Chapter 1
“Fluctuoscopy”’ of Superconductors

A.A. Varlamov

Abstract Study of fluctuation phenomena in superconductors (SCs) is the subject
of great fundamental and practical importance. Understanding of their physics
allowed to clear up the fundamental properties of SC state. Being predicted in
1968, one of the fluctuation effects, namely paraconductivity, was experimentally
observed almost simultaneously. Since this time, fluctuations became a noticeable
part of research in the field of superconductivity, and a variety of fluctuation effects
have been discovered.

The new wave of interest to fluctuations (FL) in superconductors was generated
by the discovery of cuprate oxide superconductors (high-temperature supercon-
ductors, HTS), where, due to extremely short coherence length and low effective
dimensionality of the electron system, superconductive fluctuations manifest them-
selves in a wide range of temperatures. Moreover, anomalous properties of the
normal state of HTS were attributed by many theorists to strong FL in these systems.
Being studied in the framework of the phenomenological Ginzburg—Landau theory
and, more extensively, in diagrammatic microscopic approach, SC FLs side by
side with other quantum corrections (weak localization, etc.) became a new tool
for investigation and characterization of such new systems as HTS, disordered
electron systems, granular metals, Josephson structures, artificial super-lattices, etc.
The characteristic feature of SC FL is their strong dependence on temperature and
magnetic fields in the vicinity of phase transition. This allows one to definitely
separate the fluctuation effects from other contributions and to use them as the
source of information about the microscopic parameters of a material. By their
origin, SC FLs are very sensitive to relaxation processes, which break phase
coherence. This allows using them for versatile characterization of SC. Today, one
can speak about the “fluctuoscopy” of superconductive systems.
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In review, we present the qualitative picture both of thermodynamic fluctuations
close to critical temperature Ty and quantum fluctuations at zero temperature and in
vicinity of the second critical field H.,(0). Then in the frameworks of the Ginzburg—
Landau theory, we discuss the characteristic crossovers in fluctuation properties of
superconductive nanoparticles and layered superconductors. We present the general
expression for fluctuation magneto-conductivity valid through all phase diagram
of superconductor and apply it to study of the quantum phase transition close to
H.»(0). Fluctuation analysis of this transition allows us to present the scenario of
fluctuation defragmentation of the Abrikosov lattice.

1.1 Introduction

“Happy families are all alike; every unhappy family is unhappy in its own way”,
started Leo Tolstoy his novel “Anna Karenina”. A similar statement can be made
about the electronic couples in superconductors (SCs): while stable Cooper pairs
forming below critical temperature T a sort of condensate behave all in the same
way, the behavior of the fluctuating Cooper pairs (FCPs) above the transition is
complex and involves a lot of interesting physics. Such FCPs affect thermodynamic
and transport properties of the metal both directly and through the changes which
they cause in normal quasi-particle subsystem [1], and study of superconductive
fluctuations (SF) presents the unique tool providing the information about the
character of superconductive state formation [1]. Difficulties of such “fluctuoscopy”
are caused by the quantity of these quantum corrections, necessity of their separation
from unknown background, smallness of their magnitude.

The mechanisms of fluctuations in the vicinity of the superconductive critical
temperature 7o were deeply understood in 1970s. SFs are commonly described
in terms of three principal contributions: Aslamazov—Larkin (AL) process, corre-
sponding to the opening of the new channel of the charge transfer [2], anomalous
Maki-Thompson (MT) process, which is a single-particle quantum interference on
impurities in presence of SF [3-5], and the change of the single-particle density of
states (DOS) due to their involvement in fluctuation pairings [6, 7]. The first two
processes (AL and MT) result in appearance of positive and singular close to the
superconductive critical temperature 7, contributions to conductivity, while the
third one (DOS) results in decrease of the Drude conductivity due to the lack of
single-particle excitations at the Fermi level. The latter contribution is less singular
in temperature than the first two and can compete with them only when the AL
and MT processes are suppressed by some reasons (e.g., c-axis transport in layered
superconductors) or far enough from 7.

The classical results obtained first in the vicinity of 7t later were generalized
to the temperatures far from transition [8—10] and relatively high fields [11]. More
recently, quantum fluctuations (QFs), taking place in SC at low temperatures and
fields close to the second critical field H.; (0), entered the focus. Their manifestation
strikingly differs from that one of thermal fluctuations close to 7yy. For instance,
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the direct contribution of FCPs to transport coefficients here is absent. In [12, 13]
was found that in granular SC at very low temperatures and close to H.; (0), the
positive AL contribution to magneto-conductivity (MC) decays as T2 while the
fluctuation suppression of the quasiparticle density of states (DOS) by QF results
in temperature independent negative contribution to MC logarithmically growing in
magnitude when H — H, (0). Effects of QF on MC and magnetization of two-
dimensional (2D) SC were studied at low temperatures and fields close to H, (0)
in [14]. Fluctuation renormalization of the diffusion coefficient (DCR) results in
appearance of a giant Nernst—Ettingshausen signal [15]. Moreover, as it was demon-
strated recently [16] namely this contribution governs the behavior of fluctuation
conductivity through all periphery of the phase diagram of superconductor and
especially in the region of quantum phase transition in the vicinity of H, (0).

1.2 Thermodynamic Superconductive Fluctuations Close to 7

1.2.1 Rather Rayleigh—Jeans Fields than Boltzmann Particles

In the BCS theory [17, 18], only the Cooper pairs forming a Bose-condensate are
considered. Fluctuation theory deals with the Cooper pairs out of the condensate.
In some phenomena, these FCPs behave similarly to quasiparticles but with one
important difference. While for the well-defined quasiparticle, the energy has to be
much larger than its inverse lifetime, for the FCPs the “binding energy” A E turns
out to be of the same order. The FCPs lifetime tgy, is determined by its decay into
two free electrons. Evidently, at the transition temperature the Cooper pairs start
to condense and g, = oo. Above Ty TG can be estimated using the uncertainty
principle: 7gL, ~ h/AE, where AE is the difference kg (T — T¢o) ensuring that g
should become infinite at the point of transition. The microscopic theory confirms
this hypothesis and gives the exact coefficient:

wh

T 8ke(T —To) (D

TGL

Another important difference of the FCPs from quasiparticles lies in their large
size £(T'). This size is determined by the distance by which the electrons forming
the FCPs move apart during the pair lifetime 7gL. In the case of an impure
superconductor, the electron motion is diffusive with the diffusion coefficient
D ~ v%r (7 is the electron scattering time [19]), and £;(T') = /DtgL ~ vr/TTGL.
In the case of a clean superconductor, where kg7t > #, impurity scattering no
longer affects the electron correlations. In this case the time of electron ballistic
motion turns out to be less than the electron—impurity scattering time t and is
determined by the uncertainty principle: tyy ~ %/kgT. Then this time has to be
used in this case for the determination of the effective size instead of 7: &.(T) ~
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vi+/htoL/ksT . In both cases, the coherence length grows with the approach to the
critical temperature as € ~'/2, where

(1.2)

is the reduced temperature. We will write down coherence length in the unique way

EoL (€) = (D) ~ Ercs/ VVe. (1.3)

Here, &égcs = £..4 is the BCS coherence length. We see that the fluctuating order
parameter A (r, ¢) varies close to T, on the large scale £g; (€) > £pcs.

Finally, it is necessary to recognize that FCPs can really be treated as classical
objects, but that these objects instead of Boltzmann particles appear as classical
fields in the sense of Rayleigh—Jeans. This means that in the general Bose—Einstein
distribution function only small energies £(p) are involved and the exponent can be
expanded:

n(p) = 1 - a4
P = @)/ ksT) -1 E(p) '

That is why the more appropriate tool to study fluctuation phenomena is not the
Boltzmann transport equation but the GL equation for classical fields. Nevertheless,
at the qualitative level the treatment of fluctuation Cooper pairs as particles with the
concentration N>’ = [n(p)dP p/(27xh)P often turns out to be useful [20].

In the framework of both the phenomenological GL theory and the microscopic
BCS theory was found that in the vicinity of the transition

p?
E(p) = ks(T —Tc) + Pl

e [1?/26%(T) + p*]. (1.5)

Far from the transition temperature, the dependence n(p) turns out to be more
sophisticated than (1.4); nevertheless, one can always write it in the form

n(p) =" >f(5(T)”). (16)

The effective GL energy of the FCPs defined by (1.5) can be understood as the
sum of its kinetic energy and the binding energy AE, which is nothing else as
the chemical potential

pep (T =TT (1.7)

of the FCPs taken with the opposite sign:

E(p) =
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Let us clarify the issue related to the chemical potential of fluctuating Cooper
pairs, (icp.. Indeed, it is known that in the thermodynamic equilibrium, the chemical
potential of a system with a variable number of particles is zero, with photon and
phonon gases being the textbook examples. A naive application of this “theorem” to
fluctuating Cooper pairs “gas” leads to a wrong conclusion that ucp, = 0. However,
a delicate issue concerning Cooper pairs is that they do not form an isolated
system but are composed of the fermionic quasi-particles, which constitute another
subsystem under consideration. In a multicomponent system, the chemical potential
of the i’th component, p;, is defined as the derivative of the thermodynamic
potential with respect to the number of particles of i-th sort:

pi = (0/Ni)pyy; - (1.8)

provided the numbers of particles of all other species are fixed, N;»; = const.
In deriving the condition for thermodynamic equilibrium, one should now take
into account that creation of a Cooper pair must be accompanied by removing
two electrons from the fermionic subsystem. This leads to ucp — 2uqp. = 0,
where 1. is the chemical potential of quasi-particles. Therefore, the equilibrium
condition does not restrict jic p.to zero, even though the number of Cooper pairs is
not conserved.

