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Abstract We argue that in the TeV-gravity scenario high energy hadrons colliding
on the 3-brane embedded in D = 4+ n-dimensional spacetime, with n dimensions
smaller than the hadron size, can be considered as cosmic membranes. In the 5-
dimensional case these cosmic membranes produce effects similar to cosmic strings
in the 4-dimensional world. We calculate the corrections to the eikonal approxi-
mation for the gravitational scattering of partons due to the presence of effective
hadron cosmic membranes. Cosmic membranes dominate the momentum lost in the
longitudinal direction for colliding particles that opens new channels for particle
decays.

1 Introduction

In recent years the study of transplanckian scattering1 within the TeV-gravity sce-
nario [1] has attracted significant theoretical and phenomenological interest. Within
the TeV-gravity scenario [1] transplanckian scattering could be observed at the LHC
and other future colliders [2, 3, 4, 5, 6, 7, 8], as well as in collisions of high-energy
cosmic neutrinos with atmospheric nucleons [9, 10].

Different physical pictures are expected for different ranges of impact parameters
b. For impact parameters b of the order of the Schwarzschild radius RS of a black
hole of mass

√
s, microscopic black hole formation and its subsequent evaporation

is expected [11, 12, 13, 14] 2, while for large impact parameters b� RS the eikonal
picture given by eikonalized single-graviton exchange is expected [19, 20, 21, 22].

Steklov Mathematical Institute, Russian Academy of Sciences,Gubkin str. 8, 119991, Moscow,
Russia

1 Scattering at center-of-mass (CM) energies exceeding the quantum gravity scale.
2 See also [15] and references therein; there are also proposals concerning the production of more
complicated objects such as wormholes, or time machines [16, 17, 18].
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Corrections in RS/b to the elastic eikonal scattering have been studied [23, 24, 25,
26].

To study high-energy scattering of the hadrons one usually deals with the par-
ton picture. In the case of a 3-brane embedded in D = 4+ n-dimensional space-
time for large impact parameters graviton exchanges dominate in parton amplitudes
[19, 21, 23, 22, 3]. In all D dimensions the graviton is supposed to be propagated
freely. Since D-dimensional gravity is strong it would be interesting to calculate the
modification of the graviton propagator due to a presence of matter. This is diffi-
cult problem, however it can be solved in 2+1 gravity, where we know analytically
the modification of the spacetime due to the presence of pointlike matter. We know
also the modification of the spacetime metric by a cosmic string in 4-dimensional
spacetime and by a cosmic membrane in 5-dimensional spacetime.

Due to Lorentz contraction we can treat colliding hadrons in the laboratory frame
as membranes with the transversal characteristic scale of order of the hadron and
a negligible thickness. These membranes are located on our 3-brane. Since 4+ n
gravity is strong enough we can expect that hadron membranes modify the 4+ n-
spacetime metric.

Only for the case of n = 1 we know explicitly the modified metric and we can
estimate explicitly an influence of this modification on the parton and other particle
scattering. It is known that the 5-dimensional ADD model with MPl,5 ∼ TeV is not
phenomenologically acceptable and we can deal with the RS2 model [27] or with the
DGP model [28]. In all these cases we treat a moving hadron as an infinite moving
membrane in the 5-dimensional world with location on the 3-brane (our world).
In other words, we deal with an effective 3-dimensional picture in the high-energy
scattering (compare with the usual effective 2-dimensional picture in 4-dimensional
spacetime, see [29, 30] and references therein).

In the framework of the picture described above, we can consider the influence of
the matter on graviton propagation. Due to the presence of the hadron membrane the
gravitational background is nontrivial and describes a flat spacetime with a conical
singularity located on the hadron membrane. This picture is a generalization of the
cosmological string picture in the 4-dimensional world to the 5-dimensional world.
The deficit angle is proportional to the product of the hadron matter density on
the membrane and the 5-dimensional gravitational coupling. This is a rather small
number 3, δh0 ∼ 1

M3
Pl,5

Mhadron
l2
hadron

∼ 10−9. Since the hadrons collide with Lorentz boost

factor, γ = 1/
√

1− v2, about γ ∼ 104, we have δh ∼ 10−5. For heavy ions composed
of A hadrons, this number is near δIon ∼ A1/3

Ionδh.
We can take into account corrections to the graviton propagation. A study of these

corrections and their physical consequences is the subject of the present letter. A
more detailed discussion of the topological defects in TeV-gravity including the RS2
and DGP models and will be presented in [33]. As to higher dimensional cases we
can just expect that numerical calculations could exhibit similar qualitative results.

