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Abstract Serotonin plays an important role in both male and female sexual beha-
viour. In general, reduction of 5-HT function facilitates, whereas enhancement
inhibits sexual behaviour. Most fundamental research on the involvement of 5-HT
in sex has been performed in rats. Selective serotonin reuptake inhibitors (SSRIs)

B. Olivier (D<), J.S.W. Chan, E.M. Snoeren, J.G. Veening, C.H. Vinkers, M.D. Waldinger, and
R.S. Oosting

Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences and Rudolf Magnus
Institute of Neuroscience, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
e-mail: b.olivier@uu.nl; j.s.w.chan@uu.nl; j.g.veening@uu.nl; c.h.vinkers@uu.nl; md@demon.
waldinger.nl; r.s.oosting@uu.nl

J.D.A. Olivier

Division of Psychiatry Dept. Clinical Neuroscience, Karolinska Institutet, KFC Novum Level 6,
Exp 617 Lab 614, SE - 14157 Huddinge, Sweden

e-mail: jocelien.olivier@ki.se

J.C. Neill and J. Kulkarni (eds.), Biological Basis of Sex Differences in Psychopharmacology, 15
Current Topics in Behavioral Neurosciences 8, DOI 10.1007/7854_2010_116
© Springer-Verlag Berlin Heidelberg 2011, published online 4 March 2011



16 B. Olivier et al.

have comparable effects on male and female sexual behaviour in rats; they inhibit it
but only after chronic administration. Activation of the 5-HT 5 receptor facilitates
sexual behaviour in male rats but inhibits sexual behaviour in female rats, suggesting
a differential role for 5-HT 5 receptors in male and female rats. Research on sexual
behaviour in rats with null mutations in the serotonin transporter (SERT) indicated
also a differential role for 5-HT 5 receptors in male and female sexual behaviour.
Evidence exists that different pools of 5-HT 5 receptors have differential roles in
various parts of the cascade of sexual events occurring during sexual interactions.
Roles for other 5-HT receptors are less well defined although 5-HT;g, 5-HT4/8
and 5-HT; receptors seem to be involved. Identification of putative differential or
comparable roles in female and male sexual activities requires more research.

Keywords 5-HT - 5-HT 4 receptor - 5-HTT - 8-OH-DPAT - Gender - Hypersexual
behaviour - Hyposexual behaviour - Paroxetine - Premature ejaculation - Retarded
ejaculation - Serotonin - Serotonin receptor knockout rat - Serotonin transporter -
SERT polymorphism - Sexual behaviour - SSRI - WAY 100635

1 Introduction

Sexual behaviour in rodents (and we strictly focus on the rat) happens when animals
reach adulthood and engage in behaviours that result in the joining of a male and
female, ending in copulation, with the intent to reproduce. The female rat’s sexual
behaviour is dependent on the reproductive cycle, whereas the male’s sexual
behaviour is not. The female’s sexual behaviour is strongly dependent on peripheral
gonadal steroids that have both peripheral and central nervous system (CNS)
effects. Steroids act on the brain to induce sexual receptivity and all associated
behaviours (proceptive, receptive and pacing behaviours). Quite some work has
been performed to delineate the neural circuitry and neurochemistry of female
behaviour, especially from lordosis, a behaviour that is evoked by external stimuli,
normally, a male rat. Lordosis behaviour is only observed when the female is
hormonally (or naturally) primed (oestradiol + progesterone) and the circuitry
involves sensory, brain, spinal cord and motoric activation. In the CNS, the
ventromedial nucleus of the hypothalamus (VMH), the preoptic area (POA), the
midbrain central gray (MCG) and two areas in the spinal cord (cervical and lumbar)
are the key structures. All structures contain oestrogen receptors that seem essential
for the final integrative performance of full sexual behaviour. Many neurotransmit-
ter systems in the CNS regulate or modulate (aspects of) sexual behaviour, includ-
ing serotonin. There is strong evidence that the serotonergic modulation of sexual
behaviours mainly occurs at the level of the VMH and POA.

In male rodents (rat), testosterone (T) acts during development to promote
genital development and organization of the CNS neural circuitry. In adulthood,
the neural circuitry along with the appropriate sensory and motoric systems controls
the male’s sexual motivation and performance. Male rat’s sexual behaviour
includes penile erection, sexual motivation and mating behaviour. All can be
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studied while observing the mating behaviour of a male rat in direct interaction with a
receptive female. In such an interaction, the male approaches the female, sniffs her
and starts mounting (the female displays lordosis). The male displays a series of
mounts and intromissions that end in ejaculation. After an ejaculation, the male
displays for some time sexual quiescence followed by the next series of mounts and
intromissions, leading again to ejaculation, and so on. In the male rat, the testicular
secretion of T occurs throughout the year, although pulsatile patterning occurs over
the day. Seasonal variations in behavioural responsiveness to T of male rats have not
been found, making the male (and female) rat ideal experimental animals to study the
neural mechanisms of, and neurotransmitter involvement in, sexual behaviour.

