
 

 

2 Basics 
B. P. KNEUBUEHL 

2.1 The physics of wound ballistics 

2.1.1 Preliminary remarks 

Wound ballistics is an inter-disciplinary science, involving a wide range of spe-
cialists – doctors, physicists, lawyers, weapons experts, etc. There is therefore a 
need for a concise introduction to the basic physics involved. Readers with a good 
knowledge of physics may wish to skip Section 2.1. 

2.1.2 Coordinates, systems of units and notation 

To describe physical phenomena simply, one needs a suitable system of coordi-
nates. For ballistics, we generally use the ballistic coordinate system: the x- and y-
axes between them define a vertical plane, with the y-axis pointing in the opposite 
direction to the earth's gravitational pull. The z-axis completes the system, creat-
ing a right-handed three-dimensional system (see Fig. 2-1). The movements of a 
body (a bullet in this instance) are described by reference to a Cartesian system 
fixed in the body. The origin of that system is located at the centre of gravity of 
the body concerned and its principal axis is aligned with the direction of move-
ment of the centre of gravity at any given point in time. 

The units are those of the SI system (Système International d’Unités), which is 
the official system in many countries. Length is measured in metres, mass in 

Fig. 2-1. Ballistic coordinate system 
x-axis in the direction of the shot, y-axis 
upwards, z-axis to the right.
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kilograms and time in seconds, often modified by prefixes such as milli-, kilo- or 
mega-. A summary of the decimal prefixes appears at the end of the table of sym-
bols (p. XXIII). Other, derived units will be explained the first time the corre-
sponding parameter occurs. 

Imperial/US units are still widely used in the fields of weapons, ammunition and ballistics. Again, 
the formulas for converting between these units and SI units are at the end of the table of symbols 
(p. XXIII). 

Most phenomena of interest to us are three-dimensional, and must therefore be 
described in terms of three components. For the sake of clarity, however, we shall 
in many cases use only one component. This makes little difference in practice, as 
it is possible to study many processes one-dimensionally by selecting a system of 
coordinates appropriately. 

Some definitions and equations include differential quotients. In such cases, we 
shall follow the usual convention: derivatives over time are written with a dot 
over the symbol, while derivates over distance are indicated using a prime, thus: 

(2.1:1) x
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2.1.3 Mechanics 

2.1.3.1 Kinematics 

Kinematics is the study of the motion of a body in space, disregarding the specific 
characteristics of the body concerned. The primary role of kinematics is to de-
scribe the path, or trajectory of the body. For these purposes we ignore the size of 
the body, treating it as a point. The most important kinematic parameter is veloc-
ity. Velocity is a vector value, of which the components are defined as distance 
covered per unit time along three axes: 

(2.1:2) 
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Speed (as opposed to velocity) is given by: 

(2.1:3) 2
z

2
y

2
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Table 2-1 gives a rough indication of typical speeds encountered in ballistics. 
Change in velocity per unit time is termed acceleration if velocity increases 

and negative acceleration, or deceleration, if velocity decreases: 
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We can express the magnitude of acceleration in a manner similar to that already 
discussed for speed: 

(2.1:5) 2
z

2
y

2
x aaaa   . [m/s2] 

Table 2-2 lists some typical acceleration values encountered in ballistics. 
Because velocity is a vector, a change in direction is also an acceleration, even 

in cases where speed does not change. 
If acceleration is constant, we can readily calculate speed and distance using 

the following formula: 

(2.1:6) tavv 0   , [m/s] 

(2.1:7) 2
2
1

00 tatvxx   , [m] 

where v0 is the speed at time t = 0 and x0 is the distance that the object has already 
moved at that moment in time. 

Movement along a curved path can always be expressed as movement along a 
segment of a circle. The rotational movement is described in kinematic terms by 

Table 2-1. Typical velocities 

Object/medium  Velocity 

  [m/s] [ft/s] 

Projectile Air rifle/air pistol  100 ... 250 330 ... 820 

 Handguns 250 ... 400 820 ... 1,310 

 Rifles 600 ... 1,000 1,970 ... 3,280 

 Flechette 1,500 ... 1,800 4,920 ... 5,900 

 Fragment < 2,000 < 6560 

Sound waves In air (15 °C) 340 1,115 

 In water (20 °C) 1,483 4,865 

 In steel 5,180 16,995 

 In glass 5,225 17,142 

 

Table 2-2. Typical acceleration values 

Object Acceleration 

 [m/s2] [ft/s2] 

Acceleration due to gravity (standard value) – 9.80665 – 32.1740 

Pistol bullet in air – 200 – 6,560 

Rifle bullet in air – 400 – 1,310 

Fragment in air – 60,000 – 197,000 

Rifle bullet in barrel on firing, max. 100,000 – 328,100 

Deformation projectile penetrating a dense 
medium (mean value) up to 

– 800,000 – 2,625,000 
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the angular velocity, with angular displacement  measured in radians (one com-
plete revolution corresponds to 2 radians, which equates to 360°). 

(2.1:8) 
dt

d
  . [rad/s] 

We obtain the rotational speed  (the number of revolutions per second) from the 
angular velocity, thus: 

(2.1:9) 





2
 . [1/s] 

Rotation at a constant angular velocity is known as uniform circular motion. The 
tangential velocity is given by: 

(2.1:10)  rv  , [m/s] 

where r is the radius of rotation, i.e. the distance between the point under consideration and the 
centre of rotation. 

This type of motion involves acceleration, because while the speed of the object 
does not change, its direction is continuously changing. The acceleration is per-
pendicular to the direction of travel at any given moment, and is directed away 
from the centre of the circle. Acceleration is given by the following equation: 

(2.1:11) 2
2

r
r

v
va   . [m/s2] 

Conversion between the various representations is performed using Eqn 2.3:9. 
Changes in angular velocity are expressed as angular acceleration : 

(2.1:12) 
dt

d
  .  [rad/s2] 

One case of rotation in ballistics is that of a spin-stabilized bullet, which rotates 
about its longitudinal axis. The angular velocities and rotational speed involved 
are quite high, and although the radius of a bullet is small, the circumferential 
velocities attained are considerable (see Table 2-3). 

Table 2-3. Typical values for angular velocity , rotational speed  and circumferential 
velocity v 

Type of bullet   v 

 [rad/s] [1/s] [m/s] [ft/s] 

Pistol (9 mm Luger)  8,800  1,400  40  130 

Revolver (.44 Rem. Mag.)  5,440  866  30  100 

Rifle (7.62 mm NATO)  17,100  2,721  67  220 
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2.1.3.2 Mass, momentum and force 

Mass is one of the basic characteristics of a body. It expresses itself in two ways: 

– a body resists any change in state of movement (inertia); 

– a body alters the state of movement of other bodies (gravitation). 

Physical phenomena are often independent of the dimensions of a body. In such 
cases, it is easier to describe the phenomenon if we treat the body as a point, with 
the entire mass of the body concentrated in that point. This point – the centre of 
gravity – is chosen such that even when forces act upon the body there is no dif-
ference between the path of the actual body (of non-zero dimensions) and that of 
the point mass. 

In SI units, mass is expressed in kilograms or grams. Grains and pounds are still used in some 
English-speaking countries (see conversion factors on p. XXIII). 

The velocity of a body, v, multiplied by its mass, m, is its momentum, M. Mo-
mentum is a vector, of which the direction is identical to that of the body’s veloc-
ity: 

(2.1:13) vmI   . [kgm/s] 

The physical parameter responsible for a change in the state of movement of a 
body, or deformation of that body, is known as force. Force is defined by New-
ton’s laws. 

