
Chapter 3
A Conceptual Framework for Principles

Abstract This chapter provides the theoretical core of this book. It is concerned
with a conceptual framework for architecture principles and related concepts. It
starts by providing some historical background to the concept of principle. We will
distinguish between scientific principles that describe laws or facts of nature, and
normative principles that start as fundamental beliefs and which are translated to
more specific and measurable statements. Based on the distinction between archi-
tecture and design, as made in the previous chapter, we will be able to define ar-
chitecture principles as a subset of design principles. We also include a discussion
on the motivation for the use of architecture principles in specific situations. In do-
ing so, we provide a set of typical drivers for their formulation and enforcement.
The chapter ends with the discussion of a general strategy to more precisely specify
architecture principles and their underlying domain concepts.

3.1 Introduction

As argued before, we take the perspective that architecture principles are the cor-
nerstones of enterprise architecture. Several approaches to enterprise architecture
indeed position principles as a key ingredient, while some even go as far as to po-
sition principles as being the essence of architecture. Architecture principles fill the
gap between high-level strategic intentions and concrete designs. The use of ar-
chitecture principles also invites enterprise architectures to be directed toward the
future, while focusing on essential decisions which guide future design decisions.

The goal of this chapter is to provide more background to the concept of archi-
tecture principles, while also more clearly defining the concept and its role as the
cornerstone of enterprise architecture. To this end, Sect. 3.2 provides a broad dis-
cussion of the history of the concept of principle. Section 3.3 then continues by
identifying two key flavors of principles, while also relating these to concepts such
as requirements and design instructions. This allows us to clearly define the con-
cept of architecture principle in Sect. 3.4, as well as its role in building a bridge
from strategy to design. In Sect. 3.5 we turn to the question of how to motivate
the (formulation and) enforcement of principles in specific situations. Before con-
cluding, Sect. 3.6 briefly discusses a strategy to more precisely specify architecture
principles and the underlying domain concepts it may refer to.

D. Greefhorst, E. Proper, Architecture Principles, The Enterprise Engineering Series,
DOI 10.1007/978-3-642-20279-7_3, © Springer-Verlag Berlin Heidelberg 2011

31

http://dx.doi.org/10.1007/978-3-642-20279-7_3

32 3 A Conceptual Framework for Principles

In the course of this chapter, we will incrementally develop a conceptual frame-
work of our understanding of the concept of architecture principles. This conceptual
framework is summarized in terms of three complementary fragments depicted in
Fig. 3.2 (page 41), Fig. 3.4 (page 47) and Fig. 3.6 (page 55) respectively. The defini-
tions of the concepts included in this framework, are designed to be compatible with
existing views on enterprise architecture in general (IEEE 2000; Op ’t Land et al.
2008; Dietz 2008; TOGAF 2009), while also taking aboard insights from reported
practical case studies on the use and formulation of principles (Davenport et al.
1989; Richardson et al. 1990; Lindström 2006a, 2006b; Op ’t Land and Proper 2007;
Greefhorst et al. 2007; Greefhorst 2007). As such, the framework presented in this
chapter also constitutes a first iteration in a design science (Hevner et al. 2004)
driven research effort in which we aim to more clearly define the concept of archi-
tecture principles, and develop an associated methodology for defining and describ-
ing architecture principles. This first iteration aims to provide a first synthesis of
existing views on enterprise architecture and the role of architecture principles.

3.2 Background of Architecture Principles

To better understand the nature and use of architecture principles within the field of
enterprise architecture, it is important to understand the origins of the term principle.
We therefore start this chapter with a brief discussion on the history of this term.

The term principle is said to originate from the Latin word of principium
(Meriam-Webster 2003), which means ‘origin’, ‘beginning’ or ‘first cause’. As sum-
marized in Paauwe (2010), Vitruvius, an architect in ancient Rome, already used the
concept of principles to explain what is true and indisputable, and should apply to
everyone. Vitruvius considered principles as the elements, the laws of nature that
produce specific results. For instance, he observed how certain principles of the hu-
man body, such as symmetry and proportion, ensure ‘perfection’. The human body
was a great source of inspiration to him. He even believed that the principles of the
human body should also be applied in the design of gardens and buildings because it
would always lead to a perfect result: an ultimate combination of beauty, robustness
and usability.

When using principles in the sense of beginning, they generally provide insight
into the causes of certain effects. These causes can be laws of nature, beliefs or rules
of conduct. Laws of nature simply are, and influence the things we do. Examples of
such principles are the law of gravity and the Pauli exclusion principle. The latter
is a quantum mechanical principle formulated by Wolfgang Pauli in 1925. It states
that no two identical fermions may occupy the same quantum state simultaneously.
Another example, more directly relevant to the design of enterprises, is the princi-
ple of requisite variety from general systems theory, which states that a regulating
system should match the variety of the system that should be regulated (Beer 1985).

Beliefs are typically founded in moral values. Examples of such principles are
Martin Luther King’s principles of nonviolence, that were to guide the civil rights
movement. In our context, examples of such principles would be: No wrong doors

3.2 Background of Architecture Principles 33

(suggesting that clients should be helped by which ever channel they approach the
enterprise) and The customer is always right.

Rules of conduct are explicitly defined to influence behavior, and are typically
based on facts and beliefs. General examples include the Ten Commandments from
the Bible, e.g. Thou shalt not murder and Thou shalt not commit adultery. In our
context, examples would be: Clients can access the entire portfolio of services of-
fered by any part of the government by way of all channels through which gov-
ernment services are offered and Before delivering goods and services to external
parties, we must hold receipt of the associated payment.

In defining the concept of architecture principle, we aim to remain close to the
common interpretation of the term principle to prevent confusion. The Webster Dic-
tionary (Meriam-Webster 2003) provides the following interpretations:

• 1a: a comprehensive and fundamental law, doctrine, or assumption b (1): a rule or
code of conduct (2): habitual devotion to right principles <a man of principle>
c: the laws or facts of nature underlying the working of an artificial device

• 2: a primary source: origin
• 3a: an underlying faculty or endowment <such principles of human nature as

greed and curiosity> b: an ingredient (as a chemical) that exhibits or imparts a
characteristic quality

• 4: Christian Science: a divine principle: god

The first of these four interpretations will be used as a base for the definitions pro-
vided in this chapter.

The use of principles in the context of enterprise architecture can be traced back
(at least) to the earlier mentioned PRISM project (PRISM 1986). The PRISM frame-
work is actually a fully principles-based architecture framework. In this context,
principles were defined as “simple, direct statements of an organization’s basic be-
liefs about how the company wants to use IT in the long term” (Davenport et al.
1989). Note that in this definition, the operative word is wants. It refers to the fact
that fundamentally, such principles are used to express a normative desire. Even
more, it also expresses how these principles will aim to bridge the communication
gap between top management and technical experts. PRISM’s concept of principles
as well as how they guide the definition and evolution of architectures was its most
important and widely accepted contribution.