1.2.2 Manifestation of SF Close to T,

In classical field theory, the notions of the particle distribution function n(p) (pro-
portional to £~ (p) in our case) and Cooper pair mass m* are poorly determined. At
the same time, the characteristic value of the Cooper pair center of mass momentum
can be defined and it turns out to be of the order of py ~ #%/&(T). So for the
combination m*&(po) one can write m*E(po) ~ pt ~ h?/E*(T). The ratio of
the FCPs concentration to the corresponding effective mass with the logarithmic
accuracy can be expressed in terms of the coherence length:

NP ksT (po)D _keT

= 5 G2 LT (1.9

m* m*E(po)

( pé) here estimates the result of momentum integration).

The particles’ density enters into many physical values in the combination
N/m*. For example, we can evaluate the direct FCPs contribution to conductivity
(Aslamazov-Larkin paraconductivity) by using the Drude formula and noting that
the role of scattering time for FCPs plays their lifetime gy :

D
SoAL — Ns( )ez‘((;]_(e) N kg
(D) m* #

L AP (1) 2e) () ~ P2 (L10)
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This contribution to conductivity of the normal phase of superconductor corre-
sponds to opening of the new channel of charge transfer above 7¢: due to forming
in it FCPs.

Analogously, a qualitative understanding of the increase in the diamagnetic
susceptibility above the critical temperature may be obtained from the — known
Langevin expression for the atomic susceptibility [21]:

2 (D) 2
C. e ns 2 4" kgT ' p_3.4-p D/2—2
e (R*) = — g dVTETIT) ~ e /272, (1.11)

Here, we used the ratio (1.9).

Special attention has been attracted recently by the giant Nernst—Ettingshausen
effect observed in the pseudogap state of the underdoped phases of HTSC [22],
which motivated speculations [23] about the possibility of existence of some specific
vortices and anti-vortices there or the special role of the phase fluctuations [24].
Then, very recently the giant Nernst—Ettingshausen signal (three orders of mag-
nitude more than the value of the Nernst-Ettingshausen coefficient in typical
metals) was detected also in the wide range of temperatures in a conventional
disordered superconductor N b, Si;—, [25]. All these experiments finally have been
successfully explained in the frameworks of both phenomenological and micro-
scopic fluctuation theories [15,26,27]. The proposed qualitative consideration of the
FCPs allows not only to get in a simple way the correct temperature dependence of
the fluctuation NEE coefficient but also to catch the reason of its giant magnitude.
Indeed, as it was shown in [15, 28], the Nernst—Ettingshausen coefficient can be
related to the temperature derivative of the chemical potential:

sNCP = 7 (d—“). (1.12)

ncez \dT

Applying this formula to the subsystem of FCPs close to T¢o with pucp. (7)) defined
by (1.7) and identifying its conductivity with (1.10), one finds

o(Cp)
SNCEP = —— e~ P22, (1.13)
NS( )ce?

what fits well the experimental findings obtained in conventional superconductors
and optimally doped phases of HTS. The reason of so strong fluctuation effect
contains in the extremely strong dependence of the FCPs chemical potential on
temperature: djicp./dT = —1, while for the free electron gas du./dT ~ =T/ Ep.

Besides the direct FCPs effect on properties of superconductor in its normal
phase, the other, indirect manifestations of SF and their effect on the quasi-
particle subsystem take place. These effects, being much more sophisticated, have
a purely quantum nature and, in contrast to paraconductivity, require microscopic
consideration. First of them is MT contribution [3-5]. It is generated by the coherent
scattering of the electrons forming a Cooper pair on the same elastic impurities
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and can be treated as the result of Andreev reflection of the electron by fluctuation
Cooper pairs. This contribution appears only in transport coefficients and often
turns out to be important. Its temperature singularity near 7 is similar to that of
the paraconductivity, although being extremely sensitive to electron phase-breaking
processes and to the type of orbital symmetry of pairing it can be suppressed. Let us
evaluate it.

The physical origin of the MT correction consists in the fact that the Cooper
interaction of electrons with nearly opposite momenta changes the mean free path
(diffusion coefficient) of electrons. The amplitude of the effective BCS interaction
increases drastically when 7" — T¢.:

g 1 T

1
.

I—vghZ ~WmI  T-T.

Zeff =

What is the reason for this growth? One can say that the electrons scatter one at
another in a resonant way with the virtual Cooper pair formation. Or, it is possible
to imagine that the electrons undergo Andreev reflection by fluctuation Cooper
pairs, binding in the Cooper pairs themselves. The probability of such induced pair
irradiation (let us remember that Cooper pairs are Bose particles) is proportional
to their number in the final state that is n(p) (see (1.4)). For small momenta,
n(p) ~ 1/e.

One can ask why such an interaction does not manifest itself considerably far
from the transition point? This is due to the fact that just a small number of electrons
with the total momentum g < £7!(T') interacts so intensively. In accordance with
the Heisenberg principle, the minimal distance between such electrons is of the order
of ~ &(T). On the other hand, such electrons, in order to interact, have to approach
one another approximately up to a distance of the Fermi length Ay ~ 1/ppg. The
probability of such event may be estimated in the spirit of the self-intersecting
trajectories contribution evaluation in the weak-localization theory [29].

In the process of diffusion motion, the distance between two electrons increases
with time according to the law: R(¢) ~ (Dt)l/ 2 Hence, the scattering probability

Tmax A?_l
RP(1)

vpdr.

The lower limit of the integral can be estimated from the condition R () ~ £(T')
(only such electrons interact in the resonant way). The upper limit is determined
by the phase-breaking time 7, since for larger time intervals the phase coherence,
necessary for the pair formation, is broken. As a result, the relative correction
to conductivity due to such processes is equal to the product of the scattering
probability on the effective interaction constant: §oMT /o = W gegr. In the 2D case

e D
S MT(an) ~ 1 % )
‘o e BT
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However, positive and singular in € close to 7. AL and MT contributions do
not capture the complete effect of fluctuations on conductivity. The involvement
of quasi-particles in the fluctuation pairing results in their lack at the Fermi
level that is in the opening of the pseudo-gap in the one-electron spectrum and
consequent decrease of the one-particle Drude-like conductivity. Such an indirect
effect of FCPs formation is usually referred as the DOS one. Being proportional
to the concentration of the FCPs NS(D) the DOS contribution formally appears

due to the order parameter Fourier-component (\A(ﬁ) (q, a))\2> integrated over all

long-wave-length fluctuation modes (¢ < &3l v/€):

20 p 2 2 d? |
50008 ~ e ZL 2 Shes®a ey T (1.14)
€

Mme € + E5csq? h

It is seen that DOS contribution has an opposite sign with respect to the AL and MT
contributions, but close to T,o does not compete with them since it turns to be less
singular as a function of temperature [1].

Finally, the renormalization of the one-electron diffusion coefficient (DCR) in
the presence of fluctuation pairing takes place. Close to T this contribution is not
singular in €

bR €
b0, ~ —Inln
XX h Tc()‘L'
and was always ignored, but as was found in [15, 16] it becomes of primary
importance relatively far from 7o, and at very low temperatures. It is the account

for §o2R, which changes the sign of the total contribution of fluctuations to
conductivity 80((;))0 in the wide domain of the phase diagram and especially close to
T = 0, in the region of quantum fluctuations [16] (see Fig. 1.1, where the regions

with the dominating fluctuation contributions to magnetoconductivity are shown).

+ O (¢)

2.0

Fig. 1.1 Contours of
constant fluctuation

conductivity

[0 = 80,&00 (¢, h) shown in

units of e?]. The dominant FC
contributions are indicated in
bold-italic labels. The dashed
line separates the domain of
quantum fluctuations (QFs)
[dark area of o > 0] and
thermal fluctuations (TFs)

h=0.69H/H(0)
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1.3 Ginzburg-Landau Theory

1.3.1 GL Functional

Let us consider the model of metal being close to transition to the superconductive
state. The complete description of its thermodynamic properties can be done through
the calculation of the partition function [30]:

Z =tr § exp (—?)

As discussed above, in the vicinity of the superconductive transition, side by side
with the fermionic electron excitations, fluctuation Cooper pairs of a bosonic nature
appear in the system. They can be described by means of classical bosonic complex
fields W(r), which can be treated as “Cooper pair wave functions”. Therefore, the
calculation of the trace in (1.15) can be separated into a summation over the “fast”
electron degrees of freedom and a further functional integration carried out over all
possible configurations of the “steady flow” Cooper pairs wave functions:

(1.15)

Z = /CDZ‘IJ(r)Z[\IJ(r)], (1.16)
where
Z[¥(r)] = exp (—w) (1.17)

is the system partition function in a fixed bosonic field W(r), already summed over
the electronic degrees of freedom.

The “steady flow” of wave functions means that they are supposed to vary
over a scale much larger than the interatomic distances. The classical part of the
Hamiltonian, dependent on bosonic fields, may be chosen in the spirit of the Landau
theory of phase transitions. However, in view of the space dependence of wave
functions, Ginzburg and Landau included in it additionally the first nonvanishing
term of the expansion over the gradient of the fluctuation field. Symmetry analysis
shows that it should be quadratic. The weakness of the field coordinate dependence
allows us to omit the high order terms of such an expansion. Therefore, the classical
part of the Hamiltonian of a metal close to superconductive transition related to
the presence of the fluctuation Cooper pairs in it (so-called GL functional) can be
written as [31]:

Fl¥(r)] = Fy + /dV {a|\11(r)|2 + gl\ll(r)|4 + ﬁw\y(r)ﬁ . (118)
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Let us discuss the coefficients of this functional. In accordance with the Landau
hypothesis, the coefficient a goes to zero at the transition point 7y and depends
linearly on T — T. Then a = aT,¢; all the coefficients «, b, and m are supposed to
be positive and temperature independent. Concerning the magnitude of the coeffi-
cients, it is necessary to make the following comment. One of these coefficients can
always be chosen arbitrarily: this option is related to the arbitrariness of the Cooper
pair wave function normalization. Nevertheless, the product of two of them is fixed
by dimensional analysis: ma ~ £72(T). Another combination of the coefficients,
independent of the wave function normalization and temperature, is &?>/b. One can
see that it has the dimensionality of the density of states. Since these coefficients
were obtained by a summation over the electronic degrees of freedom, the only
reasonable candidate for this value is the one electron DOS v (for one spin at the
Fermi level). One can notice that the arbitrariness of the order parameter amplitude
results in the ambiguity in the choice of the Cooper pair mass, introduced in (1.18)
as 2m. Indeed, this value enters in (1.20) as the product with the coefficient v, hence
one of these parameters has to be set down.