1. The velocity of a body (or, more accurately, its momentum) remains con-
stant unless a force acts upon it. 

2. Force equals change in momentum over time, so: 

(2.1:14)  vm
dt

d

dt

dI
F   . [N] 

The unit of measurement for force is the Newton, and 1 Newton [N] = 1 kg·m/s2. 

Though not an SI unit, the kilopond [kp] is also in widespread use. In some English-speaking 
countries, force is also measured in pounds (or pounds-force). Conversion formulas for units of 
force are to be found on p. XXIII. 

If the mass of a body remains constant, force equals mass times acceleration: 

(2.1:15)   am
dt

dv
mvm

dt

d
F   . [N] 

3. For every force, there is an opposing force of the same magnitude (ac-
tion/reaction). Please see Table 2-4 for a list of typical forces encountered in 
ballistics. 

As acceleration is a vector, it follows from Eqn 2.1:15 that force also behaves as a 
vector. In order to describe a force, we must therefore know three things: its mag-
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nitude, its direction and its point of application. The best-known force is weight, 
G. Weight is the force that occurs when a body is subjected to the acceleration due 
to the earth’s gravity, g. From Eqn 2.1:15: 

(2.1:16) gmG   . [N] 

In physics, it is often useful to express force as a function of the area on which it 
is acting. When a force acts perpendicular to a surface, it is termed either a tensile 
or a compressive force. If a force acts parallel to a surface, it is known as a shear 
force. Force per unit area is known as stress. 

Stress (generally represented by the symbol ) is often more important than the corresponding 
force. As a result, it has its own unit of measurement, the Pascal (Pa). 1 Pa  1 N/m². Compres-
sive stress may also be expressed in bar. This unit is widely used in ballistics: 

 1 bar  105 Pa . 

In some English-speaking countries, pressure is also measured in pounds per square inch (lbf/in2). 
Conversion formulas for units of pressure are to be found on p. XXIII. 

2.1.3.3 Work and energy 

Work and energy, and their relationship to velocity, force, momentum and power, 
play a crucial role in ballistics. We shall therefore examine these terms in detail, 
the more so as they are not always used correctly in everyday speech. 

Work W is defined as the force F acting in a given direction, multiplied by the 
distance covered under the influence of that force, s: 

(2.1:17) sFW   . [J] 

Any irregular movement, and any change in the structure of a material (deforma-
tion, destruction, etc.) requires work. The amount of work required depends not 
only on the force, but also on the distance covered. Even if the force is large, the 
work done will be small if the force acts over a short distance (which often 
equates to a short exposure time). 

Given that work is defined as force times distance, the unit is the Newton-metre [Nm]. However, 
as work is such an important term it has its own unit, the Joule [J]: 

 1 J  1 Nm . 

Certain English-speaking countries still use the foot-pound-force [ftlbf]. See p. XXIII for the con-
version formula. 

Table 2-4. Typical forces acting on a bullet 

Type of force Force 

 [N] [lbf] 

Force of air acting on a rifle bullet 4 0.9 

Mean drag acting on a bullet fired into water 5,000 1,125 

Force on a bullet in a rifle barrel 12,000 2,700 
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In order to move a body against the acceleration due to the earth’s gravity, a force 
is required that corresponds to the weight of the body. From Eqn 2.1:17, we can 
calculate the work done W using the following formula: 

(2.1:18) ygmW   , [J] 

where y is the distance that the body is moved against the force of gravity. 
If, however, the body undergoes acceleration as a result of the force acting 

upon it, the work done results in movement. Substituting Equations 2.1:15, 2.1:7 
and 2.1:6 in Eqn 2.1:17 (the latter two equations with x0 = 0 and v0 = 0) we ob-
tain: 

(2.1:19) 2
2
1 vmW   . [J] 

If we ignore non-mechanical phenomena, the work done on a body therefore re-
sults either in an increase in distance within the gravitational field, or in move-
ment. In the first instance, this can be expressed in terms of the weight of the body 
and the increase in distance (Eqn 2.1:18) and in the second case in terms of the 
mass of the body and the speed it attains (Eqn 2.1:19). 

Both a body that has been raised from its initial position and a body in motion 
are capable of performing work. The ability to perform work is generally referred 
to as energy. In the case of a raised body we speak of potential energy, while in 
the case of a moving body the term is kinetic energy (see Table 2-5 for examples). 
In physics, therefore, work and energy are equivalent. Neither work or energy can 
be created or destroyed. All that can happen is that the one is converted into the 
other. From Eqn 2.1:19, we can therefore derive an analogous formula for the 
kinetic energy of a body in motion, with the same unit [J]: 

(2.1:20) 2
2
1

kin vmE   . [J] 

Using Eqn 2.1:18, we can express potential energy thus: 

(2.1:21) ygmEpot   . [J] 

Wounding only occurs when energy is converted into work. However, this proc-
ess is only partially mechanical, as the energy taken from the projectile is used 
primarily to deform and destroy tissue. In other words, this energy performs work 

Table 2-5. Typical kinetic energy levels encountered in ballistics 

Type of weapon Muzzle energy 

 [J] [ftlbf] 

Air rifle over 10 7.4 

Pistol 500 370 

Modern military rifle (5.56 mm) 1,600 1,180 

Older military rifle (7.62 mm) 3,000  2,215 

Hunting rifle up to 10,000  7,375 



10 2  Basics 

 

on the molecular structure of the material. Clearly, however, the severity of a 
wound (the quantity of tissue destroyed) can depend only on the energy taken 
from the bullet, and not on the total energy that the bullet possessed. 

2.1.3.4 Rotation 

If a force acts on a system capable of rotation, at a point away from its axis of 
rotation, the system will begin to rotate. The angular velocity will depend on the 
force and on the distance between the point of application and the axis of rotation 
(the lever arm). This phenomenon can be represented as: 

(2.1:22) rFM   , [Nm] 

where M is the torque and r is the distance between the point of application and 
the centre of rotation (i.e. the length of the lever arm). 

If we consider torque as a vector, it always acts perpendicular to both the direction of the force and 
the lever arm, and hence is always parallel to the axis of rotation. 

From Equations 2.1:15, 2.1:10 and 2.1:12 we obtain: 

(2.1:23) 


 2rmr
dt

dr
mr

dt

dv
mM  . [kgm2/s2] 

From this equation, we can see that there is a linear relationship between the 
torque and the angular acceleration it produces, as is the case for force and accel-
eration. The factor that links the two is the moment of inertia J, a characteristic of 
the body related to the axis of rotation: 

(2.1:24)  JM  . [kgm2/s2] 

The moment of inertia J therefore has the same relationship to rotation as does 
mass to linear motion. 

The moment of inertia of a body can be calculated by analytical or numerical 
integration over the volume: 

(2.1:25)   dmrJ 2  . [kg·m2] 

The moment of inertia can also be measured using a “moment of inertia” measuring 
instrument. The formulas for basic, regular bodies are in some cases quite simple. 