The neural systems involved in male sexual behaviour seem to involve many
structures that are also involved in female sexual behaviour, although clear differ-
ences are also notable. The POA and the bed nucleus of the stria terminalis (BNST)
are core structures via which T acts to activate male sexual behaviour. In particular,
the POA seems an integrative structure in coordinating the actions of T on both
motivational and consummatory aspects of male sexual behaviour. Several neuro-
chemical systems, including peptidergic, dopaminergic and serotonergic systems,
play a role in mediating sexual behaviour.

2 Serotonin and Sexual Behaviour

The focus of this chapter is the role of serotonin in male and female sexual
behaviour in the rat. There is hardly any research performed on gender differences
in the development and adult functioning of the 5-HT system in the brain and spinal
cord. Seeing the overlap, but also the divergence of the various neural structures
and hormonal receptor systems in the male and female rat CNS, it may be difficult
to predict the effects of psychopharmacological treatment with serotonergic ligands
on male and female sexual behaviour.

Serotonergic psychopharmacology in humans is rather limited; only the selec-
tive serotonin reuptake inhibitors (SSRI) are selective serotonergic drugs exten-
sively used in patients, whereas most other drugs with some serotonergic profile
exert inherently other mechanisms like dopamine D, receptor antagonism (olanza-
pine, risperidone, buspirone). In the latter case, it is often impossible to purely
deduct the specific contribution of the serotonergic component on the putative
effects on sexual behaviour or sexual dysfunctions induced. SSRIs are widely
used to treat depression both in human males and females and are notoriously
implicated (Zemishlany and Weizman 2008) in inducing sexual disturbances
(Kennedy and Rizvi 2009; Balon 2006). However, a complicating factor is that
major depression per se is often (if not always) associated with sexual disturbances
(e.g. in libido, motivation, erection: Kendurkar and Kaur 2008; Kennedy and Rizvi
2009). SSRIs enhance serotonergic neurotransmission which is generally believed
to inhibit sexual behaviour, both in males and females (Zemishlany and Weizman
2008; Williams et al. 2006; Kennedy and Rizvi 2009; Kendurkar and Kaur 2008).
This is confirmed by various studies showing that SSRI antidepressants induce
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sexual disturbances, in addition to already present dysfunctions due to the underly-
ing depression, in both males and females (Cyranowski et al. 2004; Regitz-Zagrosek
etal. 2008). No studies in humans have looked into the brain mechanisms underlying
the SSRI-induced sexual dysfunction and putative gender differences. While it
is still assumed that high extracellular 5-HT levels (e.g. after SSRI treatment)
are needed to promote antidepressant activity, the disadvantage is the directly
associated decrease in sexual behaviours. The emerging pattern seems to indicate
that SSRIs, which enhance serotonergic neurotransmission in the brain, have
similar inhibitory effects in human males and females. In line with the latter notion
is the finding (Sugden et al. 2009) that gene expression for 5 serotonergic genes
(including 5-HTT) did not differ between genders in postmortem human brains.

3 Serotonin, Serotonergic Receptors and Male Sexual
Behaviour

3.1 Introduction

The importance of 5-HT in male sexual behaviour has been demonstrated by
numerous studies showing that, for instance, lesions of the brainstem raphé nuclei
(Albinsson et al. 1996) and 5-HT depletion (Tagliamonte et al. 1969) facilitate sexual
behaviour. On the other hand, administration of 5-hydroxytryptophan, the direct
precursor of 5-HT, 5-HT itself and 5-HT releasers such as MDMA and fenfluramine,
inhibits sexual behaviour (Ahlenius et al. 1980; Dornan et al. 1991; Foreman et al.
1992; Gonzales et al. 1982). Altogether these findings suggest that a decrease
in 5-HT neurotransmission may be involved in facilitation, whereas an increase in
5-HT neurotransmission may result in inhibition of male sexual behaviour.

3.2 SSRIs and Male Sexual Behaviour

The frequently reported sexual effects of SSRIs in men demonstrate an important role
of 5-HT in human ejaculatory behaviour. In several human studies we and others
have demonstrated that SSRIs including paroxetine, sertraline and fluoxetine are able
to delay ejaculation in premature ejaculation (for review, see Waldinger 2002; De
Jong et al. 2006). Moreover, these studies show that SSRIs exert only a minimal
ejaculation delay in the first week that is often not clinically relevant. A clinically
relevant ejaculation delay occurs gradually after 2-3 weeks of daily treatment.
Interestingly, despite the putative similar underlying mechanism of action of SSRIs
— briefly, preventing the reuptake of 5-HT, thereby elevating 5-HT levels — not all
SSRIs delay ejaculation to the same extent. In humans, the tricyclic antidepressant,
clomipramine and the SSRI, paroxetine have stronger ejaculation-delaying effects
after 4—6 weeks of daily treatment than other SSRIs (Waldinger et al. 1998, 2001a, b).
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3.3 Acute and Chronic SSRI Administration in Male Rats