In the phenomenological GL theory, normalization of the order parameter W
is usually chosen in such a way that the coefficient m corresponds to the free
electron mass. At that, the coefficient o for D-dimensional clean superconductor
is determined by the expression

2D Ty

_— . 1.19
7CG) Er (119

¥(p) =

Yet, the other normalization when the order parameter, denoted as A (r),
coincides with the value of the gap in spectrum of one-particle excitations of a
homogeneous superconductor turns out to be more convenient. As it will be shown
below, in vicinity of Tt the microscopic theory allows to present the free energy of
superconductor in the form of the GL expansion namely over the powers of A (r).
At that turn out to be defined also the exact values of the coefficients « and b:

872
4maTy = £ %% /b =
maTy =& a7/ 720)

where ¢ (x) is the Riemann zeta function, £(3) = 1.202.
Let us stress that at such choice of the order parameter normalization the GL
parameter C = 1/4m turns out to be dependent on the concentration of impurities.

v, (1.20)

1.3.2 Zero Dimensionality: The Exact Solution for the Heat
Capacity Jump

In a system of finite volume, the fluctuations smear out the jump of the heat capacity.
Let us demonstrate this on the example of a small superconductive sample with the
characteristic size d < £(T'). Due to the small size of the granule with respect to the
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Fig. 1.2 Temperature dependence of the heat capacity of superconductive grains in the region of
the critical temperature

GL coherence length, the order parameter W does not depend on the space variables
and the free energy can be calculated exactly for all temperatures including the
critical region. It the space independent mode ¥, = W.\/V, which defines here the
main contribution to the free energy:

N4 Wol2 4+ L2 |, |4
Zo) = /dz\lloexp (_M) — ”/d|‘~1-’olzexp (_(al ol” + 57 [%ol")
T T
a3VT 5
= o el — e, (121)

By evaluating the second derivative of this exact result [32], one can find the temper-
ature dependence of the heat capacity of the superconductive granule (see Fig. 1.2).
One can see that this function is analytic in temperature, therefore fluctuations
remove phase transition in the 0D system. The smearing of the heat capacity jump
takes place in the region of temperatures in the vicinity of 7, where x ~ 1, that is

. 7¢(3) 1 T\ | é}%cs
= G = X 13.3 — .
€cr L) T /—I)Tc()V (EF ) 1%

Here, T,y and &gcs are the mean field critical temperature and the zero temperature
coherence length of the appropriate bulk material. It is interesting that the width of
this smearing does not depend on impurities concentration. From this formula, one
can see that the smearing of the transition is very narrow (€., << 1) when the granule
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volume V > (vT.)". This criterion means that the average spacing between the
levels of the dimensional quantization:

§= V)™ (1.22)

still remains much less than the value of the mean field critical temperature, 7.
Far above the critical region, where Gi(g) < € < 1, one can use the asymptotic
expression for the erf(x) function and find
b4
F(()) =—TIn Z(o) =—TIn—.
ae

(1.23)

Calculation of the second derivative gives an expression for the fluctuation part of
the heat capacity in this region:

1

(1.24)
The experimental study of the heat capacity of small Sn particles in the vicinity of
the transition was done in [33].

One can estimate the fluctuation contribution to heat capacity for a specimen
of an arbitrary effective dimensionality on the basis of the following observation.
The volume of the specimen may be divided into regions of size £(7"), which are
weakly correlated with each other. Then the whole free energy can be estimated

as the free energy of one such 0D specimen (1.23), multiplied by their number
Ny = VEP(T):

Fipy = —TVEP(T)In—. (1.25)
e

This formula gives the correct temperature dependence of the free energy not too
close to 7T for the specimens of the even dimensionalities. As we will demonstrate
below, a more accurate treatment removes the In € dependence from it in the case of
the odd dimensions.

In the Ginzburg—Landau region, one can omit the fourth-order term in W(r) with
respect to the quadratic one and write down the GL functional, expanding the order
parameter in a Fourier series:

k2
FlWh = Fy+) [a + m] (W > = Fy +aTe ) (e + &) [Wl”. (1.26)
k k

Here, ¥y = ﬁ f W(r)e~*dl and the summation is carried out over the wave
vectors k (fluctuation modes). For the specimen of dimensions L, L,, L. k;L; =
27 n;. The functional integral for the partition function (1.17) can be factored out
to a product of Gaussian-type integrals over these modes:
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k2
7 = /dz\If ex {—oz (e+ ) N7 2} ) (1.27)
l:[ k €XP dmaT, [l

Carrying out these integrals, one gets the fluctuation contribution to the free energy:

F(e>0)=-TIhZ = —TZm—. (1.28)

1.3.3 Zero Dimensionality: The Exact Solution
Jor the Fluctuation Magnetization

For quantitative analysis of the fluctuation diamagnetism, we start from the GL
functional for the free energy written down in the presence of the magnetic field.
The generalization of the functional (1.18) in the presence of magnetic field requires
first of all the gauge invariance; therefore, the momentum operator —iV must be
substituted by its gauge invariant form —iV—2eA (r) [34]. Moreover, the presence of
a magnetic field results in the accumulation of some residual energy of the magnetic
field in the volume of superconductor. Finally, the superconductor itself interacts
with the external magnetic field H. Taking into account these three observations one
can write the generalization of the functional (1.18) in the form

FlW(r)] = F, + /dV {al\ll(r)lz + gl\lf(r)|4 + %| (—iV—2eA(r)) ¥(r)|?

[VxA®[]*> VxA()-H
+ 8 - 47

(1.29)

The fluctuation contribution to the diamagnetic susceptibility in the simplest
case of a “zero-dimensional” superconductor (spherical superconductive granule
of diameter d < &(¢)) was considered by Shmidt [32]. As above, the smallness
d < &(T) allows us to omit in (1.29) the term —iV. Then, due to the smallness of
the granule size with respect to the magnetic field penetration depth in supercon-
ductor A, one can assume the equivalence of the average magnetic field in metal B
with the external field H. This allows us to omit also the last two terms in (1.29)
since in the assumed approximation they do not depend on fluctuations. It is why
formally the effect of a magnetic field in this case is reduced to the renormalization
of the coefficient a, or, in other words, to the suppression of the critical temperature:

42E?
T.(H) = Ty (1 — Té(Az)) ) (1.30)
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Here, &y = 7/e is the magnetic flux quantum and (- - -) means the averaging over
the sample volume. That is why for the granule in a magnetic field one can use the
partition function in the same form (1.21) as in the absence of the field but with the

renormalized GL parametera (H) = a + % (Az):

+ < (87)] 190 + £ 190l*
T

Zo (H) = n/d|\110|2exp —[

. (1.31)

3VT a’>(H)V
2 P T

14
l—erf[a (H) ﬁ]

Such a trivial dependence of the properties of 0D samples on the magnetic field
immediately allows us to understand its effect on the heat capacity of a granular
sample. Indeed, with the growth of the field the temperature dependence of the heat
capacity presented in Fig. 1.2 just moves in the direction of lower temperatures.
Equation (1.31) allows to calculate exactly the fluctuation part of the free energy
and corresponding magnetization as the function of temperature and magnetic field,
which can be used for the quantitative analysis of the experiments on nanoparticles
(see below).

In the GL region Gi(g) < €, one can easily write the asymptotic expression (1.23)
for the free energy:

T

a (6 + %(Az)).

F(O)(és H) =-TIn

In the case of a spherical particle, one has to choose the gauge of the vector-
potential A =1H x r yielding (A%) = - H2d? (calculation of this average value is
completely analogous to the calculation of the moment of inertia of a solid sphere).
In this way, an expression for the 0D fluctuation magnetization valid for all fields
H <« H(0) can be found:

1 aF(())(G,H) _ 67TT§2 H

Moy(e, H) = = .
o H) V. oH 52d (e 4 e szz)
1003

(1.32)

One can see that the fluctuation magnetization turns out to be negative and linear up
to some crossover field H,p (€) ~ % ~ %ch (0) /€ [35] at which it reaches a
minimum (this field can be called the temperature dependent upper critical field of
the granule). At higher fields, H,p(€) S H < H»(0) the fluctuation magnetization
of the 0D granule decreases as 1/H . In the weak field region H << He()(€) the
diamagnetic susceptibility is:

6nTE 1 ) £
H) = — D102 (S
Koe H) 502 € xP (d

N | =
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Let us underline that the temperature dependence of the 0D fluctuation diamagnetic
susceptibility turns out to be less singular than the 0D heat capacity correction: ¢!
instead of €2,

The expression for the fluctuation part of free energy (1.28) is also applicable
to the cases of a wire or a film placed in a parallel field: as was already mentioned
above all its dependence on the magnetic field is manifested by the shift of the
critical temperature (1.30). In the case of a wire in a parallel field the gauge of the
vector-potential can be chosen as above what yields (A2>(wire n=H 2d?/32. For a
wire in a perpendicular field, or a film in a parallel field, the gauge has to be chosen
in the form A =(0, Hx,0). One can find (AZ) = H?d?/16 for a wire and

(wire, L) —
(A?) iy = H>d?/12 for a film.
Calculating the second derivative of (1.28) with the appropriate magnetic field

dependencies of the critical temperature, one can find the following expressions for
the diamagnetic susceptibility:

=, wire in parallel field,

T
Xoy(€) = —2715— xXp =, wire in perpendicular field, (1.33)
VF

Sl

In -, film in parallel field.