Using the definition of force in Eqn 2.1:14, we can derive the following rela-
tionship from Eqn 2.1:24: 

 


 J
dt

d
Jr

dt

dI
rFM  . [kgm2/s2] 

Integrating the two corresponding terms, we obtain an equation with, on one side, 
the product of the torque and its distance from the axis of rotation. This product is 
the angular momentum or spin: 

(2.1:26)  JrvmrIL  . [kgm2/s] 
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In determining the kinetic energy of a rotating mass (its energy of rotation, or spin 
energy), we must remember that each mass particle has a velocity that depends on 
its distance from the axis of rotation. We must therefore integrate the differential 
energy over the entire volume: 

  
V

22
2
1

V

22
2
1

V

2
2
1

rot dmrdmrdmvE  , 

(2.1:27) E Jrot   1
2

2  . [J] 

The analogy between the formula for linear motion and that for rotation is so 
striking that it is worth placing them alongside one another (see Table 2-6). 

It is often forgotten that yaw and partial rotation are also forms of rotation. In 
addition to rotating rapidly about its longitudinal axis, a moving bullet makes 
other rotational movements, such as those about a horizontal transverse axis. See 
Fig. 2-2. 

2.1.3.5 Laws of conservation of mass, energy and momentum 

All physical phenomena are controlled by a number of “laws of conservation.” 
This is particularly true of mechanics. The analysis of any physical process starts 
with the application of these fundamental laws, which generally make it possible 
to understand a phenomenon quite easily. However, it is important first to delimit 
the physical system in such a way that one can ignore any interaction with the 

Table 2-6. Comparison between linear and rotational motion 

Linear motion (translation) Rotational motion (rotation) 

Time t t Time 

Velocity v  Angular velocity 

Acceleration a  Angular acceleration 

Mass m J Moment of inertia 

Force F = m·a M = J Torque 

Momentum M = m·v L = J· Angular momentum 

Kinetic energy Ekin = ½mv2 Erot = ½J2 Rotational kinetic energy 

 

Fig. 2-2. Rotation of a bullet about a transverse axis along its trajectory. 
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outside world. Such a system is described as “closed.” Laws of conservation apply 
only within closed systems. 

1. The law of conservation of mass. The total mass within a closed system re-
mains constant. Mass is neither created nor destroyed: 

(2.1:28)   constmm itot  . [kg] 

In a system consisting of several masses, the centre of gravity of the system also 
remains constant, regardless of the movements of the individual masses (such as 
in the case of a shot sheaf). 

2. The law of conservation of momentum. The total momentum within a closed 
system (i.e. one on which no external forces are acting) remains constant: 

(2.1:29)   constII itot  . [Ns] 

3. The law of conservation of angular momentum. The total momentum within a 
closed system (i.e. one on which no external moment is acting) remains constant: 

(2.1:30)   constLL itot  . [kgm2/s] 

4. The law of conservation of energy for mechanics. The sum of the potential, ki-
netic and rotation energy in a closed, frictionless system (with no energy entering 
or leaving the system) remains constant: 

(2.1:31)     constEEEE rotkinpotmech  . [J] 

However, the law of conservation of energy goes beyond mechanics. It also ap-
plies to other, non-mechanical forms of energy. 

5. The general law of conservation of energy. The total energy (i.e. the sum of 
all forms of energy) in a closed system remains constant. 

The conversion of energy from one form to another within a system is not nec-
essarily reversible. 

2.1.3.6 Equations of motion 

In physics, the motion of a body is described fully if its position, velocity and po-
sition in space are known at every point in time. The motion of a body is deter-
mined exclusively by the forces acting upon it and the accelerations those forces 
produce. 

Linking the acceleration of a body to its position and velocity yields equations 
of motion. These form a system of differential equations that describe the time-
dependent velocity and position functions of a body. In the case of a point mass 
(e.g. the centre of gravity of a body), the system consists of six equations – three 
for the spatial coordinates and three for velocity. A rigid body of non-zero volume 
requires six further equations, which describe the body's position in space and the 
rate at which its position changes. In many cases, however, the system of equa-
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tions of movement can be considerably reduced. This is the case, for instance, 
when no force is acting in a particular direction. 

D'Alembert's principle. Equations of movement can be derived from the law of 
conservation of energy or of momentum by differentiation. D’Alembert’s princi-
ple allows us to take a more direct approach. This principle involves replacing the 
acceleration of a body by a fictitious force Ffict which, in accordance with New-
ton’s Third Law of Motion, has to equal the sum of the forces applied: 

(2.1:32)  ifict FFam  . [N] 

The equations of motion utilize another basic principle of mechanics: the ‘super-
position principle’. This principle states that different movements of a body occur-
ring simultaneously do not influence each other. Any movement can therefore be 
divided into separate components, one for each of the axes of the coordinate sys-
tem. We can study each component independently of the others and hence can 
describe each component using simple equations. 

Trajectory in a vacuum. One typical example of how equations of movement are 
developed and solved – and one of particular relevance to ballistics – is that of the 
trajectory of a body in a vacuum. No forces act along the x-axis, and the only 
force acting along the y-axis is the weight of the body. In accordance with 
d’Alembert’s principle, we can write the following two equations: 

(2.1:33a) 0vm x    (x-axis) , [N] 

(2.1:33b) gmvm y    (y-axis) . [N] 

These two differential equations form the system of equations of movement de-
scribing the trajectory of a body in a vacuum. We can readily integrate the two 
equations, using the initial values below, derived from the initial velocity v0 and 
angle of departure 0: 

 00x0 cosvv   , [m/s] 

 00y0 sinvv   . [m/s] 

Integration yields the following two equations: 

(2.1:34a) tcosv)t(x 00   , [m] 

(2.1:34b) 2
2
1

00 tgtsinv)t(y   . [m] 

If we eliminate t from both equations, we obtain the equation for the (parabolic) 
trajectory of a body in a vacuum: 

(2.1:35) 
0

22
0

2

0 cosv2

xg
xtan)x(y




  . [m] 
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Taking y = 0 (base of the trajectory), the maximum range xe for a given angle of 
departure 0 is: 

(2.1:36) )2(sin
g

v
x 0

2
0

e   . [m] 

Similarly, we can obtain the corresponding time of flight from Eqn 2.1:34b: 

(2.1:37) 0
0

e sin
g

v2
t 


  . [s] 

We can readily determine the highest point along the trajectory (the peak) if we 
bear in mind that the vertical component of the velocity must be zero at that point. 
This gives us the time of flight to the peak of the trajectory. Substituting this into 
Eqn 2.1:34b we obtain: 

(2.1:38) 0
2

2
0

s sin
g2

v
y 


  . [m] 

Combining Equations 2.1:37 and 2.1:38 gives us the principal equation for the 
vertex height. This equation is very useful in practice, and to a close degree of 
approximation is also valid for the trajectory of an object subject to air resistance: 

(2.1:39) 2
e8

1
s tgy   . [m] 

Velocity as a function of distance. It is often clearer to show velocity as a func-
tion of distance instead of time. For these purposes, “distance” generally means 
the distance the projectile has travelled along its trajectory, although the term may 
refer to the distance travelled along the x-axis in some cases. 

For example: we can say that a light, high-speed hunting bullet with a muzzle velocity of 1050 m/s 
undergoes a deceleration of 1700 m/s2, but it is difficult to translate this information into anything 
practical. If, however, we say that the bullet loses 1.6 m/s per metre travelled, we can understand 
what is happening much more easily. 

