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1 Introduction

It is nowadays well known that minimal surfaces of general type with pg(S) = 0
have invariants pg(S) = q(S) = 0,1 ≤ K2

S ≤ 9, hence they yield a finite number of
irreducible components of the moduli space of surfaces of general type.

At first glance this class of surfaces seems rather narrow, but we want to report
on recent results showing how varied and rich is the botany of such surfaces, for
which a complete classification is still out of reach.

These surfaces represent for algebraic geometers an almost prohibitive test case
about the possibility of extending the fine Enriques classification of special surfaces
to surfaces of general type.

On the one hand, they are the surfaces of general type which achieve the minimal
value 1 for the holomorphic Euler-Poincaré characteristic χ(S) := pg(S)−q(S)+1,
so a naive (and false) guess is that they should be “easier” to understand than
other surfaces with higher invariants; on the other hand, there are pathologies (espe-
cially concerning the pluricanonical systems) or problems (cf. the Bloch conjecture
([Blo75]) asserting that for surfaces with pg(S) = q(S) = 0 the group of zero cy-
cles modulo rational equivalence should be isomorphic to Z), which only occur for
surfaces with pg = 0.

Surfaces with pg(S) = q(S) = 0 have a very old history, dating back to 1896
([Enr96], see also [EnrMS], I, page 294, and [Cas96]) when Enriques constructed
the so called Enriques surfaces in order to give a counterexample to the conjecture
of Max Noether that any such surface should be rational, immediately followed by
Castelnuovo who constructed a surface with pg(S) = q(S) = 0 whose bicanonical
pencil is elliptic.

The first surfaces of general type with pg = q = 0 were constructed in the 1930’
s by Luigi Campedelli and by Lucien Godeaux (cf. [Cam32], [God35]): in their
honour minimal surfaces of general type with K2

S = 1 are called numerical Godeaux
surfaces, and those with K2

S = 2 are called numerical Campedelli surfaces.

In the 1970’s there was a big revival of interest in the construction of these
surfaces and in a possible attempt to classification.

After rediscoveries of these and other old examples a few new ones were found
through the efforts of several authors, in particular Rebecca Barlow ([Bar85a])
found a simply connected numerical Godeaux surface, which played a decisive role
in the study of the differential topology of algebraic surfaces and 4-manifolds (and
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also in the discovery of Kähler Einstein metrics of opposite sign on the same mani-
fold, see [CL97]).

A (relatively short) list of the existing examples appeared in the book [BPV84],
(see [BPV84], VII, 11 and references therein, and see also [BHPV04] for an updated
slightly longer list).

There has been recently important progress on the topic, and the goal of the
present paper is to present the status of the art on surfaces of general type with
pg = 0, of course focusing only on certain aspects of the story.

Our article is organized as follows: in the first section we explain the “fine” clas-
sification problem for surfaces of general type with pg = q = 0. Since the solution
to this problem is far from sight we pose some easier problems which could have a
greater chance to be solved in the near future.

Moreover, we try to give an update on the current knowledge concerning sur-
faces with pg = q = 0.

In the second section, we shortly review several reasons why there has been a
lot of attention devoted to surfaces with geometric genus pg equal to zero: Bloch’s
conjecture, the exceptional behaviour of the pluricanonical maps and the interesting
questions whether there are surfaces of general type homeomorphic to Del Pezzo
surfaces. It is not possible that a surface of general type be diffeomorphic to a ratio-
nal surface. This follows from Seiberg-Witten theory which brought a breakthrough
establishing in particular that the Kodaira dimension is a differentiable invariant of
the 4-manifold underlying an algebraic surface.

Since the first step towards a classification is always the construction of as many
examples as possible, we describe in section three various construction methods for
algebraic surfaces, showing how they lead to surfaces of general type with pg = 0.
Essentially, there are two different approaches, one is to take quotients, by a finite
or infinite group, of known (possibly non-compact) surfaces, and the other is in a
certain sense the dual one, namely constructing the surfaces as Galois coverings of
known surfaces.

The first approach (i.e., taking quotients) seems at the moment to be far more
successful concerning the number of examples that have been constructed by this
method. On the other hand, the theory of abelian coverings seems much more use-
ful to study the deformations of the constructed surfaces, i.e., to get hold of the
irreducible, resp. connected components of the corresponding moduli spaces.
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In the last section we review some recent results which have been obtained by
the first two authors, concerning the connected components of the moduli spaces
corresponding to Keum-Naie, respectively primary Burniat surfaces.

2 Notation

For typographical reasons, especially lack of space inside the tables, we shall use
the following non standard notation for a finite cyclic group of order m:

Zm := Z/mZ= Z/m.

Furthermore Q8 will denote the quaternion group of order 8,

Q8 := {±1,±i,± j,±k}.

As usual, Sn is the symmetric group in n letters, An is the alternating subgroup.

Dp,q,r is the generalized dihedral group admitting the following presentation:

Dp,q,r = 〈x,y|xp,yq,xyx−1y−r〉,

while Dn = D2,n,−1 is the usual dihedral group of order 2n.

G(n,m) denotes the m-th group of order n in the MAGMA database of small
groups.

Finally, we have semidirect products HoZr; to specify them, one should indi-
cate the image ϕ ∈ Aut(H) of the standard generator of Zr in Aut(H). There is no
space in the tables to indicate ϕ , hence we explain here which automorphism ϕ will
be in the case of the semidirect products occurring as fundamental groups.

For H = Z2 either r is even, and then ϕ is −Id, or r = 3 and ϕ is the matrix(
−1 −1
1 0

)
.

Else H is finite and r = 2; for H = Z2
3, ϕ is −Id; for H = Z4

2, ϕ is(
1 0
1 1

)
⊕

(
1 0
1 1

)
.

Concerning the case where the group G is a semidirect product, we simply refer
to [BCGP08] for more details.
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Finally, Πg is the fundamental group of a compact Riemann surface of genus g.

3 The classification problem and “simpler” sub-problems

The history of surfaces with geometric genus equal to zero starts about 120 years
ago with a question posed by Max Noether.

Assume that S ⊂ PN
C is a smooth projective surface. Recall that the geometric

genus of S:
pg(S) := h0(S,Ω 2

S ) := dimH0(S,Ω 2
S ),

and the irregularity of S:

q(S) := h0(S,Ω 1
S ) := dimH0(S,Ω 1

S ),

are birational invariants of S.

Trying to generalize the one dimensional situation, Max Noether asked the fol-
lowing:

Question 1 Let S be a smooth projective surface with pg(S) = q(S) = 0. Does this
imply that S is rational?

The first negative answer to this question is, as we already wrote, due to Enriques
([Enr96], see also [EnrMS], I, page 294) and Castelnuovo, who constructed coun-
terexamples which are surfaces of special type (this means, with Kodaira dimension
≤ 1. Enriques surfaces have Kodaira dimension equal to 0, Castelnuovo surfaces
have instead Kodaira dimension 1).

After the already mentioned examples by Luigi Campedelli and by Lucien
Godeaux and the new examples found by Pol Burniat ([Bur66]), and by many other
authors, the discovery and understanding of surfaces of general type with pg = 0
was considered as a challenging problem (cf. [Dol77]): a complete fine classifica-
tion however soon seemed to be far out of reach.

Maybe this was the motivation for D. Mumford to ask the following provocative

Question 2 (Montreal 1980) Can a computer classify all surfaces of general type
with pg = 0?
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Before we comment more on Mumford’s question, we shall recall some basic facts
concerning surfaces of general type.

Let S be a minimal surface of general type, i.e., S does not contain any rational
curve of self intersection (−1), or equivalently, the canonical divisor KS of S is nef
and big (K2

S > 0). Then it is well known that

K2
S ≥ 1, χ(S) := 1−q(S)+ pg(S)≥ 1.

In particular, pg(S) = 0 =⇒ q(S) = 0. Moreover, we have a coarse moduli space
parametrizing minimal surfaces of general type with fixed χ and K2.

Theorem 1 For each pair of natural numbers (x,y) we have the Gieseker moduli
space Mcan

(x,y), whose points correspond to the isomorphism classes of minimal sur-

faces S of general type with χ(S) = x and K2
S = y.

It is a quasi projective scheme which is a coarse moduli space for the canonical
models of minimal surfaces S of general type with χ(S) = x and K2

S = y.

An upper bound for K2
S is given by the famous Bogomolov-Miyaoka-Yau in-

equality:

Theorem 2 ([Miy77b], [Yau77], [Yau78], [Miy82]) Let S be a smooth surface of
general type. Then

K2
S ≤ 9χ(S),

and equality holds if and only if the universal covering of S is the complex ball
B2 := {(z,w) ∈ C2||z|2 + |w|2 < 1}.

As a note for the non experts: Miyaoka proved in the first paper the general in-
equality, which Yau only proved under the assumption of ampleness of the canonical
divisor KS. But Yau showed that if equality holds, and KS is ample, then the univer-
sal cover is the ball; in the second paper Miyaoka showed that if equality holds, then
necessarily KS is ample.

Remark 1 Classification of surfaces of general type with pg = 0 means therefore to”

understand” the nine moduli spaces Mcan
(1,n) for 1 ≤ n ≤ 9, in particular, the con-

nected components of each Mcan
(1,n) corresponding to surfaces with pg = 0. Here, un-

derstanding means to describe the connected and irreducible components and their
respective dimensions.

Even if this is the

”

test-case” with the lowest possible value for the invariant χ(S)
for surfaces of general type, still nowadays we are quite far from realistically seeing
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how this goal can be achieved. It is in particular a quite non trivial question, given
two explicit surfaces with the same invariants (χ,K2), to decide whether they are in
the same connected component of the moduli space.

An easy observation, which indeed is quite useful, is the following:

Remark 2 Assume that S, S′ are two minimal surfaces of general type which are in
the same connected component of the moduli space. Then S and S′ are orientedly
diffeomorphic through a diffeomorphism preserving the Chern class of the canon-
ical divisor; whence S and S′ are homeomorphic, in particular they have the same
(topological) fundamental group.

Thus the fundamental group π1 is the simplest invariant which distinguishes
connected components of the moduli space Mcan

(x,y).

So, it seems natural to pose the following questions which sound

”

easier” to
solve than the complete classification of surfaces with geometric genus zero.

Question 3 What are the topological fundamental groups of surfaces of general type
with pg = 0 and K2

S = y?

Question 4 Is π1(S) =: Γ residually finite, i.e., is the natural homomorphism
Γ → Γ̂ = limH/ f Γ (Γ /H) from Γ to its profinite completion Γ̂ injective?