Sl
=

1.3.4 Fluctuation Diamagnetism in Lead Nanoparticles

Recently, in [36] the 0D fluctuating diamagnetism was carefully studied in lead
nanoparticles with size d < § by means of high-resolution superconductive quan-
tum interference device magnetization measurements. In result, the diamagnetic
magnetization Mg, (H, T = const) was reported as a function of the applied mag-
netic field H at constant temperatures in a wide range of temperatures around T
including the critical region. The magnetization curves were analyzed in the frame-
work of the presented above exact fluctuation theory based on the Ginzburg—Landau
functional.

The representative isothermal magnetization curves in the temperature range
around T are reported in Fig. 1.3. The extraction of the diamagnetic contribution
from the magnetization requires a detailed subtraction procedure when the magnetic
field is increased to relatively strong values. In fact, in the range H > H,p | M|
decreases on increasing the field (see Fig. 1.3), while the paramagnetic contributions
due to the Pauli paramagnetism and to a small amount of paramagnetic impurities
continue to increase on increasing H . Thus, from the computer-stored raw magne-
tization data around T, the magnetization values measured at a higher temperature
(around 8 K) where the SFs are negligible have been subtracted. The slight variation
of the paramagnetic contribution with temperature did not prevent reliable estimates
of My, for magnetic field up to about 600 Oe, as indicated by the error bars in
Fig. 1.5b.
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Fig. 1.3 (a) Magnetization Mg;, vs H for the sample with the characteristic diameter of grains
d; >~ 75nm at representative temperatures above Ty. The solid lines correspond to (1.32) in the
text for critical field of the grain 1,150 Oe . For € < €., the curves depart from the behavior
described by (1.32). (b) Magnetization curves for sample with the characteristic size of grains
dy = 16nm, all corresponding to temperature range where € < €., namely, within the critical
region. The open circles in part (a) correspond to the data obtained from the iso-field measurements
as a function of temperature, with large experimental errors
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The first-order fluctuation correction is found to be valid only outside the critical
region € 2 €., where it accurately describes the behavior My;, for magnetic fields
H < Hy,. Also, the scaling properties of d7.(H)/dH for small fields and of
the upturn field Hy, in the magnetization curves are well described within that
approximation.

In the critical region, however, the role of the field and the limits of validity of the
first-order fluctuation correction have been analyzed by comparing the experimental
findings to the derivation of My, as a function of the magnetic field starting
from the complete form of the GL functional and with the exact expression of
the zero-dimensional partition function. The authors found that the role of the
|W(r)|* term in the GL functional is crucial in describing the data in the critical
region. For the sample with average grain diameter of 75 nm, the fluctuating
diamagnetism can be well described by our extended model even in the critical
region, without introducing any adjustable parameters. For the sample with the
smallest average diameter of 16 nm, the agreement of the numerically derived Mg,
with the experimental findings is again good for fields of the order of H,p,. Poor
agreement between the theoretically predicted Mg;, vs H and the authors data is
observed for fields above H,,, when the fluctuating diamagnetic contribution is
approaching zero and the subtraction procedure of the paramagnetic term introduces
large errors.

The temperature dependence of the upturn field and the scaling properties with
the grain size are also well described by the exact theory both outside and inside the
critical region, with the product (H,,d ) vs reduced temperature being approximately
size independent and following the predicted temperature dependence, even though
the mean field result H,, ~ €'/?/d evidently breaks down. The relevance of
the magnetization curves vs H and of the upturn field H,, for the study of the
fluctuating diamagnetism above the superconductive transition temperature has been
emphasized.

1.4 Fluctuation Thermodynamics of Layered Superconductor
in Magnetic Field

1.4.1 Lawrence—Doniach Model

Let us pass now to the quantitative analysis of the temperature and field dependen-
cies of the fluctuation magnetization of a layered superconductor. This system has
a great practical importance because of its direct applicability to HTS, where the
fluctuation effects are very noticeable. Moreover, the general results obtained will
allow us to analyze as limiting cases 3D and already familiar 2D situations. The
effects of a magnetic field are more pronounced for a perpendicular orientation, so
let us first consider this case.

The generalization of the GL functional for a layered superconductor (Lawrence—
Doniach (LD) functional [37]) in a perpendicular magnetic field can be written as
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b 1 :
Fip [¥] = Z/dzr (a > + > W |* + . (V) — 2ieA)) ||
l

+ T ¥4 —\Ilez), (1.34)

where W, is the order parameter of the /-th superconductive layer and the phe-
nomenological constant 7 is proportional to the energy of the Josephson coupling
between adjacent planes. The gauge with A, = 0 is chosen in (1.34). In the
immediate vicinity of 7¢, the LD functional is reduced to the GL one with the
effective mass M = (47s%)”! along c-direction, where s is the inter-layer spacing.
One can relate the value of J to the coherence length along the z-direction:
J = 205TC§Z2 /s%. Since we are dealing with the GL region, the fourth order term
in (1.34) can be omitted.

The Landau representation is the most appropriate for solution of the problems
related to the motion of a charged particle in a uniform magnetic field. The
fluctuation Cooper pair wave function can be written as the product of a plane wave
propagating along the magnetic field direction and a Landau state wave function
¢, (r). Let us expand the order parameter W, (r) on the basis of these eigenfunctions:

Wi(r) = ) Wy k. (r) explikzl), (1.35)

nk;

where n is the quantum number related to the degenerate Landau state and k; is the
momentum component along the direction of the magnetic field. Substituting this
expansion into (1.34), one can find the LD free energy as a functional of the W, ;.
coefficients:

1
Fip [\Il{n,kz}] = Z %ocTce + w, (n + 5) +J [1 — cos(kzs)] |\If,,,kz|2. (1.36)
n.k;

In complete analogy with the case of an isotropic spectrum, the functional integral
over the order parameter configurations W, in the partition function can be
reduced to a product of ordinary Gaussian integrals, and the fluctuation part of the
free energy of a layered superconductor in magnetic field takes the form:

SH T

—T ) In ;
ol nE al.e + o, (n + 5) +J [1 — cos(kzs)]

F(e,H) = — (1.37)

(compare this expression with the (1.28)).
In the limit of weak fields, one can carry out the summation over the Landau
states by means of the Euler—Maclaurin’s transformation and obtain
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STH? [™/5 Nsdk 1
F@Jn::F@ﬁ)+f————/' s Z{

24m®3 J_,)s 27 aT.e+J (1 —cos(k,s)) |-
(1.38)

Here NV, is the total number of layers. Carrying out the final integration over the
transversal momentum, one gets:

TV h?

247'5553), Vel +r)

F(e,H) = F(¢,0) +

with the anisotropy parameter defined as

_27 _ 420

aT 52

(1.39)

and h = 27 £% H/ ®g as reduced magnetic field. The diamagnetic susceptibility in a
weak field turns out [38,39] to be

_er &
X (layer, 1) = 3s \/m

In the 2D and 3D limits, this formula reproduces (1.33). Note that (1.40) predicts
a nontrivial increase of diamagnetic susceptibility for clean metals [39]. The usual
statement that fluctuations are most important in dirty superconductors with a short
electronic mean free path does not hold in the particular case of susceptibility
because here £ turns out to be in the numerator of the fluctuation correction.

(1.40)

1.4.2 General Formula for the Fluctuation Free Energy
in Magnetic Field

Now we will demonstrate that, besides the crossovers in its temperature dependence,
the fluctuation-induced magnetization and heat capacity are also nonlinear functions
of magnetic field. These nonlinearities, different for various dimensionalities, take
place at relatively weak fields. This, strong in comparison with the expected scale
of H.(0), manifestation of the nonlinear regime in fluctuation magnetization and
hence, field-dependent fluctuation susceptibility was the subject of the intensive
debates in early 1970s [40—49] (see also the old but excellent review of Scokpol
and Tinkham [50]) and after the discovery of HTS [51-54]. We will mainly follow
here the recent essay of Mishonov and Penev [55] and the paper of Buzdin
et al. [56], dealing with the fluctuation magnetization of a layered superconductor,
which allows observing in a unique way all variety of the crossover phenomena in
temperature and magnetic field.
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One can evaluate the general expression (1.37) without taking the magnetic field
to be small and get

2 ~
F (e, h) = — 4 [h/() do I'(1/2+€(0)/2h)

—In
2msE2,

2 V2
1

+3 (e + %) Inh + const]. (1.41)

This formula is valid for any anisotropy parameter.

1.4.3 Fluctuation Magnetization of Layered Superconductor
and its Crossovers

Direct derivation of (1.41) over magnetic field gives for fluctuation part of magneti-
T /2 d ¢

zation:
€ + r sin’ € + r sin’ 1
— 4 v 4 +-]-1
Dos Jo  w/2 2h 2h 2

e+rsinfg 1 1
—Inl" (T + E) + 511’1(27'[)} .

M (e, hir) =—

Handling with the Hurvitz zeta functions the general formula for an arbitrary
magnetic field in 3D case (¢ < r) can be carried out [44, 55]:

T (2\'?
Ma(e € rh) =3— (—) vh
Dps \ r

11 € 11 € €
Llzarm) - Grrm)a) o

while in the opposite case of extremely high anisotropy r < |€|, 7 < 1 one obtains
the 2D result.