3 One can compare this number with an estimate of the deficit angle δcs ∼ 10−6 for a cosmic
string in 4-dimensional spacetime with the Newtonian gravitational constant GN,4 and the density
ρ = m

l = 1033GeV 2, that corresponds to the Earth mass distributed on a length of about l = 9 km.
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The paper is organized as follows. In Section 2 we present our setup and ar-
gue why in the TeV-gravity scenario the high energy hadrons colliding on the 3-
brane embedded in 4+ n-dimensional spacetime with n dimensions smaller than
the hadrons size, can be considered as cosmic membranes in the 4+n-dimensional
world. We recall basic facts about eikonalization of graviton exchanges and the form
of the spacetime metric with a cosmic membrane. In Section 3 we present correc-
tions to the eikonal phase due to a conical singularity. We restrict ourself here to a
flat bulk for simplicity. The AdS case corresponding to the RS2 model can be inves-
tigated in a similar way. Others possible effects related with cosmic membranes and
their signatures are briefly discussed in the conclusion.

2 Setup

It is known that for large impact parameters b� RS (elastic small-angle scattering)
the transplanckian amplitude is dominated by eikonalized single-graviton exchange
[19],[20],[21],[22]. The eikonal amplitude has been used in [10] to compute the
differential cross section for neutrino-nucleon scattering and in [4] to compute the
close to beam jet-jet production at the LHC. For small impact parameters b� RS
the nonlinear effect are important and within the classical gravity one can expect the
black hole formation.

2.1 Hadron as a membrane in 5-dimensional world

The graviton exchange is supposed to take place in the 4+n-dimensional spacetime.
In the total transplanckian cross section there is a factor, describing dependence on
n and on the form of the background in the extra dimensional spacetime. In all
previous considerations [10, 4, 8] the graviton is supposed to propagate freely in
extra dimensions. It would be interesting to be able to calculate the modification
of the propagator due to the presence of the hadron matter. This can be done for
example in the 2+1 gravity, where we know analytically the modification of the
spacetime due to the present of pointlike matter.

In 2+ 1 dimensions, solutions to Einstein’s equation with point masses are flat
metrics except conical singularities at the location of the masses. In 3+ 1 dimen-
sions, there are solutions with singularities on the worldsheets of the strings. The
deficit angle of the conical singularity is proportional to the mass in the 2+ 1 case
and the mass per length μ in the 3+ 1 case [36]. In 4+ 1 dimensions, there is a
solution with singularity on the worldsheet of the membrane. One can imagine this
membrane as high velocity moving hadron, that in the rest frame is tried as a ball. If
we have extra dimensions, they are not available for the hadron and the hadron mem-
brane cannot stretch in these dimensions. Hence, we get the 2-dimensional hadron
membrane propagated on the 3-brane embedded in 4+ n-dimensional spacetime.
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We know explicit solutions to Einstein’s equations with the hadron membrane in
the 5-dimensional ADD and RS2 models. The first case is simpler and in spite of it
is not phenomenologically acceptable, we consider this case for simplicity 4.

y

zp2 h1 A. z

y

B.

Fig. 1 A. Ultra relativistic colliding hadron h1 as it seen by the parton p2. B. The graviton exchange
with modified propagator between partons.

