
Chapter 2
Theory of Compressible Fluid Flow

2.1 One-Dimensional Theory of Compressible Fluid Flow

2.1.1 Equation of State and the First Principal Law

The thermodynamic properties of a homogeneous and isotropic medium are fully
characterized by the three quantities temperature T (K), pressure p (Pa), and
density q (kg/m3Þ which are called the state variables. About the microscopic
structure of the medium the only necessary assumptions are that the particles that
constitute the medium are small enough to justify the assumption of homogeneity
and that for any given set of T; p; q the composition of the medium is fixed. This
includes, for example, mixtures of gases or air that contains a certain amount of
water in the form of small droplets.

The quantities T ; p; q depend on each other, their relation is given by the
equation of state of that medium.

p ¼ pðq; TÞ ð2:1Þ

Additional state variables can and will be defined and used but—together with
the equation of state—always two of them are enough to characterize the state of
the medium. In the case of a perfect gas the equation of state has the well-known
form

p ¼ R

m
qT ð2:2Þ

where R is the gas constant that is given by R ¼ kBNA ¼ 8314:46 J/(kg K). Here kB

is the Bolzmann constant and NA the Avogadro constant. m is the atomic
(molecular) weight of the medium.

By introducing now the general physical principle of energy conservation one
immediately arrives at the first principle law of thermodynamics that essentially
states the conservation of energy in its transformation from heat to mechanical

K. Schmid, Laser Wakefield Electron Acceleration, Springer Theses,
DOI: 10.1007/978-3-642-19950-9_2, � Springer-Verlag Berlin Heidelberg 2011

21



energy and vice versa. The quantity that measures the energy content of a medium
is the inner energy e and is a state variable on its own. Hence, it only depends on
two other state variables, for example, e ¼ eðp; qÞ which again represents an
equation of state. In the case of the perfect gas, the inner energy only depends on
the temperature e ¼ eðTÞ: This inner energy is constant as long as the gas is not
doing any work thereby converting a part of its inner energy into mechanical
energy. This does not entirely exclude changes of the volume of the gas as can be
seen in the following case: a perfectly isolated vessel that is separated in two
compartments by a removable wall with one compartment being filled with a gas
of a certain pressure and temperature. By removing the wall, the gas will now
expand and fill the entire vessel. Since there is now energy (heat) transport through
the vessel walls, the inner energy must be conserved which means for a perfect gas
that after the expansion is completed the gas will still have the initial temperature.
This is a so-called irreversible adiabatic expansion because it is impossible to
reach the initial state without energy transfer to the gas. If the wall is now replaced
by a slowly moving piston, the situation is different: the gas exerts a force on the
piston corresponding to its pressure times the piston surface. By moving the piston
a distance ds, the work pAds is done. Since Ads is equal to the change of the
volume of the gas, the amount of work done is given by pdV ¼ pdð1=qÞ: If heat
transport to the medium dq is now considered, then the law of energy conservation
takes on the form:

dq ¼ deþ pdð1=qÞ ð2:3Þ

Here the amount of heat q is measured in joule per kg. This equation is called the
first principle law of thermodynamics. With the enthalpy i being defined as

i ¼ eþ p=q ð2:4Þ

it can be written as

dq ¼ di� 1=qdp ð2:5Þ

Heat can be transferred to a medium in different ways, the two most easily real-
izable methods are maintaining the volume and hence the density constant and
keeping the pressure constant. By measuring the amount of energy needed to raise
the temperature of the medium by 1 K one arrives at the definition of the specific
heats cp and cv: They are defined as

cv ¼
oq

oT

� �
v

¼ oe

oT

� �
v

ð2:6Þ

for constant volume and as

cp ¼
oq

oT

� �
p

¼ oi

oT

� �
p

ð2:7Þ
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for constant pressure. The ratio between the specific heat is ascribed the symbol j
and is defined as

j ¼ cp=cv j ¼ 2þ f

f
ð2:8Þ

The equation to the right gives a connection to the kinetic theory of gases with f
corresponding to the number of degrees of freedom of the molecules constituting
the medium. Possible values for f are therefore three for atoms, five for molecules
containing two atoms, and seven for molecules containing three or more atoms.