The PRISM’s notion of principles has strongly influenced other architecture
frameworks. The earliest publications referring to the concept of architecture prin-
ciple (in an enterprise architecture context) can indeed be traced back to the
PRISM project (Davenport et al. 1989; Richardson et al. 1990). Furthermore, the
HP Global Method for IT Strategy and Architecture (Beijer and De Klerk 2010;
Rivera 2007), which was based on works started in 1984 at Digital Equipment Cor-
poration, was almost completely based on the concept of principle brought forward
by the PRISM model. Many years later, the PRISM report even influenced the IEEE
definition of architecture, as many of the IEEE 1471 committee members (Digital
included) were employed by the original sponsors of their earlier work on PRISM.
The concept of architecture principle as it is defined in TOGAF today is also in-
spired by the PRISM framework.

34 3 A Conceptual Framework for Principles

3.3 Key Classes of Principles

In this section we will define two key classes of principles: scientific principles
and normative principles. In the next section, the class of normative principles will
finally be specialized further into design principles, while in Sect. 3.4 design prin-
ciples will be specialized further into architecture principles.

3.3.1 Scientific Principles

In Sect. 2.2, we already quoted The American Engineers’ Council for Professional
Development’s (ECPD 1941) definition of engineering (which we also used as a
base to define enterprise engineering). This definition explicitly refers to scientific
principles as being a core resource in the discipline of engineering: “the creative
application of scientific principles to design or develop structures, machines, ap-
paratus, or manufacturing processes, or works utilizing them . . . ”. Consider, as an
example, the field of civil engineering, an engineering discipline which deals with
the design, construction and maintenance of the physical and naturally built envi-
ronment, including works such as bridges, roads, canals, dams and buildings. In this
field scientific principles have always played an important role. A well-known prin-
ciple in this field is the Archimedes principle, defined by Archimedes in the third
century BC. The principle states that “any object, wholly or partially immersed in a
fluid, is buoyed up by a force equivalent to the weight of the fluid displaced by the
object”.

Scientific principles are not limited to the field of civil engineering alone. For
example, Lidwell et al. (2003) provide a list of 100 universal principles of design,
consisting of laws, guidelines, human biases, and general design considerations. Ex-
amples of principles described that fall into the category of scientific principles are
the exposure effect and performance load. The first principle states that repeated ex-
posure to stimuli for which people have neutral feelings will increase the likeability
of the stimuli. The latter states the greater the effort to accomplish a task, the less
likely the task will be accomplished successfully.

The notion of scientific principle as a generally applicable law that can be used
in the design of some artifact, corresponds to the interpretation of principles as laws
or facts of nature underlying the working of an artificial device from the quoted
Meriam-Webster (2003) definition. In line with the definition provided by the Amer-
ican Engineers’ Council for Professional, we will indeed refer to these principles as
scientific principles, leading to the following definition:

SCIENTIFIC PRINCIPLE A law or fact of nature underlying the working of an artifact.

Different engineering disciplines, such as industrial engineering, chemical engi-
neering, civil engineering, electrical engineering, software engineering, and enter-
prise engineering will have their own corpus of scientific principles. At the same
time, these corpora are likely to overlap as well, since a large number of scien-
tific principles will be cross-disciplinary in the sense that they will be applicable in

3.3 Key Classes of Principles 35

various design disciplines. For instance, the scientific principles from general sys-
tems engineering are bound to overlap with other engineering disciplines since these
mostly deal with different forms of systems. An example would be the law of req-
uisite variety (Ashby 1956) from general systems theory, which is applicable to the
design of enterprises, but equally well to any system in which communication and
control plays a role.

Examples of scientific principles for the field of enterprise engineering can be
found in sources such as Stafford Beer’s viable systems model (Beer 1985), sci-
entific management (Taylor 1911), the φ, τ , ψ theory (Dietz 2006) underlying the
DEMO method, the mechanisms explaining how organizations may be seen as so-
cial systems conducting experiments (Achterbergh and Vriens 2009), or the mecha-
nisms that explain how organizations ‘emerge’ out of human communication (Taylor
and Van Every 2010).

As scientific principles essentially represent design knowledge, they can also be
used as a resource to increase cross-disciplinary knowledge and understanding of
design, promote brainstorming and idea generation for design problems, form a
checklist of design principles, and to check the quality of design processes and prod-
ucts.

3.3.2 Design Principles as Normative Principles

In terms of the earlier quoted Webster’s (Meriam-Webster 2003) definition of prin-
ciple, scientific principles correspond to their interpretation as a law or fact of nature
underlying the working of an artificial device. We take the view that design princi-
ples correspond to the interpretation of principles as a rule of conduct, where design
principles guide/direct the enterprise by normatively restricting design freedom.

Before we properly define design principles, we first define the more general
class of normative principles as:

NORMATIVE PRINCIPLE A declarative statement that normatively prescribes a prop-
erty of something.

This is still quite a general definition. However, below we will see that this will
actually allow us to also better relate design principles to concepts such as business
principles and IT principles.

We clearly do not consider scientific principles to be forms of normative prin-
ciples, and design principles in particular. As we will show in Sect. 3.4, scientific
principles do have a role to play in the creation of enterprise architectures in terms
of underpinning design decisions. Even more, they may provide the motivation for
the formulation and enforcement of design/architecture principles.

When applying normative principles toward the design of artifacts, we can define
the concept of design principles as follows:

DESIGN PRINCIPLE A normative-principle on the design of an artifact. As such, it is
a declarative statement that normatively restricts design freedom.

36 3 A Conceptual Framework for Principles

Note that (Meriam-Webster 2003) defines an artifact to be “something created by
humans usually for a practical purpose”. In the next section, we will define archi-
tecture principle as a specific classes of design principles.

Being normative restrictions of design freedom, design principles act as rules of
conduct toward the designers of the (to be) constructed artifact since they (norma-
tively) specify how to go about when designing the artifact. When considering the
definition of policy used in this book:

POLICY A purposive course of action followed by a set of actor(s) to guide and deter-
mine present and future decisions, with an aim of realizing goals.

then design principles, provide the means to define the purposive course of action in
terms of the declarative statements that normatively prescribe properties of the arti-
fact. This makes it desirable for the description of design principles to also provide
guidance to designers that aid them in complying to them. In Sect. 2.8, we already
stated that in the context of enterprise transformations, architecture principles (be-
ing a specific class of design principles) provide the policies needed to steer the
transformation process.

Design principles are not the only statements which may limit design freedom.
Requirements, for example, also limit design freedom. In this book, we define re-
quirements to be:

REQUIREMENT A required property of an artifact.

Requirements state what (functional or constructional) properties an artifact should
have from the perspective of the goals harbored by its stakeholders. The goals of
the stakeholders provide the motivation, i.e. the why, of the requirements (Yu and
Mylopoulos 1994, 1996; Chung et al. 1999). Based on an identification of the goals
of the stakeholders, the requirements on the artifact can be derived. Given the re-
quirements, design principles can be used to express the policies that ensure that the
design of the artifact indeed meets the requirements. The design principles will fo-
cus primarily on addressing essential requirements. Design principles can, however,
also address non essential requirements. These relations are exemplified in more de-
tail in Fig. 3.1 (page 37), where the red circles represent essential goals, essential
requirements and essential design principles respectively.

