Chapter 2
Commutative Theory

2.1 Maximizing Matrices

We invent a class of infinite matrices A = (a;x)7;_ called (p,q)-maximizing; its
definition (see Definition 1 in Sect.2.1.3) is motivated by a number of classical
maximal inequalities intimately related with almost sure summation of orthogonal
series with respect to Cesaro, Riesz, and Abel summation. The main examples
(given in the next section) are matrix products A = SX and their “diagonal
perturbations” SZDl/w, where § is a summation process (see (1.5)), X = (O'jk)
the so-called sum matrix defined by

o= @.1)

and Dy, the diagonal matrix with respect to a Weyl sequence ®. Recall that
an increasing and unbounded sequence (@) of positive scalars is said to be a
Weyl sequence with respect to a summation method S = (sx) whenever for each
orthonormal series in L, (i) we have that

k
zakxk = lim zsjk 2 oyxp H-a.e. (2.2)
k Tk =0

provided Y |Ocka)k|2 < oo} as already explained in (1.6) we call a theorem of this
type a coefficient test.

Based on Nagy’s dilation lemma we in Theorem 1 characterize (2,2)-
maximizing matrices in terms of orthonormal series in Lp(i), a result which
later in Sect. 2.2 will turn out to be crucial in order to derive non trivial examples
of maximizing matrices from classical coefficient tests. Theorem 2 shows that
for ¢ < p every matrix product SX is (p,q)-maximizing, whereas for ¢ > p an
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16 2 Commutative Theory

additional log-term is needed. By Theorem 7 we have that SX Dy /1, is (p,q)-
maximizing whenever ¢ > p. In this context a characterization of (p, ¢)-maximizing
matrices in terms of p-summing and p-factorable operators (Theorems 3 and 4) in
combination with Grothendieck’s fundamental theorem of the metric theory of
tensor products leads to a powerful link between the theory of general orthogonal
series and its related L,-theory (Theorem 5).

Let us once again mention that this first section was very much inspired by
Bennett’s seminal papers [2] and [3]. Finally, note that some of our proofs at a
first glance may look cumbersome (see e.g. Lemma 2), but we hope to convince
the reader that our special point of view later, in the noncommutative part of these
notes, will be very helpful.

2.1.1 Summation of Scalar Series

For a scalar matrix S = (sjk) j.keN, With positive entries we call a scalar- or Banach
space-valued sequence (x;) S-summable whenever the sequence

(gsj‘ké)w)j (2.3)

of linear means of the partial sums of > x; (is defined and) converges. The matrix
S is said to be a summation method or a summation process if for each convergent
series s = Y x; the sequence of linear means from (2.3) converges to s,

oo k
s=1m Y sp Y x. (2.4)
T k=0 (=0

All results and examples we need on summation methods are contained in the mono-
graphs of Alexits [1] and Zygmund [98]. The following simple characterization of
summation methods is due to Toeplitz [91].

Proposition 1. Let S = (sjx) be a scalar matrix with positive entries. Then S is a
summation method if and only if

(1) lim;¥7 sk =1
(2) limjs; =0 forall k

Moreover, for each Banach space X and each convergent series s = Y xi in X we
have (2.4), the limit taken in X.

Here we will only prove the fact that (1) and (2) are sufficient conditions for §
to be a summation method, or more generally, that (1) and (2) imply (2.4) for every
series > x; in a Banach space X (the necessity of (1) and (2) will not be needed in
the following).
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Proof. Take a series s = Y~ x; in a Banach space X, and fix some € > 0. Then
there is ko such that we have || X5_,x, —s|| < & for all k > ko. Then for any j we
have

o k oo k oo
| Zon el =] ZenZe 9+ s Zow ]
k=0 (=0 k=0 (=0 k=0

=

ko k k
<2l Xxe—sll+ X siell Xoxe—sll+
=0 (=0 (=0

k=ko+1

sisjkfs
k=0

ko k - -
stjknzxf*sH‘i’EZSjkﬁ» szsjk*S ,
k=0 (=0 =0 =

and hence the conclusion follows from (1) and (2). O

The following are our basic examples:

e identity matrix id = (Jj) is trivially a summation method, and obvious

(1) The identity ix id = (§j) is trivially i hod, and obviously
(xy) is summable if and only if it is id-summable.

(2) The matrix C = (cj;) given by

k<j

Cjk = ]+1 -
0 k>j

is called Cesaro matrix, and for each series > x; (in a Banach space X)

00 1 J ok

k
> Cjkgaxz = N DI

k=0 k=0/(=0

is its jth Cesaro mean. C-summable sequences are said to be Cesaro summable.
(3) Forr € RdefineAj=1,and forn €N

A (n+r) _ (D). (rtn)

" n n! ’
in particular, we have A} = n+ 1 and AY = 1. Then for r > 0 the matrix C" =
(c’) defined by
r—1
j—k
cpi=q A

k=
J

0 k> j
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is said to be the Cesaro matrix of order r. Obviously, we have that C' = C.
All entries of C” are positive, and on account of the well-known formula
ZZZOAZ’I = A and the fact that A], = O(n") (see also (2.44) and (2.48)) we
have . o
Zc;kzl and c;kgc%.
k=0 J
Hence, by the preceding proposition the matrices C" form a scale of summation
processes. Sequences which are C"-summable are said to be Cesaro summable
of order r.
Let (A4)r_, be a strictly increasing sequence of positive scalars which con-
verges to e, and such that Ay = 0. Then the so-called Riesz matrix R* defined
by

A1 — M
, k+1 kg <
o= A, i+1
Jjk 7
0 k>j
forms a summation process; indeed
S Nest — A, 1
CL e (A —Ao) =1,

=0 A A1
and y Iy
lim 2% ¢,

i A
We call R*-summable sequences Riesz summable. Note that for A; = j we have
R* = C. Moreover, it is not difficult to see that for A = (2-7 ) Riesz-summation
means nothing else than ordinary summation.
Take a positive sequence (p;) which increases to 1. Then the matrix AP given
by

dj = pf(1-p;)
obviously defines a summation process. These matrices are called Abel matri-
ces. Recall that a sequence (x;) is said to be Abel summable whenever the limit

li k
exists. For 0 < r < 1 we have
[e-) =] k
Zxkrk = 2 *(1—r) ng
k=0 k=0 =0

which justifies our name for AP.
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2.1.2 Maximal Inequalities in Banach Function Spaces

As usual L,,(/.L), 1 < p < oo denotes the Banach space of all (equivalence classes
of) p-integrable functions over a (in general o-finite and complete) measure space
(22,%, 1) (with the usual modification for p = o). We write £,(£2) whenever Q
is a set with the discrete measure, and £, for = Ny and ¢, for Q = {0,...,n}.
The canonical basis vectors are then denoted by e;,i € £2. More generally, we will
consider Banach function spaces (sometimes also called Kothe function spaces)
E = E(u), i.e. Banach lattices of (u-almost everywhere equivalence classes of)
scalar-valued p-locally integrable functions on 2 which satisfy the following two
conditions:

o If x| <|y| withx € Lo(u) andy € E(u), then x € E(u) and ||x]| < ||y]].
e Forevery A € X of finite measure the characteristic function y4 belongs to E ().

Examples are L,-, Orlicz, Lorentz, and Marcinkiewicz spaces.

Recall that a vector-valued function f : 2 — X, where X now is some Banach
space, is -measurable whenever it is an almost everywhere limit of a sequence of
vector-valued step functions. Then

consists of all (u-equivalence classes of) (-measurable functions f : £ — X such
that || f||x € E(u), a vector space which together with the norm

1A lEqx) = FONx | g

forms a Banach space. For E(u) = L,(u) this construction leads to the space
Lp(X) = Ly(1,X) of Bochner integrable functions; as usual £,(X) and £},(X) stand
for the corresponding spaces of sequences in X.