For the perfect gas, one obtains for the specific heats

de ¼ cvdT ð2:9Þ

and

di ¼ cpdT ð2:10Þ

Substituting this into (2.4) and using (2.2) we get

R=m ¼ cp � cv ð2:11Þ

With the additional assumption that a medium not only behaves like a perfect
gas but also has constant specific heats cp and cv for all temperatures from (2.9)
and (2.10) we get

e ¼ cvT þ const ð2:12Þ

and

i ¼ cpT þ const ð2:13Þ

2.1.2 Changes of State

A medium can change its thermodynamic state in many different ways and it
makes sense to distinguish between several special cases of such processes. In
general, this is done by categorizing by state variables that remain constant during
the whole process. This immediately gives the three processes that keep one of the
state variables in the equation of state (2.1) constant, namely the isothermal, the
isobaric, and the isochoric process. For many gas flows, however, another process
is of interest: it is called isentropic process, is equivalent to a reversible adiabatic
process, and is defined by the absence of heat flux across the boundaries of the
system and also within the medium. This means that each small volume dV of
the medium is in pressure-equilibrium with its surroundings and does not receive
or loose any heat energy. The validity of this assumption will be discussed later.
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To justify the name isentropic; the variable of state called entropy s is first
introduced. It is defined by

ds ¼ dq

T
¼ deþ pdð1=qÞ

T
¼ di� 1=qdp

T
ð2:14Þ

For the perfect gas with constant specific heat this can be integrated immediately
and gives:

s2 � s1 ¼ cvln
T2

T1
� ðcp � cvÞln

q2

q1
¼ cpln

T2

T1
� ðcp � cvÞln

p2

p1
¼ cvln

p2

p1
� cpln

q2

q1

ð2:15Þ

Here the subscripts 1 and 2 refer to the initial and the final state of the medium,
respectively. For the isentropic process ds is equal to zero, Eq. 2.14 shows that this
is equal to constant heat energy dq and for ds = 0:

0 ¼ deþ pd
1
q

� �
ð2:16Þ

0 ¼ di� 1
q

dp ð2:17Þ

with (2.9) and (2.11) this can be integrated and yields the following equations for
the isentropic change of state from state 1 to state 2:

q2

q1
¼ T2

T1

� � 1
j�1

ð2:18Þ

p2

p1
¼ T2

T1

� � j
j�1

ð2:19Þ

p2

p1
¼ q2

q1

� �j

ð2:20Þ

The concept of entropy also leads to the formulation of the second principal law of
thermodynamics that states that the entropy of an isolated system can only increase
or stay constant.

2.1.3 Compressible Gas Flow in 1D: Perturbations and Shocks

In the following, basic equations will be derived that describe the change of state
between two spatially separated points (1) and (2) within a flowing compressible
medium. In order to treat flowing media besides two thermodynamic state vari-
ables one more variable is needed to fully describe the system. This additional
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variable is the flow velocity w which is a scalar quantity in the one-dimensional
analysis. The three equations needed to determine these variables are the conti-
nuity Eq. 2.21, the equation of motion (2.22), and the energy conservation (2.23)
given here for the case of no external forces and steady state.

q1w1 ¼ q2w2 ð2:21Þ

p1 þ q1w2
1 ¼ p2 þ q2w2

2 ð2:22Þ

w2
1

2
þ i1 ¼

w2
2

2
þ i2 ð2:23Þ

They describe the flow of a medium along a stream line connecting the start-
point labelled by index (1), and the endpoint labelled by index (2). Since no
assumption is necessary about the actual distance between the two points, the
following derivation is equally valid for continuous variation between over
extended distances and for discontinuous variations in the limit of zero distance.
As it turns out, both cases exist in nature, the first one representing smooth gas
flow without discontinuities in the state variables and the second one describing
discontinuous shocks naturally emerging in supersonic flows. Both cases will be
treated in the following.

Substituting now i2 ¼ i0 ¼ iðT ¼ 0KÞ and w1 ¼ 0 in Eq. 2.23 gives the inter-
esting result that a gas that was initially at rest and then expands freely thereby
converting its whole enthalpy into kinetic energy will obtain a maximum final
velocity of

w2;max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ði1 � i0Þ

p
ð2:24Þ

or, assuming a perfect gas with constant specific heat:

w2;max ¼
ffiffiffiffiffiffiffiffiffiffi
2cpT

p
ð2:25Þ

For nitrogen at room temperature this evaluates to 790 m/s, for Helium to
1,765 m/s. In order to obtain one equation that describes the entire process, first
the continuity Eq. 2.21 is used to write the equation of motion (2.22) as

w2
2

2
� w2

1

2
þ 1

2
1
q1
þ 1

q2

� �
ðp2 � p1Þ ¼ 0 ð2:26Þ

and then by substituting (2.23) for the velocities w1 and w2 finally equation

i2 � i1 ¼
1
2

1
q1
þ 1

q2

� �
ðp2 � p1Þ ð2:27Þ

is obtained. It describes a change of state along the so-called Rankine–Hugoniot
curve. If the enthalpy i of the medium as a function iðp; qÞ is known, then this
formula describes the relation between density and pressure for the flowing
medium. Another important relation, namely the one for the speed of sound, can be
obtained by substituting (2.21) into (2.22), thereby eliminating w2 :
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w1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