In Sect. 3.5 a more elaborate discussion is provided on the drivers underlying the
formulation and enforcement of normative principles, also providing a more explicit
way to identify what the essential goals and requirements are. This discussion will
also provide us with a basis to finally properly define architecture principles in
Sect. 3.4.

The diagram shown in Fig. 3.1 also illustrates the fact that to arrive at a set of
requirements, for a given collection of (stakeholder specific) requirements, a ne-
gotiation process may be needed to compromise between conflicting needs. It fur-
thermore illustrates the fact that not all requirements might be traceable to explicit
goals of stakeholders. Some requirements might simply be too common, addressing
a general level of quality required from the artifact being designed.

Since design principles take the form of declarative statements, there is a need
for statements that provide more tangible guidance to the implementers, while also

3.3 Key Classes of Principles 37

Fig. 3.1 From goals to design instructions

enabling analysis/simulation of a design to assess whether (qualitative and/or quan-
titative) requirements are met. In other words, instructive statements which more
tangibly express how the artifact is to be constructed. In the case of enterprises, this
would e.g. include: value exchanges, transactions, services, contracts, processes,
components, objects, building blocks, et cetera. This typically also involves the for-
mulation of models that act as blueprints of the artifact to be implemented. We will
refer to these statements as design instructions, since they tell specifically what to
do and what not to do in further elaborating the design or actually implementing it:

DESIGN INSTRUCTION An instructive statement that describes the design of an arti-
fact.

The bottom part of the diagram shown in Fig. 3.1 also illustrates the position of
design instructions in relation to design principles and requirements.

38 3 A Conceptual Framework for Principles

Design instructions provide a more operational and tangible refinement of the de-
sign principles. For example, a design principle may state that stable processes are
separated from variable processes. A design instruction may refine this into stating
(either textually or graphically) that there is a sales process and a separate contract
administration process. In the context of enterprises, design instructions will typi-
cally refer to the concepts used in the actual construction of the enterprise, such as:
value exchanges, transactions, services, contracts, processes, components, objects,
building blocks, et cetera. Enterprises typically use languages such as UML (UML2
2003), BPMN (BPMN 2008), ArchiMate (Iacob et al. 2009), or the language sug-
gested by the DEMO method (Dietz 2006), to express such design instructions. Due
to their tangible nature, in terms of actual concepts used in the construction of the
enterprise, design instructions allow enterprises to analyse/simulate the effects of
different options for the future, as well as analyze problems in the current situation
(Lankhorst et al. 2005a).

PRISM (1986) recognizes the existence of more specific statements; standards
are specific rules or guidelines for implementing models. They are the most detailed
aspect of architecture, and the primary activity in which names and named—of ven-
dors, databases, applications and people. Infrastructure standards specify compo-
nent selection and connectivity for particular environments. Data standards describe
structures, data definitions, redundancies, and security considerations for databases.
Application standards prescribe tools and environments, and can also mandate pro-
gramming practices and structures for developed software. Organization standards
describe support and management structures and staffing requirements for the de-
livery of information services.

Hoogervorst (2009) also distinguishes design principles from standards, where
a standard is a predefined design norm, which includes design patterns. The state-
ment to use such standards should also be considered as being a form of design
instruction.

3.3.3 From Credos to Norms

Normative principles (such as design principles) can be classified in several dimen-
sions based on their topical focus, i.e. the domain where the principle states a norm
about. In our field, this can typically be done in terms of the cells of an architecture
framework. In addition to the topical focus of a principle, we also distinguish two
flavors of normative principles based on the level of precision (a form of detail) at
which they have been formulated. This distinction will be especially useful in prac-
tical settings as they correspond to two important levels of ambitions at which these
principles can be formulated and enforced.

When considering the design/architecture principles included in case studies
(Davenport et al. 1989; Richardson et al. 1990; Lindström 2006a, 2006b; Lee 2006;
Greefhorst et al. 2007; Greefhorst 2007; Bouwens 2009) one can indeed observe
a variation in the level of precision at which these normative principles have been

3.3 Key Classes of Principles 39

formulated. As an illustration, consider the following examples exhibiting an in-
creasing level of precision:

• “We are committed to a single vendor environment” (Davenport et al. 1989).
• “System structure and IS/IT availability shall enable mergers, acquisition, and

establishment on new sites” (Lindström 2006b).
• “Customers: We only service customers who pay their bill” (Lee 2006).
• “When determining information systems solutions, the preferred order of selec-

tion should be an existing system, a purchased application package, in-house de-
velopment, then outside services” (Richardson et al. 1990).

At the start of their life-cycle, normative principles are just statements that ex-
press the fundamental belief of how things ought to be. At this stage, their exact
formulation is less relevant. This is in line with intentions behind TOGAF and the
Zachman framework, where the architecture process starts with the creation of an
architecture vision. In this phase, architecture is very future-oriented and mostly a
creative process. Architecture principles are used as a means to express a vision,
which is mostly based on personal beliefs of the stakeholders involved in the en-
visioning. They can be seen as normative principles in their initial stage. They are
not yet specific enough to actually use them as a norm. In other words; assessing
compliance of architectures and designs to these principles is not feasible. They are
primarily used as a source of inspiration. Examples of normative/design principles
in this phase, taken from practical cases, are:

• We should follow citizen logic.
• Work anywhere; anytime.
• Reuse as much as possible.
• Applications should be decoupled.

Normative principles in this phase can best be referred to as being a credo:

CREDO A normative-principle expressing a fundamental belief.

The Webster dictionary (Meriam-Webster 2003) defines credo as: “a set of funda-
mental beliefs; also: a guiding principle”. This is very close to the definition of
principle provided by Beijer and De Klerk (2010): “A fundamental approach, be-
lief, or means for achieving a goal . . . ”. In our context, credos are things an en-
terprise consciously chooses to adopt. They represent the fundamental beliefs or
assumptions underpinning further design decisions. This allows enterprises to pro-
vide a first elaboration of an enterprise’s strategy toward the desired design of the
enterprise.

When an enterprise aims to use normative principles as a way to actually limit
design freedom, the formulation of these principles need to be more specific. In
other words, they need to be formulated in such a way that compliance to them can
be assessed. This starts with a reformulation of the principle statement, but extends
to other properties. The specification will at least need to contain the rationale and
implications of the statement, and preferably also definitions of terminology used,
as well as guidance on how to assess the compliance of a design to the principle.

40 3 A Conceptual Framework for Principles

The examples given previously could be reformulated as follows to make them more
specific:

• The status of customer requests is readily available inside and outside the organi-
zation.

• All workers are able to work in a time, location and enterprise independent way.
• Before buying new application services, it must be clear that such services cannot

be rented, and before building such application services ourselves, it must be clear
that they can not be purchased.

• Communication between application services will take place via an enterprise-
wide application service bus.

Once credos have been (re)formulated such that they are specific enough, we can
start to refer to them as a norm:

NORM A normative principle in the form of a specific and measurable statement.