Remark 3

1) Note that in general fundamental groups of algebraic surfaces are not residu-
ally finite, but all known examples have pg > 0 (cf. [Tol93], [CK92]).

2) There are examples of surfaces S, S′ with non isomorphic topological fun-
damental groups, but whose profinite completions are isomorphic (cf. [Serre64],
[BCG07]).

Question 5 What are the best possible positive numbers a,b such that

• K2
S ≤ a =⇒ |π1(S)|< ∞,

• K2
S ≥ b =⇒ |π1(S)|= ∞?

In fact, by Yau’s theorem K2
S = 9 =⇒ |π1(S)| = ∞. Moreover by [BCGP08]

there exists a surface S with K2
S = 6 and finite fundamental group, so b ≥ 7. On

the other hand, there are surfaces with K2 = 4 and infinite fundamental group (cf.
[Keu88], [Nai99]), whence a≤ 3.
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Note that all known minimal surfaces of general type S with pg = 0 and K2
S = 8

are uniformized by the bidisk B1×B1.

Question 6 Is the universal covering of S with K2
S = 8 always B1×B1?

An affirmative answer to the above question would give a negative answer to the
following question of F. Hirzebruch:

Question 7 (F. Hirzebruch) Does there exist a surface of general type homeomor-
phic to P1×P1?

Or homeomorphic to the blow up F1 of P2 in one point ?

In the other direction, for K2
S ≤ 2 it is known that the profinite completion π̂1 is

finite. There is the following result:

Theorem 3

1) K2
S = 1 =⇒ π̂1 ∼= Zm for 1≤ m≤ 5 (cf. [Rei78]).

2) K2
S = 2 =⇒ |π̂1| ≤ 9 (cf. [Rei], [Xia85a]).

The bounds are sharp in both cases, indeed for the case K2
S = 1 there are examples

with π1(S)∼= Zm for all 1≤ m≤ 5 and there is the following conjecture

Conjecture 1 (M. Reid) Mcan
(1,1) has exactly five irreducible components correspond-

ing to each choice π1(S)∼= Zm for all 1≤ m≤ 5.

This conjecture is known to hold true for m≥ 3 (cf. [Rei78]).

One can ask similar questions:

Question 8

2) Does K2
S = 2, pg(S) = 0 imply that |π1(S)| ≤ 9?

3) Does K2
S = 3 (and pg(S) = 0) imply that |π1(S)| ≤ 16?

3.1 Update on surfaces with pg = 0

There has been recently important progress on surfaces of general type with pg = 0
and the current situation is as follows:



Surfaces of general type with geometric genus zero: a survey 9

K2
S = 9: these surfaces have the unit ball in C2 as universal cover, and their funda-

mental group is an arithmetic subgroup Γ of SU(2,1).

This case seems to be completely classified through exciting new work of Prasad
and Yeung and of Cartright and Steger ([PY07], [PY09], [CS]) asserting that the
moduli space consists exactly of 100 points, corresponding to 50 pairs of complex
conjugate surfaces (cf. [KK02]).

K2
S = 8: we posed the question whether in this case the universal cover must be the

bidisk in C2.

Assuming this, a complete classification should be possible.

The classification has already been accomplished in [BCG08] for the reducible
case where there is a finite étale cover which is isomorphic to a product of curves.
In this case there are exactly 18 irreducible connected components of the moduli
space: in fact, 17 such components are listed in [BCG08], and recently Davide Frap-
porti ([Frap10]), while rerunning the classification program, found one more family
whose existence had been excluded by an incomplete analysis.

There are many examples, due to Kuga and Shavel ([Kug75], [Sha78]) for the
irreducible case, which yield (as in the case K2

S = 9) rigid surfaces (by results of Jost
and Yau [JT85]); but a complete classification of this second case is still missing.

The constructions of minimal surfaces of general type with pg = 0 and with
K2

S ≤ 7 available in the literature (to the best of the authors’ knowledge, and exclud-
ing the recent results of the authors, which will be described later) are listed in table
1.

We proceed to a description, with the aim of putting the recent developments in
proper perspective.

K2
S = 1, i.e., numerical Godeaux surfaces: recall that by conjecture 1 the moduli

space should have exactly five irreducible connected components, distinguished by
the order of the fundamental group, which should be cyclic of order at most 5
([Rei78] settled the case where the order of the first homology group is at least
3; [Bar85a], [Bar84] and [Wer94] were the first to show the occurrence of the two
other groups).

K2
S = 2, i.e., numerical Campedelli surfaces: here, it is known that the order of the

algebraic fundamental group is at most 9, and the cases of order 8,9 have been clas-
sified by Mendes Lopes, Pardini and Reid ([MP08], [MPR09], [Rei]), who showed
in particular that the fundamental group equals the algebraic fundamental group and
cannot be the dihedral group D4 of order 8. Naie ([Nai99]) showed that the group
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Table 1 Minimal surfaces of general type with pg = 0 and K2 ≤ 7 available in the literature

K2 π1 π
alg
1 H1 References

1 Z5 Z5 Z5 [God34][Rei78][Miy76]
Z4 Z4 Z4 [Rei78][OP81][Bar84][Nai94]
? Z3 Z3 [Rei78]
Z2 Z2 Z2 [Bar84][Ino94][KL10]
? Z2 Z2 [Wer94][Wer97]
{1} {1} {0} [Bar85a][LP07]

? {1} {0} [CG94][DW99]
2 Z9 Z9 Z9 [MP08]

Z2
3 Z2

3 Z2
3 [Xia85a][MP08]

Z3
2 Z3

2 Z3
2 [Cam32][Rei][Pet76][Ino94][Nai94]

Z2×Z4 Z2×Z4 Z2×Z4 [Rei][Nai94][Keu88]
Z8 Z8 Z8 [Rei]
Q8 Q8 Z2

2 [Rei] [Bea96]
Z7 Z7 Z7 [Rei91]
? Z6 Z6 [NP09]
Z5 Z5 Z5 [Cat81][Sup98]
Z2

2 Z2
2 Z2

2 [Ino94][Keu88]
? Z3 Z3 [LP09]
Z2 Z2 Z2 [KL10]
? Z2 Z2 [LP09]
{1} {1} {0} [LP07]

3 Z2
2×Z4 Z2

2×Z4 Z2
2×Z4 [Nai94] [Keu88] [MP04a]

Q8×Z2 Q8×Z2 Z3
2 [Bur66][Pet77] [Ino94]

Z14 Z14 Z14 [CS]
Z13 Z13 Z13 [CS]
Q8 Q8 Z2

2 [CS]
D4 D4 Z2

2 [CS]
Z2×Z4 Z2×Z4 Z2×Z4 [CS]
Z7 Z7 Z7 [CS]
S3 S3 Z2 [CS]
Z6 Z6 Z6 [CS]

Z2×Z2 Z2×Z2 Z2×Z2 [CS]
Z4 Z4 Z4 [CS]
Z3 Z3 Z3 [CS]
Z2 Z2 Z2 [KL10][CS]
? ? Z2 [PPS08a]
{1} {1} {0} [PPS09a][CS]

4 1→ Z4→ π1→ Z2
2→ 1 π̂1 Z3

2×Z4 [Nai94][Keu88]
Q8×Z2

2 Q8×Z2
2 Z4

2 [Bur66][Pet77][Ino94]
Z2 Z2 Z2 [Par10]
{1} {1} {0} [PPS09b]

5 Q8×Z3
2 Q8×Z3

2 Z5
2 [Bur66][Pet77][Ino94]

? ? ? [Ino94]

6 1→ Z6→ π1→ Z3
2→ 1 π̂1 Z6

2 [Bur66][Pet77][Ino94]
1→ Z6→ π1→ Z3

3→ 1 π̂1 Z3
3 ⊂ H1 [Kul04]

? ? ? [Ino94][MP04b]

7 1→Π3×Z4→ π1→ Z3
2→ 1 π̂1 ? [Ino94][MP01a] [BCC10]
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D3 of order 6 cannot occur as the fundamental group of a numerical Campedelli
surface. By the work of Lee and Park ([LP07]), one knows that there exist simply
connected numerical Campedelli surfaces.

Recently, in [BCGP08], [BP10], the construction of eight families of numerical
Campedelli surfaces with fundamental group Z3 was given. Neves and Papadakis
([NP09]) constructed a numerical Campedelli surface with algebraic fundamental
group Z6, while Lee and Park ([LP09]) constructed one with algebraic fundamental
group Z2, and one with algebraic fundamental group Z3 was added in the second
version of the same paper. Finally Keum and Lee ([KL10]) constructed examples
with topological fundamental group Z2.

Open conjectures are:

Conjecture 2 Is the fundamental group π1(S) of a numerical Campedelli surface
finite?

Question 9 Does every group of order ≤ 9 except D4 and D3 occur as topological
fundamental group (not only as algebraic fundamental group)?

The answer to question 9 is completely open for Z4; for Z6,Z2 one suspects that
these fundamental groups are realized by the Neves-Papadakis surfaces, respectively
by the Lee-Park surfaces.

Note that the existence of the case where π1(S) = Z7 is shown in the paper
[Rei91] (where the result is not mentioned in the introduction).

K2
S = 3: here there were two examples of non trivial fundamental groups, the first

one due to Burniat and Inoue, the second one to Keum and Naie ([Bur66], [Ino94],
[Keu88] [Nai94]).

It is conjectured that for pg(S) = 0,K2
S = 3 the algebraic fundamental group is

finite, and one can ask as in 1) above whether also π1(S) is finite. Park, Park and
Shin ([PPS09a]) showed the existence of simply connected surfaces, and of surfaces
with torsion Z2 ([PPS08a]). More recently Keum and Lee ([KL10]) constructed an
example with π1(S) = Z2.

Other constructions were given in [Cat98], together with two more examples
with pg(S) = 0,K2 = 4,5: these turned out however to be the same as the Burniat
surfaces.

In [BP10], the existence of four new fundamental groups is shown. Then new
fundamental groups were shown to occur by Cartright and Steger, while considering
quotients of a fake projective plane by an automorphism of order 3.
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With this method Cartright and Steger produced also other examples with
pg(S) = 0, K2

S = 3, and trivial fundamental group, or with π1(S) = Z2.

K2
S = 4: there were known up to now three examples of fundamental groups, the

trivial one (Park, Park and Shin, [PPS09b]), a finite one, and an infinite one. In
[BCGP08], [BP10] the existence of 10 new groups, 6 finite and 4 infinite, is shown:
thus minimal surfaces with K2

S = 4, pg(S) = q(S) = 0 realize at least 13 distinct
topological types. Recently, H. Park constructed one more example in [Par10] rais-
ing the number of topological types to 14.