We now invent two new spaces of families of integrable functions which will give
a very comfortable setting to work with the maximal inequalities we are interested
in. Let I be a partially ordered and countable index set, E = E (1) a Banach function
space, and X a Banach space. Then

E(X)[le] = E(1t,X)[lex(D))]

denotes the space of all families (f;);es in E(u,X) having a maximal function which
again belongs to E (1),

?gpllﬁ(-)llx €E(u).

Together with the norm

1o = [l sup 1Ol
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E(u,X)[l(I)] forms a Banach space. The following simple characterization will
be extremely useful.

Lemma 1. Ler (fi)ier be a family in E(u,X). Then (f;)icr belongs to
E(u,X)[l(I)] if and only if there is a bounded family (z;)icr of functions in
Lo (u,X) and a scalar-valued function f € E(L) such that

fi=zf foralli

(the pair ((z;), f) is then said to be a factorization of (f;)). In this case, we have

I(Fi)lle o) = inf suplizille £l

the infimum taken over all possible factorizations.
For the sake of completeness we include the trivial

Proof. Let (fi) € E(,X)[€e(1)]. Put f :=sup; || fi(:)||x € E(1) and define z;(w) :=

fi(w)/f(w) whenever f(w) # 0, and z;(w) := 0 whenever f(w ) = 0. Obviously,
Ji = zif and sup; [zill < 1, hence ||f]|(u) sup; [l2ill < | (fi)ll£(x)pe..)- Conversely,
we have

sup [|£i(-)[lx < S‘ll_pHZin 1FC)llx € E(u),

and hence
|l ey < sup llzillll fll () »

which completes the argument. O

We will also need the closed subspace

E(u,X)leo(D)] € E(u,X)[t=(D)],

all families (f;) € E(u,X)[lw(I)] for which there is a factorization f; = z;f with
lim; ||zi[|.(x) = 0 and f € E(u); this notation seems now natural since we as usual
denote the Banach space of all scalar zero sequences (x;)ic; by co(I), and c¢p =
co(Np). The following lemma is a simple tool linking the maximal inequalities we
are interested in with almost everywhere convergence.

Lemma 2. Each family (f;) € E(u,X)[co(I)] converges to 0 u-almost everywhere.
Again we give the obvious

Proof. Let f; = z;f be a factorization of (f;) with lim; [|z([;_x) =0 and f € E(u),
and let (&) be a zero sequence of positive scalars. Clearly, for each i there is a g-null
set N; such that [|z;(+)[|x < ||zi[lL..(x) + & on the complement of N;. Take an element
w in the complement of the setN := [| f|=1o]U(U;N;). Then for € > 0 there is iy such
that [|z;[|,x) + & < ‘f j7 for each i > iy, and hence [fiw)] = lz(w)|lx|f(w)| <

(Nlzill ) +€z)|f( ) <e. O



2.1 Maximizing Matrices 21
2.1.3 (p,q)-Maximizing Matrices

Recall that a sequence (x;) in a Banach space X is said to be unconditionally
summable (or equvialently, the series Y, x; is unconditionally convergent) whenever
every rearrangement Y X ) of the series converges. It is well-known that the vector
space £{"°(X) of all unconditionally convergent series in X together with the norm

wi((x)) == sup || 2 oy || < oo

[efl-<1 k=0

forms a Banach space. More generally, for 1 < p < o a sequence (x;) in a Banach
space X is said to be weakly p-summable if for every o € £,/ the series > 0yx;
converges in X, and by a closed graph argument it is equivalent to say that

wp((xx)) = wp((x),X) = H sHup 1 | Z o || < o
ol /<1 k=0

The name is justified by the fact that (x;) is weakly p-summable if and only if
(x'(xx)) € £, for each x’ € X', and in this case we have

1

wp((xx)) = sup (2|x (xk)|p) < oo,

<1 * &

The vector space of all weakly p-summable sequences in X together with the
norm w), forms the Banach space £)(X) (after the usual modification the case
p = oo gives all bounded sequences). A sequence (x;) is weakly summable
(= weakly 1-summable) whenever the series Y, x; is unconditionally convergent,
and the converse of this implication characterizes Banach spaces X which do not
contain a copy of ¢q. This is e.g. true for the spaces L, (1), 1 < p < eo.

The following definition is crucial — let A = (ai);ten, be an infinite matrix
which satisfies that [|A|« := sup; |aji| < e, or equivalently, A defines a bounded
and linear operator from ¢; into ¢., with norm ||A||c.

Definition 1. We say that A is (p,g)-maximizing, ] < p < e and 1 < g < oo,
whenever for each measure space (€2, 1), each weakly ¢’-summable sequence (x;)
in L,(u) and each o € ¢, we have that

SuP‘ > ajkakxk’ €Lp(u),
i =0

or in other terms

(Sanewn)  eLplee)

k=0 J€No
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Note that here all series Y7 a jx0qxx converge in L, (u). Clearly, by a closed graph
argument a matrix A is (p,q)-maximizing if and only if the following maximal
inequality holds: For all sequences (x) and (oy) as above

| sup| 3 ajonexs] H,, < Cllotflgwy ()
J k=0

here C > 0 is a constant which depends on A, p,qg only, and the best of these
constants is denoted by
m, 4(A) :=infC.

Our main examples of maximizing matrices are generated by classical summation
processes, and will be given in Sect. 2.2. Most of them are of the form

| =
A=SZIDyp, aji=— D s, (2.5)
Ok =k

where S is a summation process as defined in Sect.2.1.1, X is the so-called sum
matrix defined by

1 k<j

Ojk =

0 k>j,
and Dy, a diagonal matrix with respect to a Weyl sequence @ for S (see again
(2.2)). Since each such S can be viewed as an operator on /.. (see Proposition 1,(1)),
matrices of the form SX D/, define operators from £} into fe..

Note that by definition such a matrix A = SX Dy, is (p,q)-maximizing when-

ever for each measure space (Q, 1), each weakly ¢’-summable sequence (x;) in
L,(u) and each a € ¢, we have that

- k
Oy
sup | 355k Y, x| € Ly(u), 2.6)
J k=0 = i=o @

or in other terms

oo k
(Zon X o) e bowlte]

Let us once again repeat that by an obvious closed graph argument A = SX Dy, is
(p,q)-maximizing if and only if for all sequences (x) and (oy) as in (2.6) we have

) k
oy
[sup| 3% s Y, ool || < Cllallpwg (k).
Jok=0  ¢=0% p

C > 0 a constant which depends on A, p, g only.
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It is not difficult to check (see also Sect.2.2.6,(6)) that for the transposed A" of
an infinite matrix A the duality relation

m, 4(A) = mgy (A" (2.7)

holds, and that m,, ,(A) is decreasing in p and increasing in ¢, i.e. for p» < p; and

a1 <q
my, 4, (A) <mp, 4, (A) <my(A) (2.8)

(this will also be obtained as a by-product from Theorem 3). Finally, we include a
simple lemma which helps to localize some of our coming arguments.

Lemma 3. Let A be an infinite matrix with ||Alle < o, E(1t,X) a vector-valued
Banach function space, and 1 < p < oo, 1 < g < oo, Then the following are
equivalent:

(1) For each o € {4 and each weakly q'-summable sequence (xi) in E(U,X) we
have that

Sljpugajkakxk(')ux EE(u).