We can write the change in distance along the trajectory thus: 

(2.1:40) 222 dzdydxds   , [m] 

from which we can calculate velocity as follows: 

 
222

dt

dz

dt

dy

dt

dx

dt

ds
v 




















  , [m/s] 

 2
z

2
y

2
x vvvv   . [m/s] 

This yields the following formula for converting between velocity as a function of 
time and velocity as a function of distance (using the typographical convention 
specified in 2.1.2): 
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(2.1:41) vv
dt

ds

ds

dv

dt

dv
v   . [m/s2] 

2.1.4 Fluid dynamics 

2.1.4.1 General 

The materials involved in wound ballistics (certain types of tissue, together with 
the soap and gelatine used as simulants) act upon a bullet in a manner similar to 
that of a viscous liquid. It is considerably easier to understand such phenomena if 
we model them as such. On the other hand, the behaviour of a bullet in tissue or in 
a simulant depends to a large degree on the impact conditions. In turn, these con-
ditions are directly linked to the movement of the bullet in air. The mechanics of 
fluids and gases – known as fluid dynamics – therefore play a major role in 
wound ballistics. 

When we are studying the movement of a body in a medium it makes no dif-
ference whether we consider the medium to be stationary and the body in motion, 
or the body stationary and the medium in motion (in the opposition direction and 
at the same speed). In terms of physics, the two approaches are equivalent. We 
will therefore use whichever is clearer in a given context. 

Motion in a liquid or gaseous medium always generates heat, whether through 
friction or as a result of subjecting a gas to increased pressure. It is therefore nec-
essary to include thermodynamic processes in any consideration of fluid dynam-
ics. 

2.1.4.2 Basic concepts in thermodynamics 

Temperature. Temperature is one of the basic parameters required to describe 
processes that involve heat. Temperature describes the thermal state of a body and 
serves as a measure of the total kinetic energy of the molecules that make up that 
body. It is independent of the mass and the material composition of the body. 

If the thermal state of a material changes, so do a number of its physical char-
acteristics, such as its dimensions (length, volume, etc.), its colour or its electrical 
conductivity. We can use this behaviour to measure temperature. However, it is 
only possible to conduct relative measurements. As a result, we are free to select 
the zero point and the units of a scale at will. 

The SI unit for temperature is the Kelvin [K]. The only difference between the 
Kelvin and the older degree Celsius [°C] is the zero point used for the two sys-
tems. On the Celsius scale, 0 °C corresponds to the freezing point of water, 
whereas 0 K corresponds to “absolute zero,” the lowest temperature possible. De-
grees Fahrenheit are in widespread use in some English-speaking countries. All 
scales are calibrated using internationally agreed reference points, corresponding 
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to the boiling and freezing points of various materials at normal pressure 
(1013.25 mb). See Table 2-7. 

Conversion formulas for the various units appear after the table of symbols 
(p. XXIII). 

Temperature and heat. If the temperature of a given quantity of a material rises 
during a physical process, then heat has been introduced. However, an increase in 
temperature means that the total kinetic energy of the molecules in the quantity of 
material under consideration has also increased. Heat is therefore a form of energy 
and is hence measured in Joule. The quantity of heat added is proportional to the 
mass and to the increase in temperature. The proportionality factor C is known as 
the specific heat capacity of the material: 

(2.1:42) TmCQ   . [J] 

States of matter. The state of a material can be solid, liquid or gaseous. The more 
precise terms for these three states are crystalline, amorphous and gaseous. In the 
solid state, the molecules are arranged in a crystal lattice, and are held in place not 
only by intermolecular forces of attraction but also by lattice linkage forces. Solid 
matter has a specific geometrical form and a fixed volume. 

If so much heat is applied to a body that its molecules acquire enough kinetic 
energy to overcome the lattice forces, the material enters the amorphous (liquid) 
state. All that is keeping the material together at this point is the intermolecular 
force. Liquid matter has a fixed volume, but generally has no specific geometrical 
form. 

If the intermolecular forces are sufficiently strong, amorphous materials may 
be shape stable. Examples of this include glass and wax. 

If we add enough heat to raise the kinetic energy of the molecules to the point 
at which the intermolecular forces are overcome, the molecules become free to 
move. The material enters the gaseous state, in which its volume is limited not by 
the quantity of matter present, but by the total space available to it. From the 
above, we see that it is only possible to change the state of a material to the next 
higher level by adding energy in the form of heat. Similarly, the corresponding 
quantity of energy is released as the material returns to a lower level. 

Table 2-7. Temperature reference points 

  [K] [°C] [°F] 

Water Freezing point 273.15 0.00 32.00 

 Boiling point 373.15 100.00 212.00 

Oxygen Boiling point 90.18 –182.97 –297.35 

Gold Melting point 1336.15 1063.00 1945.40 
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Equation of state for gases. Because of the kinetic energy of its free molecules, a 
gas exerts a pressure p on the surfaces that delimit its volume. The impacts of the 
particles against these surfaces result in a mean force per unit area, which can be 
explained by the law of conservation of momentum. Any change in temperature 
(i.e. in kinetic energy) or in volume (i.e. in surface area) will affect the pressure. 
Pressure, temperature and volume are the thermodynamic state variables of the 
gas in question. The equation that links these variables is known as an equation of 
state. The best-known equation of state is Boyle’s law: 

(2.1:43) TRmVp   . [J] 

Where m is the mass of the gas and R is the special (material-dependent) gas con-
stant. If a gas obeys Boyle’s law (Eqn 2.1:43), it is known as an ideal gas. If the 
density of the gas is sufficiently low (i.e. if the pressure is low), many gases be-
have almost as ideal gases. 

The special gas constant of air is 287.05 J/(kg·K). 

In gas dynamics, we generally use density (mass per unit volume) rather than 
mass. Eqn 2.1:43 can then be written: 

(2.1:44) TR
p




 . [J/kg] 

If temperature remains constant, the right-hand side of the equation remains con-
stant, and hence so does the left-hand side. 

Heat, work and internal energy. As the volume of a material can only change 
considerably when it is in a gaseous state, it follows that materials can only 
convert heat energy into mechanical work (energy) when they are in that state. 
Devices that perform this conversion are known as heat engines. 

Heat engines – which include firearms – always use materials in gaseous form. Those materials are 
usually created by heating or by combustion. 

If the volume of a gas is increased by heating it, then the gas performs work. Ac-
cording to Eqn 2.1:17, the work done is proportional to the force exerted (pressure 
 area) and the distance moved (see Fig. 2-3): 

(2.1:45) VpsApW   . [J] 

As we know, the ability to do work is potential energy. 
The potential energy of a gas of volume V at a pressure p is therefore: 

(2.1:46) VpEdr   . [J] 

In this context, the potential energy of the gas is termed pressure energy. 
When heat energy is added to a system, two things happen. The first is that the 

total kinetic energy of the molecules in that system (its internal energy U) in-
creases, which means that its temperature also increases. The second is that the 
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system performs mechanical work. The following energy balance therefore ap-
plies: 

(2.1:47) dVpdUdWdUdQ   . [J] 

If no heat is added to the system (dQ = 0) then, from Eqn 2.1:47: 

 0dVpdU   , 

and hence: 

(2.1:48) constVpU   . [J] 

The sum of internal energy and pressure energy therefore remains constant. 
This statement, taken with the corresponding law of mechanics (Eqn 2.1:31) 

constitutes the mechanical thermodynamic law of conservation of energy: 

(2.1:49) constUEEE drmechtot   . [J] 

In order for the temperature of a gas to rise by a specific amount, the gas must 
absorb more heat at a constant pressure than at a constant volume. This is a direct 
consequence of Eqn 2.1:48. 

If volume remains constant (dV = 0), all of the additional heat is used to raise the internal energy 
of the gas (i.e. its temperature), as no mechanical work can be done. At constant pressure, how-
ever, heat is “lost” to work, and the temperature increase is smaller. 

