Chapter 2
Open Cloud Computing Interface
in Data Management-Related Setups

Andrew Edmonds, Thijs Metsch, and Alexander Papaspyrou

Abstract The Cloud community is a vivid group of people who drive the ideas of
Cloud computing into different fields of Information Technology. This demands
for standards to ensure interoperability and avoid vendor lock-in. Since such
standards need to satisfy many requirements, use cases, and applications, they
need to be extremely flexible and adaptive. The Open Cloud Computing Interface
(OCCI) family of specifications aims to achieve this goal: originally developed for
the deployment of infrastructure Clouds, it can also be used in different service
and deployment models. This article will outline the OCCI specifications and
demonstrate how they can be used in data management-related setups. Not only
can OCCI be easily integrated but it can also be used to deploy data-centric
applications (which are secured by SLAs), support data-awareness in scheduling,
as well as directly interface with data management tools in a PaaS-based manner.
To demonstrate this, three use cases are discussed in this article.

2.1 Introduction

Next to traditional HPC and Grid computing, Cloud computing has become a new
driver for the global IT market. The overall idea is to deliver a service to the
customer. Instead of traditionally boxing and shipping of software products,
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software is now delivered as a service to the customer directly. This change in
use of computing services changes the IT landscape drastically — not only will data
centers most probably transform into service providers but also the way service
providers and customers interact will change.

One example is billing in all businesses where a Pay-per-Use model can be
easily established. The next major change in this area will be the management of
data: starting with the idea of moving compute resources to the data (data-aware
scheduling) as an obvious step also the way how data is treated in the Cloud
(manipulation of data — NoSQL vs. Relational Databases vs. Virtual Disc Images)
will evolve. Countless other opportunities such as signing, tracing changes and
movement of data are still ahead of us.

Since many customers move into the cloud the deployment of their data and
the applications becomes very important to them. Still, most Cloud computing
providers currently focus on providing Infrastructure-as-a-Service (IaaS)' but this
might change as the industry moves its focus into the idea of providing Platform-as-
a-Service (PaaS) where services are constructed on a higher (non-OS, but rich API)
level to provide services surrounding the data.

Still, the underlying technology is evolving: standards are being developed and
technologies emerge (like virtualisation). As such, there is a demand for ensuring
clean interfaces and protocols which are easy to use and can be used for multiple
kinds of service offerings to prevent a vendor lock-in.

In the context of these developments, the Open Cloud Computing Interface
(OCCI) working group works towards forming such a standard. The OCCI family
of specifications can be used for IaaS and PaaS offerings. In this paper, it is
demonstrated how OCCI can be used in data-centric setups for IaaS and PaaS
offerings. To this end, a setup is described in which Virtual Machines (containing
Databases etc.) can be deployed in a Cloud environment while ensuring certain
Service Level Agreements (SLAs). Another use case demoes the ability of OCCI
for moving compute resource towards large datasets. The last scenario works (in
contrast to the former two) towards a PaaS scenario: it shows a Key-Value store
implementation over OCCI.

The purpose of these use cases is to show the need for an interoperable Cloud
interface/protocol which can be used in all layers of the Cloud stack. Furthermore,
it demonstrates that OCCI provides flexible usage models for a very heterogeneous
field of scenarios in the broader field of data management in the Cloud.

The rest of the paper is organised as follows: in Sect.2.2, the OCCI family
of specification is introduced. Next, three use cases for the application of OCCI
are exemplified in Sects.2.3-2.5. Finally, the paper concludes with a summary of
achievements and shows future work.

!Usually in the form of virtual machines.
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Fig. 2.1 OCCI and its position in the service provider context

2.2 Open Cloud Computing Interface

OCCl is an effort driven by a working group in the standards track of the Open Grid
Forum.? It strives to create an open, interoperable protocol and API for the Cloud.

The group started with a clear focus on provisioning IaaS but later extended the
focus to include other layers in the Cloud stack as well. The following diagram
(Fig.2.1) shows where OCCI fits in the service provider context.

The OCCI protocol can be used for integration, ensuring interoperability and
portability between service providers. Proprietary APIs can be used alongside OCCI
in the case that other features than those of OCCI are maintained.

The specification strives to be very easy, flexible and extensible. Therefore, it is
broken into different modules. It starts with a module describing the core models.
Another module describes how this model can be mapped and rendered using a
HTTP/REST approach. The third module describes the infrastructure entities and
how they related to the core model.

2.2.1 Motivation for Standards

Main driver for standards in the past has been interoperability. This is still a
fundamental part of what standards want to achieve. Still there are nuances in the
term interoperability which are important and need to be looked upon separately:

Zhttp://www.ogf.org/.
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Interoperability. Describes how two services can inter-operate on the fly. This
demands a standardised API and protocol (e.g. live migrating a virtual machine
from one host to another, which are in different management domains).
Integration. Describes how a service provider can bring together different tech-
nologies and interconnect them within his domain (e.g. integrate a virtual machine
management tool with an identity management system).

Portability. This is mostly about the porting between service providers. In com-
parison with interoperability, there is no direct connection between the service
provider. This demands that there are standardised data formats which providers
can understand (e.g. porting a virtual machine from one hypervisor to another).
Innovation. Standards have always been started when a field in the IT community
gains popularity, is widely adopted and begins on a path of commoditisation. Next to
interoperability, standards can be a driver for innovation as well as widely adopted
innovations can demand standards.