Analogous to the human situation, in male rats a distinction can be made between
the effects of acute and chronic SSRI administration on ejaculation. Acute admin-
istration of various SSRIs, such as citalopram, paroxetine, sertraline, fluoxetine and
fluvoxamine, did not or marginally delay ejaculation (Mos et al. 1999; Ahlenius and
Larsson 1999; Matuszcyk et al. 1998). On the other hand, chronic administration of
fluoxetine (Matuszcyk et al. 1998; Cantor et al. 1999; Frank et al. 2000) and
paroxetine (Waldinger et al. 2001a, b) delayed ejaculation in male rats. Nonethe-
less, as in humans, not all SSRIs potently delay ejaculation after chronic adminis-
tration in male rats: fluvoxamine slightly affected some aspects of copulatory
behaviour, but did not affect ejaculation (Waldinger et al. 2001a, b; De Jong
et al. 2005a). It is unclear why the various SSRIs differ in their ability to delay
ejaculation after chronic administration. The delay in onset of the therapeutic effect
of SSRIs in depression and anxiety disorders has been related to adaptive changes
of serotonergic autoreceptors (Haddjeri et al. 1998; Le Poul et al. 2000), and it is
conceivable that the ejaculation-delaying effects of various SSRIs are due to
differential adaptive changes of 5-HT receptors.

An example of the effects of an SSRI antidepressant (paroxetine) in male rat
sexual behaviour is shown in Fig. 1. The effect is clearly seen in the number of
ejaculations per 30-min test in sexually trained animals. Acutely (Day 1: 30 min
after injection) paroxetine does not inhibit sexual behaviour whereas after 7 (sub-
chronic; 5 and 10 mg/kg) or 14 days treatment (chronic; 2.5, 5.0 and 10.0 mg/kg)

ejaculation frequency

F.ig. 1 The mean number of £ 3.5 1 —a—vehicle
ejaculations + SEM of male 7 301 —a—2.5mg/kg
rat groups treated with S 254 —v—5mg/kg
vehicle or different doses of % 2.0 ——10mg/kg
the SSRI paroxetine (2.5, 5.0 = 1
and 10.0 mg/kg IP) is given S 51
after acute (30 min pre- g 1.0 1
treatment), sub-chronic S 0.5+
(7 days; once daily) and T 00 . . . .
chronic (14 days: once daily) acute subchron chronic washout
treatment. One week after treatment
cessation of treatment . 1st ejaculation latency
(washout), sexual behaviour 2000 -
was again measured but now - === vehicle
without any treatment. Sexual - N == 2.5mg/kg
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. «©
hormonally brought into )
oestrus (method: Chan et al. Y T T T T
2010). *p < 0.05 compared acute subchron chronic washout
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paroxetine strongly (and dose dependently) reduces sexual behaviour. The effect is
reversible as animals return to their pre-testing level 1 week after cessation of
treatment. A similar picture emerges for the first ejaculation latency that is not
affected acutely, but is dose-dependently enhanced after 7 days and 14 days of
treatment, and returns to baseline 1 week after cessation of treatment.

Ahlenius and Larsson (1999) have studied the mechanism of SSRI-induced
delay of ejaculation in more detail and showed that acute treatment with citalopram
did not affect ejaculatory behaviour. Co-administration of the 5-HT;, receptor
antagonist WAY-100635 with citalopram strongly delayed ejaculation latencies,
suggesting 5-HT 5 receptor involvement in the effect of citalopram on ejaculation.
De Jong et al. (2005a, b) also showed that citalopram, acutely or chronically, while
not inhibiting sexual behaviour itself, when combined with a sexually inactive dose
of WAY 100635 completely abolished sexual behaviour.

We studied this phenomenon further and confirmed earlier findings (Looney
et al. 2005) that a dose as low as 0.01 mg/kg of WAY100635 facilitated the
behaviourally inactive acute 10 mg/kg paroxetine dose and led to strong inhibition
of male sexual behaviour (Fig. 2). The data suggest that the inhibitory action of
SSRIs after (sub) chronic treatment are related to changes at certain 5-HTa
receptors after long-term treatment.

ejaculation frequency

ejaculation frequency (#)

Fig. 2 Sexually trained male
rats were acutely injected
with saline or 10 mg/kg
paroxetine (IP; 30 min before
testing) immediately
followed by an injection of
either saline or a dose (0.03 2000 -
and 0.3 mg/kg IP) of the
5-HT 5 receptor antagonist
WAY100635. During an
ensuing sexual behaviour test
of 30 min, the sexual
behaviour of the male

was scored. In the figure,

the mean number of
ejaculations £ SEM is given.
PAR paroxetine, WAY X
WAY100635, VEH vehicle. &
*p < 0.05 compared to ®
vehicle

1000

ejaculation latency (s)
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Subsequently, it was found that the ejaculation-delaying effects of the combina-
tion of citalopram and WAY 100635 could be fully blocked by a selective 5-HT g
receptor antagonist, suggesting a role for this receptor subtype in the delay of
ejaculation (Hillegaart and Ahlenius 1998). Interestingly, a previous study from
the same laboratory also suggested a role of the 5-HT ;g receptor in the delay of
ejaculation. In this study, it was shown that the 5-HT g receptor agonist anpirtoline
dose-dependently delayed ejaculation in rats (Hillegaart and Ahlenius 1998).