This means that the specific heat capacity in Eqn 2.1:42 is greater at constant 
pressure than at constant volume: 

(2.1:50) 1
c

c

V

p   . [-] 

The quotient  is known as the adiabatic coefficient. 

2.1.4.3 Material characteristics 

Density and compressibility. When liquids and gases (fluids) are subjected to a 
force they change their form and, in many cases, their volume. In order to de-

Fig. 2-3. Calculating the work done as a gas expands 
over a distance s. 
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scribe motion, we therefore need physical parameters that describe the main char-
acteristics of the materials involved. In fluid dynamics, density  is more impor-
tant than mass: 

(2.1:51) 
V

m
  . [kg/m3] 

The compressibility of a material is a measure of the relative change in the vol-
ume of that material in response to a change in pressure: 

(2.1:52) 
dp

dV

V

1
  . [1/Pa] 

The minus sign indicates that an increase in pressure brings about a decrease in volume. 

Liquids are generally considered incompressible. At low speeds, we can make the 
same assumption for gases. 

Viscosity. The absence of lattice force means that a fluid changes its form when 
subjected to an external force. However, the fluid reacts to that force with a cer-
tain inertia. This resistance, caused by the intermolecular forces of attraction, is 
termed viscosity. If a shear stress is applied to the fluid, with a shear force FR, (see 
Fig. 2-4), a velocity gradient is created in the area under stress. In Newtonian flu-
ids, this gradient is proportional to the stress: 

(2.1:53) 
dy

dv

A

FR
s   . [N/m2] 

The proportionality factor is the dynamic viscosity, : 

(2.1:54) 
dv

dy
s   . [Pas] 

Dynamic viscosity as a function of the density of the fluid is known as kinematic 
viscosity: 

(2.1:55) 



  . [m2/s] 

Viscosity depends very much on temperature, with the viscosity of a gas changing 
with temperature in exactly the opposite manner to that of a liquid. 

Fig. 2-4. Dynamic viscosity. 
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As the temperature of a liquid (and hence its internal energy) increases, the effect of the intermo-
lecular forces decreases, and it becomes less viscous. In the case of a gas, internal friction is 
caused by the exchange of momentum between freely moving molecules. As temperature in-
creases, the speed of those molecules increases, causing the gas to become more viscous. 

If the mass remains constant, a fluid also resists any change in volume, as a 
change in volume can only occur if the form of the fluid also changes. This effect 
is known as bulk viscosity, which is to be distinguished from dynamic viscosity. 

Speed of sound. Changes in pressure and density (disturbances) propagate 
through a fluid in the form of longitudinal waves. 

In the case of longitudinal waves, the disturbances oscillate in the same direc-
tion as that in which the wave is moving. 

If the disturbances remain small, they propagate at the speed of sound. In liq-
uids, this speed depends on density and compressibility: 

(2.1:56) 



1

c  . [m/s] 

In gases, it depends on density and pressure: 

(2.1:57) TR
p

c 



  . [m/s] 

The symbol γ represents the ratio of the specific heat capacities, cp/cv 
(Eqn 2.1:50). For air, its value is 1.4. 

The general equation for the propagation speed of small disturbances in a gas is: 

(2.1:57a) 
0S

2 p
c






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





  . [m2/s2] 

The significance of ΔS = 0 is that changes in temperature have no effect on the heat (energy). This 
is known as constant entropy. In the case of an isentropic gas, this gives us the first part of 
Eqn 2.1:57. 

In accordance with Eqn 2.1:43, the second part of Eqn 2.1:57 only applies to ideal 
(or nearly ideal) gases. In such cases, the speed of sound depends solely on tem-
perature. As a result, this speed is a suitable reference speed for compressible me-
dia. This leads us to the definition of the Mach number, Ma: 

(2.1:58) 
c

v
Ma   . [-] 

The behaviour of a flow is closely related to the Mach number, which gives us a 
simple classification criterion. 

If Ma < 1, the flow is described as subsonic. If Ma = 1, the flow is described as transonic. If 
Ma > 1, the flow is said to be supersonic. 
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2.1.4.4 Frictionless flow 

Definition. Laws of conservation. The study of flow is much simplified if one 
ignores internal friction. This implies that no shear stresses occur, and hence that 
the fluid does not deform. This assumption also ignores the fact that every fluid 
adheres to a fixed surface. As a result, external friction is also ignored. Despite 
this limitation, a surprising number of phenomena can be described and presented 
in the form of laws. 

This is because when a fluid flows over a body, the effect of friction is often limited to a thin layer 
at the surface of the body (known as the boundary layer). If the thickness of this boundary layer is 
very small compared to the other dimensions of the flow, we can safely ignore the effects of fric-
tion. 

A fluid in which no internal friction forces occur is termed frictionless. If, in ad-
dition, the fluid is incompressible, it is said to be ideal. Flow is also described in 
terms of its relation to time. If the speed and thermodynamic characteristics of the 
flow depend only on position, and do not change over time, the flow is described 
as stationary. 

The laws of conservation of mass, energy and momentum set out in 2.1.3.5 
also apply to the movements of fluids. Here again, the conservation of mass plays 
a central role: the change in mass in any fixed volume element corresponds to the 
difference between the mass entering the system (subscript 1 in the equation be-
low) and the mass leaving it (subscript 2): 

(2.1:59) 222111 AvAv
t

m





 . [kg/s] 

This relationship is known as a continuity equation. For an incompressible fluid 
(i.e. m/t = 0,  = const), Eqn 2.1:59 becomes: 

(2.1:59a) constAv   . [m3/s] 

Speed and flow cross-section are inversely proportional to one another. The law 
of conservation of energy applies. If no heat is added, the sum of pressure energy, 
kinetic energy, potential energy and internal energy remains constant (see 
Eqn 2.1:49): 

 constUEEE potkindr   , [J] 

(2.1:60) constUygmvmVp 2
2
1   . [J] 

Momentum and angular momentum are also conserved in a flow. As in the case of 
mechanics, we obtain the equations of motion for flow from the law of conserva-
tion of momentum, using d'Alembert's principle. In the case of flow, the formulas 
are known as Euler's formulas. The question of angular momentum arises only in 
turbulent flow, which we shall ignore in this context. 
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Bernoulli’s equation. In theory, Bernoulli’s equation is an equation of motion, 
and has to be derived from the equilibrium of forces acting on a liquid element. 
However, in the case of ideal flow (i.e. where ρ and U are both constant) it is eas-
ier to derive this equation from the law of conservation of energy (Eqn 2.1:60) by 
dividing by volume: 

(2.1:61) constygvp 2
2
1   , [N/m2] 

or, if we also assume a constant flow height: 

(2.1:61a) constvpvp 2
002

1
0

2
112

1
1   . [N/m2] 

This means that pressure and flow velocity are directly related to one another. If 
pressure is high, fluid velocity is low. If pressure is low, fluid velocity is high. 
Acceleration occurs when there is a pressure gradient. 

Flow forces. If a flow strikes a flat, stationary plate at right angles, the flow ve-
locity drops to zero at the surface of the plate. If we use 0 to indicate the values for 
undisturbed flow and 1 for those at the plate surface, then from Eqn 2.1:61a, for 
v1 = 0 we have: 

 2
002

1
01 vpp   , 

(2.1:62) 2
002

1
01 vpp   . [N/m2] 

The left-hand side of Eqn 2.1:62 corresponds to the increase in pressure at the 
plate surface by comparison with the pressure in undisturbed flow. This is termed 
the stagnation pressure of the plane plate. 