q1

p2 � p1

q2 � q1

r
ð2:28Þ

In the limit Dp! 0 and Dq! 0 this gives the partial derivative

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

op

oq

� �
H

s
ð2:29Þ

where the subscript H denotes the derivative to be taken along the Rankine–
Hugoniot curve. This is not the speed of sound but the speed of propagation of
perturbation of arbitrary strength. In fact, it will be shown below that this speed
can be substantially larger than the sound-speed. For small pressure and density
changes, however, it can be shown [1] that the change of state according to
Rankine–Hugoniot and the isentropic change of state coincide up to to the second
order. Therefore, for small perturbations, the well-known formula for the speed of
sound is obtained.

w ¼ c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

op

oq

� �
S

s
ð2:30Þ

Here c is introduced for the sound speed and the index s indicates that the
derivative has to be taken while keeping the entropy s constant. This derivation
immediately shows the area of applicability of this formula: It describes the
propagation speed of small perturbations in a compressible medium. For the
perfect gas (2.30) evaluates to

c ¼
ffiffiffiffiffiffiffiffiffiffi
j

R

m
T

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpðj� 1ÞT

q
ð2:31Þ

yielding at temperature of 300 K for Air 347 m/s and for Helium 1:02 km/s.
As detailed below, strong distortions are able to propagate at speeds (much)

larger than the speed of sound. For the perfect gas, iðp;qÞ can be obtained by
substituting (2.11) and (2.8) into (2.2) and the result into (2.13):

iðp; qÞ ¼ j
j� 1

p

q
ð2:32Þ

This allows to obtain from (2.27) an (implicit) relation between p and q along the
Rankine–Hugoniot curve:

p2 � p1

q2 � q1
¼ j

p2 þ p1

q2 þ q1
ð2:33Þ

Figure 2.1a shows a plot of the density-ratio over the pressure ratio for
the Rankine–Hugoniot case and the isentropic case. As can be seen, the value of
the Rankine–Hugoniot curve tends asymptotically towards ðjþ 1Þ=ðj� 1Þ
whereas the isentropic one increases with ðp2=p1Þ1=j: As mentioned above, the
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Rankine–Hugoniot curve is the correct one for compressions with large pressure
ratios. For pressure ratios close to one the two curves coincide, Fig. 2.1b shows
the relative difference between the two curves. Finally, for pressure ratios smaller
than one, thus corresponding to expansion, all curves with a density-ratio larger
than the one of the isentropic curve are prohibited by the second principal law
because they would imply a decrease of entropy during the expansion. Since no
assumption has been made so far concerning the distance between points (1) and
(2), in principle the above results are applicable for large distances as well as for
the limit of the distance going to zero. The latter one does actually occur in
nature in the form of compression shocks in supersonic flows. Since the pressure
jump in such a shock is usually comparable to the static pressure of the gas, it
must always be considered a strong distortion. This implies that the Rankine–
Hugoniot equations have to be used for the description of supersonic compres-
sion shocks.

Such shocks naturally occur always when a supersonic flow encounters some
sort of obstacle in its path. Thinking first of a subsonic flow, it is clear that the flow
will be influenced downstream and upstream therefore leading to a smooth
adaptation of the flow that starts already well ahead of the position of the obstacle.
This leads to a smooth transition from the unperturbed flow field far upstream to
the deformed flow field close to the object. In the case of a supersonic flow, this is
impossible because smooth upstream adaptation is equivalent to the upstream
propagation of small perturbations that cause the gradual flow field deformation as
the gas streams in from the unperturbed far field and gets closer to the obstacle.
Only a strong perturbation in the form of a discontinuous shock is able to prop-
agate with supersonic speed and, therefore, is able to propagate upstream in a
supersonic flow. As it propagates its amplitude shrinks and so eventually it comes
to a halt at a position where its propagation speed, given by (2.34), exactly matches
the one of the supersonic flow. In this way a steady-state shock front is formed. A
real-world example of such a shock front is visible in the simulation results pre-
sented in Sect. 3.2.6, Fig. 3.25 as well as in the experimentally obtained inter-
ferometric image displayed in Sect. 4.4, Fig. 4.5.
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Fig. 2.1 Comparison between Rankine–Hugoniot and isentropic process for N2 (perfect gas)
with constant specific heat. a Rankine–Hugoniot (red) and isentropic curve (black). b Relative
difference between Rankine–Hugoniot and isentropic curve
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As explained above, expansion shocks never occur because they violate the
second principle law of thermodynamics and the expansion takes place as a
continuous isentropic state change.