Reusability. This can be seen on two levels. First the reuse of (legacy) codes through
basic standardised APIs and the reuse of the standard itself in different fields.

2.2.2 The Core Model

The core meta-model [10] for OCCI imposes a general means of handling general
resources, providing semantics for defining the type of a given entity, describing
interdependencies in between different entities, and defining operating character-
istics on them. Although the meta-model aims to ease the implementation burden
by setting a common ground for other OCCl-related specifications, it can be used
as a standalone component in other contexts (e.g. Resource Oriented Architectures
(ROA5s)) as well.

The UML class diagram shown (Fig.2.2) gives an overview of the OCCI core
meta-model. At its heart lies the Resource type. Any resource exposed through
OCClI is a Resource or sub-type thereof. A resource can be for example a virtual
machine, a job in a job submission system, a user, etc. The Resource type
contains a number of common attributes that domain-specific Resource types
inherit. The Resource type is complemented by the Link type which associates
one Resource instance with another. The Link type also contains a number of
common attributes that domain-specific Link types inherit.

Entity is an abstract type which both Resource and Link inherit. Each sub-
type of Entity is identified by a unique Kind instance. The Kind type comprise
the classification system built into the OCCI model. Kind is a specialisation of
Category and introduces additional capabilities in terms of Action types.

2.2.2.1 Classification and Identification

The OCCI model provides a built-in classification system allowing for safe exten-
sion towards domain-specific usage. This system is like a “type system” but with
the possibility of being easily exposed over a text-based protocol.
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Fig. 2.2 UML class diagram of the OCCI model. The diagram provides an overview of the OCCI
model but is not a standalone definition thereof

The classification system can be summarised with the following key features:

* Each OCCI base type and extension thereof is assigned a unique identifier, a
structural Kind, which allows for dynamic discovery of available types.

* The relationship of structural Kinds is part of the system and thus the inheritance
model is also discoverable.

* The classification system allows non-structural Kinds to be assigned to resource
instances adding new capabilities using a mix-in-like model.

e Tagging of resource instances is supported through mix-in of non-structural
Kinds which have no additional capabilities defined.

e A collection of associated resources is implicitly defined for each structural and
non-structural Kind. That is all resource instances associated with a particular
Kind instance form a collection.
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2.2.2.2 Categorisation

The Category type comprises the basis of the identification mechanism used by
the OCCI classification system. Instances of the Category type are only used
to identify Action types. All other uses of Category properties are managed
through its sub-type Kind.

A Category is uniquely identified by concatenating the categorisation scheme
with the category term, for example http://example.com/category/scheme#term.
This is done to enable discovery of Category definitions in text-based renderings
such as HTTP. Sub-types of Category such as Kind inherit this property.

2.2.2.3 Kind Relationships

The OCCI base types Resource and Link extend Entity. This together with
any further sub-typing implies a hierarchy of related structural Kind instances. The
Kind relationships thus mirror the type inheritance structure of the OCCI model
and any extension thereof.

In an example where a domain-specific “Custom Compute Resource” is a sub-
type, the OCCI infrastructure type Compute, which in turn is a sub-type of the
Resource type, four related structural Kinds would be involved.

One or more Entity instances associated with the same Kind, automatically
form a collection, and each Kind identifies a collection consisting of all Entity
instances of it. For example, an instance of the Resource type will always be
associated with the structural Kind (http://scheme.ogf.org/occi/core#resource) and
thus part of the collection implied by the Kind.

Collections are, by definition of the core model, navigable and support the
following operations:

¢ Retrieve the whole collection.
» Retrieve a specific item in a collection.
¢ Retrieve a subset of a collection.

2.2.2.4 Discovery

In addition to that, Kinds and Category instances a particular service provider
support can be discovered. By examining these instances a client is enabled to
deduce the following information:

e The Entity sub-types available from a service provider, including domain-
specific extensions.

e The attributes associated with each Entity sub-type.

e The invocable operations, that is Actions, defined for each Ent ity sub-type.

¢ Additional mix-ins or tags, that is non-structural Kinds, applicable to Entity
sub-type instances.
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Overall, the OCCI core meta-model provides a solid foundation for the remote
management of resources offered in an as-a-Service manner, allowing for the devel-
opment of interoperable tools for common tasks including deployment, automatic
scaling and monitoring. The explicit split-out of it allows the leverage of the
developed models, protocols, and APIs in manners not anticipated and to foster
modularity and extensibility for future usage paradigms.

2.2.3 RESTful HTTP Rendering of the OCCI Model

The OCCI Core model which is described in the previous Sect.2.2.2 is free of any
rendering and forms the base of OCCI. Based upon this model, OCCI describes a
serialisation rendering. This rendering — or serialisation format — is passed on the
wire between client and service, see [11].

OCCI has a default rendering which is text based and uses the HTTP protocol
and implements a ROA, see [14]. In this architecture, a system is modelled as a
set of related resources. ROA’s use Representation State Transfer (REST), see [6],
to cater for client and service interactions. In these interactions, clients request to
perform operations on the state of an individual or set of resources managed by the
service.

