boundary conditions are of the form

σnΩ = −pextnΩ, on ∂ΩN , (1.38)

with nΩ the outward pointing normal on ∂ΩN and pext a given function
(external pressure). For the case pext = 0 we thus obtain a homogeneous
natural boundary condition.

Similar initial and boundary conditions can be used for the two-phase flow
model NS2. In addition we then need the initial configuration, i.e., Γ (0) must
be given.

In the model NS2+T in (1.24) one needs in addition initial and boundary
conditions for the concentration c. The initial condition is c(x, 0) = c0(x) with
a given initial concentration c0. For the boundary conditions the standard
ones, namely a Dirichlet (i.e., c given on part of ∂Ω) and a Neumann ( ∂c

∂nΩ

given on part of the boundary) condition can be used.
In model NS2+S in (1.25) one has to prescribe an initial concentration

S(x, 0) = S0(x), x ∈ Γ , for the surfactant. If Γ is a surface without boundary
(droplet) no boundary conditions for S are needed.

1.3 Examples of two-phase flow simulations

In this section we give some simulation results for a two-phase system with a
single droplet rising due to buoyancy forces where at the same time transport
of some surface active agent (surfactant) on the interface is taking place.
This application example is meant to give the reader a first impression of
some features of two-phase flow systems and the challenges one is facing when
treating such flows numerically.

Before giving details on this numerical simulation, we briefly address the
importance of two-phase systems in chemical engineering. One example of such
a system is a falling film which is used for cooling by heat transfer from a thin
liquid layer to the gaseous phase (liquid-gas system). Another example is an
extraction column where mass transport takes place between liquid bubbles
and a surrounding liquid (liquid-liquid system). For the design of such bubble
column reactors it is desirable to have a model that gives a detailed description
of the transport phenomena between the bubbles and the surrounding fluid.
Rather than considering the whole column reactor with swarms of bubbles, in
a first step only a single droplet is investigated. Even for this simplified case
the transport mechanisms are not well understood up to now. One interesting
and important phenomenon is the formation of a so-called stagnant cap in
the downstream part of the droplet. In this stagnant cap region the velocity
is much smaller than in the region where the vortices occur, cf. Fig. 1.6. The
formation of such stagnant caps has been observed in experiments. In Fig. 1.7
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Fig. 1.6. Sketch of flow pattern inside and outside single droplet without (left) and
with (right) stagnant cap.

a velocity distribution in a cross-section of a levitated toluene droplet is shown,
measured by a fast nuclear magnetic resonance (NMR) technique (from [11]).

Fig. 1.7. NMR image of measured velocity field in toluene droplet.

There is (experimental) evidence that such regions with very low veloc-
ity are caused by surface active substances (surfactants) which adhere to the
interface and due to the surrounding flow pattern are transported to the down-
stream part of the droplet. An interesting (modeling) question in this context
is how this surfactant concentration affects the surface tension coefficient, i. e.,
to find an adequate model for τ = τ(S). Furthermore one would like to under-
stand how the variable surface tension coefficient τ(S) influences the velocity
inside the droplet, in particular whether it induces a stagnant cap. It is very
hard (for most systems even impossible) to measure in an experiment the
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surfactant concentration on the interface or to determine the values of the
variable surface tension coefficient. Hence, numerical simulations like the one
presented here play a key role for providing more insight.

1.3.1 Numerical simulation of a rising droplet

We present results of a numerical experiment with a single n-butanol droplet
inside a rectangular tank Ω = [0, 12 · 10−3] × [0, 30 · 10−3] × [0, 12 · 10−3] m3

filled with water, cf. Fig. 1.8. The material properties of this two-phase system
are given in Table 1.1. Initially at rest (u0 = 0 m/s) the bubble starts to rise
in y-direction due to buoyancy effects, with y = x2 and x = (x1, x2, x3).

quantity (unit) n-butanol water

ρ (kg/m3) 845.4 986.5

μ (kg/ms) 3.281 · 10−3 1.388 · 10−3

τ (N/m) 1.63 · 10−3

Table 1.1. Material properties of the system n-butanol/water.

For the initial triangulation T0 the domain Ω is subdivided into 4× 10× 4
sub-cubes each consisting of 6 tetrahedra. Then the grid is refined four times
in the vicinity of the interface Γ . As time evolves the grid is adapted to the
moving interface. Figure 1.9 shows the droplet and a part of the adaptive mesh
for two different time steps. A movie of this numerical simulation is given on
the website [90].