So far, the shock front has been considered a steady-state phenomenon but it is,
of course, valid to use a coordinate system that is moving with velocity w1; thus, co-
moving with the flow prior to the shock. Then the shock front appears to propagate
into the undisturbed medium with the velocity �w1 ¼ u: For the perfect gas with
constant specific heat, this propagation speed of the shock front can be expressed by

u ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jþ 1

2j
p2 � p1

p1

s
ð2:34Þ

As mentioned above, this formula allows one to estimate the position of a steady
state shock that forms in front of an obstacle in the flow.

A more realistic case for a propagating shock would be the one of a tube that is
split into two parts by a wall confining a perfect gas of a certain pressure on one
side and a perfect gas with lower pressure on the other. The sudden removal of the
membrane results in a shock that travels into the lower pressure medium. But now,
since no additional gas is added on the high pressure side, the pressure drops there
as the shock propagates. This case can be treated within the more general
framework of (supersonic) wave propagation in perfect gases. It is described in
textbooks, for example [1] and gives the following result in the case of vacuum on
the low pressure side of the membrane

w ¼ 2
j� 1

c0 ð2:35Þ

Here, c0 is the sound velocity in the medium on the high pressure side prior to the
removal of the wall and w is the velocity of the first disturbance that propagates
into the vacuum. Given that the values of j usually lie between 2.3 and 2.7, it is
clear that this velocity can be significantly larger than the velocity of sound.

From the Eqs. 2.21–2.23 the following relations for the change of state in a
shock front can be derived:

w2

w1
¼ q1

q2
¼ 1� 2

jþ 1
1� 1

M2

� �
ð2:36Þ

p2

p1
¼ 1þ 2j

jþ 1
ðM2 � 1Þ ð2:37Þ

T2

T1
¼ c2

2

c2
1

¼ 1
M2

1þ 2j
jþ 1

ðM2 � 1Þ
� �

1þ j� 1
jþ 1

ðM2 � 1Þ
� �

ð2:38Þ

M2
2 ¼

1þ j�1
jþ1ðM2 � 1Þ

1þ 2j
jþ1ðM2 � 1Þ ð2:39Þ
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s2 � s1

cv
¼ ln 1þ 2j

jþ 1
ðM2 � 1Þ

� �
þ jln 1� 2

jþ 1
1� 1

M2

� �� �
ð2:40Þ

As can be seen, for the perfect gas with constant specific heat, the state change that
occurs in a shock depends on the initial Mach number M ¼ M1 only. Here, M is
defined as M ¼ w=c where w is the local velocity and c the local speed of sound
according to Eq. 2.31. It must be kept in mind that these formulas are valid only
for initial Mach numbers M [ ¼ 1 since for smaller Mach numbers isentropic
expansion occurs. Figure 2.2 shows plots of the relations (2.36–2.40) for Nitrogen
(solid black line), Argon (dashed black line), and Helium (solid red line). Since
Argon and Helium are both monoatomic gases and, hence, have the same specific
heat ratio of 5/3 and because only ratios are plotted the lines for these two gases
coincide in all the plots. Again, it can be seen that the density ratio converges
towards an asymptotic value while the pressure and temperature ratios grow
without limits. Figure 2.2 shows the important fact that the flow is always subsonic
after the shock with post-shock mach numbers decreasing as initial mach numbers
increase. The entropy change normalized to the heat capacity ðs2 � s1Þ=cv;
Fig. 2.2, can be used as a measure for the strength of the shock. To this end,
however, it is also possible to define ‘‘local‘‘ reservoir conditions of a flow w0 ¼
0; q0; p0; . . . as those conditions reached by bringing the flow isentropically to rest,
thereby constituting the ideal conditions that could optimally be reached. Here,
optimally means that in the case of isentropic compression, no pressure drop
occurs and the initial reservoir conditions are obtained again. So, by definition, in
an isentropic flow, the local reservoir conditions are constant throughout the flow.
For the non-isentropic shock it follows from energy conservation that the local
reservoir temperature is also constant but the local reservoir pressure and density
drop with the amount of the drop being proportional to the strength of the shock.