2.2 Bulk with conical singularities

In the ADD model the metric in the bulk is flat,

ds2 =−dt2 +dx2
⊥+dρ2 +ρ2dΩ 2, ρ2 =

n

∑
1

y2
i + z2, x⊥ = (x1,x2) (1)

here x1,x2,yi,z are coordinates in the bulk and dΩ 2 is the metric on the unit sphere
Sn. However, the hadron membrane produces a nontrivial background. We know
this background explicitly for the case of n = 1. In this case the bulk metric remains
locally flat, dΩ 2 = dφ 2 and the hadron membrane produces only the conical sin-
gularity, i.e. the range of the angle is 0 < φ < α . The angle α defines the deficit
angle δ

α = 2π−δ , (2)

where
δ = 8πG5

mh

Sh
=

32
M3

Pl,5

mh

l2
h
. (3)

Here mh is the hadron mass and lh is the hadron size, Sh = πl2
h/4. The top of the

cone is located on the brane.
The gravitational effect of the hadron membrane in the RS2 model is convenient

to present in the Poincaré coordinates. Starting from the metric

ds2 = a2(y)ημνdxμdxν +dy2, (4)

4 One can assume an anisotropic compactification with essentially suppressed n− 1 dimensions
(in this case MPl,D ∼ TeV and MPl,5 ∼ 103 TeV), or just consider a toy model with MPl,5 toy ∼ 103

TeV.
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where ημν is the 4-dimensional Minkowski metric and the warp factor a(z) has the
form [27]

a(y) = e−k|y|, (5)

1/k is the radius of 5-dimensional AdS spacetime, we get the metric in the Poincaré
coordinates after the following change of variable, y → w, w = r0ey/r0 ,

ds2 =
r2

0
w2 (ημνdxμdxν +dw2) (6)

[31]. According to the usual prescription to incorporate a membrane we cut a wedge.
This can be done by reducing the range of a suitable angular coordinate. For exam-
ple, for AdS5

R2
5

w2

[
dw2−dt2 +dz2 +dρ2 +ρ2dφ 2] , (7)

and the range of the angle is 0 < φ < 2π−δ where δ is given by (3).

2.3 Eikonalization of graviton exchanges

The parton-parton elastic forward scattering amplitude for a large center of mass
energy is given by the eikonal technique [34],[35]. In the transplanckian regime the
graviton exchanges [22, 4] dominate and define the amplitude

Aeik(q) = ABorn +A1−loop + . . .=−2is
∫

d2be−iq.b(eiχ(q)−1) , (8)

where the eikonal phase χ is given by the Fourier transform of the Born amplitude
in the transverse plane

χ(b) =
1
2s

∫ d2q

(2π)2 eiq.bABorn(s,q) . (9)

The 4+n-dimensional Born amplitude for the exchange of the graviton, which does
not get any transferred momenta in the direction transversal to the brane, is given by

ABorn(s,q) =
−s2

Mn+2
D

∫ dnl
q2 + l2 , |q|= q. (10)

The expression for the eikonal amplitude [10, 4] is

Aeik = 4πsb2
cFn(bcq), (11)

Fn(y) =−i
∫ ∞

0
dxxJ0(xy)

(
eix−n −1

)
, (12)



26 Irina Ya. Aref’eva

H

p
i

y z

H

p
j

x

A

...

B

Fig. 2 A. Collision of hardons with a large impact parameter in (x⊥,z) coordinates is presented as
an elastic scattering between partons due to a free graviton exchange. y-coordinate schematically
presents extra dimensions. B. The 2→ 2 small angle T-scattering amplitude is given by a sum of
crossed-ladder graviton exchanges.

where the integration variable is related with the impact parameter, x = b/bc and in
(12) we take into account that the eikonal phase has the power dependence on the
impact parameter

χ(b) =
(

bc

b

)n

, where bc ≡
[
(4π) n

2−1sΓ (n/2)
2Mn+2

D

]1/n

. (13)

Functions Fn, n > 1, when y� 1 oscillate around their asymptotic values given

by Fn,as(y) =
−in

1
n+1 y−

n+2
n+1√

n+1
exp

[
−i(n+1)

( y
n

) n
n+1

]
[4]. Within the TeV-gravity sce-

nario [1] the total transplanckian cross section is finite, grows with energy, and is
dominated by small-angle scattering between partonic constituents [10],[4].