For a butanol droplet with radius 1 mm, in Fig. 1.10 the y-coordinate of
the droplet’s barycenter xd is shown as a function of time, where

xd(t) = meas3(Ω1(t))−1

∫

Ω1(t)

xdx.

The average velocity ud(t) of the drop is given by

ud(t) = meas3(Ω1(t))−1

∫

Ω1(t)

u(x, t) dx.

Note that x′
d(t) = ud(t) and, due to incompressibility and immiscibility,

meas3(Ω1(t)) = meas3(Ω1(0)). For a butanol droplet with radius 1 mm
Fig. 1.11 shows the rise velocity, which is the second coordinate of the av-
erage velocity ud(t). After a certain time the rise velocity becomes almost
constant and the bubble reaches a terminal rise velocity denoted by ur. For
the radius rd = 1 mm we obtain ur = 53 mm/s. For technical applications the
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Ω2

Ω1

Fig. 1.8. 2D sketch of
the rising bubble exam-
ple.

Fig. 1.9. Interface and part of the grid for a rising
bubble with radius rd = 1 mm at times t = 0.2 s
(left) and t = 0.4 s (right).
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Fig. 1.10. y-coordinate of barycenter
of a rising butanol droplet with radius
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Fig. 1.11. Rise velocity of a butanol
droplet with radius 1 mm as a function
of time t.

value of the terminal rise velocity is an important quantity, e. g., to predict
the duration of a bubble’s residence time inside a column reactor.

We computed the terminal rise velocities ur of rising butanol droplets
for different drop radii rd. For larger droplets with rd ≥ 1.5 mm a coarser
mesh was used (3 times local refinement instead of 4 times as for the smaller
droplets) because of memory limitations. A validation of the simulation results
by means of comparison with experimental data is given in [35]. In Fig. 1.12,
which is taken from [35], the terminal rise velocity ur is plotted versus the
bubble radius rd and a comparison of experimental and simulation results is
shown. For a discussion of these results we refer to [35].
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Fig. 1.12. Terminal rise velocities ur for different droplet radii rd. Experimental
data (open circles), DROPS simulation results (filled circles) and curve fitted to
experimental data (solid line).

The droplet shapes of rising butanol droplets for different radii rd are
shown in Fig. 1.13. The droplet shape is almost spherical for rd = 0.5 mm and
becomes more and more flattened for larger radii. The corresponding velocity
field u − ud (which is the velocity with respect to a reference frame moving
with droplet speed ud) is visualized on a slice in the middle of the domain.
Toroidal vortices can be observed inside the droplets. For rd = 2 mm we also
observe a small vortex structure in the wake of the bubble. These numerical
results are not able to reproduce a stagnant cap flow pattern as in Fig. 1.6,
since the surface tension coefficient τ was assumed to be constant. In the next
section we simulate surfactant transport for a rising butanol droplet.

1.3.2 Numerical simulation of a droplet with surfactant transport

We again consider the problem of a rising butanol droplet from the previ-
ous section, but now include surfactant transport on Γ . The model NS2+S
consists of the two-phase flow problem (1.19)–(1.21) combined with the sur-
factant transport equation (1.25). The experimental setup and the numerical
parameters are chosen as described in Sect. 1.3.1. We take a droplet radius
rd = 1 mm. The initial constant surfactant concentration is chosen as S0 = 1
and the surfactant diffusion coefficient is set to DΓ = 10−5.

As time evolves, the droplet starts to rise and changes its shape. The flow
field u at the interface induces a surfactant transport from the top to the
bottom of the droplet. Figure 1.14 shows the droplet’s shape and surfactant
concentration for t = 0, 0.1, 0.2, 0.4 s, respectively. The surfactant is collected
at the lower part of the droplet while the surfactant concentration at the upper
part becomes relatively small. Figure 1.15 shows the surfactant concentration
as a function of the vertical coordinate y, with y = x2 and x = (x1, x2, x3),
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rd = 0.5 mm rd = 1 mm

rd = 1.5 mm rd = 2 mm

Fig. 1.13. Shape of n-butanol droplets for different radii rd and velocity field u−ud

visualized on slice.

for each of the respective times. Hence, each snapshot of the rising droplet
in Fig. 1.14 corresponds to one of the graphs in 1.14. For example, the con-
stant surfactant concentration of the initial droplet (t = 0 s) is represented in
Fig. 1.15 as a straight vertical line of height 2 mm, which corresponds to the
initial droplet diameter. The droplet’s shape as well as the surfactant profile
relative to the droplet becomes almost stationary for t ≥ 0.2 s, with S ≈ 3.2
at the bottom and S ≈ 0.015 at the top of the droplet, i. e., only 1.5% of the
initial surfactant concentration.