(2) There is a constant C > 0 such that for each choice of finitely many scalars
o, - .., 0y and functions xg . .., x, € E(1,X) we have

n
H sqp” Zajkockxk(-)HX HE <Cllof|gwy (x).
i k=0

In particular, A is (p,q)-maximizing if and only if sup,m, ,(A,) < e where A,
equals A for all entries aj, with 1 < j,k < n and is zero elsewhere; in this case

m, ,(A) = supmy 4(A,).
n

Proof. Clearly, if (1) holds, then by a closed graph argument (2) is satisfied.
Conversely, assume that (2) holds. First we consider the case g < oo. Fix a weakly
¢'-summable sequence (x;) in E (i, X). By assumption we have

supHch:EZ —»E(/.L,X)[EM]H =D < oo,
n

where @, 0 := (Zk a jkakxk)j. Hence, by continuous extension we find an operator

@ : Ly, — E(U,X)[l=] of norm < D which on all £’s coincides with @,. On the other
hand, since (x;) is weakly ¢’-summable, the operator

b éq — II;[E(‘LL,X), lI/(Ot) = (zajkockxk)j
0 k
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is defined and continuous. Clearly, we have ¥ = @ which concludes the proof. If
q = oo, then for fixed a € /.., there is D > 0 such that for all n we have

|0 ()" (E(1,X)) — E(u, X)[6-]]| <D

where now @, ((xi)) := (X ajx0xk) ; (here (¢1)"(E(u,X)) of course stands for the
Banach space of all sequences of length r+ 1 endowed with the weak ¢;-norm w ).
Since the union of all (¢])"(E(u,X)) is dense in the Banach space ¢} (E(u,X)),
all weakly summable sequences (x) in E(u,X), we can argue similarly to the first
case. Finally, note that the last equality in the statement of the lemma follows from
this proof. O

The definition of (p,q)-maximizing matrices appears here the first time. But
as we have already mentioned several times this notion is implicitly contained
in Bennett’s fundamental work on (p,q)-Schur multipliers from [3]; this will be
outlined more carefully in Sect. 2.2.6.

2.1.4 Maximizing Matrices and Orthonormal Series

In this section we state our main technical tool to derive examples of (p,q)-
maximizing matrices from classical coefficient tests on almost everywhere sum-
mation of orthonormal series and their related maximal inequalities (see (1.6)
and (1.9)). This bridge is mainly based on dilation, a technique concentrated in
the following lemma. Obviously, every orthonormal system in Ly(u) is weakly
2-summable, but conversely each weakly 2-summable sequence is the “restriction”
of an orthonormal system living on a larger measure space.

The following result due to Nagy is known under the name dilation lemma; for a
proof see e.g. [94, Sect. IIL.H.19.]. It seems that in the context of almost everywhere
convergence of orthogonal series this device was first used in Orno’s paper [68].

Lemma 4. Ler (x;) be a weakly 2-summable sequence in some Lp(Q,1) with
weakly 2-summable norm wy(x;) < 1. Then there is some measure space (2',1")
and an orthonormal system (yy) in Ly(L @ u') (U ® U’ the disjoint sum of both
measures) such that each function xy, is the restriction of yy.

The following characterization of (2,2)-maximizing matrices in terms of
orthonormal series is an easy consequence of this lemma.

Theorem 1. Let A = (aj;) be an infinite matrix such that ||Al|. < oo. Then A is
(2,2)-maximizing if and only if for each o € {5, for each measure | and each
orthonormal system (x) in Ly (1)

sup } Zajkakxk| eLy(u). (2.9)
ik
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Moreover, in this case mys(A) equals the best constant C such that for each
orthonormal series Y, og.x; in an arbitrary Ly (L)

qup‘zajkakxk‘Hz <Clla2. (2.10)
i K

Proof. Clearly, if A is (2,2)-maximizing, then (2.9) holds and the infimum over all
C > 0asis (2.10)is <my(A). Conversely, take o € ¢, and a weakly 2-summable
sequence (yx) in Ly (€, 1) ; we assume without loss of generality that wy(y;) < 1.
By the dilation lemma 4 there is some orthonormal system (x;) in Lp (i @ pt’) such
that x; | Q2 =y for all k (1’ some measure on some measure space ). We know by
assumption that

(Zapeion) & La(uofe-].

Hence by Lemma 1 there is a bounded sequence (z;) in L..(1t & it’) and some f €
Ly (1@ u') for which ¥y ajropx;, = zjf for all j. But then as desired

Sup|za,fk05kYk| = SU_P}Zj|.Qf|.Q} € Ly(u).
ik J
If moreover the constant C satisfies (2.10), then we have
H Sup’zajkakyk‘u < H SUP‘Zdjkakxk‘H <Cllell2,
ik 2 ik 2

hence my»(A) <C. O

2.1.5 Maximizing Matrices and Summation: The Case q < p

Recall that X denotes the sum matrix defined by

I k<)
Ojk =
0 k>j.

The study of (p,q)-maximizing matrices of type SX, where S is a summation
process, shows two very different cases — the case ¢ < p and the case p < g. The
next theorem handles the first one, for the second see Theorem 7.

Theorem 2. Let 1 < g < p <o, and let S be a summation process. Then the matrix
A = SX given by

aj= Y sje
=k

is (p,q)-maximizing.
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This theorem is due to Bennett [2, Theorem 3.3] (only formulated for the crucial
case, the sum matrix itself) who points out that the technique used for the proof goes
back to Erdos’ article [15].

Lemma 5. Let 1 < g < oo, and assume that cy,-- - ,c, are scalars such that
lcol?+...+|cal? =5>0.
Then there is an integer 0 < k < n such that
lcol? + ...+ lex1 ]+ e < s/2
I 1+ kst |9+ -+ en| < 5/2,

where ¢ = cj + ¢} and max{|c;||c]|} < ekl

Proof. We start with a trivial observation: Take scalars c,d’,d” where d’,d" are
positive and such that d’ < |¢| < d’'+d”. Then there is a decomposition ¢ = ¢’ +¢”
such that |¢’| < d’ and |¢”| < d”; indeed, decompose first the positive number |c|,
and then look at the polar decomposition of ¢. Take now k such that

|c0|q+...—|—|ck,1|q§s/2< |Colq—|—...+|ck|q,

and define
;. B q - q 1/q
dy = (s/2— el — ... — |ex_1]9)
", q q_ l/q_ _ C]_ — ql/q
d = (|c0| +.+ el s/2) = (5/2 lex1|— o = len] ) :

Since g > 1 we deduce from the starting observation that there is a decomposition
cx = ¢f + ¢ with ¢} | < d} < |ex| and |¢]| < d}! < |cx| which completes the proof.
O

Now we proceed with the proof of Theorem 2.

Proof. Let us first reduce the case of a general S to the special case § = id: since S
defines a bounded operator on /.., we have that

- k k
sup| Y sje D ouxe| < ||S: e — Lol sup | D 0y (2.11)
Jk=0  {=0 k=0

hence we only show that the matrix X is (p,¢)-maximizing. We may assume that
1 < g < p <. By Lemma 3 it suffices to prove that there is a constant ¢(p,q) > 0
such that for each n

my,4(Z,) <c(p,q).



2.1 Maximizing Matrices 27

Fix n, and take xo, . ..,x, in some L, (i) with wy (x;) = 1 and scalars oy, ..., 0;, with
|loe|[g = 1. We show that

J
/SQP’ Y o] dp < e(p.q).
J k=0

To do so use the preceding lemma to split the sum
0lpxp (@) + ... + 0px, ()
into two consecutive blocks
Bgl) = opxp(@) + ...+ opxp ()
B = ogrpr (@) + ...+ Opn ()

such that each of the g-sums of the coefficients of these blocks is dominated by 1/2
(split ||a||7 = 1). Applying the lemma we split each of the blocks into two further
blocks Bgz),Bgz) and Bgz),Bgz), respectively. Repeating this process v times gives
a decomposition of the original sum into 2V blocks B%V), 1 <A <2Y, each having
coefficient g-sums dominated by 27V. By choosing v sufficiently large, we may
ensure that

27! < minfog|| oy # 0},

so that each block BSLV) contains at most two non-zero terms (indeed, otherwise
2.27V=1 < 27Y). We then have for each 1 < j < n and all ® that

j
Q Bl* oyxp(W)].
‘IZE) (@ ‘ 213@‘2#‘ ()] + max |ogx(o)]

Hence, for each r (which will be specified later) we obtain from Hoélder’s inequality
that

<3 (i yB;“)(w)\”)l/er (kiomkxk(w)v’)l/”

<(y 2 1/”/( L) B @)+ (kiomkxk(w)v’) "

u=1 u=1 A=1
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/

N /P
and with d(p,r) = (Z‘;Zl 27THp ) we conclude

J
[sup | 3, cnon|
i k=0 P

v 28 1/p 1 1/p
<dp.) (X2 3 [BEN) T+ (T lewl) s
u=1 A=1 r k=0

use the Minkowski inequality in L, (1), the obvious fact that for each choice of
finitely many functions y; € L, (i)

\K%WWYMR—(gbm@”ﬂ

and finally that all ||x;||, < 1. By assumption we have that for every choice of finitely
many scalars By, -, By

| =8| <18,
k p
and that 1 < g < p < e, hence

n

fsplgancoll, <ot (£ £om)"" ()"

k=0

\4 2K 1/p
<d(p,r) (X 2w Y omria)
-1 A=l

<d(pr) (5, 2v-riow)'"" 4y
u=1

Since this latter term converges for each 0 < r < 1/g — 1/p, the proof completes.
O

As already mentioned, the counterpart of this result for g > p will be stated in
Theorem 7.