3.4 SERT-KO Rats and Male Sexual Behaviour

In humans, the SERT plays a prominent role in the homeostasis of serotonergic
neurotransmission. Polymorphisms in the promoter region of the SERT influence
the activity of SERT, and the two length alleles (S and L allele) have functional
consequences for the function of the 5-HT system (Murphy and Lesch et al. 2008).
L and S (LL > LS > SS) generate allele-dependent 5-HT activity with associated
functional consequences (Lesch et al. 2008). Rats do not possess such promoter
length polymorphisms but genetic knockout of the SERT gene might generate rat
models of the S-allele versions of the human SERT. Therefore, SERT '~ and
SERT"~ can be compared to wild-type (SERT™*) male rats and their sexual
behaviour studied (Chan et al. 2011). It was expected, in analogy to treatment with
chronic SSRI treatment, that SERT '~ and SERT*'~ rats would display a lowered
sexual behaviour compared to SERT** rats.

All rats (30 per genotype) were trained up to seven times (once weekly a test of
30 min) and gene knockout rats indeed showed lower sexual performance than
wild-type rats. On average the mean number of ejaculations at week 7 was 1.6 for
SERT**, 1.1 for SERT*'~ and 0.7 for SERT /" rats (Fig. 3), a significant decrease

2.0 1

m T
— HET
% mmm KO

0.5 4

Ejaculations per 30 min (mean)
o

0.0 -
1 2 3 4 5 6 7

Successive weekly 30-min sexual test

Fig. 3 Development of sexual behaviour (mean number of ejaculations/test) in male wild-type
(SERT**, WT), heterozygous (SERT*~, HET) and homozygous (SERT/~, KO) rats tested
weekly over 7 weeks in a sexual behaviour test of 30 min with an oestrus female. *p < 0.05
compared to WT animals
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Fig. 4 Effects of the 5-HT 5 receptor agonist 8-OH-DPAT (s.c.) on ejaculation frequency over a
30-min test (a), latency to first ejaculation (b), first ejaculatory series mounts (c¢) and first
ejaculatory series intromissions (d) of SERT** (+/+) and SERT '~ (—/—) animals. *p < 0.05
compared to wild type (+/+); a: p < 0.05 compared to vehicle treatment

for the homozygote gene knockout. The heterozygote KO was not different from
the wild type.

Next, the 5-HT /7 receptor agonist +/—8-OH-DPAT was tested. 5-HT 5 stimula-
tion has pro-sexual activities in rats which also occur in the three genotypes. Although
the basal level of sexual behaviour (number of ejaculations, ejaculation latency, post-
ejaculatory latency) in the SERT /"~ is lower than in the other two genotypes (Fig. 4),
the stimulant effect of 8-OH-DPAT in all three genotypes is similar, indicating that 5-
HT, A receptors mediating this effect have not changed [(de)sensitized].

The 5-HT, A receptor antagonist WAY 100635 had no effects in the WT and
heterozygote rats but had a dose-dependent inhibitory effect in the SERT-KO
(Fig. 5), suggesting that a different pool of 5-HT; receptors is involved in its
action and that these receptors appear sensitized in the SERT-KO. Remarkably, the
heterozygous SERT" ™ rats did in no way differ from the WT rats. Heterozygous
SERT-KO rats have intermediate enhanced extracellular 5-HT levels compared
to WT and SERT-KO (SERT '~ > SERT"~ > SERT*"). Apparently, like the
effective dose of SSRIs that need to occupy at least 80% of the SERTs before
antidepressant efficacy is observed (Kugaya et al. 2003), the SERT"~ still has
sufficient SERT capacity (50%) left to show undisturbed sexual behaviour.

To summarize, the sexual side effects of SSRIs are still not fully understood.
Nevertheless, some recent findings and genetic evidence suggest that adaptive
changes in the 5-HT system and probably its interactions with neuroendocrine
systems (De Jong et al. 2007) may be responsible for their sexual effects.
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wild-type (+/+) and serotonin transporter knockout (—/—) animals. *p < 0.05 compared to wild
type (+/+); a: p < 0.05 compared to vehicle treatment

3.5 Serotonin Receptor Agonists and Antagonists and Ejaculation
in Male Rats

As described above, activation of 5-HT;g receptors has been associated with
delaying ejaculation in male rats. 5-HT), receptors are also implicated in modulation
of sexual activity, e.g. shown by the 5-HT,4/ ¢ receptor agonist DOI-induced
inhibition of sexual behaviour (Klint and Larsson 1995). On the other hand, several
other studies have shown that 5-HT;4 »c receptor agonists generally inhibit sexual
behaviour by decreasing the number of animals that initiated copulation, but do not
affect ejaculation latencies in animals that do initiate copulation (Ahlenius and
Larsson 1998; Klint et al. 1992; Watson and Gorzalka 1991). Thus, it appears that
5-HT, receptors in general inhibit sexual behaviour, but their precise role in the
regulation of ejaculation is not entirely clear.