q0;2

q0;1
¼ p0;2

p0;1
¼ 1þ 2j

jþ 1
ðM2 � 1Þ

� �� 1
j�1

1� 2
jþ 1

1� 1
M2

� �� �� 1
j�1

ð2:41Þ

This equation is plotted in Fig. 2.2 showing that for low Mach numbers a shock is
a quite efficient and for higher Mach numbers a quite inefficient way of deceler-
ating and compressing a flow. Similar to the Eqs. 2.36–2.41, expressions for
oblique shock fronts can be derived. The tangential velocity components are
preserved by the shock for the shock-normal velocity components as well as for
density, pressure, temperature, and local reservoir conditions, Eqs. 2.36–2.41 are
still applicable by simply substituting M sin c for M where M ¼ M1 is the Mach
number before the shock and c is the angle between the initial flow velocity and
the shock front. Similarly to perpendicular shock fronts, the second principal law
prohibits oblique expansion shocks as well. There are two extreme points for the
pressure rise in the oblique shock, namely a maximum for c ¼ 90� corresponding
to a normal shock perpendicular to the flow and a minimum for sin c ¼ 1=M ¼
sin a with a being the Mach angle. The latter represents the weakest possible
distortion of a supersonic flow, so values of M sin c\1 are not meaningful.
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2.1.4 Continuous Flows in Nozzles

In the following, only continuous flows within nozzles are considered. Of course
this does not mean that discontinuous shocks cannot occur within nozzles. It will
briefly be discussed below under which conditions this will happen. However, for
the case of interest here, namely a nozzle that is attached to a vacuum chamber, it
is clear that no shocks can occur because expansion shocks are impossible.
Therefore, in the following only the continuous case is treated extensively.

In order to describe flows that are bound and guided by walls within a 1-D
theory it is necessary to introduce the cross section f of the gas-duct into the
governing equations. This is most easily done regarding the differential equations
corresponding to Eqs. 2.21–2.23 [1]:

1
w

dw

dx
þ 1

q
dq
dx
þ 1

f

df

dx
¼ 0 ð2:42Þ

w
dw

dx
þ 1

q
dp

dx
¼ Y ð2:43Þ

w
dw

dx
þ di

dx
¼ dq

dx
ð2:44Þ

Here (2.42) is the continuity equation, now including the flow cross section f ðm2Þ;
(2.43) is the equation of motion including an external volume–force Y and (2.44)
states energy conservation. In the case that there are no external forces and no
energy or heat flows through the system boundaries, Y ¼ 0; dq=dx ¼ 0; this cor-
responds to a continuous, isentropic flow ds=dx ¼ 0: Then, by using (2.30) and
M ¼ w=c Eq. 2.43 can be written as

2 4 6 8 10
Initial Mach Number M1

1

2

3

4

5

w
1

w
2

2
1

2 4 6 8 10
Initial Mach Number M1

0

20

40

60

80

100

120

p
2

p 1

2 4 6 8 10
Initial Mach Number M1

5

10

15
20

25

30

T
2

T
1

2 4 6 8 10
Initial Mach Number M1

0.4
0.5
0.6
0.7
0.8
0.9

1

Fi
na

l
M

ac
h

N
um

be
r

M
2

2 4 6 8 10
Initial Mach Number M1

0

0.5

1

1.5

2

2.5

s 2
s 1

c v

2 4 6 8 10
Initial Mach Number M1

0

0.2

0.4

0.6

0.8

1

p 0
,2

p 0
,1

0,
2

0,
1

(a) (b) (c)

(d) (e) (f)
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1
q

dq
dx
¼ �M2 1

w

dw

dx
ð2:45Þ

This shows that for small Mach numbers the relative variation of the density is
smaller than the relative variation of the velocity and for large Mach numbers vice
versa. This leads to the limits of uncompressible flow for very low Mach numbers,
and, for high Mach nubmers, to hypersonic flows where the maximum velocity
(2.24) has (almost) been reached and stays more or less constant and only density,
pressure, and temperature vary strongly.

By combining now Eqs. 2.45 and (2.42) the following relationship between the
Mach number and the flow cross section can be derived:

ð1�M2Þ 1
w

dw

dx
¼ 1

qw

dðqwÞ
dx

¼ � 1
f

df

dx
ð2:46Þ

Here, qw is a new parameter called the flow density and gives the total mass flow
after multiplication by the flow cross section, _m ¼ qwf : The total mass flow, of
course, has to be constant throughout the flow if no sources or sinks are present.
Inspection of Eq. 2.46 shows that for subsonic flows the velocity grows with
shrinking cross section and that for supersonic flows it grows with growing cross
section. This effect is exploited in converging–diverging de Laval nozzles as
depicted in Fig. 2.3. First in the converging section the flow accelerates up to
M ¼ 1 which is reached in the throat. Then, in the diverging nozzle section, the
flow is allowed to expand further thereby acquiring supersonic speeds corre-
sponding to M [ 1: For M ¼ 1 the flow cross section evidently has a minimum
and the flow density a maximum and, therefore, this point in the flow is of special
importance because it separates the sub- from the supersonic regime. The flow
parameters that the gas obtains at that point are called ‘‘critical‘‘ parameters and
are signed with an asterisk. These critical values can be calculated for the perfect
gas with constant heat capacity as follows: Starting from Eq. 2.23, using (2.13)
and assuming that the gas is initially at rest w0 ¼ 0 one gets