HTTP is commonly used in most ROA systems. It provides means to uniquely
identify resources through URIs as well as operating upon them with a set of
general-purpose operations called verbs. These HTTP verbs map loosely to the
resource-related operations of create (POST), retrieve (GET), update (POST, PUT)
and delete (DELETE).

2.2.3.1 Rendering of Resources

Each Resource in the OCCI core model will be rendered as a unique URI (for
example http://example.com/foo). Each resource can be identified uniquely by an
URI and has at least one Category assigned, which defines the type and the
operations that can be performed. This means that from this standpoint a resource
can be almost anything like a Database entry, a Virtual Machine, an Image, etc.

Resources can be linked and actions can be performed upon them. Resource of
the same type (as in have the same Category assigned) can be found under a
certain path relative to the root of the service provider (e.g. all storage devices will
appear under the path /storage — still the path name “storage” is freely defined by
the Service Provider and can do discovered through the Query interface).

Since Categories cannot only be used to define the type of the resource, but
also to tag or group resources, resource can show up under multiple paths. The
following URL hierarchy demonstrates this feature:
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/compute/123

/storage/discABC

/database/tableXYZ

/nosgl/entry_1

/my-linux-vms/123 // links to /compute/123
/my-datasets/discABC // links to /storage/discABC
/my-datasets/tableXYZ // links to /database/tableXYZz
/my-datasets/entry_1 // links to /nosgl/entry 1

This very flexible system allows that the OCCI model can be used for several use
cases including for Data Management operations.

2.2.3.2 Discovery of Capabilities Through a Query Interface

One of the main features of OCCI is that clients can discover the capabilities of
the service provider through a standardised query interface. This is important since
OCCT is designed for extensibility. To query the capabilities of a Service provider
implementing OCCI, the Client needs to do a HTTP GET on the URI /-/.

This Category management URL allows the client to get a listing of all
categories supported by the provider. Should the provider allow and support client-
created categories, then this URL endpoint must support the creation of user
categories as well.

2.2.3.3 Linking and Performing Actions on Resources

Each of these resources can be linked with other resources. Links again are RESTful
resources and have a source and a target attribute. Each link resource is bound to a
category identifying it as a link.

Next to linking, some type specific actions can be performed. The set of possible
actions is defined by the Category of the resource. Actions are triggered by
adding a fragment to the URI of the resource indicating which action should be
triggered (e.g. http://fexample.com/foo;action=shutdown). Parameters of the action
are described in the HTTP message.

2.2.3.4 Use of HTTP Features

The HTTP rendering of OCCI makes use of many HTTP features. This includes for
example HTTP headers for Versioning and all Authentication features. OCCI does
not explicitly define those but makes use of those features.

Next to these basic features, OCCI also makes use of the Content-Type defini-
tions. At a minimum, all information for OCCI resources is transferred in the HTTP
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Body. This is defined as the basic fext/plain content type. Other content types also
exist. For example, the information can also be rendered in the HTTP Header or as
HTML (e.g. for browsing the OCCI interface using a Web Browser) by supplying
the appropriate content-type header as specified in the specification.

Rendering of data is done through simple key value associations. Also, more
structural data representations such as JSON of RDFa can easily be added to OCCI.

2.2.4 OCCI for Virtual Machine (Infrastructure) Provisioning

Having described the core model and a way of rendering it on the wire, a concrete
compliment to the core model is now explored [12].
The infrastructure specification extends the core model at two key points:

1. To represent various infrastructure-related resources, it extends Resource
using inheritance.

2. To represent concrete relationships between infrastructural resources, it extends
Link using inheritance.

To represent the main elemental resources found in infrastructure-type services,
OCCIT has three specialisations of Resource:

1. Compute: Information processing resources.
2. Network: Interconnection resources.
3. Storage: Information recording resources.

Complimenting these, to allow linkage are:

e NetworkInterface: Represents an L2 client device (e.g. network adapter).
* StorageLink: Represents a link from a Resource to a target Storage Resource.

The relations of these infrastructure resources are shown in the UML diagram
(Fig.2.3).

When modeling elements, it was found that OCCI needed to support not only
generic cases but also specific cases. This issue was exemplified by Network. It
might be immediately attractive to model all functionalities within this Resource,
including aspects of IP configuration, however, then the model would force certain
technology choices upon implementers. To avoid this, the working group chose to
utilise the OCCI mix-in capabilities to avoid such a situation. Where an implementer
wishes to offer TCP/IP functionality on top of the Network resource, they
can do so by implementing the ITPNetworking mix-in. The IPNetworking
mix-in allows to supplement the Network Resource with the necessary TCP/IP
features. Should an implementer wish to offer another type of L3/L4 technology
for example AppleTalk or IPX, then they only need implement a custom network
mix-in.
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Fig. 2.3 Extended OCCI core model showing infrastructure elements

It was the infrastructure model, along with the OCCI core and HTTP rendering
specifications, that aided a successful collaboration that investigated the integration
of two large European Union FP7 research projects, SLA @SOI® and RESERVOIR .*
The proposed integration was detailed in a subsequent technical paper [13].

2.2.5 Related Standards and Specifications

A guiding principle in OCCI is to make use of existing standards and specifications
where appropriate.