A facilitatory role on ejaculation has been ascribed to activation of 5-HT,
receptors, and various selective agonists for this receptor, such as 8§-OH-DPAT
(Ahlenius and Larsson 1990), FG-5893 (Andersson and Larsson 1994) and flesi-
noxan (Haensel and Slob 1997; Mos et al. 1991), potently facilitate sexual beha-
viour and decrease ejaculation latencies. Nevertheless, the underlying mechanisms
of the facilitatory effects of 5-HT 5 receptor agonists are still unclear. A possibility
for the mechanism of action may be activation of presynaptic 5-HT 5 receptors that
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Table 1 Mean number of ejaculations, mounts and intromissions and ejaculation latency (in
seconds) for sexually naive male rats during a 15-min test with a sexually active, oestrus female

Drug (route) Dose (mg/kg) EF MF IF EL (s)
8-OH-DPAT (SC) 0 0.1 10.5 8.3 869
0.1 1.5% 6.5% 7.6 351°
0.2 1.9% 3.5% 5.1 187%
04 1.7¢ 1.1# 1.1% 238"
Flesinoxan (IP) 0 0.3 13.9 12.2 854
0.1 1.0° 7.9 13.4 636"
0.3 1.3 5.5° 9.8 459°
1.0 1.8% 3.3° 8.2 281%
Buspirone (IP) 0 0.3 10.3 9.9 860
3.0 1.2% 7.0 11.3 502°
10.0 0.1 0.3* 1.8* 849
Ipsapirone (IP) 3.0 0.9(% 7.9 11.3 502%
10.0 1.5% 10.9 12.2 636"

All data are depicted as means
EF ejaculation frequency, MF mount frequency, /F intromission frequency, EL ejaculation latency
“Significantly different (p < 0.05) from the corresponding vehicle (0 mg/kg) dose

will lead to an inhibition of 5-HT neuronal firing and consequently results in
facilitation of sexual behaviour as described above. Alternatively, activation of
postsynaptic 5-HT ;5 receptors may result in facilitation of sexual behaviour.
Evidence for a postsynaptic mechanism of action is provided by studies demon-
strating that injection of 8-OH-DPAT directly into the medial preoptic area potently
facilitated sexual behaviour and lowered ejaculatory threshold (Matuszewich et al.
1999). Administration of 5-HT 5 receptor antagonists does not lead to any change
in sexual behaviour (Ahlenius and Larsson 1999; De Jong et al. 2005a; Sura et al.
2001). Moreover, the effects of 5-HT 5 receptor agonists can be antagonized by
5-HT 5 receptor antagonists. When 5-HT 5 receptor antagonists are combined with
SSRIs (after acute or chronic administration), the inhibitory action of SSRIs is
facilitated indicating a role for the 5-HT 5 receptor in the inhibitory action of SSRIs
in male sexual behaviour (De Jong et al. 2005a, b; Table 1)

3.6 Animal Models of Premature and Retarded Ejaculation

Most of our current understanding of the anatomy and neurobiology of sexual
behaviour is based on animal studies using rats that are sexually experienced
and display normal sexual behaviour. Interestingly, the comparable ejaculation-
delaying effects of SSRIs in humans and rats suggest high translational validity
with regard to the regulation of ejaculation. Nevertheless, face validity is low when
one tries to extend results obtained in rats that display normal sexual behaviour to
dysfunction such as premature and retarded or even (an)-ejaculation. Over the last
decades, several groups have studied rats that display hyposexual behaviour and are
referred to, by different investigators, as sexually inactive, sluggish, impotent or
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Fig. 6 More than 1,900 male rats were tested over a period of 5 years and trained weekly for
4 weeks in a sex test of 30 min against a female rat brought into behavioural oestrus. The graph
represents the number of animals that displayed: O, 1, 2, 3, 4 or 5 ejaculations during the last
training test. Animals with O or 1 ejaculations/test were depicted as “slow” or “sluggish”; animals
with two to three ejaculations/test as “normal” and animals with more than three ejaculations/test
as “fast”

non-copulating rats. Recent findings suggest the presence of neurobiological differ-
ences associated with the hyposexual behaviour that these rats display. On the other
hand, hypersexual behaviour can also be provoked pharmacologically. However,
there are only few studies that have studied rats that are hypersexual by nature.
Thus, investigating animals that do not display normal sexual behaviour may help
understanding of the underlying neurobiological mechanisms and hopefully will
provide further insight in the aetiology of ejaculatory dysfunction.

In our laboratory, we have found (Pattij et al. 2005; Olivier et al. 2005) that male
outbred Wistar rats display sexual “endophenotypes”. In subsequent cohorts of
100-120 male rats, we consistently found rats that display a very low (0—1), normal
(2-3) or high (4-5) number of ejaculations in 30-min tests with a receptive female
even after four to eight training tests. The behaviour of these males seems very
stable, and we suggest the low performing animals as putative model for delayed
ejaculation in humans and the high performing rats as model for premature ejacu-
lation (Pattij et al. 2005; Olivier et al. 2006). Figure 6 shows the distribution of these
“endophenotypic” sexual phenotypes in 1,982 male rats we tested thus far.

These various endophenotypes are now the subject of pharmacological studies.