2.1.6 Banach Operator Ideals: A Repetitorium

A considerably large part for our conceptional approach to almost everywhere
summation theorems of unconditionally convergent series in Lj-spaces together
with their maximal inequalities will be based on the theory of Banach operator
ideals.
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We give, without any proofs, a brief summary of the results needed —in particular,
we recall some of the ingredients from the theory of p-summing and p-factorable
operators. Notes, remarks, and references are given at the end of this section.

An operator ideal ./ is a subclass of the class of all (bounded and linear)
operators . between Banach spaces such that for all Banach spaces X and Y its
components

A (X,Y):=ZL X, Y)NA

satisfy the following two conditions: </ (X,Y) is a linear subspace of £ (X,Y)
which contains all finite rank operators, and for each choice of appropriate operators
u,w € Z and v € o/ we have wvu € &/ (the ideal property). A (quasi) Banach
operator ideal (47, o) is an operator ideal .27 together with a function ot : & — R
such that every component (&7 (X,Y),a(-)) is a (quasi) Banach space, o(idg) = 1,
and for each choice of appropriate operators w,v,u we have that

or(wvu) < [wlloe(v)l|ul]
If (&7, &) is a Banach operator ideal, then it can be easily shown that
lul| < o(u) forallue o,
and for all one dimensional operators x¥’ ® y withx’ € X/, y € Y
ax @y) =Xy

We will only consider maximal Banach operator ideals (<7, &), i.e. ideals which
in the following sense are determined by their components on finite dimensional
Banach spaces: An operator u : X — Y belongs to <7 if (and only if)

1
supar(M 25 X 7 2Ly /N) < oo, (2.12)
MN

where the supremum is taken over all finite dimensional subspaces M of X, all finite
codimensional subspaces N of X and Iy, On denote the canonical mappings. The
duality theory of operator ideals is ruled by the following two notions, the trace tr
for finite rank operators and the so-called adjoint operator ideals «*. If (&7, @) is a
Banach operator ideal, then its adjoint ideal (2/*, o*) is given by: u € &7*(X,Y) if

o (u) := sup sup  tr(Quulyv) <oo
MN vy /N—M|<1

(M and N as above); note that this ideal by definition is maximal. If (<7, o) and
(%, B) are two quasi Banach operator ideals, then <7 0 % denotes the operator ideal
of all compositions u = vw with v € o/ and w € £, together with the quasi norm
oo fB(u) :=info(u)B(w). This gives a quasi Banach operator ideal (o7 0 B, 000 ),
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the product of (7, o) and (%, ). Let us finally recall the meaning of a transposed
ideal (7@l gdual) : Tt consists of all u € .Z such that its transposed u’ € &7, and
o8 () = o(u).

Now we collect some of the most prominent examples of Banach operator ideals.
Clearly, all operators on Banach spaces together with the operator norm || - || form the
largest Banach operator ideal, here denoted by .. The Banach ideal of p-summing
operators is one of the fundamental tools of these notes. An operator # : X — Y is
said to be p-summing, 1 < p < oo, whenever there is a constant ¢ > 0 such that for
all weakly p-summable sequences (x;) in X we have

==

(§||M<Xk>||p)égc w ( z|x W) ), s

¥<1

and the best constant ¢ is denoted by 7, (u). It can be seen easily that the class IT,
of all such operators together with the norm 7, forms a maximal Banach operator
ideal (I by definition equals .Z’).

There is also a non-discrete variant of (2.13): An operator u: X — Y is p-
summing if and only if there is a constant ¢ > 0 such that for any function v €
L,(u,X) (the Bochner p-integrable functions with values in X ) we have

[lutt@plran() < e swp ([ Wo(@)ran@)”. @14

[l <1

and in this case again the best ¢ equals 1, (ut).

The whole theory of p-summing operators is ruled by Pietsch’s domination
theorem: Let X and Y be Banach spaces, and assume that X is a subspace of some
C(K), where K is a compact Hausdorff space. Then u: X — Y is p-summing if and
only if there is a constant ¢ > 0 and a Borel probability measure |1 on K such that

forallx e X
1

)| < e ([ xte)an(@)”. @.15)

and in this case the infimum over all possible c is a minimum and equals 1, (ut).

This result has many equivalent formulations in terms of factorization — we will
need the following particular case: For every p-summing operator u: co — Y there
is a factorization

u

o —= Y (2.16)

N1

tp

with a diagonal operator Dy, and an operator v satisfying ||| p||v|| < 7, (u).
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Finally, we mention two basic examples which in view of the preceding two
results are prototypical:

(1) m,(j: Leo(p) — Lp(1)) = 1(L2), where (,11) denotes some measure space
and j the canonical embedding.

(2) my(Dg :co — L) = ||ct||p, where Dy, denotes the diagonal operator associ-
ated to o € £, (here ¢y can be replaced by {..).

Let us now describe the adjoint ideal IT; of I}, in the more general context of
factorable operators. For 1 < p < g < e denote by I, , the Banach operator ideal of
all operators u : X — Y which have a factorization

u Ky

X Y € Y (2.17)

A

Ly(1) "~ L,(w)

where U is a probability measure and v, w are two operators (clearly, Ky and j denote
the canonical embeddings). The ideal I, ; of all so-called (p, ¢)-factorable operators
together with the norm 7, 4(u) := inf|lw|| ||v|| forms a maximal Banach operator
ideal. For operators u : X — Y between finite dimensional spaces X and Y it can
be easily proved that

Tog(u) = inf ] [Dyll V] (2.18)

where “the infimum is taken over all possible diagrams” of the form

u
X —Y

R

m—

Define ., := I}, .., the class of all p-integral operators, and I, := I, ,, the class of
all p-factorable operators; note that I is the Banach operator ideal of all hilbertian
operators, all operators factorizing through a Hilbert space. Then (as a consequence
of Pietsch’s domination theorem 2.15) for operators u defined on C(K)-spaces or
with values in C(K)-spaces the p-integral and the p-summing norms coincide:

Ty (u) = 1,(u). (2.19)

Note that (.#,1) := (.#],11) is the Banach operator ideal of all integral operators —
it is the smallest of all possible maximal Banach operator ideals, and moreover
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it is the adjoint ideal of (.%,] - ||). The following important trace formulas hold
isometrically:

j[j =1I,, (2.20)
and more generally for 1 < p <g < oo
Iy, =T oIl (2.21)

As an easy consequence of the preceding equality the ideal of (p,q)-factorable
operators can be rewritten as a sort of quotient of summing operators and integral
operators — this “quotient formula” in the future will be absolutely crucial: An
operator u : X — Y is (p,q)-factorable if and only if for each operator v €
ngal(Z,X) the composition uv € S,(X,Y ), and in this case

Yoq() = sup 1,(uv). (2.22)

7y (vV)<1

Now we turn to tensor products — the theory of maximal Banach operator ideals
and the theory of tensor products in Banach spaces are two in a sense equivalent
languages. Recall that the projective norm || - || for an element z in the tensor
product X ® Y of two Banach spaces is given by

2l = inf " [lxill Lyl
k

the infimum taken over all finite representation z = Y x; ® yx. Dually, the injective
norm || - ||¢ for z =Y x; ® yx (a fixed finite representation) is defined by

lzlle= " sup | DX ()Y (k)|
1 s Iy <1 &

We will need the simple fact: For each integral operatoru € £ (X,Y)
tu)=sup|lid@u:Z@:X —Z,Y|, (2.23)

where the supremum is taken over all Banach spaces Z.