The next step would be to consider a variable surface tension coefficient τ
depending on the surfactant concentration S. At the top of the droplet this
would be τ ≈ 1.63 mN/m as for the pure n-butanol/water system, while at
the bottom the surface tension coefficient would be decreased as an effect
of the high surfactant concentration. We do not consider this issue here. In
Sect. 11.5.3 we give results of a numerical experiment in which the surface
tension coefficient depends on the concentration of a dissolved species close
to the interface, i.e. τ = τ(c). In that experiment, the variable surface tension
induces a stagnant cap as in the right picture in Fig. 1.6.
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t = 0 s t = 0.1 s

t = 0.2 s t = 0.4 s

Fig. 1.14. Shape and surfactant concentration S (color-coded) of n-butanol droplet
for different time steps t = 0, 0.1, 0.2, 0.4 s.

1.4 Overview of numerical methods

In the following chapters many numerical methods for the simulation of the
models introduced in Sect. 1.1 are treated. In this section we give an overview
of important methods. for spatial discretization only finite element methods
will be considered. Besides different finite element methods we also discuss
algorithms for the construction of nested multilevel tetrahedral triangulations,
implicit time discretization methods and iterative solvers for the resulting
discrete problems. We list the main numerical methods:

• A level set method for interface capturing is used. We treat discretization
methods for the linear hyperbolic level set equation. Also a fast-marching
re-initialization algorithm is discussed.

• The construction of a multilevel hierarchy of nested tetrahedral triangula-
tions is treated. Local refinement and coarsening routines are explained.
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Fig. 1.15. Surfactant concentration S as function of vertical coordinate y for t =
0, 0.1, 0.2, 0.4 s, respectively.

• Starting from suitable variational formulations of the models, for spa-
tial discretization we apply finite element techniques based on conforming
spaces. Special finite element spaces suitable for functions that are discon-
tinuous across the interface are introduced. We use the XFEM (“ex tended
f inite element method”) approach.

• For discretization of the surface tension force a special Laplace-Beltrami
method is analyzed.

• For the fluid dynamics problem we derive several implicit time integration
methods in which flow variables, surface tension forces and the level set
function are strongly coupled.

• After space and time discretization of the fluid dynamics problem one ob-
tains, in each time step, a nonlinear discrete problem in which the flow
and level set unknowns are strongly coupled. We analyze an iterative de-
coupling strategy.

• For the solution of large sparse linear systems preconditioned Krylov sub-
space methods are discussed. Also inexact Uzawa type solvers for saddle
point problems are analyzed. Several Schur complement preconditioners
are considered. Multigrid solvers/preconditioners are explained.

• For the discretization of the mass transport equation we consider a method
in which the XFEM technique is combined with a so-called Nitsche ap-
proach in order to satisfy the Henry interface condition.

• For the discretization of the surfactant convection-diffusion equation on
the interface a special Eulerian finite element technique is introduced.

• For the space and time discretization of the mass transport and surfactant
transport equations a space-time finite element approach appears to be
very natural. We treat such space-time finite element methods.

In Table 1.2 we give a compact overview of all important methods considered,
in the form of a matrix of methods. As can be seen from this table, we ar-
range the different methods according to two criteria, namely the models for
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which they are used (rows) and the computational method class they belong
to (columns). A downward pointing arrow in the table means that methods
from the row(s) above are used. To be more specific we briefly address the
methods shown in Table 1.2 in a row wise order.