3.7 Studies with Rats Displaying Hyposexual Behaviour

It was already demonstrated in early experiments in the 1940s that rats reared in
isolation are either not capable to achieve ejaculation or remain sexually inactive,
after repeated exposure to a receptive female (Beach 1942). In contrast, rats that
were reared in groups with either same-sex or hetero-sex cage mates did not show
these clear deficits in copulatory behaviour. Importantly, in most but not all of the
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isolation-reared males, sexual performance gradually improved with experience.
These early findings suggest that experience and learning play an important role in
rat copulatory performance, but apparently do not exclusively determine the ability
to successfully copulate until ejaculation. In early studies focussing on rats dis-
playing different levels of sexual performance, in our laboratory we have tried to
create hyposexual behaviour in male rats by manipulating the level of sexual
experience (Mos et al. 1990). To this end, we have studied the sexual behaviour
of 278 sexually naive male Wistar rats in 15-min tests with an oestrus female. From
those 278 males, 23 showed no sexual activity at all, i.e. no intromissions and
maximally one mount was scored during the test. From the remaining 255 rats, 211
displayed sexual activity, but failed to ejaculate during the test. The average
ejaculation latency of the 44 ejaculating males was 620 + 28 s. If sexually naive
male rats were treated with 5-HT 5 receptor agonists, these males performed quite
well (Table 1). In particular, the two full 5-HT;, receptor agonists (4)-8-OH-
DPAT and flesinoxan enhanced sexual behaviour to the level of sexually experi-
enced male rats. The partial 5-HT 5 receptor agonists buspirone and ipsapirone also
facilitated sexual activity. These findings indicate that naive male rats are able to
perform sexual activities reminiscent of sexually “experienced” rats in a very short
time interval. Apparently, sexually naive rats may be influenced by certain factors
that can be overcome by treatment with psychoactive drugs, at least 5-HT;
receptor agonists and (not shown here) o,-adrenoceptor antagonists like yohimbine
and idazoxan (Mos et al. 1990, 1991).

These pharmacological studies strongly suggest that neurobiological mechan-
isms underlie the differences observed in basal sexual behaviour.

3.8 Studies with Rats Displaying Hypersexual Behaviour

In contrast to studies focussing on rats that are hyposexual by nature, reports of rats
that are hypersexual by nature are scarce. Nevertheless, numerous studies have
indicated that a variety of selective pharmacological compounds, neurotransmitters
and neuropeptides may facilitate sexual behaviour (Bitran and Hull 1987; Argiolas
1999). Most interesting are those studies in which male rat sexual behaviour is
potently facilitated and in which the behaviour shares some of the characteristics of
human premature ejaculation. Indeed, some of the clinical symptoms of premature
ejaculation can be evoked pharmacologically in male rats. For instance, various
selective 5-HT 5 receptor agonists have been shown to potently decrease ejacula-
tion latencies and intromission and mount frequencies. Apart from selective
5-HT, 5 receptor agonists, a selective dopamine D, receptor agonist SND-919
(Ferrari and Giuliani 1994) has also been shown to decrease ejaculation latencies
in rats, although its effects were much less pronounced compared to the effects of
5-HT 5 receptor agonists.

Not only can pharmacological manipulations facilitate ejaculatory behaviour,
but “tactile” stimulation, such as shock and tail-pinching (Barfield and Sachs 1968;
Wang and Hull 1980), also facilitate ejaculatory behaviour. Presumably these
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facilitatory effects are mediated by activation of the brain dopaminergic system
(Leyton and Stewart 1996).

3.9 Conclusion: Serotonin and Male Sexual Behaviour

Research in humans and rats has indicated that modulating 5-HT levels in the CNS
changes ejaculatory thresholds and associated sexual behaviour. Activation of
5-HT 5 receptors and blockade of 5-HT,¢ receptors facilitates sexual behaviour,
whereas activation of 5-HT;g and 5-HT,, receptors inhibits it. SSRIs, which
facilitate serotonin neurotransmission, inhibit sexual behaviour but only after
chronic administration or genetic inactivation of the SERT gene. There is a paucity
of data on the putative role of other 5-HT receptors in the modulation of male sexual
behaviour.