The Webster dictionary (Meriam-Webster 2003) defines a norm as: a principle of
right action binding upon the members of a group and serving to guide, control, or
regulate proper and acceptable behavior. Norms can also be regarded as a tactic by
which (the intention of) a credo can be enforced.

TOGAF defines an architecture principle as “a qualitative statement of intent
that should be met by the architecture”. We take the stance that TOGAF requires
architecture principles to be in the form of norms.

3.3.4 Conceptual Framework

As a summary, Fig. 3.2 (page 41) provides an ontological framework positioning
scientific principles, normative principles, design principles, design instructions,
credos and norms. In this diagram, we have used the Object Role Modeling (Halpin
and Morgan 2008) notation as this notation provides a rich semantic modeling tech-
nique that is well suited to the modeling of ontologies (Trog et al. 2006), such as the
conceptual framework for principles. In Fig. 3.2 we have also applied an abstrac-
tion/attribution mechanism to more compactly represent complex objects (Campbell
et al. 1996; Creasy and Proper 1996), such as proposition and normative principle.
In this notation, objects (entity types) are shown as boxes with rounded corners,
relationships (fact types) are represented as two rectangles that show the roles that
the objects play in both directions, and specialization relationships as lines that end
with an arrow. Entity types that are attributed to other entity types are represented
inside of a larger box with rounded corners, such shown in the case of proposition
and normative principle.

In the resulting framework depicted in Fig. 3.2, we have added several general-
izations leading to a generalization hierarchy. Design principles and design instruc-
tions have been generalized to design directives in general, since they both direct
the (further) design of an artifact by expressing directives on how the artifact is
to be designed/implemented. The OMG’s business motivation model (BMM 2006)

3.3 Key Classes of Principles 41

Fig. 3.2 Core terminology

42 3 A Conceptual Framework for Principles

also uses the notion of directive as the most general form of guidance/regulation.
Analogously, we have introduced desired design property as a generalization of re-
quirement and design directive, since both of them express desired properties of a
to be designed artifact in terms of what the constructed artifact should be like and
how its design will ensure these requirements respectively. Since not all normative
principles are design principles, and normative principles are desired properties in
general, a further generalization of desired design properties and normative princi-
ples to desired properties in has been introduced as well. Furthermore, the concept
of principle generalizes normative principles and scientific principles. Finally, the
concept of proposition provides a further generalization of principles and desired
property, since both essentially are propositions.

The encircled crosses in Fig. 3.2 are used to signify a mutual exclusive spe-
cialization. For example, requirement and design directive are mutually exclusive
specializations of desired property, which means that a given desired property can
not be both a design directive and a requirement. The black dot in the middle of
the cross, as is the case with the specialization of design directive to design in-
struction and design principle, is used to indicate that it is a complete specialization
in addition to being an exclusive specialization. In this case it means that each of
the design directives is either a design instruction or a design principle. Since the
border between credos and norms cannot be drawn explicitly, there is no mutual ex-
clusiveness between these forms of normative principles. Nevertheless, as indicated
by the encircled black dot, each of the normative principles must be a credo or a
norm. Finally, as principle and desired property by definition overlap, since design
principles are both forms of principles and desired properties, there is no mutual
exclusiveness there as well.

Each of the propositions must have a quality and a definition (signified in the
diagram by a black dot at the base of the relationship), while they have at most
one definition (signified by the short bar on the relationship). The qualities that
can be associated to a proposition are limited to the criteria from the (overloaded)
SMART acronym1: specific, measurable, achievable, relevant and time framed. Ta-
ble 3.1 (page 43) summarizes which qualities are to be held by the different flavors
of propositions. In this table, we have used the following definitions of the SMART
criteria:

Specific The proposition should be formulated clearly, while also defining the con-
cepts used in its formulation.

Measurable The validity of the proposition with regards to the domain it states a
property about should be measurable. Defining these measures is an integral part
of the proposition.

Achievable Obtaining/maintaining validity of the proposition should be achievable
given a reasonable amount of effort involving skills, means and time.

Relevant Achieving/having the validity of the proposition should be relevant. Note:
later we will see how the relevance of an architecture principle can be argued in
terms of the concepts shown in Fig. 3.6 (page 55).

1See http://en.wikipedia.org/wiki/SMART_criteria.

http://en.wikipedia.org/wiki/SMART_criteria

3.3 Key Classes of Principles 43

Table 3.1 Relevant qualities
of propositions

Time framed There should be a time frame associated to the desired validity of
a proposition, making explicit when compliance is required. Needless to say that
such a time frame could run from months to ‘forever’. For example, normative
principles typically have a longer time frame of application than requirements for
a specific system.

As can be seen from the table, credos are not required to be specific or measurable.
As discussed before, this is precisely what distinguishes them from norms. Requir-
ing scientific principles to be achievable, relevant or time framed is not meaningful;
they are statements that will always hold.

Desired properties in general may be formulated at different levels of granularity,
where desired properties formulated at a higher level of granularity may be realized
by a number of desired properties at a lower level of granularity. This allows for a
stratified introduction of multiple levels of desired properties at different levels of
granularity with regards to realization and implementation detail. For example, in
the context of architecture frameworks one sees how architecture principles in one
view may be based on the principles in a preceding view. Consider, as an illustration,
ITSA (Beijer and De Klerk 2010). In the ITSA framework, architecture principles
are defined in four views (business, functional, technical and implementation). The
architecture principles in one view may be based on architecture principles in the
view preceding it. Scientific principles can be used to underpin desired properties.

The realization relation between desired properties ‘reappears’ in different
shapes in the lower parts of the generalization hierarchy depicted in Fig. 3.2. In-
troducing/enforcing a design directive will have consequences in terms of limit-
ing further design decisions. Therefore, each directive must have some implication,
while some of these implications may actually entail additional desired properties.
Requirements can be used to motivate design directives, while at the same time
design directives may also lead to the introduction of more refined requirements.
Finally, Normative principles are operationalized by instructions, while credos may
be refined to norms. The textual constraints at the bottom of Fig. 3.2 govern the con-
nection between these specializations of the general realization relationship between
desired properties, to the general one.

Finally, the desired design property, design directive, design instruction, design
principle and requirement object types in this diagram have a grey background to
signify the fact that they will re-appear in an additional schema fragments providing
more context to principles (Figs. 3.4 and 3.6).

44 3 A Conceptual Framework for Principles

3.4 Architecture Principles as Pillars from Strategy to Design

In this section we finally define the concept of architecture principle, while also
positioning architecture principles as pillars under the bridge from strategy to design
as provided by enterprise architecture. Based on the discussions in this section, we
will further extend the conceptual framework from Fig. 3.2.

3.4.1 Architecture Principles

In Sect. 2.4.2, a distinction was made between design and architecture. Where an
architecture focuses on essential requirements that typically also transcend the scope
of specific projects, the design fills in the remaining aspects to meet the specific
requirements that apply to the scope of a single project. This allows us to define
architecture principles as a further specialization of design principles in general,
based on their inclusion in an architecture:

ARCHITECTURE PRINCIPLE A design principle included in an architecture. As such,
it is a declarative statement that normatively prescribes a property of the design of an
artifact, which is necessary to ensure that the artifact meets its essential requirements.