Let us comment on the different crossovers in the M (e, H) field dependence. Let
us fix the temperature € < r. In this case, the c-axis coherence length exceeds the
interlayer distance (&, > s ) and in the absence of a magnetic field the fluctuation
Cooper pairs motion has a 3 D character. For weak fields (7 < €), the magnetization
grows linearly with magnetic field, justifying our preliminary qualitative results:

e’TH
M(3)(6 Lrh— 0) = —7&(}, (6) . (1.43)
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Fig. 1.4 Schematic representation of the different regimes for fluctuation magnetization in the
(H, T) diagram. The line H}(T') is mirror-symmetric to the He,(7') line with respect to a y-axis
passing through 7" = T. This line defines the crossover between linear and nonlinear behavior of
the fluctuation magnetization above 7. [56]

Nevertheless, this linear growth is changed to the nonlinear 3D high field regime
M ~ /H already in the region of a relatively small fields Ho(e€) < H (¢ < h)
(see Fig.1.4). The further increase of magnetic field at 7 ~ r leads to the next
3D — 2D crossover in the magnetization field dependence. In the limit ¢ < £,
magnetization saturates at the value M.

The substitution of € = 0 gives the result typical of 2D superconductors.
Therefore, at h ~ r we have a 3D — 2D crossover in M(H) behavior in spite
of the fact that all sizes of fluctuation Cooper pair exceed considerably the lattice
parameters. Let us stress that this crossover occurs in the region of already strongly
nonlinear dependence of M (H ) and therefore for a rather strong magnetic field from
the experimental point of view in HTS.

Let us mention the particular case of strong magnetic fields ¢ < h (1.42)
reproduces the result by Prange [42] with an anisotropy correction multiplier [55]
§xy(0)/€:(0) :
0.32T £ (0)

o &0
Near the line of the upper critical field (h.,(€) = — €), the contribution of the term

with n = 0 in the sum (1.37) becomes the most important and for the magnetization
the expression

M) (0,h) = —

(1.44)

h
V(=T (€))(h = heale) + 1)

(1.45)

T
M(h) = —0.346 (cp_os)
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can be obtained [56]. It contains the already familiar for us “0D” regime (r <
h—h., < 1), where the magnetization decreases as —M (h) ~ ﬁ (compare with

(1.32)), while for h — h,, << r the regime becomes “1D” and the magnetization
1

decreases slower, as —M (h) ~ T
Such an analogy is observed in the next orders in Gi too. In the [57], the analogy

was demonstrated for the example of the first eleven terms for the 2D case and nine
for the 3D case. Summation of the series of high-order fluctuation contributions to
the heat capacity by the Pade—Borel method resulted in its temperature dependence
similar to the 0D and 1D cases without a magnetic field. Nevertheless, a consider-
able difference is not to be forgotten: in the 0D and 1D cases, no phase transition
takes place while in the 2D and 3D cases in a magnetic field a phase transition of
first order to the Abrikosov vortex lattice state occurs.

In conclusion, the fluctuation magnetization of a layered superconductor in the
vicinity of the transition temperature turns out to be a complicated function of tem-
perature and magnetic field, and it evidently cannot be factorized in these variables.
The fit of the experimental data is very sensitive to the anisotropy parameter r and
allows determination of the latter with a rather high precision [58, 59]. In Fig. 1.5,
the successful application of the described approach to fit the experimental data on

YBa,Cu307 is shown [60].
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Fig. 1.5 Fluctuation magnetization of a YBaCO123 normalized on VH as the function of
temperature in accordance with the described theory shows the crossing of the iso-field curves
at T = T.(0) = 92.3 K. The best fit obtained for anisotropy parameter r = 0.09. In the inset, the
magnetization curves as the function of magnetic field are reported
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1.5 Fluctuation Conductivity of Layered Superconductor

The appearance of fluctuating Cooper pairs above T, leads to the opening of a “new
channel” for charge transfer. The fluctuation Cooper pairs were treated above as
carriers with charge 2e, while their lifetime gL was chosen to play the role of the
scattering time in the Drude formula. Such a qualitative consideration results in
the Aslamazov-Larkin (AL) pair contribution to conductivity (1.10) (the so-called
paraconductivity [61]). Below we will present the generalization of the phe-
nomenological GL functional approach to transport phenomena. Dealing with the
fluctuation order parameter, it is possible to describe correctly the paraconductivity-
type fluctuation contributions to the normal resistance and magnetoconductivity,
Hall effect, thermoelectric power, and thermal conductivity at the edge of the
transition. Unfortunately, the indirect fluctuation contributions are beyond the
possibilities of the description by time-dependent GL (TDGL) approach, and they
can be calculated only in the framework of the microscopic theory (see below).

1.5.1 Time-Dependent GL Equation

In previous sections, we have demonstrated how the GL functional formalism allows
one to accounting for fluctuation corrections to thermodynamic quantities. Let us
discuss the effect of fluctuations on the transport properties of a superconductor
above the critical temperature.

To find the value of paraconductivity, some time-dependent generalization of the
GL equations is required. Indeed, the conductivity characterizes the response of the
system to the applied electric field. It can be defined as E = —dA /d¢ but, in contrast
to the previous section, A has to be regarded as being time dependent. The general
nonstationary BCS equations are very complicated, even in the limit of slow time
and space variations of the field and the order parameter. For our purposes, it will be
sufficient, following [62-70], to write a model equation in the vicinity of 7t, which
in general correctly reflects the qualitative aspects of the order parameter dynamics
and in some cases is exact.

Let us revise the GL functional formalism introduced above. One can see that the
derived above stationary GL equations do not describe correctly the superconductive
properties when a deviation from equilibrium is assumed. Indeed, in the absence of
equilibrium, the order parameter W becomes time dependent and this in no way
was included in the scheme. Nevertheless, the scheme can be improved. For small
deviations from the equilibrium, it is natural to assume that in the process of order
parameter relaxation its time derivative dW/0¢ is proportional to the variational
derivative of the free energy §F/5W*, which is equal to zero at the equilibrium.
But this is not all: side by side with the normal relaxation of the order parameter
the effect of thermodynamic fluctuations on it has to be taken into account. This
can be done by the introduction, the Langevin forces {(r,¢) in the right-hand
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side of the equation describing the order parameter dynamics. Finally, gauge
invariance requires that d\W/d¢ should be included in the equation in the combination
oW /0t + 2iep W, where ¢ is the scalar potential of the electric field. By including
all these considerations, one can write the model time-dependent GL equation in the
form

I §F
— oL (5 + 21e(p) Y=o (1.46)

with the GL functional F determined by (1.18), (1.29), (1.34) [71]. The dimen-
sionless coefficient ygr in the left-hand-side of the equation can be related to pair
lifetime zgp, (1.1): yoL = aT.etgL = mwa/8 by the substitution in (1.46) of the first
term of (1.18) only [72].

Neglecting the fourth-order term in the GL functional, (1.46) can be rewritten in
operator form as

[L™" = 2ieyop(r, O]W(r. 1) = {(r.1) (1.47)
with the TDGL operator L and Hamiltonian 7 defined as

—1
7 [yGLgit + ﬂ} A =ol[e BT -2ieAy].  48)

We have introduced here the formal operator of the coherence length /E\ to have the
possibility to deal with an arbitrary type of spectrum. For example, in the most
interesting case for our applications to layered superconductors, the action of this
operator is defined by (1.34).

In the absence of an electric field, one can write the formal solution of (1.47) as

VO, 1) = Le(r, ). (1.49)

The correlator of the Langevin forces introduced above must satisfy the fluctuation—
dissipation theorem. This requirement is fulfilled if the Langevin forces ¢ (r, ¢) and
£*(r, t) are correlated by the Gaussian white-noise law

(& (r,0)e(r' 1)) = 2T ReygLd(r —r )8(t — ). (1.50)

The fundamental solution L(p, €2) can be found by making a Fourier transform of
(1.48), what gives:
L(p.Q) = (—iyeLQ + &p) . (1.51)
with
ep = aTe(e + E°p?) (1.52)

as the fluctuation Cooper pair energy spectrum.
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1.5.2 General Expression for Paraconductivity

By means of the qualitative consideration based on the Drude formula, we obtained
in the Introduction the expression for paraconductivity, which correctly reflects its
temperature singularity in any dimension. Following this way, one could write down
some kind of master equation for fluctuation Cooper pairs and obtain indeed the
precise expression for paraconductivity (see [1]). Unfortunately, the applicability of
the derived master equation is restricted to relatively weak electric and magnetic
fields. For stronger fields H.(€) S H < H:»(0), the density matrix has to be
introduced and the master equation loses its attractive simplicity. At the same time,
as we already know, these fields, quantizing the fluctuation Cooper pair motion,
present special interest. That is why to include in the scheme the magnetic field
and frequency dependencies of the paraconductivity, we return to the analysis
of the general TDGL equation (1.46) without the objective to reduce it to a
Boltzmann-type transport equation.

Let us solve it in the case, when the applied electric field can be considered as a
perturbation. The method will much resemble an exercise from a course on quantum
mechanics. To impose the necessary generality side by side with a formal simplicity
of expressions, we will introduce a subscript of the kind {i}, which includes the
complete set of quantum numbers and time. By a repeated subscript, a summation
over a discrete and integration over continuous variables (time in particular) is
implied.