4 Serotonin, Serotonergic Receptors and Female Sexual
Behaviour

4.1 Introduction

The pharmacology of sexual behaviour in females is rather restricted compared to
males. The majority of work has focused on one aspect of it: the lordosis reflex.
Female sexual behaviour consists of attractivity, proceptivity and receptivity.
Attractivity reflects behaviour, smell and sounds by the female that attract the
male and most often leads to proceptive behaviour of the female, including solici-
tation, hopping and darting. Receptivity is reflected in the lordosis reflex required
for successful copulation. Beach (1948) introduced the lordosis quotient (LQ =
lordosis to mount ratio X 100) reflecting the lordotic response of the female to a
mounting male. The LQ is the most frequently used parameter when studying
effects of hormones and drugs on female sexual behaviour (cf. Uphouse 2000;
Uphouse and Guptarak 2010). The lordosis reflex (arching of the back, elevation of
the rump, dorsoflexion of the tail and extension of the neck) is a very stereotyped
posture in response to a mounting male (Pfaff 1999). The tactile stimulation
stimulates cutaneous receptors in the flank, rump, tail base and perineum, which
feed their information to the brain where primarily areas in the hypothalamus
(notably the VMH) are crucial in the control of lordosis. Oestrogen (Er,) receptor
activation is required to induce the lordosis reflex, and there is a minimum amount
of circulating oestrogen needed to reach a certain lordosis threshold. Moreover, a
latent period (minimally 16 h) is needed for receptivity development. Normally,
both oestrogen and progesterone are used to optimally organize the libido reflex,
but progesterone is not needed if the oestrogen dose is extra high. Adding proges-
terone reduces the amount of oestrogen needed to induce lordosis behaviour.
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Pharmacological studies often use submaximal oestrogen (or progesterone) doses in
ovariectomized females which produce submaximal lordosis quotients and generate
a model that can be pharmacologically manipulated. Early studies showed that
reduction of monoamine levels in the brain (e.g. by pCPA or reserpine) activated
lordosis in suboptimally oestrogen-primed ovariectomized rats, while activation of
5-HT function inhibits it (for review, see Uphouse 2000; Uphouse and Guptarak
2010). With the emerging availability of selective 5-HT receptor ligands more
specific studies could be performed, but still serotonergic psychopharmacology
has been mainly restricted to 5-HT; 5 and 5-HT, receptors.

Activation of 5-HT;, receptors leads to inhibition of the lordosis reflex in
hormonally suboptimally and optimally primed female rats (Ahlenius et al. 1986;
Mendelson and Gorzalka 1986). Work from Uphouse’s group (Uphouse 2000) has
found that the underlying mechanism of this inhibition is mediated via postsynaptic
5-HT 5 receptors in the hypothalamus, specifically, although not exclusively, in the
VMH. Blocking of these 5-HT 5 receptors, however, did not lead to facilitation
of the lordosis reflex which also does not happen after systemic administration of
5-HT;5 receptor antagonists (Uphouse 2000), a finding we confirmed in our
laboratory (see SERT-KO data later).

The role of 5-HT,g receptors in lordosis is somewhat disputed (Uphouse
and Guptarak 2010). Notwithstanding the limited evidence and lack of selective
agonists, data suggest that activation of presynaptic 5-HT, g receptors facilitates
lordosis (Mendelson 1992), whereas blockade of 5-HT;p receptors inhibits it
(Uphouse et al. 2009).

Activation of 5-HT,4,oc receptors (e.g. by DOI) facilitates lordosis in subopti-
mally primed rats (Mendelson and Gorzalka 1990), whereas 5-HT,4,5c receptor
antagonists inhibit it (Hunter et al. 1985; Mendelson and Gorzalka 1985). These
effects seem also to be mediated in the hypothalamus probably in close interaction
with those mediated by 5-HT 5 receptors (Uphouse 2000; Uphouse and Guptarak
2010).

5-HTj receptors do not play an important role in female sexual behaviour; the
few studies reported (for overview, see Uphouse and Guptarak 2010) do not point to
central 5-HTj; receptors as a primary target. Similarly, an inhibitory role in lordosis
of 5-HT receptors has been suggested (Siddiqui et al. 2007), but these data are
much linked to 5-HT 5 receptor modulation and research involving selective 5-HT,
receptor agonists is required.

As SSRIs are reported to induce a high incidence of sexual disturbance in
human females (Balon 2006; Montgomery et al. 2002), it is relatively surprising
that only a few studies have been performed in rats. Acute treatment with SSRIs
reduces lordosis in hormonally primed ovariectomized rats (Frye et al. 2003;
Sarkar et al. 2008). Because sexual side effects of SSRIs in humans are particu-
larly disturbing after chronic administration, animal studies using chronic SSRIs
are particularly relevant. Matuszcyk et al. (1998) found that chronic fluoxetine
reduced sexual behaviour in female rats. This and other studies (Maswood et al.
2008; Uphouse and Guptarak 2010) are complicated by the fact that natural
cycling females were used and fluoxetine affected the cycle, at least in a large
number of the animals. A better strategy would be to chronically treat
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ovariectomized female rats with an SSRI, prime them with a dose of oestrogen
and progesterone to induce lordosis and to test the effects of the SSRI in this
model. Sarkar et al. (2008) found, using this paradigm, that fluoxetine acutely
reduced lordosis but this effect was attenuated after sub-chronic fluoxetine
administration, suggesting that some tolerance for the sexual inhibitory effect of
the SSRI had occurred.