The real and imaginary parts of the function F1 are shown in Fig. 3.A, and we
also see the oscillations of the real part of the function F1.

A B

Fig. 3 A. The real (red) and imaginary (blue) parts of the eikonal amplitude F1. B. Thick lines
represent the real and imaginary parts of the eikonal amplitude with doubling eikonal phase in the
toy model with the deficit angle equal to π .
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3 Eikonal in the conical spacetime

The goal of this section is to estimate the influence of the hadron membrane on the
forward scattering of the partons.

3.1 Graviton exchange with modified graviton propagator

The tree level 2 partons→ 2 partons S-matrix element corresponding to one graviton
exchange in the Cα ×M3 spacetime,

< p1, p2|S|p3, p4 >1graviton≡Sgraviton,α(p1, p2, p3, p4), (14)

is given by the linearization of gravity [22] and in s� t regime is

Sgraviton,α(p1, p2, p3, p4)≈−16πGγ(s)Sscalar,α , (15)

here≈means that we ignore the recoil of the matter field and take the prefactor γ(s)
the same as for the flat case, γ(s) = ((s−2m2)2−2m4)/2.

In the flat spacetime

Sgraviton,flat(p1, p2, p3, p4) = i(2π)4δ 4(p1 + p2− p3− p4)ABorn(s, t), t ≈−q2.
(16)

In what follows, Sscalar,α ≡ Sα is the Born amplitude for the scalar particles
scattering due to the scalar exchange in the Cα ×M3 spacetime. It can be written
(after the Euclidean rotation) in the Schwinger representation as

Sα =
∫

d4Xd4X ′ei(p1−p3)X+i(p2−p4)X ′
∫

dτe−m2τK(t,x⊥; t ′,x′⊥;τ)Kα(z,0;z′,0;τ),

here X = (t,x⊥,z) ≡ (xμ̌ ,z) and K(t,x⊥; t ′,x′⊥;τ) is the heat kernel on the 3-
dimensional plane and Kα(z,y;z′,y′;τ) is the heat kernel on the 2-dimensional cone
Cα . Kα has a representation [37, 38, 39]

Kα(z,y;z′,y′;τ) =
i

2α

∫
γ

dwctg
(πw
α

)
K(z(w),y(w);z′,y′;τ). (17)

Here (z(w),y(w)) = (r cos(θ +w),r sin(θ +w)), (r,θ ) are related with coordinates
(z,y) as (z,y) = (r cos(θ),r sin(θ)), K(z,y;z′,y′;τ) is the heat kernel on the 2-
dimensional plane

K(z,y;z′,y′;τ) =
1

4πτ
exp{− (z− z′)2 +(y− y′)2

4τ
}, (18)

and γ is a characteristic contour presented in Fig. 4, where Δθ = θ ′ − θ and θ ′ is
related with z′.
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− π απ
ε

γ

π − Δθ−π−Δθ
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Fig. 4 Contours γ and γ ′.

Under assumption that we are on the brane, θ = 0 and θ ′ = 0 (or θ ,θ ′ = π) we
have

(z(w),y(w))|on brane = (zcos(w),zsin(w)) , (z′,y′)|on brane = (z′,0) (19)

and
Kα(z,0;z′,0;τ) =

i
2α

∫
γ

dwctg
(πw
α

)
Kw(z,z′;τ) (20)

where

Kw(z,z′;τ)≡ 1
4πτ

exp{− z2 + z′2−2zz′ cosw
4τ

} (21)

We can define the Fourier transformation of the propagator associated with (21) as

D(r,v) =
∫ ∫

eir(z−z′)+iv(z+z′)e−m2τKw(z,z′;τ)dzdz′
dτ

4πτ
(22)

and find
D(r,v) =

2
sinw

1
r2

sin2 w
2
+ v2

cos2 w
2
+m2

. (23)