K2
S = 5,6,7: there was known up to now only one example of a fundamental group

for K2
S = 5,7.

Instead for K2
S = 6, there are the Inoue-Burniat surfaces and an example due to

V. Kulikov (cf. [Kul04]), which contains Z3
3 in its torsion group. Like in the case

of primary Burniat surfaces one can see that the fundamental group of the Kulikov
surface fits into an exact sequence

1→ Z6→ π1→ Z3
3→ 1.

K2
S = 5 : in [BP10] the existence of 7 new groups, four of which finite, is shown:

thus minimal surfaces with K2
S = 5, pg(S) = q(S) = 0 realize at least 8 distinct

topological types.

K2
S = 6 : in [BCGP08] the existence of 6 new groups, three of which finite,

is shown: thus minimal surfaces with K2
S = 6, pg(S) = q(S) = 0 realize at least 7

distinct topological types.

K2
S = 7 : we shall show elsewhere ([BCC10]) that these surfaces, constructed by

Inoue in [Ino94], have a fundamental group fitting into an exact sequence

1→Π3×Z4→ π1→ Z3
2→ 1.

This motivates the following further question (cf. question 5).

Question 10 Is it true that fundamental groups of surfaces of general type with
q = pg = 0 are finite for K2

S ≤ 3, and infinite for K2
S ≥ 7?
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4 Other reasons why surfaces with pg = 0 have been of interest
in the last 30 years

4.1 Bloch’s conjecture

Another important problem concerning surfaces with pg = 0 is related to the prob-
lem of rational equivalence of 0-cycles.

Recall that, for a nonsingular projective variety X , Ai
0(X) is the group of rational

equivalence classes of zero cycles of degree i.

Conjecture 3 Let S be a smooth surface with pg = 0. Then the kernel T (S) of the
natural morphism (the so-called Abel-Jacobi map) A0

0(S)→ Alb(S) is trivial.

By a beautiful result of D. Mumford ([Mum68]), the kernel of the Abel-Jacobi map
is infinite dimensional for surfaces S with pg 6= 0.

The conjecture has been proven for κ(S) < 2 by Bloch, Kas and Liebermann (cf.
[BKL76]). If instead S is of general type, then q(S) = 0, whence Bloch’s conjecture
asserts for those surfaces that A0(S)∼= Z.

Inspite of the efforts of many authors, there are only few cases of surfaces of gen-
eral type for which Bloch’s conjecture has been verified (cf. e.g. [IM79], [Bar85b],
[Keu88], [Voi92]).

Recently S. Kimura introduced the following notion of finite dimensionality of
motives ([Kim05]).

Definition 1 Let M be a motive.

Then M is evenly finite dimensional if there is a natural number n≥ 1 such that
∧nM = 0.

M is oddly finite dimensional if there is a natural number n ≥ 1 such that
Symn M = 0.

And, finally, M is finite dimensional if M = M+⊕M−, where M+ is evenly finite
dimensional and M− is oddly finite dimensional.

Using this notation, he proves the following
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Theorem 4

1) The motive of a smooth projective curve is finite dimensional ([Kim05], cor.
4.4.).

2) The product of finite dimensional motives is finite dimensional (loc. cit., cor.
5.11.).

3) Let f : M → N be a surjective morphism of motives, and assume that M is
finite dimensional. Then N is finite dimensional (loc. cit., prop. 6.9.).

4) Let S be a surface with pg = 0 and suppose that the Chow motive of X is finite
dimensional. Then T (S) = 0 (loc.cit., cor. 7.7.).

Using the above results we obtain

Theorem 5 Let S be the minimal model of a product-quotient surface (i.e., bira-
tional to (C1×C2)/G, where G is a finite group acting effectively on a product of
two compact Riemann surfaces of respective genera gi ≥ 2) with pg = 0.

Then Bloch’s conjecture holds for S, namely, A0(S)∼= Z.

Proof Let S be the minimal model of X = (C1×C2)/G. Since X has rational singu-
larities T (X) = T (S).

By thm. 4, 2), 3) we have that the motive of X is finite dimensional, whence, by
4), T (S) = T (X) = 0.

Since S is of general type we have also q(S) = 0, hence A0
0(S) = T (S) = 0.

Corollary 1 All the surfaces in table 2, 3, and all the surfaces in [BC04], [BCG08]
satisfy Bloch’s conjecture.

4.2 Pluricanonical maps

A further motivation for the study of surfaces with pg = 0 comes from the behavior
of the pluricanonical maps of surfaces of general type.

Definition 2 The n-th pluricanonical map

ϕn := ϕ|nKS| : S 99K PPn−1

is the rational map associated to H0(OS(nKS)).
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We recall that for a curve of general type ϕn is an embedding as soon as n ≥ 3,
and also for n = 2, if the curve is not of genus 2. The situation in dimension 2 is
much more complicated. We recall:

Definition 3 The canonical model of a surface of general type is the normal surface

X := Pro j(
∞⊕

n=0

H0(OS(nKS))),

the projective spectrum of the (finitely generated) canonical ring.

X is obtained from its minimal model S by contracting all the curves C with
KS ·C = 0, i.e., all the smooth rational curves with self intersection equal to −2.

The n-th pluricanonical map ϕ|nKS| of a surface of general type is the composition
of the projection onto its canonical model X with ψn := ϕ|nKX |. So it suffices to study
this last map.

This was done by Bombieri, whose results were later improved by the work of
several authors. We summarize these efforts in the following theorem.

Theorem 6 ([Bom73], [Miy76], [BC78], [Cat77], [Reider88], [Fran88], [CC88],
[CFHR99])

Let X be the canonical model of a surface of general type. Then

i) ϕ|nKX | is an embedding for all n≥ 5;

ii) ϕ|4KX | is an embedding if K2
X ≥ 2;

iii)ϕ|3KX | is a morphism if K2
X ≥ 2 and an embedding if K2

X ≥ 3;

iv) ϕ|nKX | is birational for all n≥ 3 unless

a) either K2 = 1, pg = 2, n = 3 or 4.

In this case X is a hypersurface of degree 10 in the weighted projective space
P(1,1,2,5), a finite double cover of the quadric cone Y := P(1,1,2), ϕ|3KX |(X)
is birational to Y and isomorphic to an embedding of the surface F2 in P5, while
ϕ|4KX |(X) is an embedding of Y in P8.

b) Or K2 = 2, pg = 3, n = 3 (in this case X is a double cover of P2 branched
on a curve of degree 8, and ϕ|3KX |(X) is the image of the Veronese embedding
ν3 : P2→ P9).

v) ϕ|2KX | is a morphism if K2
X ≥ 5 or if pg 6= 0.
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vi) If K2
X ≥ 10 then ϕ|2KX | is birational if and only if X does not admit a morphism

onto a curve with general fibre of genus 2.

The surfaces with pg = 0 arose as the difficult case for the understanding of
the tricanonical map, because, in the first version of his theorem, Bombieri could
not determine whether the tricanonical and quadricanonical map of the numerical
Godeaux and of the numerical Campedelli surfaces had to be birational. This was
later proved in [Miy76], in [BC78], and in [Cat77].

It was already known to Kodaira that a morphism onto a smooth curve with gen-
eral fibre of genus 2 forces the bicanonical map to factor through the hyperelliptic
involution of the fibres: this is called the standard case for the nonbirationality of
the bicanonical map. Part vi) of Theorem 6 shows that there are finitely many fam-
ilies of surfaces of general type with bicanonical map nonbirational which do not
present the standard case. These interesting families have been classified under the
hypothesis pg > 1 or pg = 1, q 6= 1: see [BCP06] for a more precise account on this
results.

Again, the surfaces with pg = 0 are the most difficult and hence the most in-
teresting, since there are

”

pathologies” which can happen only for surfaces with
pg = 0.

For example, the bicanonical system of a numerical Godeaux surface is a pencil,
and therefore maps the surface onto P1, while [Xia85b] showed that the bicanonical
map of every other surface of general type has a two dimensional image. Moreover,
obviously for a numerical Godeaux surface ϕ|2KX | is not a morphism, thus showing
that the condition pg 6= 0 in the point v) of the Theorem 6 is sharp.

Recently, Pardini and Mendes Lopes (cf. [MP08]) showed that there are more
examples of surfaces whose bicanonical map is not a morphism, constructing two
families of numerical Campedelli surfaces whose bicanonical system has two base
points.

What it is known on the degree of the bicanonical map of surfaces with pg = 0
can be summarized in the following

Theorem 7 ([MP07a],[MLP02], [MP08]) Let S be a surface with pg = q = 0. Then

• if K2
S = 9⇒ degϕ|2KS| = 1,

• if K2
S = 7,8⇒ degϕ|2KS| = 1 or 2,

• if K2
S = 5,6⇒ degϕ|2KS| = 1, 2 or 4,
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• if K2
S = 3,4 ⇒ degϕ|2KS| ≤ 5; if moreover ϕ|2KS| is a morphism, then

degϕ|2KS| = 1, 2 or 4,

• if K2
S = 2 (since the image of the bicanonical map is P2, the bicanonical map is

non birational), then degϕ|2KS| ≤ 8. In the known examples it has degree 6 (and
the bicanonical system has two base points) or 8 (and the bicanonical system has
no base points).

4.3 Differential topology

The surfaces with pg = 0 are very interesting also from the point of view of dif-
ferential topology, in particular in the simply connected case. We recall Freedman’s
theorem.

Theorem 8 ([Fre82]) Let M be an oriented, closed, simply connected topological
manifold: then M is determined (up to homeomorphism) by its intersection form

q : H2(M,Z)×H2(M,Z)→ Z

and by the Kirby-Siebenmann invariant α(M) ∈ Z2, which vanishes if and only if
M× [0,1] admits a differentiable structure.

If M is a complex surface, the Kirby-Siebenmann invariant automatically van-
ishes and therefore the oriented homeomorphism type of M is determined by the
intersection form.

Combining it with a basic result of Serre on indefinite unimodular forms, and
since by [Yau77] the only simply connected compact complex surface whose inter-
section form is definite is P2 one concludes

Corollary 2 The oriented homeomorphism type of any simply connected complex
surface is determined by the rank, the index and the parity of the intersection form.

This gives a rather easy criterion to decide whether two complex surfaces are
orientedly homeomorphic; anyway two orientedly homeomorphic complex surfaces
are not necessarily diffeomorphic.

In fact, Dolgachev surfaces ([Dol77], see also [BHPV04, IX.5]) give examples
of infinitely many surfaces which are all orientedly homeomorphic, but pairwise not
diffeomorphic; these are elliptic surfaces with pg = q = 0.
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As mentioned, every compact complex surface homeomorphic to P2 is diffeo-
morphic (in fact, algebraically isomorphic) to P2 (cf. [Yau77]), so one can ask a
similar question (cf. e.g. Hirzebruch’s question 7): if a surface is homeomorphic to
a rational surface, is it also diffeomorphic to it?