We will look for the response of the order parameter to a weak electric field
applied in the form

Wy (rt) = W + Wi, (1.53)
where \Ilgji is determined by (1.49). Substituting this expression into (1.47) and
restricting our consideration to linear terms in the electric field, we can write

(LY Wy, = 2ieyoLen vy, (1.54)
with the solution in the form

‘1’23 = 2ieyaL Ly @eens LimyEomy- (1.55)

Let us substitute the order parameter (1.53) in the quantum mechanical expression
for current:

. 0) %~ 1
j=2eRe [\Ijiii*v{ik}\p( )

(D*o (0)
W+ U v ] (1.56)

k3

where Vi is the velocity operator, which can be expressed by means of the
commutator of r with Hamiltonian (1.48):

Vi = {H. g (1.57)



26 A.A. Varlamov

and average now (1.56) over the Langevin forces. Moving the operator kai} from
the beginning to the end of the trace, one finds

j=—16T¢*Re(ycL) Im{)/GLV{u}Z{zmw{mn}z{np}z?pi}}- (1.58)

Now we choose the representation where the Z{lm} operator is diagonal (it is
evidently given by the eigenfunctions of the Hamiltonian (1.48)):

1

_ (1.59)
—iQ2 YL + Elm}

Liny(R2) =

where &,y are the appropriate energy eigenvalues. Then we assume that the electric
field is coordinate independent but is a monochromatic periodic function of time:

o(r.t) = —EPrP exp(—iwt). (1.60)

In doing the Fourier transform in (1.58), one has to remember that the time
dependence of the matrix elements ¢y, results in a shift of the frequency variable
of integration 2 — 2 — w in both L-operators placed after ¢g,,) or, what is the

same, to a shift of the argument of the previous Z{Im} for w:

. 0 - O
i = 16T¢? Re()’GL)/Em{VGLV{I”}L{[}(Q -|—a))[—1r5i}]L{i}(Q)LE}(Q)}E5,
(1.61)

where N f(w) = [f(w) + f*(—w)]/2.
Let us express the matrix element rg;; by means of Vy;, using the commutation
relation (1.57). One can see that in the representation chosen

S
By =i (1.62)
ey — ey

and, carrying out the frequency integration in (1.61), finally write for the fluctuation
conductivity tensor (j¢ = 0% (w)EP):

o (e, H,w)
- ViV
= 8¢’T Re(yaL) R | veL P :
b‘%io egy(voLeqy + vaewy —ilvaLl? @) ey — egy)

(1.63)

This is the most general expression which describes the d.c., galvanomagnetic and
high frequency paraconductivity contributions.
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The microscopic analysis of the coefficient yg;, demonstrates that its imaginary
part Im ygr. usually is much smaller than Re ygr. Its origin can be related to the
electron—hole asymmetry or other peculiarities of the electron spectrum. In the
case when one is interested in the diagonal effects only it is enough to accept
yoL as real: (yg = ReygL = mwa/8). In this way, (1.64) can be simplified and
after symmetrization of the summation variables the d.c. contribution of fluctuation
Cooper pairs to magnetoconductivity takes the form:

” S v
0% (e, H) = Zae’T Z N Gy v} ‘ 6
? {il}=0 ey (Egy + £uy)

Let us demonstrate the calculation of the d.c. paraconductivity in the simplest
case of a metal with an isotropic spectrum. In this case, we choose a plane wave
representation. By using &p, defined by (1.52), one has

~ de
V{pp/} = VPS])])/’ Vp = a—; = Z(XTcszp. (165)

We do not need to keep here the imaginary part of ygr, which is necessary to
calculate particle-hole asymmetric effects only. As a result, one reproduces the AL
formula:

e2

3D case,
g 3252\/1
U(D)_2e T'Re VGLZ =5 lz_d_ 2D film, thickness : d < &,
’ ]TCZE 1 1D wi fion : § <£?
168 &2 wire, cross — section : S <&°.

1.5.3 Paraconductivity of a Layered Superconductor

Let us return to the discussion of our general formula (1.64) for the fluctuation
conductivity tensor. A magnetic field directed along the c-axis still allows separation
of variables even in the case of a layered superconductor. The Hamiltonian in this
case can be written as in (1.36), (1.48):

H = aT, (e — 2 (Vyy —2ieAy,)? — %(1 - cos(kzs)) . (1.66)

It is convenient to work in the Landau representation, where the summation over {i }
is reduced to one over the ladder of Landau levelsi = 0,1, 2. ... (each is degenerate
with a density H/®, per unit square) and integration over the c-axis momentum in
the limits of the Brillouin zone. The eigenvalues of the Hamiltonian (1.66) can be
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written in the form
ey = aT, [e n %(1 —cos(k.s)) + h(2n + 1)] = e +aTh@n+ 1), (1.67)

where h = eH /2maT,. For the velocity operators one can write

~ . . BN :
VO = —(—iV=2ieA)"; ¥ = —ﬂTc sin(k.s). (1.68)
2m 2

1.5.4 In-Plane Conductivity

Let us start from the calculation of the in-plane components. The calculation of
the velocity operator matrix elements requires some special consideration. First of
all, let us stress that the required matrix elements have to be calculated for the
eigenstates of a quantum oscillator whose motion is equivalent to the motion of
a charged particle in a magnetic field. The commutation relation for the velocity
components follows from (1.68) (see [73]):

.eH, T,
= h. 1.69
2m?2 m ( )

[V, v

To calculate the necessary matrix elements, let us present the velocity operator
components in the form of boson-type creation and annihilation operators @™, a:

(T|alny = (nla*|l) = Vnbui+1,

which satisfy the commutation relation [@,a+] = 1. We obtain

T = alch at+a
2m iat —ia )

One can check that the correct commutation relation (1.69) is fulfilled and see that
the only nonzero matrix elements of the velocity operator are

=X,y _ aTCh \/781,11-1—1 + \/ﬁgn,l+l
Ve = V 2m ( V1811 — /185 141 ) (1.70)

Using these relations, the necessary product of matrix elements can be calculated:

aTh

(1" n)(n[v¥|l) = (151n+1 + népi+1)- (1.71)
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Its substitution to the expression (1.64) gives for the diagonal in-plane component
of the paraconductivity tensor

(e, ) = JroﬂTCZeZh i " (8141 + 1y 141) .
4m =0 M [eay + &0

Summation over the subscript {/} and accounting of the degeneracy of the Landau
levels H/®y = 2maT.h/m (the layer area we assume to be equal one) gives for the
diagonal component of the in-plane paraconductivity tensor:

o™ (e, H) =

2(@T)*h? 5 dk, & 1
%/ = R n+ (1.72)

— " epr1En(Ent1 + €0)

1.5.5 Out-of Plane Conductivity

The situation with the out-of plane component of paraconductivity turns out to be
even simpler because of the diagonal structure of the

. ars .
Vim} = _TTC sin(k;s) X 8in x 8(k; — k).

Taking into account that the Landau state degeneracy, we write

" e (aT.)’ [ sr dkz 0 sin? (ks)
o) = T (s_y) hZ/ Lz(ka[sn(kz)]]

1.5.6 Analysis of the Limiting Cases

In principle, the expressions derived above give an exact solution for the d.c.
paraconductivity tensor of a layered superconductor in a perpendicular magnetic
field H < He (h < 1) in the vicinity of the critical temperature (¢ < 1). The
interplay of the parameters r, €, i, as we have seen in the example of fluctuation
magnetization yields a variety of crossover phenomena.

The simplest and most important results which can be derived are the components
of the d.c. paraconductivity of a layered superconductor in the absence of magnetic
field. Setting & — 0 one can change the summations over Landau levels into
integration and find

(e, h — = —_— .
(e, 0,0 =0)= A 6)] (1.73)



30 A.A. Varlamov

" e’s e+r/2
0" (eh > 0.0=0) = = ([€(€+r)]1/2—1). (1.74)
xy

For 2D case, the sum can be calculated exactly in terms of the ¥-functions:and
one finds the expression for the 2D magnetoconductivity:

2 /e, h<e

e? 1 € e
op(eh)=——F( )=~ 2/h, e<h , (1.75)
2s € (Zh) 16s 4e+h). eth—0
where X |
F (x) = x? [w (—+x)—w(x)——] (1.76)
2 2x

The 2D AL theory was extended [16, 74] to the high temperature region by
taking into account the short-wavelength and dynamic fluctuations. The following
universal formula for paraconductivity of a 2D superconductor as a function of the
generalized reduced temperature ¢ = In 7'/ T, and magnetic field was obtained [16]:

AL ¢’ ®© dx
80 t,h = — m + 1 /
V) ”,,;( ) B
Ingm Im25m+1 Im25m+l _ Imng
X{ 2 2 2 ;—Re [5m5m+1]} (1.77)
|Eml |Em+1] |Eml™ 1Em+1]

with

Ep = Ey (€, h,i2) =e+w[1+iz+%(2m+l)}—w(l), (1.78)

2 t n? 2
and
_ 7 H (1.79)
8ye Heo (0) .

In the limit of zero fields, one can find [74]:

Here, it is worth making an important comment. The proportionality of the
fluctuation magnetoconductivity to h> is valid when using the parametrization
€ = (T — Ty)/ Teo only. Often the analysis of the experimental data is carried
out by choosing as the reduced temperature parameter €, = (T — Tc(H))/ T.(H).
At that point, it is important to recognize that the effect of a weak magnetic field
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on the fluctuation conductivity cannot be reduced to a simple replacement of T, by
T.(H) in the appropriate formula without the field. In this parametrization, one
can get a term in the magnetoconductivity linear in 4. Point is that besides the
cases of the special specimen geometry, a weak magnetic field shifts the critical
temperature linearly. Such linear correction is exactly compensated by the change
in the functional dependence of the paraconductivity in magnetic field, and finally
it contains the negative quadratic contribution only.