It should be noted that the distinction between architecture and design is orthogo-
nal to the distinction between requirement (what), normative principle (declarative
how) and instruction (operational how). So, in principle, the concepts of require-
ment and design instruction could be specialized to architecture requirement and
architecture instruction, respectively, based on their inclusion in an architecture.
However, as our focus is on architecture principles, we will not do so.

3.4.2 Business and IT Principles

TOGAF (2009) considers architecture principles as a subclass of IT principles, and
the latter as a subclass of enterprise principles. We strongly disagree with this stance
since enterprise architecture should holistically describe an enterprise including its
business and IT aspects. Only those architecture principles that are related to the
IT aspect can be a subclass of IT principles. Conversely, more architecture prin-
ciples exist that just IT related architecture principles. IT principles are normative
principles which provide policies to govern IT in general, but not all of these prin-
ciples might be relevant from an architecture or design perspective. The same holds
for business principles. Some of these might be ‘business architecture principles’,
while not all of them need to be architecture principles. Schekkerman (2008) also
concurs that architecture principles are a subset of business and IT principles, and
not the other way around.

An important thing to note here as well is the meaning of ‘business’ in the word
‘business principle’. One could define ‘business’ as being the company, firm or en-
terprise as a whole. Accidentally, when translating business in to Dutch or German,

3.4 Architecture Principles as Pillars from Strategy to Design 45

one most often uses the word ‘Bedrijf’ or ‘Betrieb’, respectively, which generally
immediately refers to the company, firm or enterprise as an entity. When using this
interpretation, IT principles and architecture principles in general could all be called
business principles, because they refer to some aspect of ‘the business’ in terms of
‘the firm as a whole’.

One could also refer to the ‘business’ as being those aspects of a company, firm,
or enterprise, that pertain to the essential activities it engages in as a means of eco-
nomical2 livelihood. In general, the business level/column in architecture frame-
works refers to ‘business’ from this perspective. In this case, IT principles are quite
different from business principles.

One may also wonder how business rules fit in all of this. This depends very
much on one’s definition of business rules. The SBVR (2006), a well-known stan-
dard in the business rules community, defines a business rule as: “a rule that is
under business jurisdiction”. Those desired properties (see Fig. 3.2 (page 41)) that
are defined under business jurisdiction would then be forms of business rules. This
would certainly apply to business principles in general, and potentially to archi-
tecture principles. This of course also depends strongly on what is meant by the
words ‘jurisdiction’ and ‘business’ in particular. IT architecture principles should
be ‘owned’ by business stakeholders, even though they deal with the IT aspect and
not the business aspect of an enterprise. Does this mean they are still under ‘business
jurisdiction’? Furthermore, the above discussion on the interpretation of ‘business’
also applies here. The Terms and Definitions section of SBVR (2006) provides no
clear definition of their understanding of ‘business’. The related standard of the
Business Motivation Model (BMM 2006) also does not clarify the issue. Interest-
ingly enough, it defines enterprise as a business or company, which seems to suggest
an interpretation of ‘business’ as firm or company as a whole, including their IT as-
pects. However, when considering the line of reasoning suggested in BMM (2006)
it seems that with ‘business’ in ‘business rule’ one refers to those rules that can be
motivated in terms of risks/influences on the essential activities it engages in as a
means of economical livelihood. This is strengthened by statements such as “For
the Sake of the Business, Not Technology”.

In sum, from “a rule that is under business jurisdiction” (SBVR 2006) we take
the position that business rules are intended as desired properties of an enterprise,
where these desired properties are motivated directly in terms of risks/influences on
the enterprise’s business in terms of the essential activities it engages in as a means
of economical livelihood. This means that in terms of Fig. 3.2 (page 41), some
business rules may turn out to be requirements, some may be design principles,
and some may even be specific enough to be design instructions. One may expect
most business rules to refer to the business aspect only, but it is not impossible for
business rules to pertain to the IT aspects, as long as their motivation originates from
the business: “For the Sake of the Business, Not Technology” (BMM 2006).

2Which does not only have to refer to money. We refer here to the exchange of scarce goods and/or
services, which may include money, but also societal esteem, happiness, physical wellbeing, et
cetera.

46 3 A Conceptual Framework for Principles

Fig. 3.3 Architecture as a bridge from strategy to design

3.4.3 Bridging from Strategy to Design

With the above definitions in place, we can now refine the discussion provided in
Sect. 2.4.2 on the role of enterprise architecture as a means to bridge from strategy
to design. In doing so, we combine Fig. 2.5 (page 18) and Fig. 3.1 (page 37) to the
situation as depicted in Fig. 3.3 (page 46). This diagram illustrates the flow from
enterprise strategy via architectures, to the design of some specific system within
the system of systems that constitutes the enterprise, to that system’s implementa-
tion. The diagram also makes the role of requirements, design principles and design
instructions at both the architecture and design levels more explicit. It furthermore
shows how scientific principles support the creation of architectures and designs.

Figure 3.3 also shows the fact that architecture principles do not exist in isola-
tion. They are based on all sorts of other artifacts, such as the business strategy and
business drivers, the existing environment and (anticipated) external developments.

3.4 Architecture Principles as Pillars from Strategy to Design 47

Fig. 3.4 Extended
conceptual framework

They also influence all sorts of other artifacts, such as guidelines, architecture in-
structions, design requirements, design instructions, and implementations. Archi-
tecture principles really bridge between strategy and operations; they are primarily
an alignment instrument. They are formulated based on knowledge, experience and
opinions of all sorts of people in the organizations; senior management, as well as
the people that do the actual work. This mixture of people is also the target audi-
ence of normative principles. In that sense, the definitions of normative principles
also provide a common vocabulary for the organization.

As a further illustration of the flow from strategy to design, we use a fictitious in-
surance company. Their strategy is based on operational excellence. To this end they
have formulated the objective to cut costs with 20% within two years, which can
be considered an architectural requirement. Based on this architecture requirement
they have defined an architecture principle which states that “business processes
are standardized and automated”. Although they could not find any scientific prin-
ciples to support this, they had good experiences with process standardization in
other organizations. The architecture principle is translated to specific design in-

48 3 A Conceptual Framework for Principles

structions on their claims handling process in terms of a series of ArchiMate (Iacob
et al. 2009) models. These instructions define the specific activities which must be
present in all claims handling processes. A new claims handling system is designed
to support the standardized claims handling process. A requirement for this system
is that it integrates with the recently developed customer portal. The lead designer
strongly believes that business rules should be defined and implemented separately
from other application functionality in this claims handling system and therefore de-
fines the design principle that business rules are defined in a business rules engine.
He also provides more specific design instructions on how to actually define these
business rules, by prescribing the specific constructs in the business rules engine
that should be used. These design instructions are used by the developers that use
the rules engine to implement the system.