Let us finish with Grothendieck’s fundamental theorem of the metric theory of
tensor products (his théoreme fondamental more or less in its original form) which
is in a sense the hidden power in the background of most of the material following:
Every hilbertian operator u : {1 — o, is integral, and

L(u) = m (1) < K1 (u), (2.24)

where K is a universal constant (this best constant is usually called Grothendieck’s
constant).
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An equivalent formulation of this highly non trivial fact is Grothendieck’s
theorem which states that each operator u : ¢y — ly is 1-summing, and m(u) <
Kg|lu||. We will also need a weaker fact, the so called little Grothendieck theorem:
Every operator u : ) — Uy is 2-summing; in terms of tensor products this means
that for each such u and each Hilbert space H we have

supllu®id: ] @ H — 5(H)|| < Krg|lull, (2.25)
n

and here (in contrast to Grothendieck’s theorem) the precise constant K; = 2/ Nz
(the little Grothendieck constant) is known.

Notes and remarks: Most of the results presented in this section are standard, and
can be found in the textbooks [6, 9, 76, 77], or [94]. The characterization of
summing operators from (2.14) can be found in [94, Sect.IIl.LE.33]. Pietsch’s
domination theorem (2.15) and factorization theorems like (2.16) are crucial, and
contained in each of the above monographs. The trace duality theory of summing,
integral and factorable operators is due to Kwapieni, and at least for p = ¢ outlined
in detail in the quoted textbooks; all needed properties of the ideal I}, , for p # ¢, in
particular its relation with summing and integral norms like (2.19), (2.20), (2.21),
and (2.22), are included in [6, Sects. 18, 25]. The estimate (2.24) is the main result in
Grothendieck’s famous “Résumé” [21] (the original source of all of this material),
and together with (2.25) it forms one of the central topics in all monographs cited
above.

2.1.7 Maximizing Matrices and Summation: The Case g > p

The following characterization of (p,q)-maximizing matrices links the classical
theory of orthonormal series with modern operator theory in Banach spaces. Recall
that by definition every (p,q)-maximizing matrix can be considered as an operator
from /; into /., and denote for a € £, by Dy : £, — () the diagonal operator
associated to o.

Theorem 3. Let 1 < p < oo and 1 < g < oo, and let A be an infinite matrix with
|A||eo < oo. Then the following are equivalent:

(1) Ais (p,q)-maximizing

(2) 3c>0Vael,: my(ADy) < cllally

(3) 3c=0VnVue Lty b): mp(Au) < cmy(u')

(4) 3¢ >0V Banach space X ¥ u € Hg““l(X,fl) 2 7y (Au) < cmy(u).
In this case, mpy(A) = sup my(ADgy) = sup m,(Au).

lellg<1 (') <1

We try to make the proof a bit more transparent by proving a lemma first.
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Lemma 6. For every operator B : {y — (. the following are equivalent:
(1) Bis p-summing.
m
(2) 3¢>0Vxq,...,xm €L,(1): H sup| > bjkxk|H <ewy(x)
j k=0 p

In this case, m,(B) := infc.

Proof. Let us first show that (1) implies (2). Take xo,...,Xx» € Ly(ut). Then we
obtain from (2.14) and the Bochner-integrable function

g:= Y a®e € Ly(u,ly)

k=0
that
m 1
H sup’ > bjkxk’ H = (/ IIBgI\id#) '
J k=0 p
1
<r®) s ( [Woshan)
Hx H[’"<1
m
=my(B) sup | Y ckka
llellgm<1 " k=0 r
= p(B) wy (xi, L (1))
Conversely, it suffices to show that for xo,...,x, € 62’,1

(Z”BXkH ) <c sup (Z|x X |n)

Il g <1

Put y, := Zﬁ”zoxn(ﬂ)en €ly,0<{<M.Then we have

= (B | Spim])’

HSUP} zbﬂyi

= (ésgp’ﬁ)bﬂéx”@)en(k)‘p)},
- (:210|Bxk|z);
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and

m m

wp (SWer) = s s S

”xJ”fMSI k=0 H)C/H[MSI ||dH£m <1'k=0
q tq I

M m
= sup sup ZCZdexk(K)‘

ldllm <tllellpr<1"¢=0 k=0
P q

M

= supsjp‘ 2 dy, 2 cy 2 Xn(€)en (k)‘
¢ k=0

(=0 n=0

M m

‘ 2 ) ZX,,(E)e,,

(=0 n=0

= sup

'm
c o

= Wq/ (yg 7621) .

M
= [T
(=0

< 1 Zl;l

el e < !

Since we assume that (2) holds, these two equalities complete the proof. g
Now we are prepared for the

Proof (of Theorem 3). First assume that A is (p,¢)-maximizing, i.e. for every choice
of a measure (1, a sequence o € ¢, and functions xo, ..., X, € L,(1) we have

J
[ sup| X ajeonan | < myq(a) el (x0).
J k=0

But then the preceding lemma implies that ADg : {; — /e is p-summing, and
mp(ADg) < mp4(A)|al,. Conversely, assume that (2) holds. Then, again by the
lemma,

J
Hsup| zajkockxk‘H SCH(XHqu/(Xk),
J k=0 P

which yields (1). Next, we show that (2) implies (3). Take some u € ¥ (ﬁ;’,,é 1)
Then by (2.16) there is a factorization

u'leg
cg —— EZ

W\

by
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with ||Dg|| [|R|| < my(u’). But then (2) implies (3):

7p(Au) = 7 (ADoR') < 7, (ADg ) |R|| < cl|etlg||R]| < e 7y (1)

Now we prove the implication (3) = (4): Recall that the Banach operator ideal
(IT,, mp,) is maximal (see (2.12)). Hence, we fix some operator u : X — ¢;, and
assume without loss of generality that X is finite dimensional. The aim is to show

that
Tty (Au) < cmy(u).

It is well-known that there is some finite rank operator S on ¢; such that ||S|| < 1+¢

and S|y = id where M := uX (¢ has the metric approximation property, see e.g. [6]

or [53]). Put
v:X —M, vx:=Sux,

and let [y : M — {, be the canonical embedding. Without loss of generality there is
a linear bijection T : M — ({™M such that || T|| |T7"|| < 1 +& (¢, is a £} 5 -space,
A > 1; for this see again [6] or [53]). Again by (2.16) there is a factorization

(Tu)’
L —— X' 1y (R)|IS < 7g((Tu)).

AN

N
ﬂq

Hence, we conclude that
Tty (Au) = 1, (Alpu)
= 70,(Aly T~ Tu)

< m, (AT RS

®) —1pry/
< ey (T~ RS
<cmRIIT S]]
<emg(Tu))|T7H| < e my(u')(1+€),
the conclusion. This completes the whole proof since (4) trivially implies (2). O

The preceding characterization has some deep consequences.

Theorem 4. Let A be an infinite matrix such that ||A||« < oo, and assume that 1 <
p<oo 1 <g<oowithp <gq.
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(1) Ais (2,2)-maximizing if and only if A : {1 — U is hilbertian, and in this case
my(A) = 1(A).

(2) More generally, A is (p,q)-maximizing if and only if A : {; — lw is (p,q)-
factorable,

and in this case mp, 4(A) = ¥, 4(A).
(3) In particular;, A is (p,eo)-maximizing if and only if A : | — le is p-summing
(= p-integral by (2.19)), and in this case m, .(A) = m,(A).