1.5.7 Comparison with the Experiment

Although the in-plane and out-of-plane components of the fluctuation conductivity
tensor of a layered superconductor contain the same fluctuation contributions,
their temperature behavior may be qualitatively different. In fact, for o,fg) , the
negative contributions are considerably less than the positive ones in the entire
experimentally accessible temperature range above the transition, and it is a positive
monotonic function of the temperature. Moreover, for HTS compounds, where
the pair-breaking is strong and the anomalous MT contribution is in the saturated
regime, it is almost always enough to take into account only the paraconductivity
to fit experimental data. Some examples of the experimental findings for in-plane
fluctuation conductivity of HTS materials can be seen in [75-82].

In Fig. 1.6, the fluctuation part of in-plane conductivity a,fg) is plotted as a
function of € = In T/ T;. on a double logarithmic scale for three HTS samples (the
solid line represents the 2D AL behavior (1/¢), the dotted line represents the 3D
one: 3.2//€) [83]. One can see that paraconductivity of the less anisotropic YBCO
compound asymptotically tends to the 3D behavior (1/€!/?) for € < 0.1, showing
the LD crossover at € ~ 0.07; the curve for more anisotropic 2223 phase of BSCCO
starts to bend for € < 0.03 while the most anisotropic 2212 phase of BSCCO shows
a 2D behavior in the whole temperature range investigated. All three compounds
show a universal 2D temperature behavior above the LD crossover up to the limits
of the GL region. It is interesting that around € ~ 0.24 all the curves bend down
and in accordance to [74], follow the same asymptotic 1/ behavior (dashed line).
Finally at the value ¢ ~ 0.45, all the curves fall down indicating the end of the
observable fluctuation regime.

In the case of the out-of-plane conductivity, the situation is quite different.
Both positive contributions (AL and anomalous MT) are suppressed here by the
necessity of the interlayer tunneling, what results in a competition between positive
and negative terms. Such concurrence can lead to formation of a maximum in
the temperature dependence of the c-axis resistivity. This nontrivial effect of
fluctuations on the transverse resistance of a layered superconductor allows a
successful fit to the data observed on optimally doped and overdoped HTS samples
(see, e.g., Fig. 1.7), where the growth of the resistance still can be treated as a
correction. The fluctuation mechanism of the growth of the transverse resistance
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Fig. 1.6 The normalized excess conductivity for samples of YBCO-123 (triangles), BSSCO-2212
(squares) and BSSCO-2223 (circles) plotted against € = In7T /T, on a In-In plot as described in
[83]. The dotted and solid lines are the AL theory in 3D and 2D respectively. The dashed line is
the extended theory of [74]
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Fig. 1.7 Fit of the temperature dependence of the transverse resistance of a slightly underdoped
BSCCO c-axis oriented film with the results of the fluctuation theory [84]. The inset shows the
details of the fit in the temperature range between 7 and 110 K
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can be easily understood in a qualitative manner. Indeed, to modify the in-plane
result for the case of c-axis paraconductivity, one has to take into account the
hopping character of the electronic motion in this direction. If the probability of
one-electron interlayer hopping is Pj, then the probability of coherent hopping
for two electrons during the fluctuation Cooper pair lifetime rgy, is the conditional
probability of these two events: P, = P; (P tgL). The transverse paraconductivity
may thus be estimated as o{" ~ Prot ~ P}, in complete accordance with

the result of microscopic theory. We see that the temperature singularity of oﬁL
turns out to be stronger than that in ol‘l*L, however, for a strongly anisotropic

layered superconductor cff‘ is considerably suppressed by the square of the small
probability of interlayer electron hopping, which enters in the prefactor. It is this
suppression which leads to the necessity of taking into account the DOS contribution
to the transverse conductivity. The latter is less singular in temperature but, in
contrast to the paraconductivity, manifests itself in the first, not the second, order in
the interlayer transparency O'EOS ~ —Pi1n(1/€). The DOS fluctuation correction
to the one-electron transverse conductivity is negative and, being proportional to the
first order of Py, can completely change the traditional picture of fluctuations just
rounding the resistivity temperature dependence around transition. The shape of the
temperature dependence of the transverse resistance mainly is determined by the
competition between the opposite sign contributions: the paraconductivity and MT
term, which are strongly temperature dependent but are suppressed by the square of
the barrier transparency and the DOS contribution, which has a weaker temperature
dependence but depends only linearly on the barrier transparency.

1.6 Quantum Superconductive Fluctuations Above H,(0)

1.6.1 Dynamic Clustering of FCPs

The qualitative picture for SF in the quantum region at very low temperatures and
close to H.,(0) drastically differs from the Ginzburg—Landau one, valid close to T¢.
As we saw above, the latter can be described in terms of the set of long-wavelength
fluctuation modes (with A = &g (T) > &pcs) of the order parameter, with the
characteristic lifetime tgp, = wh/8kp (T — Tyo) . In the former, the order parameter
oscillates in much smaller scale, the fluctuation modes with the wave-lengths up
&pcs are excited. One can imagine that FCPs here rotate in magnetic field with
the Larmor radius ~ &gcs and cyclotron frequency w. ~ Aglg. The microscopic
theory shows below that close to Hc; (0) these FCPs form some kind of quantum
liquid with the long coherence length £qr ~ &pcs/ h'/2 and slow relaxation with the
characteristic time

~ =~
tor ~ 1 (Bpesh) T = (H = Ho(0))/ Ha(0) (1.80)
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One sees that the functional form of 7or is completely analogous to that of 7gL:
Apcs ~ Teo and the reduced field & plays the role of reduced temperature €.
Equation (1.80) can also be obtained also from the uncertainty principle. Indeed,
the energy, characterizing the proximity to the quantum phase transition is AE =
hw. (H) — ho, (He (0)) ~ Apcsh and namely this value should be used in the
Heisenberg relation instead of k(T — Ty), as was done in the vicinity of T,y. The

spatial coherence scale &g (ri;) can be estimated from the value of Tgr analogously

to consideration near Tcy. Namely, two electrons with the coherent phase starting
from the same point after the time tqr get separated by the distance

Sqr (@ ~ (DTQF)I/2 ~ §Bcs/‘/ﬁ

To clarify the physical meaning of tor and £qp, note that near the quantum phase
transition at zero temperature, where H — H, (0), the fluctuations of the order
parameter A (r, 7) become highly inhomogeneous, contrary to the situation near
Teo- Indeed, below H,; (0), the spatial distribution of the order parameter at finite
magnetic field reflects the existence of Abrikosov vortices with average spacing
(close to Hc, (0) but in the region where the notion of vortices is still adequate)
equal to

a(H) = &pcs/+v/ H/He (0) — &pcs-

Therefore, one expects that close to and above H; (0) the fluctuation order
parameter A®™ (r,7) also has “vortex-like” spatial structure and varies over the
scale of &gcs being preserved over the time scale tgr. In the language of FCPs,
one describes this situation in the following way. The FCPs at zero temperature
and in magnetic field close to H, (0) rotates with the Larmor radius r;, ~
vp/we (He (0)) ~ ve/Apcs ~ &pcs, which presents their effective size. During
the time 7gF, two initially selected electrons participate in the multiple fluctuating

Cooper pairings maintaining their coherence. The coherence length &g (h > Epcs

is thus a characteristic size of a cluster of such coherently rotating FCPs, and tqr
estimates the lifetime of such flickering cluster. One can view the whole system
as an ensemble of flickering domains of coherently rotating FCPs, precursors of
vortices (see Fig. 1.8).

In view of described qualitative picture of SF in the regime of QPT, let us resume
the scenario of Abrikosov lattice defragmentation. Approaching to H¢, (0) from
below, the paddles of fluctuating vortices, which are nothing else as rotating in

magnetic field FCPs, are formed. Their characteristic size is &g (lﬁl) , and they

flicker with the characteristic time Tqr (|f5|) At this stage, the supercurrent still can

flow through the sample until these paddles do not break the last percolating super-
conductive channel. Corresponding field determines the value of the renormalized
by QF second critical field: H} (0) = Hc, (0) [1 —2Giln (1/Gi)] (see [1]). Above
this field, no supercurrent can flow through the sample more, that is it is the normal
state. Nevertheless, as demonstrate our above estimations its properties are strongly
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Snapshot visible for to-

Fig. 1.8 The sketch of cluster structure of fluctuation Cooper pairs above the upper critical field

affected by the QF. The fragments of Abrikosov lattice can be still observed here
by the following gedanken experiment. The clusters of rotating FCPs (ex-vortices)
of size £gr with some kind of the superconductive order should be found at the
background of normal metal when one takes the picture with the exposure time
shorter than tor. When the exposure time is chosen longer than zor the picture is
smeared out and no traces of Abrikosov vortex state can be found. What kind of
the order can be detected is still unclear. It would be attractive to identify these
clusters with the splinters of Abrikosov lattice, but more probably this is some kind
of quantum FCPs liquid. Indeed, presence of the structural disorder can result in
formation close to H (0) of the hexatic phase, where the translational invariance no
longer exists, although it still conserves the oriental order in the vortex positioning.