Simply connected surfaces of general type with pg = 0 give a negative answer
to this question. Indeed, by Freedman’s theorem each simply connected minimal
surface S of general type with pg = 0 is orientedly homeomorphic to a Del Pezzo
surface of degree K2

S . Still these surfaces are not diffeomorphic to a Del Pezzo sur-
face because of the following

Theorem 9 ([FQ94]) Let S be a surface of general type. Then S is not diffeomorphic
to a rational surface.

The first simply connected surface of general type with pg = 0 was constructed
by R. Barlow in the 80’s, and more examples have been constructed recently by Y.
Lee, J. Park, H. Park and D. Shin. We summarize their results in the following

Theorem 10 ([Bar85a], [LP07], [PPS09a], [PPS09b]) ∀1≤ y≤ 4 there are mini-
mal simply connected surfaces of general type with pg = 0 and K2 = y.

5 Construction techniques

As already mentioned, a first step towards a classification is the construction of ex-
amples. Here is a short list of different methods for constructing surfaces of general
type with pg = 0.

5.1 Quotients by a finite (resp. : infinite) group

5.1.1 Ball quotients

By the Bogomolov-Miyaoka-Yau theorem, a surface of general type with pg = 0 is
uniformized by the two dimensional complex ball B2 if and only if K2

S = 9. These
surfaces are classically called fake projective planes, since they have the same Betti
numbers as the projective plane P2.
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The first example of a fake projective plane was constructed by Mumford (cf.
[Mum79]), and later very few other examples were given (cf.[IK98], [Keu06]).

Ball quotients S = B2/Γ , where Γ ≤ PSU(2,1) is a discrete, cocompact, tor-
sionfree subgroup are strongly rigid surfaces in view of Mostow’s rigidity theorem
([Mos73]).

In particular the moduli space M(1,9) consists of a finite number of isolated
points.

The possibility of obtaining a complete list of these fake planes seemed rather
unrealistic until a breakthrough came in 2003: a surprising result by Klingler (cf.
[Kli03]) showed that the cocompact, discrete, torsionfree subgroups Γ ≤ PSU(2,1)
having minimal Betti numbers, i.e., yielding fake planes, are indeed arithmetic.

This allowed a complete classification of these surfaces carried out by Prasad and
Yeung, Steger and Cartright ([PY07], [PY09]): the moduli space contains exactly
100 points, corresponding to 50 pairs of complex conjugate surfaces.

5.1.2 Product quotient surfaces

In a series of papers the following construction was explored systematically by
the authors with the help of the computer algebra program MAGMA (cf. [BC04],
[BCG08], [BCGP08], [BP10]).

Let C1, C2 be two compact curves of respective genera g1,g2≥ 2. Assume further
that G is a finite group acting effectively on C1×C2.

In the case where the action of G is free, the quotient surface is minimal of
general type and is said to be isogenous to a product (see [Cat00]).

If the action is not free we consider the minimal resolution of singularities S′ of
the normal surface X := (C1×C2)/G and its minimal model S. The aim is to give a
complete classification of those S obtained as above which are of general type and
have pg = 0.

One observes that, if the tangent action of the stabilizers is contained in SL(2,C),
then X has Rational Double Points as singularities and is the canonical model of a
surface of general type. In this case S′ is minimal.

Recall the definition of an orbifold surface group (here the word ‘surface’ stands
for ‘Riemann surface’):
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Definition 4 An orbifold surface group of genus g′ and multiplicities
m1, . . .mr ∈ N≥2 is the group presented as follows:

T(g′;m1, . . . ,mr) := 〈a1,b1, . . . ,ag′ ,bg′ , c1, . . . ,cr|

cm1
1 , . . . ,cmr

r ,
g′

∏
i=1

[ai,bi] · c1 · . . . · cr〉.

The sequence (g′;m1, . . .mr) is called the signature of the orbifold surface group.

Moreover, recall the following special case of Riemann’s existence theorem:

Theorem 11 A finite group G acts as a group of automorphisms on a compact Rie-
mann surface C of genus g if and only if there are natural numbers g′,m1, . . . ,mr,
and an ‘appropriate’ orbifold homomorphism

ϕ : T(g′;m1, . . . ,mr)→ G

such that the Riemann - Hurwitz relation holds:

2g−2 = |G|

(
2g′ −2+

r

∑
i=1

(
1− 1

mi

))
.

”

Appropriate” means that ϕ is surjective and moreover that the image γi ∈G of
a generator ci has order exactly equal to mi (the order of ci in T(g′;m1, . . . ,mr)).

In the above situation g′ is the genus of C′ := C/G. The G-cover C → C′ is
branched in r points p1, . . . , pr with branching indices m1, . . . ,mr, respectively.

Denote as before ϕ(ci) by γi ∈ G the image of ci under ϕ: then the set of stabi-
lizers for the action of G on C is the set

Σ(γ1, . . . ,γr) := ∪a∈G∪max{mi}
i=0 {aγ

i
1a−1, . . .aγ

i
ra
−1}.

Assume now that there are two epimorphisms

ϕ1 : T(g′1;m1, . . . ,mr)→ G,

ϕ2 : T(g′2;n1, . . . ,ns)→ G,

determined by two Galois covers λi : Ci→C′i , i = 1,2.
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We will assume in the following that g(C1), g(C2) ≥ 2, and we shall consider the
diagonal action of G on C1×C2.

We shall say in this situation that the action of G on C1×C2 is of unmixed type
(indeed, see [Cat00], there is always a subgroup of G of index at most 2 with an
action of unmixed type).

Theorem 12 ([BC04], [BCG05] [BCGP08],[BP10])

1) Surfaces S isogenous to a product with pg(S) = q(S) = 0 form 17 irreducible
connected components of the moduli space Mcan

(1,8).

2) Surfaces with pg = 0, whose canonical model is a singular quotient
X := (C1×C2)/G by an unmixed action of G form 27 further irreducible families.

3) Minimal surfaces with pg = 0 which are the minimal resolution of the singu-
larities of X := C1×C2/G such that the action is of unmixed type and X does not
have canonical singularities form exactly further 32 irreducible families.

Moreover, K2
S = 8 if and only if S is isogenous to a product.

We summarize the above results in tables 2 and 3.

Remark 4 1) Recall that, if a diagonal action of G on C1×C2 is not free, then G has a
finite set of fixed points. The quotient surface X := (C1×C2)/G has a finite number
of singular points. These can be easily found by looking at the given description of
the stabilizers for the action of G on each individual curve.

Assume that x ∈ X is a singular point. Then it is a cyclic quotient singularity of
type 1

n (1,a) with g.c.d(a,n) = 1, i.e., X is, locally around x, biholomorphic to the
quotient of C2 by the action of a diagonal linear automorphism with eigenvalues
exp( 2πi

n ), exp( 2πia
n ). That g.c.d(a,n) = 1 follows since the tangent representation is

faithful on both factors.

2) We denote by KX the canonical (Weil) divisor on the normal surface cor-
responding to i∗(Ω 2

X0), i : X0 → X being the inclusion of the smooth locus of X .
According to Mumford we have an intersection product with values in Q for Weil
divisors on a normal surface, and in particular we consider the selfintersection of the
canonical divisor,

K2
X =

8(g(C1)−1)(g(C2)−1)
|G|

∈Q, (1)

which is not necessarily an integer.

K2
X is however an integer (equal indeed to K2

S ) if X has only RDP’s as singulari-
ties.
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Table 2 Surfaces isogenous to a product and minimal standard isotrivial fibrations with pg = 0,
K2 ≥ 4

K2 Sing X T1 T2 G N H1(S,Z) π1(S)

8 /0 2,52 34 A5 1 Z2
3×Z15 1→Π21×Π4→ π1→ G→ 1

8 /0 53 23,3 A5 1 Z2
10 1→Π6×Π13→ π1→ G→ 1

8 /0 32,5 25 A5 1 Z3
2×Z6 1→Π16×Π5→ π1→ G→ 1

8 /0 2,4,6 26 S4×Z2 1 Z4
2×Z4 1→Π25×Π3→ π1→ G→ 1

8 /0 22,42 23,4 G(32,27) 1 Z2
2×Z4×Z8 1→Π5×Π9→ π1→ G→ 1

8 /0 53 53 Z2
5 2 Z2

5 1→Π6×Π6→ π1→ G→ 1
8 /0 3,42 26 S4 1 Z4

2×Z8 1→Π13×Π3→ π1→ G→ 1
8 /0 22,42 22,42 G(16,3) 1 Z2

2×Z4×Z8 1→Π5×Π5→ π1→ G→ 1
8 /0 23,4 26 D4×Z2 1 Z3

2×Z2
4 1→Π9×Π3→ π1→ G→ 1

8 /0 25 25 Z4
2 1 Z4

2 1→Π5×Π5→ π1→ G→ 1
8 /0 34 34 Z2

3 1 Z4
3 1→Π4×Π4→ π1→ G→ 1

8 /0 25 26 Z3
2 1 Z6

2 1→Π3×Π5→ π1→ G→ 1
8 /0 mixed G(256,3678) 3
8 /0 mixed G(256,3679) 1
8 /0 mixed G(64,92) 1