Proof. Tt suffices to check (2) since (1) is an immediate consequence of (2),
and (3) follows from (2) and (2.19). But (2) obviously is a consequence of the
characterization of maximizing operators given in Theorem 3, (1) < (4) combined
with the quotient formula from (2.22) and the equality from (2.19). O

Note that (1) and (3) in combination with Grothendieck’s théoréme fondamental
from (2.24) show that a matrix A is (2,2)-maximizing (A : {; — {. is hilbertian)
if and only A is (1,c0)-maximizing (A : ¢; — /. is integral). This is part of the
following theorem which together with Theorem 1 is our second crucial tool
later used to deduce a commutative and noncommutative L,-theory of classical
coefficient tests.

Theorem 5. Ler A be an infinite matrix such that ||Al|< < oo. The following are
equivalent:

(1) Ais (2,2)-maximizing.

(2) Ais (1,0)-maximizing.

(3) Ais (p,q)-maximizing for some 1 < p <2 < g <o,
(4) Ais (p,q)-maximizing forall 1 < p < eo, 1 < g < oo,
In this case, Kgl mj (A) <mp,(A) <mj(A4).

Proof. We have already explained that the first two statements are equivalent. All
other implications are then either trivial or follow by monotonicity. g

2.1.8 Almost Everywhere Summation

As anounced earlier one aim of this second chapter is to develop an L,-theory
for classical coefficient tests for almost sure summation of orthonormal series.
The following theorem links the type of maximal inequalities in L,-spaces we
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are interested in (i.e. inequalities induced by maximizing matrices) with almost
everywhere convergence.

Proposition 2. Let A = (ajx) be a (p,q)-maximizing matrix which converges in
each column, and E(l,X) a vector-valued Banach function space. Then for every
o € L, and every weakly q'-summable sequence (xi) in E(11,X) (in the case g = o
we only consider unconditionally summable sequences) the sequence

( 2 a jkakxk) )
k=0 J

converges [L-almost everywhere.

Our proof will turn out to be a sort of model for the noncommutative case in
Chap. 3; see Lemmas 22 and 27. That is the reason why we isolate the following
lemma which here appears to be a bit too “heavy” — but obviously it allows to
deduce the preceding proposition as an immediate consequence.

Lemma 7. Let A = (ajx) be a matrix with ||Al|e < e and such that each column
Jorms a convergent sequence, E(l1,X) a vector-valued Banach function space, and
1 < g < oo, Assume that

(ki)ajkakxk)j € E(1,X)[L.]

for every sequence o € £, and every weakly q'-summable sequence (xi) in E(u,X)
(in the case g = o= we only consider unconditionally summable sequences). Then for
every such o and (x;.) the sequence

( i ajkakxk)

k=0 J
converges [L-almost everywhere.

Proof. We show that for every o and x as in the statement we have

( 2 QA O X —

k=0 k

ajkakxk)( .) € E(1,X)[co(N2)]; (2.26)

i,

0

then we conclude from Lemma 2 that for each w in the complement of a zero set N

lim (zaikakxk(w) fzajkakxk(w)) . =0.
k k

(i) (i.J)

But this means that in CN the sequence (Za jkockxk) _is pointwise Cauchy, the
k J
conclusion.
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In order to show (2.26) we first consider the case 1 < g < oo. Fix a weakly
¢'-summable sequence (x;) in E(u,X). Note first that for (uz) € E(U, X ) [oo]

(e — 1) 1) € E(1,X)[0oo(NG)]

and
[supllen) ., <2 s,

this is obvious, but for later use in noncommutative settings let us also mention
the following argument: if u; = z; f is a factorization according to the definition of
E(1,X)[l), then

we—up = (% —2z)f

defines a factorization for (u; — u;) ). Hence by assumption the mapping
O ly — E(1,X)[6(N3)]

o~ (zaikakxk—zajkakxk)

k k (iaj)

is defined, linear and (by a closed graph argument) bounded. Our aim is to
show that @ has values in the closed subspace E(u,X)[co(N3)]. By continuity it
suffices to prove that, given a finite sequence o = (o, ..., 04,,0,...) of scalars,
Do € E(1,X)[co(N3)]. Clearly, (o4xx)o<k<k, € E(1,X)[l=], and hence there is a
factorization

ogxr =zif, 0<k<ko

with ||z, x) < 1 and f € E(u). But then for all i,

ko ko ko ko
2 Qi Ol X — 2 Qi OgX = 2 (ai — ajk)akxk = ( 2 (aix — ajk)Zk)f-
k=0 k=0 k=0 k=0

This means that the right side of this equality defines a factorization of

ko ko
( 2 Qi O X — Z ajkakxk) )
k=0 k=0 (&)

Since

ko

ko
< Y aw—ajplllzll ey < X law—ajd,
k=0 k=0

ko
Ajf — ajk ZkH
H/Zf)( k=) Le(X)
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and A converges in each column, we even see that as desired

(zaikakxkfzajkakxk) € E(1,X)[co(N)]-
A X (i.)

i,J
For the remaining case g = oo fix o € /., and define
@ ({"(E(1)) — E[l=(N§)]
(xk) ~ (Zaikakxk - Zajkakxk) (
k k

)

Like in the first case we see that @ is well-defined and continuous. Since the finite
sequences are dense in ¢{"“(E(u, X)), we can finish exactly as above. O

2.2 Basic Examples of Maximizing Matrices

For some fundamental coefficient tests within the theory of pointwise summation of
general orthogonal series with respect to classical summation methods, we isolate
the maximal inequalities which come along with these results. In view of the results
of the preceding section this leads to several interesting scales of (p, g)-maximizing
matrices A — the main results are given in the Theorems 7 (ordinary summation),
8 (Riesz summation), 9 and 10 (Cesaro summation), 11 (Kronecker matrices), and
12 (Abel summation).

Let us once again repeat that most of our examples (but not all) have the form
A = (ajk)jken, = SZDy/q, where S is some summation process (see (2.4)), D/
some diagonal matrix with some Weyl sequence w for S (see (2.2)), and X the sum
matrix (see (2.1)):

| =
ajpi= akgksﬂg. (2.27)

In the final section, we link our setting of maximizing matrices with Bennett’s
powerful theory of (p,q)-multipliers. We recall again that logx always means
max{1,logx}.

2.2.1 The Sum Matrix

We already know from Theorem 2 that every matrix SX is (p,q)-maximizing
whenever g < p. The aim here is to prove the fundamental inequality of the theory
of general orthonormal series — the famous Kantorovitch-Menchoff-Rademacher
maximal inequality. This result will then show that every matrix of the form
SXD(1/10gk) in fact is (p,q)-maximizing for arbitrary p,q.



2.2 Basic Examples of Maximizing Matrices 41

Theorem 6. Let (x;) be an orthonormal system in Ly(i) and (ox) a scalar
sequence satisfying Yo |0 10gk|2 < oo. Then the orthonormal series Y 04Xy
converges almost everywhere, and its maximal function satisfies

J
Hsu_py Zakxkszgc||(aklogk)|\2, (2.28)
J k=0

where C is an absolute constant.

Improving many earlier results, the statement on almost everywhere convergence
was independently discovered by Menchoff [60] and Rademacher [81], and today
it is usually called Menchoff-Rademacher theorem (see e.g. [1, 47, 94]). Note
that it is best possible in the following sense: Menchoff in [60] constructed an
orthonormal system (x;) such that for every increasing sequence (@) in R>; with
o; = o(logk) there is an orthonormal series Y ogx; which is divergent almost
everywhere, but such that 3, |0z @|> < . The maximal inequality (2.28) was
isolated by Kantorovitch [46], and the result on almost everywhere convergence is
clearly an easy consequence of it (see also Proposition 2). The optimality of the
log-term in (2.28) can also be shown by use of the discrete Hilbert transform on ¢,
(see e.g. [2, 50, 59]).