Finally, as discussed in Sect. 2.4.3, the situation depicted in Fig. 3.3 should not
be mistaken to be a top-down steering approach only. Architecture principles can
be used as a control mechanism. However, by observing how emergent processes
within a (networked) enterprise may lead to violation of existing principles, or even
the emergence of (the need for) new architecture principles. As such, the mechanism
of architecture principles can be used as an indicator mechanism as well. Admit-
tedly, the remainder of this book focuses mainly on operationalizing the top-down
steering aspect of architecture principles. By focusing on the essential requirements,
the use of architecture principles allows/invites enterprises to think carefully about
what to regulate in a design-first style and what to leave up to emergence, or to even
take measures that enable desirable emergence.

3.4.4 Extended Conceptual Framework

As a summary, Fig. 3.4 (page 47) shows how the discussions provided in this sec-
tion further extend the model fragment from Fig. 3.2 (page 41). An architecture
restricts a system design. Both an architecture and a system design have to meet
requirements, while both contain design directives in the form of design principles
and design instructions. Each architecture and each system design must contain at
least some design directive. Depending on their inclusion in an architecture, design
principles are specialized into their respective design or architecture counterparts.
This is formalized by the sub-type defining rule, shown at the bottom of Fig. 3.4.

One of the postulates of the enterprise engineering manifesto (CIAO 2010) states
that an architecture should be concerned with a coherent, consistent, and hierarchi-
cally ordered set of normative principles for a particular class of systems. This book
suggests a slight modification in that it takes the perspective that an architecture is
concerned with coherent, consistent, and hierarchically ordered set of design direc-
tives.

3.5 Motivating Architecture Principles 49

Fig. 3.5 Business motivation model

3.5 Motivating Architecture Principles

Architecture principles do not just fall out of the sky. Depending on the specific
situation, different drivers will lead to the formulation (and enforcement) of design
principles, and architecture principles in particular. Especially in the case of archi-
tecture principles, these motivations will originate from the goals and objectives
embedded in the strategy.

In this section we provide a closer examination of the motivation for formulat-
ing and enforcing architecture principles, including the underlying drivers for their
motivation. Although we have not investigated it explicitly, these drivers likely also
apply to other desired properties, including requirements, design principles and de-
sign instructions.

50 3 A Conceptual Framework for Principles

3.5.1 Sources for Finding Motivation

There seems to be no universal agreement on the types of drivers that exist to moti-
vate architecture principles. Nevertheless, much inspiration can be found in various
existing models and approaches.

The field of requirements engineering has produced a number of methods and
techniques that can also be applied to the motivation of architecture principles.
Most notably, goal oriented requirements engineering (Yu and Mylopoulos 1994;
Van Lamsweerde 2001; Regev and Wegmann 2005; Rifaut and Dubois 2008).

The business motivation model (BMM 2006) provides important concepts to ex-
press motivation. The model was initially created to provide the motivations behind
business rules, but can also be used to find the motivation for architecture principles.
Figure 3.5 highlights the core motivational concepts from the business motivation
model (BMM 2006). As suggested by the business motivation model, an important
step for the motivation of directives is the assessment of risks. This idea is brought to
enterprise architecture by Engelsman et al. (2010) who state that architecture princi-
ples are based on an assessment of stakeholder concerns. An assessment represents
the outcome of the analysis of some concern, revealing the strengths, weaknesses,
opportunities, or threats (SWOT) that may trigger a change to the enterprise archi-
tecture. We believe that this provides only a subset of relevant drivers for architec-
ture principles.

PRISM (1986) perceives the organization’s technology values as the main de-
terminant of architecture principles, but also recognizes that they are not the sole
determinant. The organization’s business situation and condition, its market posi-
tion, competitive environment, and other elements of business strategy all impact
technology values and principles directly, and in turn therefore underlie the entire
architectural endeavor. It also states that architecture principles must be informed
by, but not determined by, an assessment of the current state and future direction of
technology. Such an assessment provides the options for technology-based princi-
ples.

TOGAF (2009) provides the following list of drivers: enterprise principles, IT
principles, enterprise mission and plans, enterprise strategic initiatives, external
constraints, current systems and technology and computer industry trends.

ITSA (Beijer and De Klerk 2010) distinguishes three types of drivers: pains
(identifies what is wrong in the current situation), directives (what is stated as a
constraint by other authors) and opportunities (a business opportunity). These three
drivers are translated into SMART goals, that provide the motivation for architecture
principles.

The Business Model approach described by Osterwalder and Pigneur (2009) also
provides an interesting source of inspiration for motivating architecture principles.
The basis for this approach is the Business Model Canvas, a tool for describing,
analyzing and designing business models. The canvas provides nine building blocks
to describe the rationale of how an organization creates, delivers and captures value.
These building blocks are: customer segments, value propositions, channels, cus-
tomer relationships, revenue streams, key resources, key activities, key partnerships

3.5 Motivating Architecture Principles 51

and cost structure. Given that these choices determine the business model of the or-
ganization, they should also lead to essential properties to be met by the enterprise.

In our further elaboration of motivations for the formulation (and enforcement)
of desired properties, we will base ourselves mainly on the concepts provided by
the business motivation model (BMM 2006). The business motivation model uses
the concepts shown in Fig. 3.5 (page 49) to motivate business rules and business
policies, which are generalized to the concept of directives. In particular we see
that directives are formulated based on strategies and tactics, support goals and ob-
jectives, and are motivated by the potential impact of internal and external influ-
encers. External influencers are the environment, technology, regulation, suppliers,
customers, competitors and partners. Internal influencers are infrastructure, issues,
assumptions, habits, corporate values, management prerogatives and resources.

The motivational concepts shown in Fig. 3.5 can be applied in our context as fol-
lows. An enterprise transformation effort is likely to impact on the stakes of many
different stakeholders. For example, stakes of owners, sponsors, people working in
the enterprise, clients, et cetera. Consider a stakeholder with a stake in the outcome
of an enterprise transformation. Then it is fair to assume that this stakeholder has
some goals/objectives which are potentially impacted by the outcome of the trans-
formation. From the perspective of these goals, the transformation process has an
ideal behavior. This behavior can refer to all aspects of an enterprise transformation,
be it the changes to the enterprise, products produced, the actual process itself, et
cetera. Whether or not the transformation exhibits this ideal behavior, is likely to
be influenced by both internal and external factors. These potential ‘impacts’ may
spark the stakeholder into (trying to) regulate the transformation and/or the potential
influence. Needless to say that there will not be just one stakeholder. This means that
the desire to regulate the transformation may lead to conflicts between stakeholders
who have different goals with regards to the transformation.

For each influence, a risk assessment may show that this influence has a
potential undesired impact on the goals of some stakeholder(s) (BMM 2006;
Van Bommel et al. 2007). In other words there is some set of risks posed by the in-
fluence on the goals of the stakeholder. If the expected impact of the identified risks
is high enough, a concern will be raised with the stakeholder. Multiple risks may
even strengthen the specific concern of a stakeholder. When the expected impact of
the risks is indeed high enough, the stakeholder(s) will be motivated to introduce
regulations, i.e. the formulation and enforcement of desired properties that prevent
the risks from occurring. The benefits of these desired properties can be expressed
as the reduction of the expected impact of the risks (Van Bommel et al. 2007). Based
on the risk assessment, as well as potential benefits, a MoSCoW (Stapleton 1997)3

3The capital letters in MoSCoW stand for:

M Must have this.
S Should have this if at all possible.
C Could have this if it does not affect anything else.
W Won’t have this time but would like in the future.