6 1/22 23,4 24,4 Z2×D4 1 Z2
2×Z2

4 1→ Z2×Π2→ π1→ Z2
2→ 1

6 1/22 24,4 2,4,6 Z2×S4 1 Z3
2×Z4 1→Π2→ π1→ Z2×Z4→ 1

6 1/22 2,52 2,33 A5 1 Z3×Z15 Z2oZ15

6 1/22 2,4,10 2,4,6 Z2×S5 1 Z2×Z4 S3×D4,5,−1

6 1/22 2,72 32,4 PSL(2,7) 2 Z21 Z7×A4

6 1/22 2,52 32,4 A6 2 Z15 Z5×A4

5 1/3,2/3 2,4,6 24,3 Z2×S4 1 Z2
2×Z4 1→ Z2→ π1→ D2,8,3→ 1

5 1/3,2/3 24,3 3,42 S4 1 Z2
2×Z8 1→ Z2→ π1→ Z8→ 1

5 1/3,2/3 42,6 23,3 Z2×S4 1 Z2×Z8 1→ Z2→ π1→ Z8→ 1
5 1/3,2/3 2,5,6 3,42 S5 1 Z8 D8,5,−1

5 1/3,2/3 3,52 23,3 A5 1 Z2×Z10 Z5×Q8

5 1/3,2/3 23,3 3,42 Z4
2oS3 1 Z2×Z8 D8,4,3

5 1/3,2/3 3,52 23,3 A5 1 Z2×Z10 Z2×Z10

4 1/24 25 25 Z3
2 1 Z3

2×Z4 1→ Z4→ π1→ Z2
2→ 1

4 1/24 22,42 22,42 Z2×Z4 1 Z3
2×Z4 1→ Z4→ π1→ Z2

2→ 1
4 1/24 25 23,4 Z2×D4 1 Z2

2×Z4 1→ Z2→ π1→ Z2×Z4→ 1
4 1/24 3,62 22,32 Z3×S3 1 Z2

3 Z2oZ3

4 1/24 3,62 2,4,5 S5 1 Z2
3 Z2oZ3

4 1/24 25 2,4,6 Z2×S4 1 Z3
2 Z2oZ2

4 1/24 22,42 2,4,6 Z2×S4 1 Z2
2×Z4 Z2oZ4

4 1/24 25 3,42 S4 1 Z2
2×Z4 Z2oZ4

4 1/24 23,4 23,4 Z4
2oZ2 1 Z2

4 G(32,2)
4 1/24 2,52 22,32 A5 1 Z15 Z15

4 1/24 22,32 22,32 Z2
3oZ2 1 Z3

3 Z3
3

4 2/52 23,5 32,5 A5 1 Z2×Z6 Z2×Z6

4 2/52 2,4,5 42,5 Z4
2oD5 3 Z8 Z8

4 2/52 2,4,5 32,5 A6 1 Z6 Z6



Surfaces of general type with geometric genus zero: a survey 23

Table 3 Minimal standard isotrivial fibrations with pg = 0, K2 ≤ 3

K2 Sing X T1 T2 G N H1(S,Z) π1(S)

3 1/5,4/5 23,5 32,5 A5 1 Z2×Z6 Z2×Z6

3 1/5,4/5 2,4,5 42,5 Z4
2oD5 3 Z8 Z8

3 1/3,1/22,2/3 22,3,4 2,4,6 Z2×S4 1 Z2×Z4 Z2×Z4

3 1/5,4/5 2,4,5 32,5 A6 1 Z6 Z6

2 1/32,2/32 2,62 22,32 Z3
2oZ3 1 Z2

2 Q8

2 1/26 43 43 Z2
4 1 Z3

2 Z3
2

2 1/26 23,4 23,4 Z2×D4 1 Z2×Z4 Z2×Z4

2 1/32,2/32 22,32 3,42 S4 1 Z8 Z8

2 1/32,2/32 32,5 32,5 Z2
5oZ3 2 Z5 Z5

2 1/26 2,52 23,3 A5 1 Z5 Z5

2 1/26 23,4 2,4,6 Z2×S4 1 Z2
2 Z2

2

2 1/32,2/32 32,5 23,3 A5 1 Z2
2 Z2

2

2 1/26 2,3,7 43 PSL(2,7) 2 Z2
2 Z2

2

2 1/26 2,62 23,3 S3×S3 1 Z3 Z3

2 1/26 2,62 2,4,5 S5 1 Z3 Z3

2 1/4,1/22,3/4 2,4,7 32,4 PSL(2,7) 2 Z3 Z3

2 1/4,1/22,3/4 2,4,5 32,4 A6 2 Z3 Z3

2 1/4,1/22,3/4 2,4,6 2,4,5 S5 2 Z3 Z3

1 1/3,1/24,2/3 23,3 3,42 S4 1 Z4 Z4

1 1/3,1/24,2/3 2,3,7 3,42 PSL(2,7) 1 Z2 Z2

1 1/3,1/24,2/3 2,4,6 23,3 Z2×S4 1 Z2 Z2

3) The resolution of a cyclic quotient singularity of type 1
n (1,a) with

g.c.d(a,n) = 1 is well known. These singularities are resolved by the so-called
Hirzebruch-Jung strings. More precisely, let π : S→ X be a minimal resolution of
the singularities and let E =

⋃m
i=1 Ei = π−1(x). Then Ei is a smooth rational curve

with E2
i =−bi and Ei ·E j = 0 if |i− j| ≥ 2, whileEi ·Ei+1 = 1 for i ∈ {1, . . . ,m−1}.

The bi’s are given by the continued fraction

n
a

= b1−
1

b2− 1
b3−...

.
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Since the minimal resolution S′ → X of the singularities of X replaces each sin-
gular point by a tree of smooth rational curves, we have, by van Kampen’s theorem,
that π1(X) = π1(S′) = π1(S).

Moreover, we can read off all invariants of S′ from the group theoretical data.
For details and explicit formulae we refer to [BP10].

Among others, we also prove the following lemma:

Lemma 5.1 There exist positive numbers D, M, R, B, which depend explicitly (and
only) on the singularities of X such that:

1. χ(S′) = 1 =⇒ K2
S′ = 8−B;

2. for the corresponding signatures (0;m1, . . . ,mr) and (0;n1, . . . ,ns) of the orb-
ifold surface groups we have r,s≤ R, ∀ i mi,ni ≤M;

3. |G|= KS′+D
2(−2+∑

r
1(1− 1

mi
))(−2+∑

s
1(1− 1

ni
))

.

Remark 5 The above lemma 5.1 implies that there is an algorithm which computes
all such surfaces S′ with pg = q = 0 and fixed K2

S′ :

a) find all possible configurations (=

”

baskets”) B of singularities with
B = 8−K2

S′ ;

b) for a fixed basket B find all signatures (0;m1, . . . ,mr) satisfying 2);

c) for each pair of signatures check all groups G of order given by 3), whether
there are surjective homomorphisms T(0;mi)→ G, T(0;ni)→ G;

d) check whether the surfaces X = (C1×C2)/G thus obtained have the right sin-
gularities.

Still this is not yet the solution of the problem and there are still several difficult
problems to be overcome:

• We have to check whether the groups of a given order admit certain systems of
generators of prescribed orders, and satisfying moreover certain further condi-
tions (forced by the basket of singularities); we encounter in this way groups of
orders 512, 1024, 1536: there are so many groups of these orders that the above
investigation is not feasible for naive computer calculations. Moreover, we have
to deal with groups of orders > 2000: they are not listed in any database
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• If X is singular, we only get subfamilies, not a whole irreducible component of
the moduli space. There remains the problem of studying the deformations of the
minimal models S obtained with the above construction.

• The algorithm is heavy for K2 small. In [BP10] we proved and implemented
much stronger results on the singularities of X and on the possible signatures,
which allowed us to obtain a complete list of surfaces with K2

S ≥ 1.

• We have not yet answered completely the original question. Since, if X does
not have canonical singularities, it may happen that K2

S′ ≤ 0 (recall that S′ is the
minimal resolution of singularities of X , which is not necessarily minimal!).

Concerning product quotient surfaces, we have proven (in a much more general
setting, cf. [BCGP08]) a structure theorem for the fundamental group, which helps
us to explicitly identify the fundamental groups of the surfaces we constructed. In
fact, it is not difficult to obtain a presentation for these fundamental groups, but as
usual having a presentation is not sufficient to determine the group explicitly.

We first need the following

Definition 5 We shall call the fundamental group Πg := π1(C) of a smooth compact
complex curve of genus g a (genus g) surface group.

Note that we admit also the “degenerate cases” g = 0,1.

Theorem 13 Let C1, . . . ,Cn be compact complex curves of respective genera gi ≥ 2
and let G be a finite group acting faithfully on each Ci as a group of biholomorphic
transformations.

Let X = (C1× . . .×Cn)/G, and denote by S a minimal desingularisation of X.
Then the fundamental group π1(X) ∼= π1(S) has a normal subgroup N of finite
index which is isomorphic to the product of surface groups, i.e., there are natural
numbers h1, . . . ,hn ≥ 0 such that N ∼= Πh1 × . . .×Πhn .

Remark 6 In the case of dimension n = 2 there is no loss of generality in assuming
that G acts faithfully on each Ci (see [Cat00]). In the general case there will be a
group Gi, quotient of G, acting faithfully on Ci, hence the strategy has to be slightly
changed in the general case. The generalization of the above theorem, where the
assumption that G acts faithfully on each factor is removed, has been proven in
[DP10].

We shall now give a short outline of the proof of theorem 13 in the case n = 2
(the case of arbitrary n is exactly the same).
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We have two appropriate orbifold homomorphisms

ϕ1 : T1 := T(g′1;m1, . . . ,mr)→ G,

ϕ2 : T2 := T(g′2;n1, . . . ,ns)→ G.

We define the fibre product H :=H(G;ϕ1,ϕ2) as

H :=H(G;ϕ1,ϕ2) := {(x,y) ∈ T1×T2 | ϕ1(x) = ϕ2(y)}. (2)

Then the exact sequence

1→Πg1 ×Πg2 → T1×T2→ G×G→ 1, (3)

where Πgi := π1(Ci), induces an exact sequence

1→Πg1 ×Πg2 →H(G;ϕ1,ϕ2)→ G∼= ∆G→ 1. (4)

Here ∆G ⊂ G×G denotes the diagonal subgroup.

Definition 6 Let H be a group. Then its torsion subgroup Tors(H) is the normal
subgroup generated by all elements of finite order in H.

The first observation is that one can calculate our fundamental groups via a sim-
ple algebraic recipe:

π1((C1×C2)/G)∼=H(G;ϕ1,ϕ2)/Tors(H).

The strategy is then the following: using the structure of orbifold surface groups
we construct an exact sequence

1→ E→H/Tors(H)→Ψ(Ĥ)→ 1,

where

i) E is finite,

ii) Ψ(Ĥ) is a subgroup of finite index in a product of orbifold surface groups.

Condition ii) implies that Ψ(Ĥ) is residually finite and “good” according to the
following
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Definition 7 (J.-P. Serre) Let G be a group, and let G̃ be its profinite completion.
Then G is said to be good iff the homomorphism of cohomology groups

Hk(G̃,M)→ Hk(G,M)

is an isomorphism for all k ∈ N and for all finite G - modules M.

Then we use the following result due to F. Grunewald, A. Jaikin-Zapirain, P.
Zalesski.

Theorem 14 ([GJZ08]) Let G be residually finite and good, and let ϕ : H → G be
surjective with finite kernel. Then H is residually finite.

The above theorem implies that H/Tors(H) is residually finite, whence there is
a subgroup Γ ≤H/Tors(H) of finite index such that

Γ ∩E = {1}.

Now, Ψ(Γ ) is a subgroup of Ψ(Ĥ) of finite index, whence of finite index in a prod-
uct of orbifold surface groups, and Ψ |Γ is injective. This easily implies our result.