The proof of the Kantorovitch-Menchoff-Rademacher maximal inequality (2.28)
is done in two steps. First we show the following weaker estimate: Let (o);_, be
scalars and (x;)}_, an orthonormal system in L, (). Then

where K > 0 is an absolute constant.

Although the literature provides many elementary proofs of this inequality, we
prefer to present a proof within our setting of maximizing matrices. In view of
Theorem 1 the preceding estimate is equivalent to

J

max
0<j<n

o |, < Klognllar]2, (2:29)
k=0 2

m5(X,) < Klogn,

where X, denotes the “finite” sum matrix

1 k<j<
ohi=4 I (2.30)
’ 0 j<k<n.

We show the apparently stronger (but by Theorem 5 equivalent) result

m; .(Z,) < Klogn, (2.31)
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which by Theorem 3, our general characterization of maximizing matrices through
summing operators, is an immediate consequence of the following estimate.

Lemma 8. There is a constant K > 0 such that for all n
m(Z, 0] — 02) < Klogn.

This lemma is well-known; see e.g. [2, 3] and [59]; the idea for the proof
presented here is taken from[94, Sect. III.H.24]. For the estimate 7 (X, : €] — () <
n~'logn+ O(1), where ! is optimal, see [3, Corollary 8.4].

Proof. Consider on the interval [0,27] the matrix-valued function

K’
where D(0) =Y i—0€ 19 as usual denotes the Dirichlet kernel. Since we have that

A(0) =D(0)x®y with x = (¢9); and y = (¢~*?),, the matrix A(6) represents a
one dimensional operator on C". Hence

m(A(0) : 6f — £2) = [[A(8) : 6 — L5 ]| = |D(6)],

and by the triangle inequality this implies that

1 2T 1 2T
_ oL B |
"l(zn /0 A(G)de) <5 /0 ID(6)|d6 < Klogn

Since by coordinatewise integration we have
1 2n

Xy =— A(0)do

=57 | Ao,

the conclusion of the lemma follows. O
Now we give the

Proof (of Theorem 6). It suffices to check the following two estimates:

‘HZ < Oy || (o logh)|l2, (2.32)

/

o 5
g[S S cclamiric
<ot kk /ZE) KV || > || (o logk) |3 )

3

indeed, for 27 < j < 2m+!
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om

S < (|Fanl+] 3 an])

k=241

2(@%? 3 )

=2m41

Hence we obtain by integration from (2.32) and (2.33) as desired

¢
’Jrz max 2 akxk|2).

i ST

J
[ sup| ¥ e[, < Clatog) -
J k=0

For the proof of (2.32) put ¢g := Z/%:o oyx; and @y = Z,%Szlv +1 %Xk, v > 1. Since
v+ 1< 2log(2"), we have by orthogonality

oo oo 2V+l
S v+ 1) ovl3 = llgoll3+ ZvH > Joul?
v=0 v=1 k=2V+1
oo 2v+l
<|@l3+4% Y loxlogkl® < 4]|(ogloghk)]l3.
v=1k=2V+1

On the other hand sup,,

52, ockxk‘ < 3%, || which now implies (2.32):

d > 1
= 3 Ievle = 30+ Dllovlla 5

8

<(Ze+2lel) (2 5r

v=0 V*O
< G| (oylogk) |2

Finally, (2.33) is a consequence of (2.29): We have for all m

om+1

2
2 2
max akxk’H < G (log2™ ol
<2ty 22’":+1 2 (o2 )k:;+l| .
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and hence
oo ) o 2n+l
2
Y ‘ max 2 ockxk‘H §C22(10g2n)2 Yol
n=0 | 2"<l<2 T Sy 2 n=0 k=2741
oo 2n+1
<GY Y lologkl
n=0k=2"+1
< G| (o logh) 13-
This completes the proof of Theorem 6. O

Finally, we extend the preceding theorem within our setting of maximizing
matrices. In combination with Theorem 1 we conclude from Theorem 6 that the
matrix A = XD 1 /1og1) given by

— k<
Aj = logk =/ (234)
0 k>j
is (2,2)-maximizing, hence Theorem 5 implies that this matrix is even (p,q)-

maximizing for all p,q. The following formal extension of this statement comple-
ments Theorem 2.

Theorem 7. Let S be a summation process, and 1 < p < e and 1 < g < oo, Then
the matrix A = SXD | /1og1) given by

Zlf

is (p,q)-maximizing. Moreover, if ¢ < p, then in the preceding statement no log-term
is needed.

Ak = logk

Proof. The matrix S defines a bounded operator on /... Hence we see from
the argument already used in (2.11) and Theorem 6 that SXDy/jog) 1S (2,2)-
maximizing, and therefore (p,q)-maximizing for all possible p,q by Theorem 5.
The final statement is Theorem 2. a

The following consequence of Theorem 4 is an interesting by-product on
summing operators.

Corollary 1. Let S be a summation process. Then the matrices A = SXDy/1og1)
from Theorem 7, if considered as operators from { into -, are 1-summing.

We finish this section with a result on the “lacunarity” of the sum matrix X.

Corollary 2. Take a strictly increasing unbounded sequence (A,) in Rx>q and let
(£,) be its inverse sequence, i.e. if A : R>og — R is linear in the interval [n,n+ 1]
and A(n) := Ay, then £, := {(n) with £ := A~ Let 3° = (07,) be an infinite matrix
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which equals the sum matrix X except that some columns are entirely zero. If for all
n we have

card{k |, <k < {l,y1, the k-th column of £° is non-vanishing} < O(n),

then the matrix A defined by
o?
Jjk .
k<
aji:= { logA(k) =/
0 k>j,

is (p,q)-maximizing for all p,q.
Proof. By Theorem 5 we only have to show that A is (2,2)-maximal, and hence by
Theorem 1 we check that for a given orthonormal series > ogx; in Ly (1)

| sup| S oonn |, < Cll(entog 2o
J k

The proof is based on the Kantorovitch-Menchoff-Rademacher inequality (2.28),
but it also repeats part of its proof. As there, it suffices to check that the sequence of
partial sums

J
0 .
sj= 2 Ok OcXic, J € N
k=0

satisfies the following two inequalities:

X

n

2
max |sz—s[n|H2 < C||(oxlog 1) 2 (2.35)

Uy <<l

Hsup|Sgn| 5, < Cl[(eglog 4)ll2, (2.36)
n

C > 1 some constant. We assume without loss of generality that all ¢, are natural

/ 1/2
numbers and all scalars f3, := (Zi":* Zn 4 |GZ1 L1k 0% |2) / # 0. Define the orthonormal

system

1 byt
y,,::ﬁ— 2 o) 1 1k%Xk, n € N.
" =0,+1

Then we obtain (2.36) from (2.28) (note that 6} ,,, = Gme for ¢ < lpi1):

byt

0 —
% oo, =|
k=0

n
w o 35|
n n k=0 2

1/2

SC(;)IOngﬁkZ)
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s

- 1/2
<c( Yok Y o)
k=0 (=0+1

< C||(oglog M) |2 -

Moreover, from another application of (2.28) (more precisely, the weaker estimate
from (2.29)) and the hypothesis on the number of nonzero columns of A we conclude

V4 £n+l

: 2
D G[f’kakxk‘ H < Clog’n Y oy |?
k=lp+1 2 (=l 1

max
0y <<l

lnt1 2
<C Y |ogloghl?,
k=bpt 1

which after summation over all n yields (2.35). O

2.2.2 Riesz Matrices

For particular summation methods S the log-term in Theorem 7 can be improved. In
the following section we handle Riesz matrices S = R*; recall their definition from
Sect.2.1.1.

Theorem 8. Let (A,), be a strictly increasing unbounded sequence of positive num-
bers with Ay =0, and 1 < p < oo, 1 < g < oo. Then the matrix A = RlZD(l/loglog?Lk)
given by
Ak 1
l———)—— k<
aje = ( kjﬂ)loglog)tk

0 k>j
is (p,q)-maximizing. No log-term is needed whenever q < p.