52 3 A Conceptual Framework for Principles

style assessment can be made, yielding the essential requirements that should e.g.
be addressed by an enterprise architecture.

3.5.2 Drivers as Motivation for Architecture Principles

Based on the sources mentioned above, as well as our own experiences in prac-
tice, we propose the following types of drivers for the formulation of architecture
principles:

Goals & objectives targets that stakeholders seek to meet, many of these will be
embedded in the strategy of the enterprise.

Values fundamental beliefs shared between people in an enterprise.
Issues problems that the organization faces in reaching the goals.
Risks problems that may occur in the future and that hinder the enterprise in reach-

ing its goals.
Potential rewards chances and their potential reward for enterprises.
Constraints restrictions that are posed by others inside or outside the enterprise,

including existing normative principles.

We will describe these drivers, their origins and characteristics in more detail below.
Goals & objectives are targets that stakeholders within and outside an enterprise

seek to meet. They can be very high-level, such as decrease costs. They can also be
very specific, such as decrease IT development costs with 10% within one year. In
line with the business motivation model, we will refer to these latter goals as ob-
jectives. Objectives are required to be SMART, where as goals are not. Goals and
objectives can be very strategic, resulting from a SWOT analysis of the organiza-
tion (comparable to goals derived from opportunities in ITSA (Beijer and De Klerk
2010)). They can also be more tactical and operational, focused on specific areas
within an enterprise. They can be hierarchical as well; a goal can be a means for a
higher level goal. In that sense, strategies and tactics as defined by the business mo-
tivation model are also considered goals from the perspective of architecture prin-
ciple development. Goals and objectives should be the main drivers for architecture
principles. Without ends, any means will do.

Values are also important drivers for desired properties. Fundamentally, values
are expressed in terms of quality attributes such as: reliability, trustworthiness, trans-
parency, sustainability, efficiency, flexibility, privacy, et cetera. Quality frameworks
such as ISO 9126 (ISO 2001) and IEEE 1061 (Software & Systems Engineer-
ing Standards Committee 1998) are a good source of inspiration for these qual-
ity attributes. The importance of values (and the associated quality attributes) as
drivers for desired properties, is stressed by a number of sources (Graves 2009;
Vermeulen 2009; Bouwens 2009; PRISM 1986). The formulation of a desired prop-
erty can be used to describe how values should be expressed in practice. PRISM
(1986) describes values as a set of underlying attitudes and perspectives that shape
the organization’s fundamental approach to information systems. They cut across

3.5 Motivating Architecture Principles 53

technology domains, and are even more long-lived than principles. Vermeulen
(2009) has collected architecture principles from a number of sources and devel-
oped a ‘generator’ that, based upon a scoring of core values, generates a list of most
appropriate architecture principles. Bouwens (2009) also shows how some values
are really a combination of other values. Graves (2009) states that it is important to
distinguish required, espoused and actual values. Mismatches in these values can be
used to determine the priority of the value and the architecture principles that are
based on it.

Issues are particularly relevant drivers for architecture principles, and comparable
to the pains as identified by ITSA. The business motivation model defines issue
as an internal influencer that is a point in question or a matter that is in dispute
as between contending partners. In a more general sense, issues are anything that
hinders an enterprise in reaching its goals. They exist at all levels, from strategic
to tactical and operational. An example of an operational issue is IT systems do
not reach the availability requirements as set forth in the Service Level Agreement.
Including them as drivers enables operational employees to provide relevant input to
the architecture, and thereby involve them in the process. It provides an opportunity
for the architect to contribute to problems that people are confronted with in their
daily work, and is an important step in the acceptance of architecture principles.

Risks are very much comparable to issues; they are problems that may occur. The
reduction of risks is an important motivation for directives. These risks are thus also
an important driver for the formulation of architecture principles. There are various
classes of risks. As an example, based on the Basel II accord (BIS 2004), financial
institutions should manage credit, market and operational risks. These operational
risks are particularly relevant from an architectural perspective; credit and market
risks are mostly handled by financial departments. Basel II defines operational risk
as the risk of loss resulting from inadequate or failed internal processes, people and
systems, or from external events. It is up to the architect to identify the most impor-
tant risks. The focus should be on those risks that hinder the enterprise in reaching
its goals. An example of a risk is that there are single points of failure in the infra-
structure that may lead to unavailability of IT systems. For all risks identified, a risk
analysis needs to be performed in which the impact and probability of occurrence
is determined. Only those risk that have a high impact and/or probability need to be
included as driver. At a more aggregated level, certain categories of risks may lead
to the formulation of desired properties. Especially security risks are relevant. In an
enterprise that seems unaware of security risks, an architecture principle that states
that information is secured according to laws and regulations is very relevant. The
role of risks as a driver to architecture principles has been explored in more detail
in Van Bommel et al. (2007).

Potential rewards are essentially what is referred to as business opportunities in
Rivera (2007). In other words, some event or initiative that has a potential bene-
fit/reward to the enterprise. In this sense, a potential reward is the inverse of a risk.
In the business motivation model, a SWOT assessment leads to the estimate of a
potential impact, which is either a risk or a potential reward. A potential impact
significant to an assessment can provide impetus for the formulation of architecture
principles.

54 3 A Conceptual Framework for Principles

Constraints are also commonly recognized as drivers for architecture principles.
They identify those things that were defined by others and that cannot be changed
by the architect. They may come from outside the enterprise, such as laws, policies
and regulations provided by government. An example of such a constraint is the
policy that is defined by the Dutch government that states that open source products
are preferred over commercial products when they are equally suitable. Constraints
may also come from (senior) management. Such constraints are called ‘management
prerogatives’ in the business motivation model, which defines them as an Internal
Influencer that is a right or privilege exercised by virtue of ownership or position in
an enterprise. An example constraint that could be defined by management is that
all non-core activities will be outsourced.

Most constraints actually correspond to some externally enforced desired prop-
erty. An important class of such desired properties are normative principles that have
been formulated in the context. These normative principles may be refined into more
specific normative principles that realize them. In that sense, pre-existing normative
principles, that are to be enforced as constraints, may be drivers for the formulation
of other normative principles.

3.5.3 Extended Conceptual Framework

As a summary, Fig. 3.6 provides a conceptual framework of the key concepts in-
troduced in this section. Goals, objectives (which must enable the achievement of
some goal), and values are generalized to desires, where each desire must be the de-
sire of some stakeholder. The desires may be influenced (positively or negatively)
by an influence, where we have four specific kinds of influences: an issue, a risk, a
potential reward and a constraint.