Remark 7 Note that theorem 13 in fact yields a geometric statement in the case
where the genera of the surface groups are at least 2. Again, for simplicity, we
assume that n = 2, and suppose that π1(S) has a normal subgroup N of finite index
isomorphic to Πg×Πg′ , with g,g′ ≥ 2. Then there is an unramified Galois covering
Ŝ of S such that π1(Ŝ) ∼= Πg×Πg′ . This implies (see [Cat00]) that there is a finite
morphism Ŝ→C×C′, where g(C) = g, g(C′) = g′.

Understanding this morphism can lead to the understanding of the irreducible or
even of the connected component of the moduli space containing the isomorphism
class [S] of S. The method can also work in the case where we only have g,g′ ≥ 1.
We shall explain how this method works in section 6.

We summarize the consequences of theorem 12 in terms of

”

new” fundamental
groups of surfaces with pg = 0, respectively

”

new” connected components of their
moduli space.

Theorem 15 There exist eight families of product-quotient surfaces of un-
mixed type yielding numerical Campedelli surfaces (i.e., minimal surfaces with
K2

S = 2, pg(S) = 0) having fundamental group Z/3.
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Our classification also shows the existence of families of product-quotient sur-
faces yielding numerical Campedelli surfaces with fundamental groups Z/5 (but
numerical Campedelli surfaces with fundamental group Z/5 had already been con-
structed in [Cat81]), respectively with fundamental group (Z/2)2 (but such funda-
mental group already appeared in [Ino94]), respectively with fundamental groups
(Z/2)3, Q8, Z/8 and Z/2×Z/4.

Theorem 16 There exist six families of product-quotient surfaces yielding mini-
mal surfaces with K2

S = 3, pg(S) = 0 realizing four new finite fundamental groups,
Z/2×Z/6, Z/8, Z/6 and Z/2×Z/4.

Theorem 17 There exist sixteen families of product-quotient surfaces yielding min-
imal surfaces with K2

S = 4, pg(S) = 0. Eight of these families realize 6 new finite
fundamental groups, Z/15, G(32,2), (Z/3)3, Z/2×Z/6, Z/8, Z/6. Eight of these
families realize 4 new infinite fundamental groups.

Theorem 18 There exist seven families of product-quotient surfaces yielding mini-
mal surfaces with K2

S = 5, pg(S) = 0. Four of these families realize four new finite
fundamental groups, D8,5,−1, Z/5×Q8, D8,4,3, Z/2×Z/10. Three of these families
realize three new infinite fundamental groups.

Theorem 19 There exist eight families of product-quotient surfaces yielding mini-
mal surfaces with K2

S = 6, pg(S) = 0 and realizing 6 new fundamental groups, three
of them finite and three of them infinite. In particular, there exist minimal surfaces
of general type with pg = 0, K2 = 6 and with finite fundamental group.

5.2 Galois coverings and their deformations

Another standard method for constructing new algebraic surfaces is to consider
abelian Galois-coverings of known surfaces.

We shall in the sequel recall the structure theorem on normal finite Zr
2-coverings,

r ≥ 1, of smooth algebraic surfaces Y . In fact (cf. [Par91], or [BC08] for a more
topological approach) this theory holds more generally for any G-covering, with G
a finite abelian group.

Since however we do not want here to dwell too much into the general theory
and, in most of the applications we consider here only the caseZ2

2 is used, we restrict
ourselves to this more special situation.
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We shall denote by G := Zr
2 the Galois group and by G∗ := Hom(G,C∗) its dual

group of characters which we identify to G∗ := Hom(G,Z/2) .

Since Y is smooth any finite abelian covering f : X → Y is flat hence in the
eigensheaves splitting

f∗OX =
⊕

χ∈G∗
L ∗

χ = OY ⊕
⊕

χ∈G∗\{0}
OY (−Lχ).

each rank 1 sheaf L ∗
χ is invertible and corresponds to a Cartier divisor −Lχ .

For each σ ∈G let Rσ ⊂ X be the divisorial part of the fixed point set of σ . Then
one associates to σ a divisor Dσ given by f (Rσ ) = Dσ ; let xσ be a section such that
div(xσ ) = Dσ .

Then the algebra structure on f∗OX is given by the following (symmetric, bilin-
ear) multiplication maps:

OY (−Lχ)⊗OY (−Lη)→ OY (−Lχ+η),

given by the section xχ,η ∈ H0(Y,OY (Lχ +Lη −Lχ+η)), defined by

xχ,η := ∏
χ(σ)=η(σ)=1

xσ .

It is now not difficult in this case to show directly the associativity of the multipli-
cation defined above (cf. [Par05] for the general case of an abelian cover).

In particular, the G-covering f : X → Y is embedded in the vector bundle
V :=

⊕
χ∈G∗ Lχ , where Lχ is the geometric line bundle whose sheaf of sections

is OY (Lχ), and is there defined by the equations:

zχ zη = zχ+η ∏
χ(σ)=η(σ)=1

xσ .

Note the special case where χ = η , when χ + η is the trivial character 1, and
z1 = 1. In particular, let χ1, . . . ,χr be a basis of G∗ = Zr

2, and set zi := zχi . Then we
get the following r equations

z2
i = ∏

χi(σ)=1
xσ . (5)

These equations determine the extension of the function fields, hence one gets
X as the normalization of the Galois covering given by (5). The main point however
is that the previous formulae yield indeed the normalization explicitly under the
conditions summarized in the following
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Proposition 1 A normal finite G∼= Zr
2-covering of a smooth variety Y is completely

determined by the datum of

1. reduced effective divisors Dσ , ∀σ ∈ G, which have no common components,

2. divisor classes L1, . . .Lr, for χ1, . . .χr a basis of G∗, such that we have the fol-
lowing linear equivalence

(#) 2Li ≡ ∑χi(σ)=1 Dσ .

Conversely, given the datum of 1) and 2) such that #) holds, we obtain a normal
scheme X with a finite G∼= Zr

2-covering f : X → Y .

Proof (Idea of the proof.) It suffices to determine the divisor classes Lχ for the
remaining elements of G∗. But since any χ is a sum of basis elements, it suffices to
exploit the fact that the linear equivalences

Lχ+η ≡ Lη +Lχ − ∑
χ(σ)=η(σ)=1

Dσ

must hold, and apply induction. Since the covering is well defined as the normal-
ization of the Galois cover given by (5), each Lχ is well defined. Then the above
formulae determine explicitly the ring structure of f∗OX , hence X . Finally, condi-
tion 1 implies the normality of the cover.

A natural question is of course: when is the scheme X a variety? I.e., X being
normal, when is X connected, or, equivalently, irreducible? The obvious answer is
that X is irreducible if and only if the monodromy homomorphism

µ : H1(Y \ (∪σ Dσ ),Z)→ G

is surjective.

Remark 8 From the extension of Riemann’s existence theorem due to Grauert and
Remmert ([GR58]) we know that µ determines the covering. It is therefore worth-
while to see how µ is related to the datum of 1) and 2).

Write for this purpose the branch locus D := ∑σ Dσ as a sum of irreducible com-
ponents Di. To each Di corresponds a simple geometric loop γi around Di, and we
set σi := µ(γi). Then we have that Dσ := ∑σi=σ Di. For each character χ , yielding
a double covering associated to the composition χ ◦µ , we must find a divisor class
Lχ such that 2Lχ ≡ ∑χ(σ)=1 Dσ .
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Consider the exact sequence

H2n−2(Y,Z)→ H2n−2(D,Z) =⊕iZ[Di]→ H1(Y \D,Z)→ H1(Y,Z)→ 0

and the similar one with Z replaced by Z2. Denote by ∆ the subgroup image of
⊕iZ2[Di]. The restriction of µ to ∆ is completely determined by the knowledge of
the σi’s, and we have

0→ ∆ → H1(Y \D,Z2)→ H1(Y,Z2)→ 0.

Dualizing, we get

0→ H1(Y,Z2)→ H1(Y \D,Z2)→ Hom(∆ ,Z2)→ 0.

The datum of χ ◦ µ , extending χ ◦ µ|∆ is then seen to correspond to an
affine space over the vector space H1(Y,Z2): and since H1(Y,Z2) classifies divi-
sor classes of 2-torsion on Y , we infer that the different choices of Lχ such that
2Lχ ≡ ∑χ(σ)=1 Dσ correspond bijectively to all the possible choices for χ ◦µ .

Applying this to all characters, we find how µ determines the building data.

Observe on the other hand that if µ is not surjective, then there is a character χ

vanishing on the image of µ , hence the corresponding double cover is disconnected.

But the above discussion shows that χ ◦ µ is trivial iff this covering is discon-
nected, if and only if the corresponding element in H1(Y \D,Z2) is trivial, or, equiv-
alently, iff the divisor class Lχ is trivial.

We infer then

Corollary 3 Use the same notation as in prop. 1. Then the scheme X is irreducible
if {σ |Dσ > 0} generates G.

Or, more generally, if for each character χ the class in H1(Y \D,Z2) corre-
sponding to χ ◦µ is nontrivial, or, equivalently, the divisor class Lχ is nontrivial.

Proof We have seen that if Dσ ≥Di 6= 0, then µ(γi) = σ , whence we infer that µ is
surjective.

An important role plays here once more the concept of natural deformations.
This concept was introduced for bidouble covers in [Cat84], definition 2.8, and ex-
tended to the case of abelian covers in [Par91], definition 5.1. The two definitions do
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not exactly coincide, because Pardini takes a much larger parameter space: however,
the deformations appearing with both definitions are the same. To avoid confusion
we call Pardini’s case the case of extended natural deformations.

Definition 8 Let f : X → Y be a finite G ∼= Zr
2 covering with Y smooth and X nor-

mal, so that X is embedded in the vector bundle V defined above and is defined by
equations

zχ zη = zχ+η ∏
χ(σ)=η(σ)=1

xσ .

Let ψσ ,χ be a section ψσ ,χ ∈ H0(Y,OY (Dσ −Lχ)), given ∀σ ∈ G,χ ∈ G∗. To such
a collection we associate an extended natural deformation, namely, the subscheme
of V defined by equations

zχ zη = zχ+η ∏
χ(σ)=η(σ)=1

(
∑
θ

ψσ ,θ · zθ

)
.

We have instead a (restricted) natural deformation if we restrict ourselves to the
θ ’s such that θ(σ) = 0,and we consider only an equation of the form

zχ zη = zχ+η ∏
χ(σ)=η(σ)=1

(
∑

θ(σ)=0
ψσ ,θ · zθ

)
.