In the case of a real body, the streaming pressure depends not only on velocity but also on the form 
and dimensions of the body. The actual values will differ from those calculated using the equation 
above. 

The streaming pressure on a specific body is described using the ratio of the actual 
increase in pressure to the plane stagnation pressure. This (dimensionless) quan-
tity is known as the pressure coefficient of the body: 

(2.1:63) 
2

2
1

0eff
p v

pp
C




  . [-] 

The force that a flow exerts on a body (the flow resistance) is obtained by multi-
plying the force by the effective area. However, it is often difficult to determine 
this area. The effective area is therefore replaced by a fixed reference area A0 
which, together with the plane stagnation pressure from Eqn 2.1:62, yields a ref-
erence force that is independent of the shape of the body. Dividing the effective 
resistance FD by this reference force gives another dimensionless quantity that 
takes account of all form-specific influences. This quantity is known as the drag 
coefficient: 
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(2.1:64) 
0

2
2
1

D
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
  , [-] 

(2.1:64a) 0
2

2
1

DD AvCF   . [N] 

The minus sign indicates that the force acts in the opposite direction to the movement. 

A body subject to a flow experiences a lift force (FD) – a force perpendicular to 
the direction of flow – when the pressure on its two sides is unequal as a result of 
the flow velocity on the two sides being unequal (Bernoulli’s equation). The lift 
force is calculated in relation to the same reference force as the resistance/drag. 
The corresponding ratio is known as the lift force coefficient: 

(2.1:65) 
0

2
2
1

L
L Av

F
C


  . [-] 

As a lift force generally acts at a point away from the centre of gravity, it will also 
induce a torque M, with its own reference distance d. The corresponding parame-
ter is known as the overturning moment coefficient: 

(2.1:66) 
00

2
2
1M dAv

M
C


  . [-] 

The reference area and distance chosen differ according to the area of study. In the aerodynamics 
of missiles, one often uses either the largest cross-section in the plane of the flow or the wing sur-
face/wingspan. In ballistics, however, one generally uses the calibre cross-sectional area (which is 
generally smaller than the cross-sectional area of the bullet) and the calibre. It is therefore impor-
tant to specify the reference value when stating a coefficient. 

Furthermore, coefficients are always expressed as a function of the Mach number. 

2.1.4.5 Flow of a viscous fluid 

Forces and equations of motion. In accordance with d’Alembert’s principle, 
equations of motion are derived by equating inertial force and the forces acting on 
a body. Because density and volume are subject to change, both are expressed as a 
function of mass. 

The following discussion applies to a one-dimensional flow (a streamline). This makes the rela-
tionships considerably simpler and clearer, and facilitates comprehension of the subject. For com-
plete versions of the general equations of motion for fluids, please consult the literature on the 
subject. 

A particle in a flow can undergo a change in velocity under two circumstances: 

– when the velocity field changes over time (unsteady flow); 

– when, in a (stationary) velocity field, it is displaced to a position at which 
the flow velocity is higher or lower. 
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Total acceleration is derived from the combination of the two sources. This accel-
eration is known as the substantial acceleration: 

(2.1:67) 
x

v
v

t

v

dt
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






  . [m/s2] 

The two terms on the right can be interpreted as time-dependent or position-dependent inertial 
forces, expressed as a function of mass. 

In calculating the forces, we assume that the streamline under consideration is 
oriented along the x-axis and has a cross-section of dy × dz (see Fig. 2-5). The 
compressive force per unit mass on a flow element of length dx is then: 

(2.1:68) 
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and the frictional force is: 

(2.1:69) 
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In the case of a Newtonian fluid, we can substitute the shear stress from Eqn 
2.1:53: 

(2.1:70) 
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Weight is omitted, as it does not exert a force along the x-axis, nor will we include 
any external forces, as these would only introduce an additional summand. From 
Equations 2.1:67, 2.1:68 and 2.1:69, and taking into account Eqn 2.1:70, we 
obtain: 

(2.1:71) 
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Fig. 2-5. Streamline element, with 
compressive stresses (p) and shear 
stresses (). 
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The three equations obtained by extending Eqn 2.1:71 to three dimensions are 
known as the Navier-Stokes equations for (incompressible) Newtonian fluids. 
They only produce unique solutions under very special conditions. To solve real 
problems, we must use numerical methods (e.g. finite elements). 

For stationary (v/t = 0) and frictionless ( = 0) flow, given that 

 )v(
xx

v
v 2

2
1 








  , 

we obtain the following equation from Eqn 2.1:71: 

 0)pv(
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2
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1 




 . 

This corresponds to Bernoulli’s equation (Eqn 2.1:61a) which, as mentioned above, is derived 
from the equations of motion. 

Taking account of viscosity. Reynolds number. From the parameters of a flow – 
length s, velocity v, time t, pressure p and density ρ – it is possible to derive a 
term for each of the mass-related forces in Eqn 2.1:71. By forming quotients, it is 
possible to derive a number of dimensionless values from these four terms, which 
can then be used to describe the forces in the flow. 

In order to decide whether it is possible to ignore friction in a flowing fluid, we 
must know the ratio of inertia forces to friction forces. This (dimensionless) 
quantity is called the Reynolds number. After the Mach number, the Reynolds 
number is the most important parameter for describing a flow: 

(2.1:72) 
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If Re >> 1, e.g. if speed is high or viscosity is low, it is possible to ignore friction. 

Since every flowing fluid adheres to a solid body, there is a layer at the surface of the body within 
which the velocity of the flow rises from zero to flow velocity, and within which friction occurs. 
For large Reynolds numbers this layer (the boundary layer) is very thin, and friction can be ig-
nored. 

If Re  1 or Re < 1, the friction forces must be taken into account in all parts of 
the flow. This is the case for low speeds, small dimensions or high levels of vis-
cosity. 

From the values in Table 2-8, we can see that the flight of a bullet in air can be 
treated as frictionless flow, whereas friction cannot be ignored when a bullet 
passes through a dense medium, such as glycerine soap or gelatine. 

Table 2-8. Examples of Reynolds numbers for bullets 

Bullet Re 

Rifle bullet, v = 800 m/s, s = 30 mm; in air 1.8106 

 in glycerine soap 0.05 

Pistol bullet, v = 300 m/s, s = 15 mm; in air 3.4105 

 in gelatine 1.1 
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2.1.5 Fluid jets 

2.1.5.1 General 

A jet occurs when a fluid escapes from an opening in a container and penetrates 
another, stationary fluid, at a certain velocity. The density, state and composition 
of the two fluids can be the same or different. Such a jet always forms a mass 
flow. At high speeds or high densities, it can possess considerable kinetic energy. 
Under such circumstances, and up to a certain distance, a jet can be seen as a pro-
jectile, and can have a corresponding effect. 

Exit flow phenomena occur when there is a pressure differential between the 
container and its surroundings. It is this differential that is responsible for the ac-
celeration of the mass flow. The cross-sectional form of the opening plays a deci-
sive role. If the cross-section of a tube varies, it is termed a nozzle. If the tube is at 
its narrowest at its exit, it is known as a muzzle. 

2.1.5.2 Exhaust flow from a muzzle 

In order to calculate the energy flux and the energy-flux density (which ultimately 
determines the wounding potential of the jet), we must first determine the exhaust 
velocity and the mass flow rate through the nozzle. 