OCCI and the Storage Networking Industry Association’s (SNIA)® Cloud Data
Management Interface (CDMI) working groups have collaborated together so that
both specifications are interoperable with each other. It states that

“The SNIA Cloud Data Management Interface (CDMI) is the functional interface that
applications will use to create, retrieve, update and delete data elements from the cloud. As
part of this interface the client will be able to discover the capabilities of the cloud storage
offering and use this interface to manage containers and the data that is placed in them. In
addition, meta-data can be set on containers and their contained data elements through this
interface” [16].

3http://www.sla-at-soi.eu/.
“http://www.reservoir-fp7.eu/.
Shttp://www.snia.org/.
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OCCI and the Distributed Management Task Force’s (DMTF)® Open Virtual-
ization Format (OVF), see [4], can be easily integrated through the use of the
resource-type Link. Where a provider wishes to supply an OVF representation of
a client’s resource instance(s), they can do so by associating the instance(s) with a
mirror representation, only the serialisation format is OVFE.

Other than this, the OCCI working group is closely working together with other
groups inside of the Open Grid Forum. The Distributed Computing Infrastucture
Federation (DCI-fed’) working group focuses on the creation of models and APIs
for setting up distributed federated computing environments. Other than this, the
OCCI working group uses Standards like those developed by the Distributed
Resource Management Application API (DRMAAS3) working group for common
Job operations on Clusters via the OCCI protocol.

2.3 SLA Assured Provisioning of Database Services
Using OCCI

In today’s service marketplaces including cloud-based ones, there exist basic
limitations in service offerings. Typically, the customer has little say in what is
offered by a service provider and is left with a “take it or leave it” situation. Not
only is the customer faced with such a dilemma, with little possibility of negotiation
but if they do accept the service offering there is little in the way of service
transparency and so detections of service violations are impossible unless that
customer implements custom violation detection systems. The SLA@SOI project
seeks to address these challenges by providing three major benefits:

Predictability and Dependability: The quality characteristics of service can be
predicted and enforced at run-time.

Transparent SLA Management: SLAs defining the exact conditions under which
services are provided/consumed can be transparently managed across the whole
business and IT stack.

Automation: The whole process of negotiating SLAs and provisioning, delivery and
monitoring of services will be automated allowing for highly dynamic and scalable
service consumption.

In this section, a use-case that combines the OCCI model and API with an SLA
management framework to provide an SLA assured database service is described.
In today’s service marketplace, there exists a number of service providers who
offer database services, for example, the Amazon Relational Database Service,’

Shttp://www.dmtf.org.
http://forge.gridforum.org/sf/projects/dcifed-wg.
8http://www.drmaa.org.
“http://aws.amazon.com/rds.
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Microsoft SQL Azure'® and Longjump Platform as a Service.!! Other than offering
a basic, non-negotiable, non-machine readable SLA, these service providers do not
offer certain guarantees that particular consumers will require. A case in point is
where a third party service provider wishes to process personal and identifying
information. Many law jurisdictions will require that user-supplied data and the
processed resultant data remain within the protection of that jurisdiction, which
may mean that the physical location of that data must always remain in the country
or region where that jurisdiction has powers to protect. If that data at any one
time falls outside of those defined physical locations due to actions taken by the
service provider that the third party uses, then regardless of knowing or not knowing
about such actions, the third party can be liable under the relevant laws set out by
the jurisdiction. In the use case presented here, an SLA management framework
provides the means to:

1. Customise a service offering.

2. Negotiate on that service offering to the satisfaction of the third party and their
legal responsibilities.

3. Be notified when terms of the agreed service offering deviate and have deviations
logged as an audit trail.

The use case is realised by the third party provisioning the offered database ser-
vice using the OCCI API through the facilities of the SLA manager. OCCI provides
the standard and interoperable means of provisioning the required database service
and the SLA manager provides the means as outlined above. That database service is
realised as a pre-built virtual machine with all the requisite database software
installed and configured, which once provisioned is accessible by the consumer.
The service provider offers means to monitor the agreed terms in the SLA and, in
particular for this use case, allows for the physical location of the virtual machine to
be monitored. This allows the SLA management framework to monitor constantly
the physical location of the virtual machine and in the case that the virtual machine
is migrated to an inappropriate physical location the third party will instantly receive
notification of that event and logs will provide an audit trail.

2.3.1 SLA@SOI SLA Management Framework

SLA@SOI defines a holistic view for the management of SLAs and implements an
SLA management framework that can be easily integrated into a service-oriented
infrastructure (SOI), see [17]. The main innovative features of the project are:

* An automated e-contracting framework
* Systematic grounding of SLAs from the business level down to the infrastructure

10http://www.microsoft.com/en-us/sqlazure.
http://www.longjump.com.
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* Exploitation of virtualisation technologies at infrastructure level for SLA

enforcement

* Advanced engineering methodologies for creation of predictable and manageable

services

The accompanying diagram (Fig.2.4) illustrates the anticipated SLA manage-

ment activities throughout the business/IT stack.
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2.3.2 SLA@SOI and OCCI

In this use case, there are two main components that are required for realisation. The
first and most fundamental is a Service Manager that offers a database service.