One can generalize some results, even removing the assumption of smoothness
of Y , if one assumes the G ∼= Zr

2-covering to be locally simple, i.e., to enjoy the
property that for each point y ∈ Y the σ ’s such that y ∈ Dσ are a linearly indepen-
dent set. This is a good notion since (compare [Cat84], proposition 1.1) if also X is
smooth the covering is indeed locally simple.

One has for instance the following result (see [Man01], section 3):

Proposition 2 Let f : X → Y be a locally simple G ∼= Zr
2 covering with Y smooth

and X normal. Then we have the exact sequence

⊕χ(σ)=0(H
0(ODσ

(Dσ −Lχ)))→ Ext1OX
(Ω 1

X ,OX )→ Ext1OX
( f ∗Ω 1

Y ,OX ).

In particular, every small deformation of X is a natural deformation if

1. H1(OY (−Lχ)) = 0,

2. Ext1OX
( f ∗Ω 1

Y ,OX ) = 0.
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If moreover

3. H0(OY (Dσ −Lχ)) = 0 ∀σ ∈ G,χ ∈ G∗,

every small deformation of X is again a G∼= Zr
2-covering.

Proof (Comments on the proof.)

In the above proposition condition 1) ensures that

H0(OY (Dσ −Lχ))→ H0(ODσ
(Dσ −Lχ))

is surjective.

Condition 2 and the above exact sequence imply then that the natural deforma-
tions are parametrized by a smooth manifold and have surjective Kodaira-Spencer
map, whence they induce all the infinitesimal deformations.

Remark 9 In the following section we shall see examples where surfaces with pg = 0
arise as double covers and as bidouble covers. In fact there are many more surfaces
arising this way, see e.g. [Cat98].

6 Keum-Naie surfaces and primary Burniat surfaces

In the nineties J.H. Keum and D. Naie (cf. [Nai94], [Keu88]) constructed a family
of surfaces with K2

S = 4 and pg = 0 as double covers of an Enriques surface with
eight nodes and calculated their fundamental group.

We want here to describe explicitly the moduli space of these surfaces.

The motivation for this investigation arose as follows: consider the following two
cases of table 2 whose fundamental group has the form

Z4 ↪→ π1� Z2
2→ 0.

These cases yield 2 families of respective dimensions 2 and 4, which can also
be seen as Z4×Z2, resp. Z3

2, coverings of P1×P1 branched in a divisor of type
(4,4), resp. (5,5), consisting entirely of horizontal and vertical lines. It turns out that
their fundamental groups are isomorphic to the fundamental groups of the surfaces
constructed by Keum-Naie.



34 Ingrid Bauer, Fabrizio Catanese and Roberto Pignatelli

A straightforward computation shows that our family of dimension 4 is equal to
the family constructed by Keum, and that both families are subfamilies of the one
constructed by Naie.

As a matter of fact each surface of our family of Z3
2 - coverings of P1×P1 has 4

nodes. These nodes can be smoothened simultaneously in a 5 - dimensional family
of Z3

2 - Galois coverings of P1×P1.

It suffices to take a smoothing of each Di, which before the smoothing consisted
of a vertical plus a horizontal line.The full six dimensional component is obtained
then as the family of natural deformations of these Galois coverings.

It is a standard computation in local deformation theory to show that the six
dimensional family of natural deformations of smooth Z3

2 - Galois coverings of
P1×P1 is an irreducible component of the moduli space. We will not give the details
of this calculation, since we get a stronger result by another method.

In fact, the main result of [BC09a] is the following:

Theorem 20 Let S be a smooth complex projective surface which is homotopically
equivalent to a Keum-Naie surface. Then S is a Keum-Naie surface.

The moduli space of Keum-Naie surfaces is irreducible, unirational of dimension
equal to six. Moreover, the local moduli space of a Keum-Naie surface is smooth.

The proof resorts to a slightly different construction of Keum-Naie surfaces. We
study a Z2

2-action on the product of two elliptic curves E ′1×E ′2. This action has 16
fixed points and the quotient is an 8-nodal Enriques surface. Constructing S as a dou-
ble cover of the Enriques surface is equivalent to constructing an étale Z2

2-covering
Ŝ of S, whose existence can be inferred from the structure of the fundamental group,
and which is obtained as a double cover of E ′1×E ′2 branched in a Z2

2-invariant divi-
sor of type (4,4). Because S = Ŝ/Z2

2.

The structure of this étale Z2
2-covering Ŝ of S is essentially encoded in the fun-

damental group π1(S), which can be described as an affine group Γ A(2,C). The
key point is that the double cover α̂ : Ŝ→ E ′1×E ′2 is the Albanese map of Ŝ.

Assume now that S′ is homotopically equivalent to a Keum-Naie surface S. Then
the corresponding étale cover Ŝ′ is homotopically equivalent to Ŝ. Since we know
that the degree of the Albanese map of Ŝ is equal to two (by construction), we can
conlude the same for the Albanese map of Ŝ′ and this allows to deduce that also Ŝ′

is a double cover of a product of elliptic curves.

⊂
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A calculation of the invariants of a double cover shows that the branch locus is
a Z2

2-invariant divisor of type (4,4).

We are going to sketch the construction of Keum-Naie surfaces and the proof of
theorem 20 in the sequel. For details we refer to the original article [BC09a].

Let (E,o) be any elliptic curve, with a G =Z2
2 = {0,g1,g2,g1 +g2} action given

by
g1(z) := z+η , g2(z) =−z.

Remark 10 Let η ∈E be a 2 - torsion point of E. Then the divisor [o]+[η ]∈Div2(E)
is invariant under G, hence the invertible sheaf OE([o] + [η ]) carries a natural G-
linearization.

In particular, G acts on H0(E,OE([o]+ [η ])), and for the character eigenspaces, we
have the following:

Lemma 6.2 Let E be as above, then:

H0(E,OE([o]+ [η ])) = H0(E,OE([o]+ [η ]))++⊕H0(E,OE([o]+ [η ]))−−.

I.e., H0(E,OE([o]+ [η ]))+− = H0(E,OE([o]+ [η ]))−+ = 0.

Remark 6.1 Our notation is self explanatory, e.g.
H0(E,OE([o] + [η ]))+− = H0(E,OE([o] + [η ]))χ , where χ is the character
of G with χ(g1) = 1, χ(g2) =−1.

Let now E ′i := C/Λi, i = 1,2, where Λi := Zei⊕Ze′i, be two complex elliptic
curves. We consider the affine transformations γ1, γ2 ∈ A(2,C), defined as follows:

γ1

(
z1

z2

)
=

(
z1 + e1

2
−z2

)
, γ2

(
z1

z2

)
=

(
−z1

z2 + e2
2

)
,

and let Γ ≤ A(2,C) be the affine group generated by γ1,γ2 and by the translations
e1,e′1,e2,e′2.

Remark 11 i) Γ induces a G := Z2
2-action on E ′1×E ′2.

ii) While γ1, γ2 have no fixed points on E ′1×E ′2, the involution γ1γ2 has 16 fixed
points on E ′1×E ′2. It is easy to see that the quotient Y := (E ′1×E ′2)/G is an En-
riques surface having 8 nodes, with canonical double cover the Kummer surface
(E ′1×E ′2)/ < γ1γ2 >.
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We lift the G-action on E ′1×E ′2 to an appropriate ramified double cover Ŝ such
that G acts freely on Ŝ.

To do this, consider the following geometric line bundle L on E ′1×E ′2, whose
invertible sheaf of sections is given by:

OE ′1×E ′2
(L) := p∗1OE ′1

([o1]+ [
e1

2
])⊗ p∗2OE ′2

([o2]+ [
e2

2
]),

where pi : E ′1×E ′2→ E ′i is the projection to the i-th factor.

By remark 10, the divisor [oi]+ [ ei
2 ] ∈ Div2(E ′i ) is invariant under G. Therefore,

we get a natural G-linearization on the two line bundles OE ′i
([oi]+[ ei

2 ]), whence also
on L.

Any two G-linearizations of L differ by a character χ : G → C∗. We twist
the above obtained linearization of L with the character χ such that χ(γ1) = 1,
χ(γ2) =−1.

Definition 9 Let

f ∈ H0(E ′1×E ′2, p∗1OE ′1
(2[o1]+2[

e1

2
])⊗ p∗2OE ′2

(2[o2]+2[
e2

2
]))G

be a G - invariant section of L⊗2 and denote by w a fibre coordinate of L. Let Ŝ be
the double cover of E ′1×E ′2 branched in f , i.e.,

Ŝ = {w2 = f (z1,z2)} ⊂ L.

Then Ŝ is a G - invariant hypersurface in L, and we have a G - action on Ŝ.

We call S := Ŝ/G a Keum - Naie surface, if

• G acts freely on Ŝ, and

• { f = 0} has only non-essential singularities, i.e., Ŝ has at most rational double
points.

Remark 12 If

f ∈ H0(E ′1×E ′2, p∗1OE ′1
(2[o1]+2[

e1

2
])⊗ p∗2OE ′2

(2[o2]+2[
e2

2
]))G

is such that {(z1,z2) ∈ E ′1×E ′2 | f (z1,z2) = 0}∩Fix(γ1 +γ2) = /0, then G acts freely
on Ŝ.

Proposition 3 Let S be a Keum - Naie surface. Then S is a minimal surface of gen-
eral type with
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i) K2
S = 4,

ii) pg(S) = q(S) = 0,

iii)π1(S) = Γ .

i) is obvious, since K2
Ŝ

= 16,

ii) is verified via standard arguments of representation theory.

iii) follows since π1(Ŝ) = π1(E ′1×E ′2).

Let now S be a smooth complex projective surface with π1(S) = Γ . Recall that
γ2

i = ei for i = 1,2. Therefore Γ = 〈γ1,e′1,γ2,e′2〉 and we have the exact sequence

1→ Z4 ∼= 〈e1,e′1,e2,e′2〉 → Γ → Z2
2→ 1,

where ei 7→ γ2
i .

We set Λ ′i := Zei⊕Ze′i, hence π1(E ′1×E ′2) = Λ ′1⊕Λ ′2. We also have the two
lattices Λi := Z ei

2 ⊕Ze′i.

Remark 13 1) Γ is a group of affine transformations on Λ1⊕Λ2.

2) We have an étale double cover E ′i = C/Λ ′i → Ei := C/Λi, which is the quotient
by a semiperiod of E ′i .

Γ has two subgroups of index two:

Γ1 := 〈γ1,e′1,e2,e′2〉, Γ2 := 〈e1,e′1,γ2,e′2〉,

corresponding to two étale covers of S: Si→ S, for i = 1,2.

Then one can show:

Lemma 6.3 The Albanese variety of Si is Ei. In particular, q(S1) = q(S2) = 1.