The process by which a gas leaves a nozzle is adiabatic, or nearly so. This 
means that heat exchange with the surroundings can be ignored. The equation of 
state for adiabatic processes is: 
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where γ is the adiabatic coefficient. 

The exhaust velocity is calculated using Bernoulli’s equation, with density as per 
Eqn 2.1:73. After some calculation, we obtain: 

(2.1:74) 
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where vm is the exhaust velocity, pm the exit pressure and pi and ρi the pressure and density of the 
fluid in the container. 

Using Eqn 2.1:59, and taking Eqn 2.1:73 into account, the mass flow rate for an 
exhaust cross-sectional area A is: 
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The mass flow rate therefore depends upon the pressure and density of the fluid in 
the container, the cross-sectional area of the opening and the ratio of the pressure 
inside the container to the pressure at the muzzle. From Eqn 2.1:75, it is apparent 
that there exists a pressure ratio pm/pi at which the mass flow rate reaches a maxi-
mum. 

Eqn 2.1:75 is a continuous function, with a value of zero both at pm/pi = 1 and at pm/pi = 0. A 
maximum must therefore occur somewhere between these two values. 

That pressure ratio is known as the critical pressure ratio and the corresponding 
muzzle pressure is the de Laval pressure, pL. Substituting extreme values into Eqn 
2.1:75 we obtain: 
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The corresponding velocity is called the de Laval velocity. This is the maximum 
possible exhaust velocity for a gas leaving a muzzle: 
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The corresponding mass flow rate is given by the following equation: 

(2.1:78) 
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If the ambient pressure is greater than or equal to the de Laval pressure, the es-
caping gas can expand fully in the muzzle. The jet will be focused and will be 
capable of transferring kinetic energy. If the ambient pressure is lower than the de 
Laval pressure, the gas cannot expand fully in the muzzle. Expansion from muzzle 
pressure to ambient pressure will occur explosively, causing completely turbulent 
flow that is incapable of doing work. 

2.1.5.3 De Laval nozzles (converging-diverging nozzles) 

From the continuity equation and Bernoulli’s equation, we can now show that 
there is a close relationship between the Mach number of the flow Ma and the 
form of a nozzle. 
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From the equation of motion, Eqn 2.1:71, we obtain Bernoulli’s equation in differential form for a 
stationary, frictionless flow (the precondition for a jet): 
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Multiplying the equation by x and inserting  in the first term and v in the second, we obtain: 
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However, from Eqn 2.1:57a, the first factor in the first summand is the speed of sound squared, 
which means that we can insert the Mach number Ma in Eqn 2.1:80: 
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As we can assume that the flow is stationary, the mass flow rate over time is constant. We can 
therefore express Eqn 2.1:59 in differential form, thus: 
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Replacing the first summand in Eqn 2.1:81 with the aid of Eqn 2.1:82, we obtain the following 
after calculation: 
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From this equation, it is apparent that acceleration only occurs at Ma < 1 (i.e. when v/v > 0) with 
a convergent nozzle (A/A < 0) and only occurs at Ma > 1 with a divergent nozzle (A/A > 0). 

In other words, subsonic flows will be accelerated by a convergent nozzle, super-
sonic flows by a divergent nozzle. With a combination of these two types of noz-
zle, it is therefore possible to achieve gas velocities well over the speed of sound. 
This type of nozzle is called a convergent-divergent nozzle, or de Laval nozzle. By 
choosing the length of the divergent section appropriately, it is possible to ensure 
that the pressure in the exit section is equal to ambient pressure. The nozzle is 
then said to be adjusted. It is under these conditions that the jet attains the maxi-
mum possible speed. 

The exhaust gas velocity is calculated using Eqn 2.1:74, taking the pressure at the exhaust cross 
section for p. Eqn 2.1:78 gives the mass flow rate for the smallest cross section. 

The exhaust gas velocity and the mass flow rate form the basis for calculating the 
jet. These two variables also determine the maximum energy-flux density (i.e. the 
energy hitting a given area per unit time) that can occur in the jet. 

2.1.5.4 Jet velocity and energy 

Except at very low velocities (which are unlikely to cause jet injuries), a free jet 
becomes turbulent very shortly after emerging from the nozzle. 

In turbulent flow, irregular fluctuating motion is superposed upon the basic longitudinal motion. 
As a result, the fluid particles are able to move transverse to the direction of flow. In laminar flow, 
this does not occur. 

The velocity of a turbulent flow must therefore be seen as a mean value over time. Because of 
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the different directions in which the particles are moving, there is an apparent increase in internal 
friction by comparison with the mean movement (see 2.1.4.3). This eddy kinematic viscosity is an 
important descriptor of turbulent flow. 

As a result of the turbulence, the jet partly mixes with the surrounding fluid, drag-
ging particles of that fluid along with it. The mass of fluid picked up by the jet 
increases with distance, and the jet becomes broader. At the same time, its veloc-
ity decreases, as total momentum remains constant. 

For the purposes of wound ballistics, we can limit ourselves to studying round 
jets, as both the gases that exit the muzzle of a weapon and the propulsion jet of a 
rocket belong to this category. One advantage of round jets is that the eddy kine-
matic viscosity is constant throughout the jet. This being so, the equation for the 
mean velocity distribution in the jet is as follows (only the component acting in 
the direction of the jet being relevant): 
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where β is calculated as follows: 
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Symbols for the formulas above: 

x distance from opening r distance from axis of jet 
I total momentum (per unit time)  density 
 apparent kinematic viscosity 

Along the axis of the jet (r = 0), β is zero, which simplifies Eqn 2.1:84 considera-
bly. If we know the velocity, we can use the mass flow rate from Eqn 2.1:59 to 
calculate the energy-flux density (energy density E per unit time) as follows: 
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The main difficulty in performing such calculations lies in determining the eddy 
kinematic viscosity. This can be accomplished by taking pressure measurements 
along the axis of the jet. From the pressure, we can determine the velocity, which 
in turn allows us to calculate ε from Eqn 2.1:84. 

2.1.6 Measuring techniques for wound ballistics 

2.1.6.1 General 

Wound ballistics is very much an experimental science. The starting point is al-
ways the observation of phenomena, which are generally preceded by events of 
which the preconditions are unknown. In order to understand these phenomena, 
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we perform experiments. That simply means repeating the events under known, 
defined conditions. This is the only way of understanding the sequence “precon-
ditions  event  phenomenon” and, if possible, creating a physical model. 

Scientific experiments must be reproducible. This means that the entire se-
quence of events must meet certain conditions. An experiment therefore involves 
measuring not only the events (the “results”) but all the preceding processes and 
preconditions that could affect the results. Measurements are hence of vital im-
portance to empirical science. 

From a mathematical standpoint, measurements are a type of mapping. Nu-
merical values are assigned in a physical “model space” to a time- and space-re-
lated situation observed in “real space.” This implies that the observer conducting 
the measurements always has a model of the process in his head, even if he is un-
aware of this. As a result, there is the danger that he will attempt to use the results 
of measurements to confirm his preconceptions. It is important to adopt a critical 
attitude and to be prepared to revise one’s assumptions, both in designing the ex-
periment and when interpreting the results. The aim of an experiment is not to 
confirm one’s assumptions, but to discover “reality.” 

2.1.6.2 Dynamic phenomena 

Recording the motion of a bullet – especially in a dense medium – poses a number 
of problems. The most significant problem is that all the processes occur within a 
very short time. For instance, at an impact speed of 900 m/s it takes a bullet ap-
proximately 1 ms to penetrate to a depth of 30 cm. In the process, very high de-
celerations occur, the axis of the bullet rotates about a transverse axis and the 
bullet often deforms or breaks up into several pieces. Regardless of the type of 
measuring system, all measurements must be recorded at a frequency of a few μs. 