The Service Manager is the entity that is responsible for providing the client’s
service. Relevant to this use case is that the Service Manager provides database
services as preconfigured virtual machines and that the location of those virtual
machines can be monitored. The SLA@SOI framework makes no assumption on
this Service Manager only that it has an interface:

1. That can create, retrieve, update and delete its managed services.
2. Through which service instance metrics can be listed and retrieved.

The second entity required is the SLA@SOI framework’s SLA Manager. This
is a set of both generic and domain-specific components. What is generic relates
to the management of SLA templates (what a provider offers) and SLA instances
(what a provider runs on their clients behalf and guarantees). The domain-specific
components are those that interact with the particular service manager that provides
the client services. Further details of the SLA@SOI framework and its architecture
can be found, see [18].

The SLA Manager offers to clients one or more SLA Templates, which is
expressed using the SLA@SOI SLA model. Through either a UI or API, the client
can select, customise, negotiate and provision an SLA-guaranteed service. In the
use case scenario, this would entail the third party specifying what physical location
(e.g. region, country) is required for their regulatory compliance.

Once the SLA Manager is acting on the client’s behalf, it first negotiates with the
service manager using the OCCI query interface. The OCCI query interface allows
for the various Resource types to be queried for and interrogated and in particular to
this use case, the locations that a provider can provision their virtual machines. As
an extension to the query interface, SLA @SOI will also allow for per-user quotas to
be queried. Using this extension, an SLA Manager can tell whether a client’s request
will be fully satisfied or not by the current service provider. Having established that
the client’s quota is sufficient, the next step can either take two paths. The first is
that the provisioning of the requested service is done automatically or, second, the
provisioning must be explicitly executed by the client. Where a provisioning request
is executed in one or the other manner, the next responsibility of the SLA Manager
will be to call the provisioning functionality of the Service Manager (relationship
and interaction is shown in Fig.2.5). This again is looked after by the OCCI API
and an OCCI request from the SLA manager’s domain specific components is sent
to the Service Manager. As soon as the provisioning request is successful, the SLA
manager then begins to monitor the provisioned service, including the location of
the service’s virtual machine. It does this by monitoring the various terms of the
agreed SLA (e.g. QoS metrics).

For the SLA Manager, the major advantage of choosing to implement OCCI
as a means to talk with Service Managers is that in the case where a particular
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Fig. 2.5 Relationship between SLA manager and service manager

Service Manager cannot satisfy the provisioning of the requested service resources
due to insufficient client quotas or unsuitable virtual machine deployment locations,
the SLA Manager can, with the necessary logic implemented, look up the next
registered service provider and seek to have the remaining service resources
provisioned there, without any need for Service Manager protocol or API changes.
Such functionality makes an excellent case for SLA-mediated cloud brokerage use
cases.

2.4 On-Demand Data-Aware Provisioning of Services

A different application area for OCCI appears in the context of traditional
community-based Distributed Computing Infrastructures (DCIs): modern research
more and more relies on cross-institutional, cross-project data processing. In
many communities, scientists quickly state the requirement to enable exchange
of information beyond traditional boundaries such as project collaborations or long-
term Virtual Organisations. Rather than that, a more flexible, more agile approach
is expected.

This development poses a major challenge not only for the management of
data itself (i.e. ensuring authentication and authorisation, planning distribution
and replication, and tracking provenance), but also for the management of its
computation: workload needs to run close to the data in most cases (since data is
usually large), but the compute infrastructure available in the direct proximity of
the data may not necessarily provide the correct environment. That is, applications
to process the data might be missing, the operating system does not match the
application requirements, or — on a higher level — certain services needed for data
analysis and manipulation have not been deployed on-site.

Beside, many communities run their own, proprietary workload management
software, tailored to the specific needs of their users. As such, it is usually not
an option to require a central system, often referred to as a meta scheduler'? for
all users of all communities. Rather than that, additional technology needs to be
incorporated, which allows dynamic federation of planning domains depending on
the current demand.

12Mostly found in the context of traditional Grid Computing.
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The D-Grid Scheduler Interoperability project (DGSI) in the context of the
German D-Grid Initiative'? aims to provide a solution both issues through the devel-
opment of a standards-based protocol between Meta schedulers. DGSI approaches
interoperability DCIs from two sides, namely Activity Delegation (taking care of
the handover of workload from one domain to the other), and Resource Delegation
(taking care of the leasing of resources from one domain to another). Assuming the
DGSI protocols and services in place, the notion of delegation can help to avoid
traditional data management techniques such as decoupled copying, prefetching,
and replication at all.

2.4.1 The Climate Community Use Case

The effects of climate change are one of the major challenges of mankind:
stakeholders of many areas strive for strategies to deal with the consequences of
pollution and man-made changes to the environment. The basis of all decision
making are models of climate processes and the understanding of interplay of the
enormous amount of parameters in them. Since the beginning of industrialisation in
the nineteenth century, Earth System Science, one of the data sciences, investigates
these processes, their chemical formation in the diverse subsystems such as oceans,
atmosphere or biosphere, and their long-term influence on climate.

From those investigations, researchers nowadays possess very detailed insight
into climate development. This rests on the permanent acquisition, cataloging, and
processing of very large (Peta scale) volumes of experimental and model data, as
well as the continuous re-evaluation of scientific results using refined models.