Finally, we get

Sα = i(2π)3δ 3 ((p1 + p2− p3− p4)μ̌
)
Mα ,

Mα =
i

2α

∫
γ

dwctg
(πw
α

) 2
sinw

1
Q2

sin2 w
2
+ P2

cos2 w
2
+q2

μ̌ +m2
, (24)

here and below qμ̌ = (q0,q1,q2), μ̌ = 0,1,2, q = (qμ̌ ,qz), q⊥ = (q1,q2),

Q =
1
2
(p1− p2− p3 + p4)z, P =

1
2
(p1 + p2− p3− p4)z, qμ̌ = (p1− p3)μ̌ . (25)
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Q and P are related as Q = qz−P. In the eikonal regime Q ≈ −P and this gives a
simplification of (24)

Mα ≈ i
2α

∫
γ

dwctg
(πw
α

)
Bw(q⊥,P), (26)

where
Bw(q⊥,P) =

2
sinw

1

q2
⊥+m2 + 4P2

sin2 w

. (27)

H

pp
i j

Hx

zy

A

...

B

Fig. 5 A.Collision of hadrons with a large impact parameter is presented as an elastic scattering
between partons due to a graviton exchange in the space (x⊥,z,y) with the conic point in the (z,y)
section. B. The 2 → 2 small angle T-scattering amplitude is given by a sum of crossed-ladder
graviton exchanges in the space with the hadron membrane.

Let now define the w-eikonal phase χ as the Fourier transform of (27)

Xw(b,P) =
1
2s

∫ d2q

(2π)2 eiq.bBw(q⊥,P) . (28)

The total eikonal phase is given by the integral over the contour γ

χα(b,P) =
i

2α

∫
γ

dwctg
(πw
α

)
Xw(b,P) (29)

Using the explicit expression for the eikonal phase for a massive particle we get

Xw(b,P) =
1

2τ
1

π sinw
K0

(
|b|

√
m2 +P2 4

sin2 w

)
. (30)

In the case of m≈ 0

Xw(b,P) =
1

2τ
1

π sinw
K0(2|b|| P

sinw
|). (31)

and for small w we have
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Xw(b,P)≈ 1
4τ

e−2|b|| P
sinw |√

π|b||Psinw| (32)

It is known that the propagator in the conic space can be present as a sum of two
terms [38, 39]

Kα(z,y;z′,y′;τ) = K(z,y;z′,y′;τ)+K′α(z,y;z′,y′;τ), (33)

where

K′α(z,y;z′,y′;s) =
i

2α

∫
γ ′

dwctg
(πw
α

)
K(z(w),y(w);z′,y′;s), (34)

with a modified contour γ ′ presented in Fig. 4.
Therefore, the eikonal matrix element can be written as

Seik,α(p1, p2, p3, p4) = i(2π)4δ 4(p1 + p2− p3− p4)Aeik,flat

+ i(2π)3δ 3 ((p1 + p2− p3− p4)μ̌
)
Meik,α , (35)

where
Meik,α =−2iτ

∫
d2b⊥eiq⊥b⊥eiχplane(b⊥)

[
eΔχα (b⊥,P)−1

]
, (36)

where χplane(b⊥) is given by (13) for n = 1 and

Δχα(b⊥,P) =
1
2s

∫ d2q⊥
(2π)2 e−iq⊥b⊥Bα(q2

⊥,P), (37)

where
Bα(q⊥,P) =

i
2α

∫
γ ′

dwctg
(πw
α

)
Bw(q⊥,P). (38)

Now if we take this correction perturbatively we get

Meik,α ≈−2is
∫

d2b⊥Δχα(b⊥,P)eiq⊥b⊥+iχplane(b⊥). (39)

We can analyze the correction for arbitrary angle α only numerically.

3.2 Correction to the eikonal amplitude for toy model α = π/N

It is known, that the propagator in the conic space with α = π/N can be present as
a finite sum of propagators

Kπ/N(z,z
′,τ) =

N

∑
n=0

Knπ/N(z,z
′,τ), (40)
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where

Knπ/N(z,z
′,τ)≡ 1

4πτ
exp{− z2 + z′2−2zz′′ cos( nπ

N )

4τ
}. (41)