Velocity and deceleration. In ballistics, the most relevant parameters are the ve-
locity and deceleration of a bullet. If these two values are known for all points, the 
forces can be calculated from Eqn 2.1:14 and the energy present from Eqn 2.1:19. 
These are the physical parameters of greatest importance in describing the proc-
esses. 

The most common approach to determining velocity is to measure distance 
travelled over time using photoelectric barriers, radar or high-speed cameras. A 
first differentiation gives speed over time, a second gives deceleration. In order to 
determine speed over time to a reasonable degree of accuracy, the measuring 
points need to be as close together as possible. A high sampling rate is therefore 
required. 

High-speed video cameras operate at speeds of tens of thousands of frames per second, as long as 
there is sufficient light. Special cameras designed for very fast processes can record over 100 mil-
lion frames per second, with up to 16 images being available for each process. It is possible to 
choose the interval between these images as required. In the case of opaque materials, x-ray flash 
photography is used. This generally produces a maximum of six images. 
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Regardless of the method used, the 
double numerical differentiation re-
quired to calculate deceleration from 
time/distance measurements means 
that measurements must be extremely 
accurate. Even small errors in meas-
uring distance and time will produce 
errors in the drag coefficient approxi-
mately two orders of magnitude 
greater. 

Example: An object undergoes a constant 
deceleration of –600 m/s2. A statistical error of 
just a few percent in the time/distance meas-
urements will already cause visible discrepan-
cies following differentiation over time (see 
Fig. 2-6b). The deceleration graph produced 
from a second numerical differentiation (see 
Fig. 2-6c) almost completely hides the fact 
that the object was undergoing constant decel-
eration. 

Using pairs of photoelectric barriers 
and time measuring devices, it is pos-
sible to determine velocity directly. 
Two measuring points of this type 
make it possible to measure the change 
in velocity over a known distance, 
from which it is possible to derive de-
celeration by single differentiation 
(KNEUBUEHL 1982). This makes it 
possible to obtain a much higher de-
gree of accuracy. Radar devices that 
utilize the Doppler principle can also 
be used to measure speed over time. 

Doppler principle: A radar beam of a given 
frequency striking a moving body will be reflected at a different frequency. The change in fre-
quency is proportional to the speed at which the body is moving. 

However, neither method can be used for wound ballistics studies. Pairs of photo-
electric barriers only allow us to measure the entry and exit speeds, and hence to 
calculate the drop in speed between the two points. They are not suitable for 
measuring a fast process that occurs over a short distance. Modern radar equip-
ment can take measurements through simulants, which makes it possible to cal-
culate the impact speed and residual speed of a bullet passing through a block of 
simulant. However, the sampling rate of such equipment is currently still too low 

Fig. 2-6. Effect of measurement error on 
velocity and acceleration. The “correct” lines 
are shown in grey. See text for details. 
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to record the change in speed over distance as the bullet passes through the mate-
rial. 

Proper motion of a bullet The proper motion of a bullet (the movement of the 
axis of the bullet about its centre of gravity) involves more than one plane. This 
motion can only be recorded using a measuring system that operates in two 
planes. 

That involves taking a photograph of the bullet using two photographic plates 
at the same time, with the two plates arranged at right angles to each other. The 
photographic technology used (visible light or x-ray) is of secondary importance. 
From the pair of images produced, it is then possible to determine the orientation 
of the bullet’s axis. This procedure is appropriate when one wishes to measure the 
angle of incidence of the bullet at a particular point (e.g. the point of impact) or to 
measure the change in angle of incidence along a section of the bullet’s trajectory. 

If the bullet is fired parallel to a mirror angled at 45° to the camera, it is possi-
ble to record both the side elevation and the plan view of the bullet on a single 
image. This method has the advantage that both images are created at exactly the 
same instant. See Fig. 2-7. 

Another technique, which can only be used in the case of ferrous objects (e.g. 
bullets with a steel core or a thick steel jacket), utilizes the fact that a magnet ro-
tating in a coil generates a potential difference. The change in potential difference 
(voltage) is proportional to the speed of rotation. If the bullet is magnetized and 
the target medium (soap or gelatine) placed inside a large coil, the rotating bullet 
will induce a voltage in the coil as it passes through. By recording this voltage, it 
is possible to determine the change in speed of rotation over distance (KNEU-
BUEHL 1990c; measuring method based on that of R. CATTIN). 

2.1.6.3 Physical values 

Centre of gravity. Moments of inertia. Determining the mass and the external 
dimensions of a bullet is both simple and commonplace. Determining the mo-
ments of inertia and the centre of gravity is less common, but is necessary in the 
field of ballistics, especially when one is studying stability. 

The moment of inertia can be determined empirically using the principle of the 
physical (rotating) pendulum. The period of such a pendulum is directly related to 

Fig. 2-7. Image of a bullet penetrating a block of soap, made 
using a mirror angled at 45°. Upper picture: plan. Lower picture: 
elevation. The angle of incidence can be determined from the two 
pictures (see also KNEUBUEHL 2004). 
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the moment of inertia of the oscillating body relative to the centre of rotation. If a 
torsion wire is used to impart a retarding moment, measurements can be con-
ducted through a bullet’s centre of gravity, along its longitudinal or transverse 
axis. The moment of inertia of the measuring apparatus is measured beforehand 
using an object with known moments of inertia (see KNEUBUEHL 2004 for further 
details). 

One way of finding the centre of gravity is to use a center of gravity measure-
ment instrument. This involves sliding the bullet across a sharp edge until it is 
more or less in equilibrium. It is then held steady while the point in contact with 
the blade is marked. 

If the structure of the bullet is not too complex, it is also possible to determine 
the centre of gravity and moments of inertia by calculation. This is the case for 
many handgun and rifle bullets. The process consists of dividing the bullet into 
thin slices, calculating the moment of inertia for each slice and calculating the 
sum of the moments. 

Characteristics of materials. It is worth mentioning just a few specific meas-
urement issues of relevance to wound ballistics. These include measuring viscos-
ity and the speed of sound in dense media of the types used as simulants. Both 
parameters have a significant influence on shock waves. 

Using Eqn 2.1:2, the speed of sound in a medium is determined by measuring 
the time a wave takes to pass through a layer of known thickness. Ultrasonic 
waves are generally used, although it is difficult to filter out the main signal. 

Measuring the viscosity (and other mechanical parameters) of a simulant is im-
portant if fluid dynamics modelling is to be carried out. Measuring devices (cone 
viscometers) are available that allow standard measurements to be conducted even 
on very viscous materials. 

2.2 Ammunition and weapons  

2.2.1 Introduction 

To understand wound ballistics, one needs a sound knowledge of ammunition in 
general and bullets in particular. We shall therefore be looking at the design of 
contemporary ammunition in some detail (2.2.2). Our focus will be on bullet de-
sign, as this has a major influence on wounding. 

Ammunition and weapon are two halves of the same system. Sub-section 2.2.3 
therefore gives an overview of key weapon characteristics and common types of 
weapon. This book is not the place for a detailed description of individual weap-
ons, but exterior ballistics plays a major role in wound ballistics, as it tells us a 
great deal about the impact conditions. We shall be looking at exterior ballistics in 
sub-section 2.3.4. 
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