Current information technology provides potent means to accelerate these
processes of data evaluation and simulation. High Performance Computing (HPC)
infrastructure, high speed networks, and modern storage architectures support
archival, preprocessing, selection, and transportation of large data amounts as well
as the computation of highly demanding simulations (e.g. short term weather
forecast or storm track analysis).

For the latter scientific analysis, researchers filter and examine geopotential
heights to track and predict the movement of low-pressure areas over time with
regard to a given climate model. This is essential as storms and cyclones typically
cross such areas [3]. This analysis and simulation is based on long-term acquired
global climate data.

Usually, scientists are only interested in a restricted area for a Stormtrack analysis
and have to reduce the amount of available base data to the region of interest.
Besides a complex combination of several steps, this resorts to either access to a
specific amount of climate data (Fig. 2.6a) or execute simple visualisation workflows
on selected and preprocessed data (Fig. 2.6b).

Bhttp://www.d-grid.de.
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Fig. 2.6 Three simple workflow examples from C3Grid: (a) selective data download; (b) simple
simulation on input data; (c¢) simulation on a set of preprocessed input data

Today, they generally have two possibilities to retrieve the desired data: they
either get access to the storage and download the full amount of data (i.e. full
replication is performed) or use proprietary programs to reduce the amount of data
at the storage site and download the desired data set afterwards. In the first case,
the required local storage may simply not be available to the single scientist, or the
providing institution may not be willing to provide an external party with access to
the full archive due to strategical considerations. In the second case, the user needs
to cooperate directly with the data provider, basically via two mechanisms:

1. Having to use tools that are installed, but potentially not known to him,'* or
2. Having to roll out the software on her own, either doing this as part of the batch
processing job or in cooperation with the resource provider.

Obviously, the former is not acceptable from a user’s perspective. The latter
in turn requires extensive manual intervention and additionally necessitates the
acquisition of user rights to retrieve or even locally process the requested data. As
most of the climate data is stored in a distributed way, the procedure often has to
be repeated for several data sites. Furthermore, it leaves intelligent, automatic load
balancing totally to the user, which is generally not desirable. In addition to that, this
traditional approach of application deployment massively hinders cross-community
collaboration, if they rely on different infrastructure technologies: if the user takes
care by himself to deploy the application as part of his computational workload, the
number of resources compatible will usually be very restricted.

14With the exception of widely accepted and distributed tools such as the Climate Data Operators
[15].
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2.4.2 An Approach for Dynamic, Cross-Community
Resource Allocation

Most DCI environments share the ability to efficiently distribute user workload
to the resources available within their community. This issue, usually generalised
under the term Meta Scheduling, is already very diverse within a community:
both submitted jobs and available resources differ considerably, to the extent
that coordination has to handle specialised knowledge about usage scenarios and
infrastructure. This leads to very different, community-specific approaches for the
development of Grid scheduling services [9].

The DGSI provides a standards-based interoperability layer for scheduling and
resource management services in DCI ecosystems. By allowing the users of a
community to distribute the workload among resources within the management
domain of another community while keeping the individual, specialised scheduling
solutions being run by the communities, it offers new perspectives for community
collaboration, resource federation, and efficient utilisation. The general architecture
is depicted in Fig. 2.7.

2.4.2.1 Delegation Models

The DGSI protocols foresee two scenarios to be considered: the delegation of
activities and the delegation of resources:

Resources free | Need for additional
| resources
Delegate Activity|

:_ 73 n >

v
Agreement |» —-==

v ) Resource Delegation
Proxy |«
v

[ Middleware ]

Middleware ]
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Fig. 2.7 Overall delegation architecture using the DGSI protocols. Meta schedulers from different
domains (architectural, organisational, and technological) cooperate using activity and resource
delegation
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Delegation of activities. By means of DGSI, one meta-scheduler is able to delegate
activities, that is single or parallel jobs or workflows, to another meta-scheduler
from a different management domain (i.e. another community). By use of WS-
Agreement [1], JISDL [2], and OGSA-BES [8], DGSI provides a standardised way of
handing over workload to the other domain: a set of jobs that cannot be executed in
the local scheduling domain can be channeled to another one (assuming the resource
requirements of the jobs match the provided environment) to minimise waiting time
induced by a high load on the originating side of the delegation. Via the mechanisms
of SLA negotiation and agreement (as provided by the WS-Agreement protocol),
it is ensured that both requirements and fulfilment can be negotiated in a reliable
manner.

While the initial use case for activity delegation assumes an environment that

requires cross-domain load balancing for workload to amplify user experience in a
federated DCI environment, it is obvious that, with respect to data management,
the very same mechanisms enable Meta Scheduling systems to easily move the
workload close to the data: even if the data is assumed in a different community
domain, proximity-based approaches for data-aware scheduling systems are easy to
implement over the federated nature of the DGSI protocols.
Delegation of resources. To complement the handover of workload between DCls
in a more ‘“as-a-Service”-related manner, the DGSI protocols also support the
delegation of resources from one domain to another. This allows one meta-scheduler
to effectively “lease” resources from another one over a given period of time and
use them in the same way as managed resources within the own domain. Again, by
use of WS-Agreement, GLUE, and middleware provisioning, a standardised means
for requesting, negotiating, agreeing, monitoring, and provisioning those resources
is available: after successfully agreeing on the “lease” contract, the scheduler that
requests resources can effectively incorporate them into his planning algorithms for
management over the time of lease.