We can calculate the contour integral in (24) explicitly to get

Sπ/N = i(2π)3δ 3 ((p1 + p2− p3− p4)μ̌
)⎡⎣∑ ′ 2

sin πn
N

1
Q2

sin2 πn
2N

+ P2

cos2 πn
2N

+q2
μ̌ +m2

+ δ (Q)
π√

P2 +q2
μ̌ +m2

+δ (P)
π

2
√

q2
μ +m2

⎤
⎦ . (42)

Here the prime in the sum means that we do not take into account n = 0 and n = N.
If we consider N = 1 we get just one new term as a correction to the usual Born

amplitude

Sπ = Sflat +ΔSπ , (43)

Sflat = δ 4(p1 + p2− p3− p4)
i(2π)4

2
√

q2
μ +m2

, (44)

ΔSπ = δ 3 ((p1 + p2− p3− p4)μ̌
)
δ ((p1− p3− p2 + p4)z)

i(2π)4

2
√

q2 +m2
. (45)

In the eikonal regime Q≈ P and both terms (44) and (45) give the same contribution
and we get a doubling of the eikonal phase.

4 Conclusion and Discussion

In this paper we have argued that in the TeV-gravity scenario high energy hadrons
colliding on the 3-brane embedded in D = 4+n-dimensional spacetime, with n di-
mensions smaller than the hadrons size, can be considered as cosmic membranes. In
the 5-dimensional case this consideration leads to the 3-dimensional effective model
of high energy collisions of hadrons. The cosmic membranes in the 5-dimensional
case are similar to cosmic strings in the 4-dimensional world.

It is well known that, the cosmic strings give rise to remarkable classical grav-
itational and quantum phenomena. In particular, the cosmic string acts as a grav-
itational lens [31]. This effect becomes manifest when two particles move along
opposite sides of the string. Also there is a self-force acting on a test charged parti-
cle around the cosmic string [40] and a freely moving charged particle radiates near
the cosmic string [41, 42]. This is an analogue of the radiation by the charged parti-
cle when it suffers the Aharonov-Bohm scattering [43] and this radiation occurs due
to the fall down of the Huygens principle in curved spacetime.
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There are also quantum effects. The presence of the cosmic string allows effects
such as particle-antiparticle pair production by a single photon and bremsstrahlung
radiation from charged particles [44, 45] which are not possible in empty Minkowski
space, due to conservation of linear momentum. The conical structure of the cosmic
string spacetime is the source of momentum non-conservation in the plane perpen-
dicular to the string, which permits pair production by a single photon. The gravita-
tional mechanism that permits pair production by a single photon around a cosmic
string has common topological features with the Aharonov-Bohm effect [43]. The
absence of global momentum conservation was already stressed for gravity in 2+1
dimensions by Henneaux [46] and Deser [48]. It is worth also to mention that the
string polarizes the vacuum around it, in a way similar to the Casimir effect between
two conducting planes forming a wedge [49, 50]. The study of quantum field the-
ories the spasetime with conic singularities requires a regularization [51]. Among
possible regularizations the zeta-function regularization is more convenient [52].

Our specifics is that not all process mentioned above can be realized for particles
attached to the 3-brane. In particular, to see the lens effect we have to deal with the
motion of particles in the 2-plane that is perpendicular to the hadron membrane. But
only gravitons can move in this plane in any direction. However one can estimate
the self-force effect.

The same concerns also the quantum effects. From one side, only the graviton can
propagate in the 2-plane perpendicular to the hadron membrane and feel the deficit
angle. From other side, the above mentioned quantum processes are available for
other particles if their have not to abandon the 3-brane to participate in the processes.

In this paper we have estimated corrections to the eikonal scattering amplitude
due to the hadron membrane.

Similar to the case of cosmic string [44], one can also estimate the decay of a light
ultra-relativistic particle on two heavy particles with mass M. For large longitudinal
momentum of the light particle, kz >> 2Mδ−1, the cross-section does not depend
on kz and is defied only by the coupling g of these 3 particles and heavy mass

σ1light→2heavy ≈ g2

M3 (46)

To realize the condition kz >> 2Mδ it is enough to take kz ∼ 1TeV and M of the
order of the few MeV ’s.

Other processes we are going to estimate in the separate work [33].
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