1.6.2 Manifestation of QF Above H,, (0)

At zero temperature and fields above H, (0), the systematics of the fluctuation
contributions to the conductivity considerably changes with respect to that close
to Tco. The collisionless rotation of FCPs (they do not “feel” the presence of
elastic impurities, all information concerning electron scattering is already included
in the effective mass of the Cooper pair) results in the lack of their direct
contribution to the longitudinal (along the applied electric field) electric transport
(analogously to the suppression of one-electron conductivity in strong magnetic
fields (w.t > 1): 80&) ~ (w.7)72, see [29]) and the AL contribution to 80((;))”
becomes zero. The anomalous MT and DOS contributions turn zero as well but
due to different reasons. Namely, the former vanishes since magnetic fields as large
as Hg, (0) completely destroy the phase coherence, whereas the latter disappears
since magnetic field suppresses the fluctuation gap in the one-electron spectrum.
Therefore, the effect of fluctuations on the conductivity at zero temperature is
reduced to the renormalization of the one-electron diffusion coefficient. FCPs here
occupy the lowest Landau level, but all the dynamic fluctuations in the interval of
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frequencies from O to Apcs should be taken into account:

2 Agcs d 2 1
§oDCR € / ~—w~_e_1n:_ (1.81)
Agcs Jo h+ &= hoh

Apcs

In terms of introduced above QF characteristics tor and £gr one can understand
the meaning of QF contributions to different physical values in the vicinity of
H; (0) and derive others which are required. For example, the physical meaning of
(1.86) can be understood as follows: one could estimate the FCPs conductivity by
mere replacing tgr. — tgr in the classical AL formula, which would give SGAL ~
eerF. Nevertheless, as we already noticed, the FCPs at zero temperature cannot
drift along the electric field but only rotate around the fixed centers. As temperature
deviates from zero, the FCPs can change their state due to the interaction with
the thermal bath, that is their hopping to an adjacent rotation trajectory along the
applied electric field becomes possible. This means that FCPs now can participate in
longitudinal charge transfer. This process can be mapped onto the paraconductivity
of a granular superconductors [85] at temperatures above T, where the FCPs
tunneling between grains occurs in two steps: first one electron jumps, then the
second follows. The probability of each hopping event is proportional to the inter-
grain tunneling rate I". To conserve the superconductive coherence between both
events, the latter should occur during the FCPs lifetime tgL. The probability of
FCPs tunneling between two grains is determined as the conditional probability
of two one-electron hopping events and is proportional to Wr = I'? 7. Coming
back to the situation of FCPs above H,; (0), one can identify the tunneling rate with
temperature 7', while tg. corresponds to tgr. Therefore, to get a final expression,
§AL should be multiplied by the probability factor Wor = 127qr of the FCPs
hopping to the neighboring trajectory:

Sofl ~ 55 Wor ~ &2 /%,

which corresponds to the asymptotic (1.86).

To estimate the contribution of QF to the fluctuation magnetic susceptibility of
the SC in the vicinity of H; (0), one can apply the Langevin formula to a coherent
cluster of FCPs and identifying its average size with the rotator radius to find

x = ey <5(2)F (}7» ~ Ees/ch

Mep.C

in complete agreement with the result of [14].

One further reproduces the contribution of QF to the Nernst coefficient. Close to
H, (0) the chemical potential of FCPs can be identified as jtpcps = Aiw. (He (0))—
hw. (H) (as in [15], close to o, ircps = kg (Teo — T')). Corresponding derivative
dupeps/dT ~ dH (T) /dT ~ —T/Apcs. Using the relation between the latter
and the Nernst coefficient it is possible to reproduce one of the results of [15]:
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VALY ~ [tor/ me.p.| dppcps /AT ~ é&écsl/ﬁ

1.7 Fluctuation Conductivity of 2D Superconductor
in Magnetic Field: A Complete Picture

The complete expression for the total fluctuation correction to conductivity
(wt) (T, H) of a disordered 2D SC in a perpendicular magnetic field that holds
through all T-H phase diagram above the line H.,(T) is given by the sum [16]:

8oV (1, h) = 8o + Som " + 80075 + Sop R (1.82)
with §o AL defined by (1.77) and

M
soMTan) | goMTees) _ € (ﬁ) ) 1 / dx  Im%,
. ” TN\l = 0)/¢+2h (m +1/2) Jooo sinh® 7x |E,,|?

2 (R o N 4EL (1, h, k]
soMTaee) — & (1 om0 7 U 1.83
e = £ (£) 32 5 sl a5
54005 _ 2 (h) ﬁ":/"o dx  Imé&,ImE),
XX t) =)o sinh® rx |<€m|2
(1.84)
42 (h\* & 1\ o 8&7 (1.h.|k|)
§oDCR _ ¢ (7 Z —_m 2 (1.85
O—xx 3”6 t Z m + 2 Z Em (t’hv Ikl) ( )
m=0 k=—00
Here, t = T/ T,
n H H

= T 069
8ye He (0) H (0)

yg = e’ (y. is the Euler constant), M = (tTcot)_l,y¢ = 1w/(8Twty), Tp
is the phase-breaking time, &, (¢, h,z) is defined by (1.78) and its derivatives
EVNt h,z) = 7Eu(t.h,z). All of them, side by side with the asymptotic
expressions for 80&00 are shown in Table 1.1.

Let us start its discussion from the first line, corresponding to the Ginzburg—
Landau region of fluctuations close to 7y and in zero magnetic field (domain I).
One can see our general expression naturally reproduces the well-known AL,
MT, and DOS contributions. The only news here is the written in the explicit
form contribution §6 PR which was usually ignored in view of the lack of its
divergency close to T9. Nevertheless, one can see that its constant contribution
~Inln (Tyr)™" is necessary for matching of the GL results with the neighbor
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domains YIII, IX. The domains II-III are still described by the GL theory in weak
magnetic fields and 80!V (¢, h) reproduces all available in literature asymptotic
expressions.

What is really surprising in the Table 1.1 is the domain IV, the region of quantum
fluctuations (see Fig. 1.1). Looking at the third line, one finds that the positive AL
(anomalous MT contributions here is equal to the AL one) decays with the decrease
of temperature as T2. Moreover, it is exactly canceled by the negative contribution

of the four DOS-like diagrams 3-6:

2,242
S0A = SoMTam = _ggp0s = FEVEL (1.86)
3w2h?
The total fluctuation contribution to conductivity 80&"‘) in this important region
<K };) is completely determined by the renormalization of the diffusion coefficient.
It turns out to be negative and at zero temperature diverges logarithmically when the
magnetic field approaches H,, (0) . The nontrivial fact following from (1.82) is that
an increase of temperature at a fixed value of the magnetic field in this domain first
results in the further decrease of conductivity

. 2¢2 1 6ygpe’t 1\’
Bolt" = = = TS 10 (Z) . (1.87)

and only at the confine with the domain V, when ¢ ~ h , the total fluctuation contri-

bution 80&00 pass through the minimum and starts to grow. Such nonmonotonic
behavior of the of the conductivity close to H., (0) was multiply observed in
experiments [86, 87] (see Fig. 1.9).

The domain Y describes the transition regime between quantum and classical
fluctuations, while in the domains YI-YII, extended along the line H., (T),
superconductive fluctuations have already classical (but non-Ginzburg-Landau)
character. In all these three regions, one observes the same exact cancellation of
the AL and DOS contributions as in the domain I'Y and 80,&00 is determined here by
the negative DCR contribution.

Finally, in the peripheric domains YIII-IX the direct positive contribution
of fluctuation Cooper pairs (AL) to conductivity decays faster than all other:
~In"3(T/T.) . Let us stress that this exact result is in complete agreement with the
high temperature asymptotical expression for the paraconductivity of the clean 2D
superconductor. Such agreement seems natural: fluctuation Cooper pairs transport
is insensitive to the impurity scattering. Anomalous MT contribution in complete
accordance [8,9] decays as ~ Iny, '/In"%(T/ T.y) . Contribution of the diagrams
3-6 also decays as In"2 (T/ T) , but without the large factor In Ve ', Finally, the
regular MT contribution and that one of the diagrams 7-10 decay extremely slow,
double logarithmically:
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Fig. 1.9 Temperature dependence of the FC at different fields close to H.,(0) and comparison
to experimental data for thin films of La,—,Sr,CuO4 with T,y =~ 19K and B.,(0) ~ 15T (Data
is courtesy of B. Leridon, unpublished). Note that for the theoretical curves a fixed T.oty = 10
is used, which does not necessarily agree with the experimental value. Nevertheless, the overall
behavior can be captured by this rough comparison. All curves are numerically calculated with
T.ot = 0.01

2¢e? 1 T
(DCR) _ N Z
8o PR — —33 (ln In T Inln Tco) . (1.88)

Up to the numerical factor, this expression coincides with the results [8, 10].

Equation (1.82) gives the background for the “fluctuoscopy” of superconductors,
that is extraction of its microscopic parameters from the analysis of fluctuation
corrections. Indeed, one can see that 80&00 depends on two superconductive
parameters: Ty, H.» (0), the elastic scattering time 7, and magnetic field and
temperature dependent phase-breaking time t4 (7, H). The elastic scattering time
can be obtained from the normal state properties of superconductor, while (1.82)
can become the instrument of precise definition of the critical temperature Ty
(instead of the often “half width of transition”) and H,; (0) . Moreover, it can be
invaluable tool for the study of the temperature and magnetic field dependencies of
the phase-breaking time 74 (7, H) .

The characteristic example of the surface 80&00 (T, H) for Tjor = 0.1 and
Toty = 0.01 is presented in Fig. 1.10. The value of 74 determines the behavior
of fluctuation corrections only in the region of low fields. Figure 1.10 is convenient
to analyze together with Fig. 1.1 where the lines §6°0(T, H) = const through
all phase diagram are shown. One sees that FC is positive only in the domain
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Fig. 1.10 FC as the function of the reduced temperature 7'/T and magnetic field H/H, (0)

restricted by the lines Heo(T) and §0°Y(T, H) = 0 and is negative through all
other parts of the phase diagram. With the growth of the magnetic field, the width
of the domain where §0.°)(T, H) > 0 shrinks and turns zero close to H(0). The
behavior of FC at low temperatures, in accordance with our asymptotic analysis,

becomes nonmonotonic, the surface 80&"‘) (T, H) here has trough-shaped form. It is

interesting to note that the numerical analysis of (1.82) shows that the logarithmic
asymptotic (1.87) is valid only within the extremely narrow field range 7 < 107°.
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