4.2 SERT-KO Rats and Female Sexual Behaviour

An alternative way to study the role of the SERT in female sexual behaviour is
using genetically modified animals, in this case the SERT-KO rat made by ENU
mutagenesis (Smits et al. 2006). Female Wistar intact rats were tested in a paced
mating design where sexually experienced males were restricted to one side of a
cage, whereas the female (brought into behavioural oestrus by a high dose of
oestradiol) could spend time on both sides of a divider which allowed passage of
the female (but not the male) through a couple of openings in the divider. Figure 7
shows that mutant SERT genotypes (SERT*~ and SERT /™) were not different
from wild types (SERT™*) in any aspect of proceptive or receptive behaviour over
three consecutive tests of 30 min. This indicates that permanent absence of the
serotonin transporter has no influence on female sexual behaviour under normal
conditions. Treatment with a 5-HT;, receptor agonist (+/—8-OH-DPAT) dose-
dependently reduced proceptive behaviours (b) in all three genotypes, but in the
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Fig. 7 Effects of three doses of 8-OH-DPAT (0.01, 0.1 and 1 mg/kg, SC) and one dose of
WAY100635 (0.1 mg/kg, IP) on ejaculation frequency over 30-min test (a), latency to first
ejaculation (b), first ejaculatory series mounts (c) and first ejaculatory series intromissions (d) of
SERT** (+/+) and SERT '~ (—/—) animals. *p < 0.05 compared to wild type (+/+)
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Fig. 8 In a paced mating situation (Snoeren et al. 2010) female wild-type (SERT**), heterozy-
gous (SERT” ~) and homozygous (SERTf/ 7) rats were brought into behavioural oestrus by
hormonal priming and tested against a sexually experienced male rat. Females could pace the
behaviour and stay in- or outside the male compartment. The number of proceptive [hopping and
darting (a)] and receptive behaviours [Lordosis quotient and Lordosis score (c and d)] and the time
spent in the male compartment (b) were measured

SERT-KO the dose-response curve clearly shifted to the right, indicative of a
desensitized 5-HT ;5 receptor (Fig. 8). However, time spent with the male was
not affected (a), showing that the decreased proceptive behaviour was not caused by
a diminished interaction with the male. Treatment with a 5-HT 5 receptor antago-
nist (WAY100635) did not affect any behaviour alone [(c) and (d)], whereas a
selected dose of WAY 100635 (0.1 mg/kg IP) was able to antagonize the 8-OH-
DPAT-induced reduction in proceptive behaviour (f). Apparently, normal female
sexual behaviour is not dependent on the functional status of 5-HT 5 receptors, but
when challenged 5-HT; receptors appear desensitized in homozygous, but not
heterozygous SERT-KO rats (Fig. 9).

5 Conclusions

The neurotransmitter serotonin clearly plays a role in male and female sexual
behaviour (Table 2). Lowering serotonergic function seems to facilitate and
enhancing it to inhibit sexual behaviour. The availability of blockers of the
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Fig. 9 Female wild-type (SERT**), heterozygous serotonin transporter knockout (SERT* ™)
and homozygous serotonin transporter knockout (SERT7) rats brought into behavioural
oestrus were treated with the 5-HT 5 receptor agonist +/—8-OH-DPAT (a); the 5-HT 5 receptor
antagonist WAY 100639 (b) or a combination of selected doses of 8-OH-DPAT (0.3 mg/kg)
and WAY100639 (0.3 mg/kg) (c¢). The left part of each figure shows the time spent by the
female in the male compartment; the right part the number of proceptive behaviours (hopping
and darting) performed by the female during the test. The test was performed using a
paced mating design in which the male and female were separated by a perforated wall that
could be crossed by the female but not by the male. The female decides whether she wants

to spend time with the male and receive mounts, intromissions and ejaculations. *p < 0.05
compared to wild type
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Table 2 Summary of the effects of various serotonergic ligands on male and female sexual
behaviour in rats after acute or chronic treatment

Target/ligand Treatment Male sexual Female sexual
behaviour behaviour

SERT/SSRI Acute = =
SERT/SSRI Chronic 1 nd

5-HT; A R agonist Acute T i}

5-HT; A R agonist Chronic 1 nd

5-HT; A R antagonist Acute = =

5-HT; A R antagonist Chronic nd nd
5-HT;g R agonist Acute 1 T

5-HT ;g R agonist Chronic nd nd
5-HT;g R antagonist Acute = |

5-HT; R antagonist Chronic nd nd
5-HT,a,c R agonist Acute l T
5-HTa/c R agonist Chronic nd nd
5-HT,a,c R antagonist Acute l !
5-HT;/c R antagonist Chronic nd nd

5-HT; R agonist Acute nd 1

5-HT5 R agonist Chronic = nd

5-HT; R antagonist Acute = =

5-HT; R antagonist Chronic = nd

= not affected, nd not determined, T enhanced, | lowered, R receptor, SSRI selective serotonin
reuptake inhibitor, SERT serotonin transporter

serotonin transporter and ligands for various serotonergic receptors has led to
studies on male and female rat sexual behaviour that shed light on the contribu-
tions of individual receptors/transporter in male and female sexual function.
SSRIs, blocking the SERT, generally lead to inhibition (after chronic treatment)
of male and female sexual behaviour in agreement with the theory that enhance-
ment of serotonergic function inhibits sexual behaviour. 5-HT 5 receptor activa-
tion facilitates male ejaculatory behaviour but inhibits female lordosis behaviour,
suggesting an opposing role for this receptor in males and females. Clear-cut
roles for other serotonergic receptors are less developed and need considerable
research efforts.

Genetic manipulation of the SERT in rats indicated a differential influence of the
absence of the SERT in male and female sexual behaviour; KO males, but not
females, had lower baseline sexual activities. 5-HT;, receptors were
not desensitized in male KO, but were desensitized in females, indicating a differ-
ential role of various 5-HT;  receptor pools in male and female sexual behaviour.
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