The desires and influences together form the drivers for the formulation of de-
sired properties in general. Drivers may be a concern to some stakeholder. When
this is indeed the case, the driver becomes a concern, which must be addressed by
some desired property. Constraints may actually be the enforcement of some exter-
nally formulated desired property. Drivers are initially translated to requirements,
that provide a manageable representation for these drivers. These requirements may
lead to design principles. The essential requirements lead to architecture principles
(not shown in the figure).

Even though it makes sense to ensure that each desired property, is owned by
some stakeholder, one cannot simply state this as a general rule. However, espe-
cially when included in an architecture, it does make sense to assure ownership.
Enforcement of the desired property will certainly benefit from this. When a desired
property is owned by a stakeholder, then this must be based on an underlying con-
cern of this stakeholder. More precisely, if a stakeholder has ownership of a desired
property, then there must be a concern of that stakeholder which is addressed by
that specific desired property. This is expressed formally in Fig. 3.6 by means of the
subset constraint marked with the ⊆ symbol.

3.5 Motivating Architecture Principles 55

Fig. 3.6 Motivating architecture principles

56 3 A Conceptual Framework for Principles

Fig. 3.7 ORM representation
of concepts underlying an
architecture principle

3.6 Formal Specification of Normative Principles

In this final section, we briefly discuss ways of more formally specifying normative
principles. Although architecture principle specifications are discussed in detail in
the next chapter, we feel that the formality of the current chapter is a better place for
a discussion on the formal specification of architecture principles. In Van Bommel
et al. (2006), the authors describe how Object Role Modeling (ORM) (Halpin and
Morgan 2008) and Object Role Calculus (ORC) (Hoppenbrouwers et al. 2005), es-
sentially a formalized version of SBVR (2006), can be used to formalize normative
principles. Even more, they also argue that the mere fact of formalizing normative
principles already leads to interesting feedback on the original informal formulation.
The authors illustrate this by means of two examples taken from TOGAF. Consider
for example, the principle suggested by TOGAF:

Common use applications: “Development of applications used across the enter-
prise is preferred over the development of duplicate applications which are only
provided to a particular organization.”

Figure 3.7 shows the ORM representation of the domain concepts underlying
this architecture principle. The actual architecture principle should unambiguously
express a norm in terms of these objects and facts. In creating Fig. 3.7, one is also
invited to more carefully define the terminology used. What is an organization, what
is a enterprise, what is their relationship, what does it mean for an application to be
duplicate, what does it mean for an application to be used across the enterprise,
et cetera. Questions that also need answering if one seriously aims to enforce such
an architecture principle, and even when one only uses this principle as a means of
guidance. Without proper definitions of the basic terms, guidance can be difficult.

For the sake of the example, it is assumed that organizations are the compos-
ing parts of an enterprises, while “applications being used across the enterprise”

3.6 Formal Specification of Normative Principles 57

is interpreted as applications being used in two or more organizations within that
enterprise. In addition, we model the notion of ‘duplication’ as a distinct fact. Lex-
ically, it corresponds to some measure or judgment concerning great similarity in
functionality of two applications. Another issue is the interpretation of the term
‘preferred’. For simplicity’s sake it is assumed, maybe naively, that a development
is either preferred or not. However, in practice it seems more realistic to provide
a rated interpretation, for example by counting the number of duplicates occurring
(decreasing preference), or the number of times a single application is used in dif-
ferent organizations being one or larger (increasing preference as the count goes
up). This would more actively encourage actual development of applications that
are used in more than one organization.

In terms of the terminology from Fig. 3.7, we now have:

if an Application [that is used in an Organization] results from some Development
and that Application is not a duplicate of another Application

which is used in another Organization
then that Development is preferred by the Enterprise

which includes both Organizations

In the analysis leading up to this formalization, it became clear that “duplica-
tions” and “use across organizations” related to essentially different concepts (the
first to similarity in functionality between different applications, the second to dis-
tributed use of the same application). Consequently, it was deduced that “duplica-
tion” alone could do the job in capturing the intention of this principle:

if an Application results from some Development
and that Application is not a duplicate of another Application

then that Development is preferred by the Enterprise

This boils down to the simple informal rule “no duplicate applications”.
As argued in Van Bommel et al. (2006), such an analysis generally leads to a bet-

ter understanding, and even improvement of normative principles. It helps in provid-
ing them clear and unambiguous meaning. Experiments with students (Chorus et al.
2007) lead to similar conclusions. However, it also raises the question whether stake-
holders can/should be confronted with the formalized notation. In SBVR (2006), it
is argued that business rules which are formalized in such a style can indeed be
validated by domain experts, not requiring formal skills. In practice, formalized
specifications are not yet common ground for specifying architecture principles.
We believe that SBVR-like formalization of normative principles in terms of lan-
guages such as RIDL (Meersman 1982), Lisa-D (Ter Hofstede et al. 1993), Con-
Quer (Bloesch and Halpin 1996) or Object-Role Calculus (Hoppenbrouwers et al.
2005) is primarily a tool for architects, enabling them to improve the quality of
architecture principles, while potentially enabling validation by stakeholders.

In general, normative principles are best described in terms of structured text, at
a minimum involving a clear normative statement. It is imperative that principles
can be understood by a broad audience, and more specifically a mixed group of
stakeholders. Using an SBVR-like style, might provide a balance between formal-
ity and understandability by a broad audience. This does, however, require further
study and evaluation. Additionally, a concise motivation, as well as an indication

58 3 A Conceptual Framework for Principles

of the consequences, are also highly recommended. There is a wide range of other
attributes (meta-data), such as the application area the principle pertains to, that can
be associated to normative principles, and aids in their formulation and governance.
These are discussed in more detail in Chap. 4.

3.7 Key Messages

• The concept of principle has a long history.
• An important distinction has to be made between scientific principles and norma-

tive principles.
• Architecture principles are design principles that focus on how the design of an

enterprise will meet the essential requirements.
• Architecture principles are declarative statements, that can be made more specific

using design instructions. The latter can take the form of architecture models in a
language such as ArchiMate.

• Architecture principles allow enterprises to build a bridge from the strategy to the
more specific designs.

• Architecture principles, and desired properties in general, can be motivated based
on several drivers.

• Drivers are desires of stakeholders and influences that may impact these desires.

http://www.springer.com/978-3-642-20278-0

	Chapter 3: A Conceptual Framework for Principles
	3.1 Introduction
	3.2 Background of Architecture Principles
	3.3 Key Classes of Principles
	3.3.1 Scientific Principles
	3.3.2 Design Principles as Normative Principles
	3.3.3 From Credos to Norms
	3.3.4 Conceptual Framework

	3.4 Architecture Principles as Pillars from Strategy to Design
	3.4.1 Architecture Principles
	3.4.2 Business and IT Principles
	3.4.3 Bridging from Strategy to Design
	3.4.4 Extended Conceptual Framework

	3.5 Motivating Architecture Principles
	3.5.1 Sources for Finding Motivation
	3.5.2 Drivers as Motivation for Architecture Principles
	3.5.3 Extended Conceptual Framework

	3.6 Formal Specification of Normative Principles
	3.7 Key Messages