w2

2
þ cpT ¼ cpT0 ð2:47Þ
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Here, variables with subscript 0 denote initial (reservoir) values. With (2.25) and
(2.31) this transforms to

w2 þ 2
j� 1

c2 ¼ w2
max ð2:48Þ

Here, the known critical values for M and w, namely M� ¼ 1; w� ¼ c� can be
introduced leading to

w2
max ¼

jþ 1
j� 1

ðw�Þ2 ¼ jþ 1
j� 1

ðc�Þ2 ¼ 2
j� 1

c2
0 ¼ ðjþ 1ÞcpT� ¼ 2cpT0 ð2:49Þ

and, by exploiting the usual isentropic Eqs. 2.18–2.20, finally the following
equations are obtained that now relate the relevant critical flow parameters to the
reservoir values:

w� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j� 1
jþ 1

2cpT0

r
¼ c0

ffiffiffiffiffiffiffiffiffiffiffi
2

jþ 1

r
ð2:50Þ

p�

p0
¼ 2

jþ 1

� � j
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Now that the critical parameters are available, Eqs. 2.13, 2.18 and 2.22 can be
used to calculate the flow density in the whole flow domain. Then, one arrives at
the following result:

f �

f
¼ qw

q�w�
¼ M 1þ j� 1

jþ 1
ðM2 � 1Þ

� �� jþ1
2ðj�1Þ

ð2:55Þ

A plot of this function is given in Fig. 2.3. Due to the continuity relation wqf ¼
w�q�f � the vertical axis in Fig. 2.3 can also be read as the cross section ratio f �=f
thereby showing that for each cross section two solutions are obtained, one cor-
responding to the subsonic and the other to the supersonic case. From M = 0 to
M = 1 the flow accelerates towards the critical cross section and its flow density
grows to its maximum value. As has been shown above, this requires a decreasing
flow cross section that finally reaches a minimum value—the nozzle throat—
where critical values are obtained. From there on, in order to further increase the
Mach number, the flow cross section has to increase again in order to allow for the
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additional expansion and the corresponding reduction of the flow density that is
necessary to reach the supersonic regime. This converging–diverging nozzle is
called a de Laval nozzle and is a very frequently used device for producing
supersonic gas flows. The mass flow through the nozzle is now given by _m� ¼
q�w�f � which evaluates to

_m� ¼ f �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j

2
jþ 1

� �jþ1
j�1

p0q0

s
ð2:56Þ

while the mass flow in general is expressed by

_m ¼ f
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Since _m� ¼ _m holds everywhere in the flow domain, relation (2.57) implicitly
defines the pressure p as a function of the cross section f in the whole flow.
Comparable to Fig. 2.3, for the Mach Numbers—this equation has two solutions
for p for each cross section f, one on the supersonic and one on the subsonic side of
the critical cross section in the nozzle throat. With Eqs. 2.19, 2.20 the density q
and the temperature T are calculated and the flow velocity w can be easily obtained
via mass conservation from w ¼ _m=ðqf Þ:

Figure 2.4, shows plots of the most important flow parameters along a de Laval
nozzle that is connected to a reservoir containing air at a pressure of 50 bar, a
temperature of 300 K (corresponding to an initial density of 1:2� 1021 cm�3), and
no initial velocity. The nozzle contour is also shown. It consists of a converging
part with straight conical walls that is 1.75 mm long and has an entrance diameter
of 3 mm. The throat diameter is 1 mm and subsequently the nozzle expands again
with a straight conical contour to an exit diameter of 3 mm.

Tables 2.1 and 2.2 display numeric values of important flow parameters in the
reservoir, at the throat where critical values are obtained and at the nozzle exit of a
de Laval nozzle with a cross section ratio fexit=f � of 9. The pressure drops by
almost a factor of 2 from the reservoir to the nozzle throat and subsequently in the
supersonic section by a factor of 62. The density drop is less pronounced and
reaches almost exactly a factor of 30 at the exit of the nozzle. The difference
between the density and the pressure drop is explained by the fact that also the
temperature decreases strongly—to 77 K at the nozzle exit—so that for the density
that is a function of pressure and temperature some part of the pressure drop is
compensated by the temperature drop. It is also interesting to note that the exit
velocity of 670 m/s is already 86% of the theoretical maximum velocity (2.25) of
777 m/s. The mass flow through the nozzle amounts to 9.16 g/s which corresponds
to a volume flux of 0.16 l/s at reservoir conditions (50 bar, 300 K). To give an
impression of the influence of the type of gas used as a medium, in Table 2.2, the
flow parameters for Helium are given using the same reservoir values. The
medium enters the equations through two parameters, the molecular weight M and
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the heat capacity (for constant pressure) cp: For air, the average molecular weight
is 28:9696 g/mol and cp is1006:43 J/kg K, helium has a molecular weight of
4:0026 g/mol and a cp of 5193 J/kg K. Inspection of the equations show, however,
that in almost all the cases the parameter j—which is a function of both cp and
M—is the only medium-dependent parameter. As mentioned above, the signifi-
cance of j lies in the fact that 2=ðj� 1Þ corresponds to the number of degrees of
freedom of the gas molecules. Its value is 2.4 for Air and 2.67 for helium which
corresponds to 5 degrees of freedom for the average air molecule and 3 degrees of
freedom—only the translations—for the point-like helium atom. The main