The original use case was tailored to the specific needs of cross-community
collaboration: the provisioning mechanisms were merely used to dynamically
provide a management endpoint (i.e. a specific Grid middleware) that the requesting
scheduler is able to cope with. For example, an environment that is generally
managed by UNICORE [5] can provide a resource lease to a scheduler that manages
its resources through Globus Toolkit [7] just by provisioning a Globus GRAM
endpoint for the leased resources while — at the same time — ensuring the fulfillment
of the negotiated SLAs through injected monitoring and enforcement mechanisms.
From the perspective of data management, especially in the context of proximity-
aware deployment of applications close to their data, much more can be done: by
leveraging the provisioning interface to the deployment of the user’s application
rather than the middleware only, the user is provided with a unified view on the
lower-level infrastructure and thus can run his application on a much larger resource
space than given in traditional approaches. On the other hand, the meta-scheduler
enjoys much more freedom in deploying the application close to the data, without
having to give up its planning mandate (as in activity delegation).
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2.4.3 The Role of OCCI for a Data-Aware Delegation Scenarios

The OCCI family of specifications, especially the infrastructure rendering, is the
key enabler for introducing data-awareness into the different delegation scenarios.
Figure 2.8 depicts the role of OCCI in the overall process.

Enabling activity delegation. While OCCI is not strictly necessary for the activity
delegation scenario, it makes the dynamic provisioning of a delegation channel (in
case of the initial usage scenario of DGSI a service such as OGSA-BES) much
easier. That is, the meta-scheduler that accepts workload delegation can dynamically
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Fig. 2.8 Ten steps for negotiating a delegation within the DGSI protocol stack. While activity
delegation only requires six steps (up to the GetState call for agreement monitoring), resource
delegation runs to completion of the tenth step. Note, however, that — from step six and forth —
each step is specific to the concrete usage of the delegated resource (e.g. a single job submission)
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create instances of a submission and monitoring interface on its own infrastructure
without having to provide own resources for the purpose. OCCI ensures in this
context a unified view on underlying resources that can run demand-based, lifecycle-
managed middleware services to the DCI ecosystem.

Enabling resource delegation. Here, OCCI is a strong requirement for allowing the
user to deploy her own applications in the context of a virtualised environment
over a unified interface. With OCCI in place, description, status management, and
provisioning of virtual machines can be not only unified within the community
itself, thus even there providing strong benefit, but rather beyond the boundaries of
domains, allowing easy deployment of applications on the resources of a different
community.

As such, OCCI fulfills two major requirements to enable this technology:
interoperability and portability of the applications, and dynamic provisioning of
infrastructure. The packaging paradigm of Virtual Machines additionally allows
easy movement and infrastructure-agnostic capacity planning with data require-
ments in mind. Speaking of such, OCCI is the enabling technology for making data
aware, proximity-based scheduling and resource management happen in federated
DCI environments.

2.5 Use of OCCI for a Simple Key-Value Store

The previous Sects.2.3 and 2.4 showed the usage of OCCI in virtualised envi-
ronments (but data-centric setups). This last use case shows how the exact same
standard can be used to give a database application a RESTful standard OCCI
compliant interface.

A very simple use case is taken to demonstrate the abilities of OCCI as a
data management front-end interface. Many NoSQL databases such as CouchDB
are deployed with a built-in RESTful interface. With the proliferation of NoSQL
databases and their various RESTful APIs, there is a perceivable need for a
standardised interface through which a client could discover the abilities and
functionalities of the service provider (and in this use case the NoSQL Database).

Clients can then decide which service provider to use. This is essentially
important since Cloud computing is all about delivering services experience to the
customer. The customer should decide which service to use based on the experience,
the functionalities and the price the service provider offers.

The discovery interface described in the OCCI section of this paper describes
these self-discovery features. Section 2.3 on SLA@SOI describes how the OCCI
core model can be extended for provisioning virtual machines.

IShttp://couchdb.apache.org/.
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In this use case, the Core model is only extended by the one class which derives
from Resource. It is called a Key-Value resource and has two attributes: key
and value. A simple flip actions is defined. When the client queries the discovery
interface, it will see the Category definition of this resource type:

> GET /-/ HTTP/1.1

> User-Agent: curl/7.21.0 (x86_64-pc-linux-gnu) [...]

> Host: localhost:8888

> Accept: /%

> Cookie: [...]

>

< HTTP/1.1 200 OK

< Content-Length: 517

< Etag: "89claeacedf7209b57d38cb0cd877bb9b22ad7ad"

< Content-Type: text/plain

< Server: pyocci OCCI/1.1

<

Category: keyvalue;
scheme=http://example.com/occi/keyvalue;
title=A Resource which holds a Key and a Value;
location=/keyvalues/;
rel=http://schemas.ogf.org/occi/corefresource;
attributes=key value;
actions=flip

Category: flip;
scheme=http://example.com/occi/keyvalue;
title=Flips the key and the wvalue;
attributes=foo bar

Category: keyvaluelink;

scheme=http://example.com/occi/keyvalue;
title=A link between two Key Value Resources;
location=/keyvalues/links/;
rel=http://schemas.ogf.org/occi/core#link;
attributes=source target

The GET on the path /-/ indicates that one wants to discover what the service

provider offers.