Model NS1 (one-phase Navier-Stokes problem). We explain how a multilevel
hierarchy of nested tetrahedral meshes can be constructed, which allows sim-
ple local refinement and coarsening algorithms. These grid related methods
are also used in the numerical simulation of the other models. For spatial dis-
cretization we explain the standard Hood-Taylor P2-P1 finite element pair. We
briefly address quadrature rules to evaluate the integrals that occur in the dis-
crete variational formulation. Spatial discretization results in a large system
of nonlinear ordinary differential equations coupled with algebraic constraints
(due to div u = 0), i.e., a DAE system (Differential Algebraic Equation). For
this system we discuss several numerical time integration rules. A one-step
θ-scheme and a fractional-step θ-scheme are treated. Per time step such a
time integration rule results in a large nonlinear system of algebraic equa-
tions, in which velocity u and pressure p are coupled. For linearization of the
term (u · ∇)u a standard Picard iteration (with steplength optimization) is
applied. After linearization we have a large sparse linear system of algebraic
equations that is of saddle point type. Several efficient iterative solvers, like
for example preconditioned minimal residual (MINRES), inexact Uzawa and
multigrid methods are discussed.

Model NS2 (two-phase Navier-Stokes problem). For the interface represen-
tation (“interface capturing”) we use a level set approach. In this method one
uses a scalar level set function φ (which has no physical meaning) whose zero
level coincides (approximately, due to discretization errors) with the interface.
In the model (1.19)-(1.21) the immiscibility condition in (1.21) is then replaced
by a linear hyperbolic partial differential equation for φ. An important issue is
the discretization of the level set equation. For this we use piecewise quadratic
finite elements combined with streamline diffusion stabilization (SDFEM).
Another topic is the approximation of the zero level of this discretization φh

of φ (Γ � Γh). Related to the level set function we also need a re-initialization
method. We will reformulate the model NS2 such that the interface conditions
(1.20) are eliminated and replaced by a localized force term (at the interface)
in the momentum equation. A main issue is the discretization of this localized
surface tension force. For this we introduce and analyze a Laplace-Beltrami
technique. In this type of problems, due to surface tension, the pressure is
discontinuous across the interface. For an appropriate treatment of this dis-
continuity we introduce a special extended finite element space (XFEM). Due
to the pressure discontinuity and discontinuities in density and viscosity we
need special quadrature rules. Application of a time integration rule results
in a large nonlinear system of algebraic equations (per time step) in which
u, p and φ are coupled. We explain an iterative decoupling strategy to split
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the coupled problem for u, p, φ into two subproblems for (u, p) and φ, re-
spectively. If in the flow problem there are very large jumps in density and
viscosity across the interface (as, for example, in a liquid-gas system) then in
order to obtain efficient iterative solvers we propose special preconditioners
that are robust with respect to variation in the size of these jumps.

Model NS2+T (two-phase flow with mass transport). Due to the Henry inter-
face condition c1 = CHc2 (with CH �= 1) in (1.24), the concentration is discon-
tinuous across the interface. For the spatial discretization of the convection-
diffusion equation for the concentration c we use the XFEM technique. In
order to satisfy the Henry jump condition at the interface a technique due to
Nitsche is explained. For the time integration we distinguish two cases. If the
interface is stationary, a standard method of lines approach can be applied
in which the spatial finite element discretization is combined with a θ-scheme
for time discretization. In case of a non-stationary interface this approach is
not very satisfactory and we treat as alternatives a Rothe method (first time,
then space) and a space-time finite element technique. A simple method for
the decoupling of (u, p, φ) and c in each time step is discussed.

Model NS2+S (two-phase flow with surfactant transport). In this model we
have a convection-diffusion equation on the (evolving) interface Γ , cf. (1.25).
For the spatial discretization we use a special finite element space that is ob-
tained from suitable restriction of a standard finite element space used for
discretization of the flow variables on the tetrahedral triangulation. Again
for the time discretization we distinguish between a stationary and a non-
stationary interface. For the latter case a space-time finite element method is
discussed.

The methods addressed above are treated in this monograph and implemented
in the DROPS package [90]. We mention a few other research groups in Nu-
merical Analysis and Computational Engineering in which the numerical sim-
ulation of two-phase incompressible flow problems is an important research
topic: the groups around Bothe [9, 10], Griebel [73], Herrmann [138, 139],
Kuipers [80, 88], Lowengrub and Voigt [233, 234], Marchandise [173, 172],
Tobiska [115, 118], Tryggvason [243, 182], Weigand [216, 215].
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