Let Ŝ → S be the étale Z2
2-covering associated to Z4 ∼= 〈e1,e′1,e2,e′2〉 / Γ . Since

Ŝ→ Si→ S, and Si maps to Ei (via the Albanese map), we get a morphism

f : Ŝ→ E1×E2 = C/Λ1×C/Λ2.

Then the covering of E1×E2 associated to Λ ′1⊕Λ ′2 ≤Λ1⊕Λ2 is E ′1×E ′2, and since
π1(Ŝ) = Λ ′1⊕Λ ′2 we see that f factors through E ′1×E ′2 and that the Albanese map
of Ŝ is α̂ : Ŝ→ E ′1×E ′2.

The proof of the main result follows then from
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Proposition 4 Let S be a smooth complex projective surface, which is homotopically
equivalent to a Keum - Naie surface. Let Ŝ→ S be the étale Z2

2-cover associated to
〈e1,e′1,e2,e′2〉/Γ and let

Ŝ
α̂ //

""EE
EE

EE
EE

EE E ′1×E ′2

Y

ϕ

OO

be the Stein factorization of the Albanese map of Ŝ.

Then ϕ has degree 2 and Y is a canonical model of Ŝ.

More precisely, ϕ is a double cover of E ′1×E ′2 branched on a divisor of type
(4,4).

The fact that S is homotopically equivalent to a Keum-Naie surface immediately
implies that the degree of α̂ is equal to two.

The second assertion, i.e., that Y has only canonical singularities, follows instead
from standard formulae on double covers (cf. [Hor75]).

The last assertion follows from K2
Ŝ

= 16 and (Z/2Z)2- invariance.

In fact, we conjecture a stronger statement to hold true:

Conjecture 4 Let S be a minimal smooth projective surface such that

i) K2
S = 4,

ii) π1(S)∼= Γ .

Then S is a Keum-Naie surface.

We can prove

Theorem 21 Let S be a minimal smooth projective surface such that

i) K2
S = 4,

ii) π1(S)∼= Γ ,

iii)there is a deformation of S with ample canonical bundle.

Then S is a Keum-Naie surface.

We recall the following results:
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Theorem 22 (Severi’s conjecture, [Par05]) Let S be a minimal smooth projective
surface of maximal Albanese dimension (i.e., the image of the Albanese map is a
surface), then K2

S ≥ 4χ(S).

M. Manetti proved Severi’s inequality under the assumption that KS is ample,
but he also gave a description of the limit case K2

S = 4χ(S), which will be crucial
for the above theorem 21.

Theorem 23 (M. Manetti, [Man03]) Let S be a minimal smooth projective surface
of maximal Albanese dimension with KS ample then K2

S ≥ 4χ(S), and equality holds
if and only if q(S) = 2, and the Albanese map α : S→Alb(S) is a finite double cover.

Proof (Proof of theorem 21) We know that there is an étale Z2
2-cover Ŝ of S with

Albanese map α̂ : Ŝ→ E ′1×E ′2. Note that K2
Ŝ

= 4K2
S = 16. By Severi’s inequality,

it follows that χ(S) ≤ 4, but since 1 ≤ χ(S) = 1
4 χ(Ŝ), we have χ(S) = 4. Since S

deforms to a surface with KS ample, we can apply Manetti’s result and obtain that
α̂ : Ŝ→ E ′1×E ′2 has degree 2, and we conclude as before.

It seems reasonable to conjecture (cf. [Man03]) the following, which would im-
mediately imply our conjecture 4.

Conjecture 5 Let S be a minimal smooth projective surface of maximal Albanese
dimension. Then K2

S = 4χ(S) if and only if q(S) = 2, and the Albanese map has
degree 2.

During the preparation of the article [BC09a] the authors realized that a com-
pletely similar argument applies to primary Burniat surfaces.

We briefly recall the construction of Burniat surfaces: for more details, and
for the proof that Burniat surfaces are exactly certain Inoue surfaces we refer to
[BC09b].

Burniat surfaces are minimal surfaces of general type with K2 = 6,5,4,3,2 and
pg = 0, which were constructed in [Bur66] as singular bidouble covers (Galois cov-
ers with group Z2

2) of the projective plane branched on 9 lines.

Let P1,P2,P3 ∈ P2 be three non collinear points (which we assume to be the points
(1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1)) and let’s denote by Y := P̂2(P1,P2,P3) the Del
Pezzo surface of degree 6, blow up of P2 in P1,P2,P3.

Y is ‘the’ smooth Del Pezzo surface of degree 6, and it is the closure of the graph
of the rational map
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ε : P2 99K P1×P1×P1

such that
ε(y1 : y2 : y3) = ((y2 : y3),(y3 : y1),(y1 : y2)).

One sees immediately that Y ⊂ P1×P1×P1 is the hypersurface of type (1,1,1):

Y = {((x′1 : x1),(x′2 : x2),(x′3 : x3)) | x1x2x3 = x′1x′2x′3}.

We denote by L the total transform of a general line in P2, by Ei the exceptional
curve lying over Pi, and by Di,1 the unique effective divisor in |L−Ei−Ei+1|, i.e., the
proper transform of the line yi−1 = 0, side of the triangle joining the points Pi,Pi+1.

Consider on Y , for each i ∈ Z3 ∼= {1,2,3}, the following divisors

Di = Di,1 +Di,2 +Di,3 +Ei+2 ∈ |3L−3Ei−Ei+1 +Ei+2|,

other line through Pi and Di,1 ∈ |L−Ei−Ei+1| is as above. Assume also that all the
corresponding lines in P2 are distinct, so that D := ∑i Di is a reduced divisor.

Note that, if we define the divisor Li := 3L−2Ei−1−Ei+1, then

Di−1 +Di+1 = 6L−4Ei−1−2Ei+1 ≡ 2Li,

and we can consider (cf. section 4, [Cat84] and [Cat98]) the associated bidouble
cover X ′ →Y branched on D := ∑i Di (but we take a different ordering of the indices
of the fibre coordinates ui, using the same choice as the one made in [BC09b], except
that X ′ was denoted by X).

We recall that this precisely means the following: let Di = div(δi), and let ui be
a fibre coordinate of the geometric line bundle Li+1, whose sheaf of holomorphic
sections is OY (Li+1).

Then X ⊂ L1⊕L2⊕L3 is given by the equations:

u1u2 = δ1u3, u2
1 = δ3δ1;

u2u3 = δ2u1, u2
2 = δ1δ2;

u3u1 = δ3u2, u2
3 = δ2δ3.

where Di j ∈ |L−Ei|, for j = 2,3, Di j 6= Di 1, is the proper transform of an-
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From the birational point of view, as done by Burniat, we are simply adjoining

to the function field of P2 two square roots, namely
√

∆1
∆3

and
√

∆2
∆3

, where ∆i is the
cubic polynomial in C[x0,x1,x2] whose zero set has Di−Ei+2 as strict transform.

This shows clearly that we have a Galois cover X ′ → Y with group Z2
2.

The equations above give a biregular model X ′ which is nonsingular exactly if
the divisor D does not have points of multiplicity 3 (there cannot be points of higher
multiplicities!). These points give then quotient singularities of type 1

4 (1,1), i.e.,
isomorphic to the quotient of C2 by the action of Z4 sending (u,v) 7→ (iu, iv) (or,
equivalently, the affine cone over the 4-th Veronese embedding of P1).

Definition 10 A primary Burniat surface is a surface constructed as above, and
which is moreover smooth. It is then a minimal surface S with KS ample, and with
K2

S = 6, pg(S) = q(S) = 0.

A secondary Burniat surface is the minimal resolution of a surface X ′ con-
structed as above, and which moreover has 1 ≤ m ≤ 2 singular points (necessarily
of the type described above). Its minimal resolution is then a minimal surface S with
KS nef and big, and with K2

S = 6−m, pg(S) = q(S) = 0.

A tertiary (respectively, quaternary) Burniat surface is the minimal resolution
of a surface X ′ constructed as above, and which moreover has m = 3 (respectively
m = 4) singular points (necessarily of the type described above). Its minimal res-
olution is then a minimal surface S with KS nef and big, but not ample, and with
K2

S = 6−m, pg(S) = q(S) = 0.

Remark 14 1) We remark that for K2
S = 4 there are two possible types of configu-

rations. The one where there are three collinear points of multiplicity at least 3 for
the plane curve formed by the 9 lines leads to a Burniat surface S which we call of
nodal type, and with KS not ample, since the inverse image of the line joining the 3
collinear points is a (-2)-curve (a smooth rational curve of self intersection −2).

In the other cases with K2
S = 4,5,6, KS is instead ample.

2) In the nodal case, if we blow up the two (1,1,1) points of D, we obtain a weak
Del Pezzo surface Ỹ , since it contains a (-2)-curve. Its anticanonical model Y ′ has a
node (an A1-singularity, corresponding to the contraction of the (-2)-curve). In the
non nodal case, we obtain a smooth Del Pezzo surface Ỹ = Y ′ of degree 4.

With similar methods as in [BC09a] (cf. [BC09b]) the first two authors proved

Theorem 24 The subset of the Gieseker moduli space corresponding to primary
Burniat surfaces is an irreducible connected component, normal, rational and of
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dimension four. More generally, any surface homotopically equivalent to a primary
Burniat surface is indeed a primary Burniat surface.

Remark 15 The assertion that the moduli space corresponding to primary Burniat
surfaces is rational needs indeed a further argument, which is carried out in [BC09b].
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Sci. Ind., 270, Hermann, Paris, 1935.



Surfaces of general type with geometric genus zero: a survey 45

[GR58] Grauert, H., Remmert, R., Komplexe Räume. Math. Ann. 136 (1958), 245–318.
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[Voi92] Voisin, C., Sur les zéro-cycles de certaines hypersurfaces munies d’un automor-

phisme. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 4, 473–492.

http://http://www.warwick.ac.uk/ masda/surf/


48 Ingrid Bauer, Fabrizio Catanese and Roberto Pignatelli

[Wer94] Werner, C., A surface of general type with pg = q = 0, K2 = 1. Manuscripta Math. 84
(1994), no. 3-4, 327–341.

[Wer97] Werner, C., A four-dimensional deformation of a numerical Godeaux surface. Trans.
Amer. Math. Soc. 349 (1997), no. 4, 1515–1525.

[Xia85a] Xiao, G., Surfaces fibrées en courbes de genre deux. Lecture Notes in Mathematics,
1137. Springer-Verlag, Berlin, 1985.

[Xia85b] Xiao, G., Finitude de l’application bicanonique des surfaces de type général. Bull.
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