Fig. 2.4 Variation of flow
parameters inside a de Laval
nozzle with a cross section
ratio fexit=f � ¼ 9: Reservoir
parameters: p0 ¼ 5� 106 Pa
= 50 bar, T0 ¼ 300K;w0 ¼ 0;
medium: Helium. The
parameters plotted are: nozzle
radius nozzle contour,
pressure black, and density
red normalized to their
respective reservoir values,
temperature (K), Mach
number (1) and flow velocity
(m/s)
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differences between the air flow and the helium flow are the following: the smaller
molecular weight of He manifests itself in a much higher exit velocity of 1,662 m/s
which compares to a theoretical maximum velocity of 1,765 m/s. The smaller heat
capacity leads to a much smaller exit temperature of 34.1 K as compared to 77.2 K
for air which also leads to a higher Mach number for helium of 4.84. The density at
the exit is almost the same, the pressures differ by a factor of 2. The mass flow is
smaller by a factor of 2.5 for Helium but the volume flow is higher by a factor of
2.8—another effect of the small molecular weight of helium. If the jet is assumed
to emanate into vacuum it is not possible within this simple model to predict its
evolution outside the nozzle because the flow cross section is not a priori known
and cannot easily be calculated. Also, within the nozzle the presented model is
accurate only as long as the part of the flow that is affected by the presence of walls
is negligibly small in comparison to the flow dimensions. Since the processes
within the wall-affected zone, the so-called boundary layer, depend non-trivially
on flow parameters like pressure, pressure gradient, velocity, fluid viscosity, and
turbulence, there are no sufficiently accurate analytical models that would allow to
study this phenomenon in analytical fashion. Therefore, one has to rely on numeric
simulation of the flow which will be the central point of the following chapter.

To conclude this section, Fig. 2.5, gives an overview over the dependence of
important state variables at the exit of the de Laval nozzle on backing pressure,
cross section ratio between nozzle throat and exit, reservoir temperature, and on
the gas type. In all the plots, the plot for Helium is the solid red, the one for Argon
the dashed black, and the one for N2 the solid black line. Since Argon and Helium
are both monoatomic gases with the same isentropic exponent it is expected that

Table 2.1 Flow variables in
a de Laval nozzle

Parameter Reservoir Throat Nozzle exit

Pressure (bar) 50 26.4 0.429
Density ð1019 cm�3Þ 121 76.5 4.02

Temperature (K) 300 250 77.2
Mach Number (1) 0 1 3.80
Velocity (m/s) 0 317 670

Medium: air. Entrance diameter 3 mm, throat diameter 1 mm.
Exit diameter 3 mm. Reservoir parameters: p0 = 5 9 106 Pa =
50 bar, T0 = 300 K, w0 = 0 m/s

Table 2.2 Flow variables in
a de Laval nozzle

Parameter Reservoir Throat Nozzle exit

Pressure (bar) 50 24.4 0.218
Density ð1019cm�3Þ 121 78.4 4.627

Temperature (K) 300 225 34.1
Mach Number (1) 0 1 4.84
Velocity (m/s) 0 882.6 1662

Medium: helium. Entrance diameter 3 mm, throat diameter
1 mm. Exit diameter 3 mm. Reservoir parameters: p0 ¼ 5� 106

Pa = 50 bar, T0 ¼ 300 K; w0 ¼ 0 m=s
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Fig. 2.5 Variation of relevant state variables with backing pressure upper five plots, ratio
between exit and throat cross sections middle five plots, and reservoir temperature lower five
plots. Medium: Helium solid red, Argon dashed black, N2 black
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they show similar behavior. For the upper five and the lower five plots, a cross
section ratio of nine was used, for the middle five plots the backing pressure was
set to 50 bar. Looking first at the upper five plots in the figure it can be seen that
the (particle) density and pressure vary linearly with backing pressure. Since

density is measured in particles per cm3 and not in kg=m
3; the two lines for Argon

and Helium overlap showing exactly the same result. The (static) pressure at the
nozzle exit also depends linearly on the backing pressure and, again, Argon and
Helium give the same results. Temperature, velocity, and Mach number do not
depend on the backing pressure at all. It is apparent that the exit velocity is the
only parameter that actually depends on the molecular weight of the gas showing
different results for Argon and Helium.