It returns a Category definition showing the scheme of the

category and which attributes it supports. As there will be no actions, this is all
the Category features.

Now Key-Value resources can easily be created using this Category and
retrieved through the OCCI interface:

Cookie:

V V.V V VvV V

POST / HTTP/1.1
User-Agent: curl/7.21.0 (x86_64-pc-linux-gnu) [...]
Host: localhost:8888

[...]

Content-Type: text/occi
Category: keyvalue;

scheme=http://example.com/occi/keyvalue;
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X-OCCI-Attribute: key=foo, value=bar

HTTP/1.1 200 OK

Content-Length: 2

Content-Type: text/html; charset=UTF-8
Location: /users/foo/keyvalues/dbal7696-[...]
Server: pyocci OCCI/1.1

AN NN ANANANV YV

The request indicates the type (via Category), a Key-Value resource, that
the new resource should be. Also, two attributes are delivered alongside providing
values to the key and value attributes of this new resource instance. The service
will return a location of the new resource. This location can be used to retrieve the
resource instance:

GET /users/foo/keyvalues/dbal7696-[...] HTTP/1.1
User-Agent: curl/7.21.0 (x86_64-pc-linux-gnu) [...]
Host: localhost:8888

Accept: /%

Cookie: [...]

HTTP/1.1 200 OK

Content-Length: 191

Etag: "6bad49cb7785101006593a9fe79d5b54a4a19516"
Content-Type: text/plain

Server: pyocci OCCI/1.1

AN ANANANANANV V VV VYV

Category: keyvalue;
scheme=http://example.com/occi/keyvalue

Link: </users/foo/keyvalues/dbal7696-[...]2action=flip>

X-0OCCI-Attribute: value=bar

X-0CCI-Attribute: key=foo

The response tells what type the REST resource is (via the Category header).
It also returns us the two attributes which where defined during the creation of the
resource.

Updating the attributes can be done using the HTTP PUT verb and it provides
a new set of attributes. Deletion of the resource can be done through the HTTP
DELETE verb.

Next to these HTTP basic renderings, the implementation'® used for this example
can also render OCCI using HTML by specifying the fext/html content-type. This
allows the user on client side to use the browser to discover the Query interface and
the resources using a web browser (Fig. 2.9).

16http://pyssf.sf.net/.
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Fig. 2.9 Screen-shot of an HTML rendering of the OCCI query interface

This is a very generic interface and shows that OCCI can be used for provisioning
infrastructure as well as PaaS based offerings.

Regardless of the type (OCCI Kind), a REST-Resource (represented through
an URI) represents the interface will not change. This even means that the GUI
(Fig.2.9) is also generic and it would look and work the same for different types
of Resources. The implementation of the OCCI interface demoed here can
therefore be used for Infrastructure provisioning or other Platform offerings (like
Job submission for Clusters).

2.6 Conclusions

With the last use case, the authors of this paper want to demonstrate the flexibility
and extensibility of the OCCI interface. OCCI can be used using different setups
especially the discovery functionalities and the extensible Core model support this.
This demonstrates that OCCI can be used in IaaS and PaaS setups which relate to
Data management.

This paper strives not to give a complete overview of all possible setups
regarding OCCI and Data management. Still it demoed how some setups can be
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implemented using OCCI. Most often OCCI plays the role of ensuring and safe-
guarding Interoperability as described in Sect. 2.2.1.

Several implementations of the OCCI specification exist notworthly does in
research projects and currently ongoing working in commercial applications. Most
notable is the currently in development effort which tries to incorporate the OCCI
standard in the OpenStack!” Cloud framework. Research Projects like the previously
noted RESERVOIR and SLA@SOI (see Sect. 2.2.4) have adopted OCCI as well.

Next to this interoperability aspect, it is important to state that OCCI does not try
to replace existing proprietary interfaces. It is defined for interoperability means as
described before. Service Providers can still use their proprietary API/Interface to
deliver higher-level functionalities, which is very specific to their offerings.

This idea of brokerage could either be realised in an automated fashion or with
the user’s interaction. Still OCCI makes this idea possible. Without an interoperable
interface, a Cloud Broker of querying different cloud providers using one client
would be impossible. Indeed, there is a current trend to enable interoperability
through the use of facade/proxy service intermediaries. This is but a temporary
solution as this approach leads to additional overhead in terms of inefficiencies,
additional maintenance, configuration and management. This is something that
OCCI seeks to remove and solve by doing so.

Next to driving adoption, the OCCI working group will focus on standardized
interfaces for advanced reservation, monitoring and billing techniques. Also seman-
tic enabled renderings will be added to the specification. Currently, the group is
looking into JSON, XML or RDF/RDFa renderings.

What this paper demonstrated is that OCCI can be used on many layers of
the Cloud Stack (IaaS and PaaS) and is possibly one of the small but important
contributions to realise Cloud offerings. Even when narrowing the field to Data
Management in Cloud and Grids, the OCCI interface can and must play a roll as
an enabler.
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