Turning now to the middle five plots, it is clear that by changing the cross
section ratio between the nozzle exit and throat, the flow parameters at the nozzle
exit readily vary over orders of magnitude, therefore, all plots are in double
logarithmic scale. Again, the exit velocity is the only parameter where Argon and
Helium show different results. The almost linear behavior of density, pressure,
and temperature at the nozzle exit imply a power law dependence on the cross
section ratio. The exit velocity rapidly converges to the maximum attainable
speed which is given by energy conservation (see 2.25). The fact that the Mach
number keeps growing is explained by the falling temperature that lowers the
speed of sound.

The lower five plots show the dependence of the flow conditions at the nozzle
exit on the temperature of the gas reservoir. Particle density and pressure follow
almost perfectly a power law (double logarithmic plots). Interestingly, the exit
temperature varies rather gently with the initial temperature. Since it can be seen
that velocity and, therefore, also the Mach number vary with the reservoir tem-
perature, it represents a convenient way of tuning the velocity and Mach number at
the nozzle exit. Especially the latter one can be of importance because in the case
that supersonic shock fronts are used in the experiment, the ratio of all the flow
parameters before and after the shock only depend on the Mach number (see Eqs.
2.36–2.40).

2.1.5 Cluster Formation in Supersonic Gas Jets

It is a long known fact that high pressure gas jets emanating into vacuum can be a
formidable way of producing large clusters of atoms or molecules [2–6]. This is
due to the high densities and low temperatures that are simultaneously reached in
such jets. Since de Laval nozzles are especially well suited for reaching both—
high density and low pressure—at the nozzle exit, they are especially effective
tools for cluster formation. Since the presence of clusters in a gas jet may have an
influence on any experiments conducted with these jets, a short analysis of the
cluster production in supersonic gas jets is presented.
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Since dimers are the first step in cluster formation, the dimer mole fraction XA2

represents a meaningful measure for the number of clusters to be expected in a gas
jet. The dimer formation goes on continuously from the nozzle throat diameter
downstream until the so-called sudden freeze surface is reached beyond which no
more significant condensation into clusters occurs any more [3]. The position
of this surface is essentially a function of temperature and can be assumed to lie
several nozzle diameters away from the nozzle exit in the case of small diameter
ratios (\4:1) of the de Laval nozzle. Therefore, the final dimer mole fraction
can be regarded an upper limit of the dimer content close to the nozzle exit. In
order to calculate the final dimer mole fraction the following empirical formula is
given in [3]:

XA2 ¼
1
2

qPr3 e
kBT

� �7
5 d�

r

� �2
5

 !5
3

ð2:58Þ

Here, qP is the gas number density, r is the atom size, e is the potential well depth,
kB is Boltzman’s constant, d� is the critical (smallest) diameter of the nozzle.
Values for these parameters can be found in [3] and [7]. For Helium the following
values are used: r ¼ 2:66� 10�10m; e=kB ¼ 10:9 K; and for Argon r ¼ 3:33�
10�10m; e=kB ¼ 144:4 K: In the case of a de Laval nozzle for d� the following
expression is substituted [3], [4]:

d�eq ¼ 0:736 dC cotðaÞ; c ¼ 5=3 ð2:59Þ

d�eq ¼ 0:866 dC cotðaÞ; c ¼ 7=3 ð2:60Þ

where deq� is an equivalent diameter that depends on the gas type defined by the
specific heat ratio c; the half opening angle a; and the throat diameter dC:
According to [2, 3, 8], considerable clustering sets in for mole fractions larger than
0.01. This is shown in Fig. 2.6, where those value pairs of dC and p0 are plotted
that correspond to a value of XA2 of 0.01. In order to have no clusters, parameters
below the lines have to be chosen. As can be seen, this is posing some limits on

(a) (b)

Fig. 2.6 Plots of critical nozzle diameters and backing pressures that lead to a dimer mole
fraction of 0.01 which is considered as the onset of clustering. a Argon. b Helium
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pressure and/or nozzle diameter for Argon whereas for Helium no clusters can be
expected in a realistic pressure and diameter range. For de Laval nozzles, the
expressions given by Eqs. 2.59 and 2.60 must be substituted for dC:
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