Recall that we agreed to write logA; for max{l,logA;}. Clearly, the last
statement on the log-term is a consequence of Theorem 2. Moreover, note that
for the special case A, = 2" this result still contains the Kantorovitch-Mechoff-
Rademacher inequality (2.28) together with its (p, g)-variants. From Theorem 4 we
deduce the following immediate

Corollary 3. All matrices A = R* 2 D(1/10glog ) Jrom the preceding Theorem 8, if
considered as operators from £ into e, are 1-summing.

Theorem 8 is due to Bennett [2, Theorem 6.5] who gives a direct, may be more
elementary proof for it, and Corollary 3 was first stated in [3, Corollary 6.4]. Before
we enter the proof of Theorem 8 let us recall what it means in terms of a maximal
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inequality: There is a constant C > 0 such that for each sequence (o) of scalars and
for each sequence (xy) in L, (1)

A
Hsu ‘2 kzﬂ ZOW\H < | Toglog Ax) g wy (xe) (2.37)

In order to prove this inequality we have to check, by what was shown in Theorem 1
and Theorem 5, an a priori weaker estimate for orthonormal series. It suffices to
prove that for each orthonormal series Y oxy in Ly (1) we have

HSU \Z 1171“ ZOWAH < C||(oxloglog A4)||2, (2.38)
j =0

C > 0 some universal constant. This maximal inequality for orthonormal series cor-

responds to a famous almost everywhere summation theorem due to Zygmund [97];

our proof follows from a careful analysis of the proof of Zygmund’s result given

in Alexits [1, p.141], and it is based on the Kantorovitch-Menchoff-Rademacher

inequality (2.28).

Proof (of (2.38)). Define

J J A
Sj= 2 Oy Xy and O = 2 (1 —)L—)ockxk.
k=0 k=0 J+1

By assumption there is a strictly increasing function 4 : R>9 — R being linear
in each interval [n,n + 1] and satisfying A (n) = A, for all n. Put v,, :=[(2"), where
I :R>9 — R is the inverse function of A; we assume that all v,’s are integers
(otherwise the proof needs some modifications). It suffices to check the following
three estimates:

D lsv, —ovll3 < Cille3 (2.39)
n
2 2
2l max Jor—oyll; < Gl (2.40)
n Vi <l<Vpq1
[[sup sy, [[|, < Csl(oxloglog Ae)ll2; (2.41)
n

indeed, for v, < j < V4

2 2
|Gj| S (lo-j_GVm|+|GVm_st|+|st|)

3(|6j — v, >+ [0v,, — Su, > + Isv )

oo

<3(Y max o G+ 3 G — sui? +sup|svn|),

P 0V,,<f<\/n+1 n—0
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and since the right side is independent of j, we have

sup|oj|2<3(z max |0y — Gvn| —1—2|(f\,,1 svn| +sup|svn|).

Vi <l<Vpq1

Hence, we obtain as desired

9

3(Collet][3+Cillex]|3+C3]| (ox loglog A )i 13) < Cll (0w loglog A) 3.

[suplosil; <3(2 I, max lor=clly+ X llow, —su -+ | suplsy|
Vp<t<Vy, n—0 n

For the proof of (2.39) note that v, = 1(2") > k = A~ ' (A) iff n > log A;. Therefore,
(2.39) is obtained by orthogonality as follows:

S lsv—oulB =3 || 3 72 —own|,
n=0 n=0

k=0 )Lvnﬂ

i § (AWH) ol

= Z'“"'z ) (2 )

n:v,>k

o | \2
=Y laul* Y (m) <Ciloxf3-
k=0

n>log Ay
In order to show (2.40) choose for a fixed m some n such that v, <m < v,.1. Then

m Vn+1

|Ow —0v,| < Y, oj11—0j[ < D o)1 — 0y
J=Va J=Va
Vil A Aivo—A; 1
:2( j+1 ) /41 — G|( 42 j+1)2
S\ = A/ ! Aj1
Vit 1 A 1 Vatl 20 1 %
g( AL e - G.|2)2( M) ,
./Z A= Ajer ' j:zvn Ajt1
But
Vint1 A 7Lj Vint1

2 j+2 —

+1 3 n
A < 2mS oy =7
J=Vu ;Lj+1 o )LVn 12 e ]+1 Zn( )
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and by orthogonality
j+l 2 J A 2
2 k k
Oj fo-d:/‘ 1———ogxr — 17—ch’d
/| 41— 0j7du kgf)( Aj“) KXk Zz)( l/+1) K Xk| Al
Aiyo—Aj 2/ AR 2
= (BB (15 g
( ArtAen ) ZE) kO Xi| Al
j+1
- (BZBA)S ata
Ajr12jt2 k=0
Hence

oo

max |0, — Gv,,|2dl.i <7 Z L/Wjﬂ - 0'/'|2dﬂ
SoAjr2— A '

=0 Vn <l<Vpiq

= 9. 27/1' 1j+1
J+ 2]+ 21}{2|ak|2

=17
j=0 7“1’+17“j+2 k=0

—73 ey 3 A A

2
k=0 j=k—1 A./Jrl}‘ju
But since
2 2 2 2
Ao —Ajp1 Aip—Aiy - A=A 11
. 2 . 2 . . = 2 2 2 2
Ajsihiyy ApeidinRyat i) T AL AN, Al A

we now obtain (2.40):

=3

it - 1 1
S| max [or—ol|3<7 S A2lewl
k=0

=0 Vn <l<Vpiq

j=k—1"j41 2

Finally, the proof of (2.41): We may assume without loss of generality that all

v 1
(fa) aoo
Bn:: 7Vn+l %

( 5 |ock|2) n>1

k=vp,+1

are # 0. Then the functions

Vi
+ > opxg n=0
PoZo
Yn o= Vn+1

[}L Y oox n>1
" k=vy+1

> 7S G lal3.

49
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define an orthonormal system in L, (). From logn = loglog2" = loglogA,, we
derive

i Vi fd Vnt1
> [Bulogn* =Y loul*+ Y (logn)* > [oul?
n=0 k=0 n=1 k=v,+1
Vi e Vi1
< Z |ockloglog?tk|2+ Z Z |Otkloglog?tk|2
k=0 n=1k=vy+1

=Y |oxloglog A,
k=0
which in combination with Theorem 6 gives as desired

n
Hsup|svn+1|H2 = HSUI)’ zﬁkyk’HZ
n n k=0

< Cs]|(Bilogh)||3 = Cs]|(ox loglog ) 3.

This completes the proof. O

2.2.3 Cesaro Matrices

We deal with Cesaro matrices C” defined in Sect.2.1.1. Note first that for A, = n
Theorem 8 reads as follows.

Theorem 9. The matrix A = CXD /10g10gk) §iven by

k 1
(1-—) k<j
aji = j+ 1/ loglogk (2.42)
0 k>j

is (p,q)-maximizing for | < p < e and 1 < g <eo. Nolog-term is needed whenever
qg<p-

We will now extend this result for Cesaro matrices C" of order r > 0. For all
needed facts on Cesaro summation of order r we once more refer to the monographs
[1] and [97]. For r € R define Ay = 1, and forn € N

A (n+r) _ (D). (rtn)

ne n n! ’

recall that these numbers are the coefficients of the binomial series
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2 A= )M (2.43)

(z € C with |z] < 1). In particular, we see that the equality

oo o n
S A (11— = 3 (S aTAR )2
n=0 n=0 k=0
implies the formulas
Antrtl — 2 AJA? (2.44)

For a sequence (x;) in a Banach space and r € R define the Cesaro means

where s; again is the kth partial sum of the series Y, x;. Using that ZI{ZOA,’(*I =A]
(this follows from (2.44)) we see that

j j
s = EA;:,lc(xowL...xk) = > xlAg+. Al ) = YA x. (2.45)
k=0 k=0 k=0

In particular, we obtain from (2.43) and (2.45) that

1 o
(1—z)rH1 gbxnzn = 2 (ZAn kxk)z = Z sp2"s (2.46)

therefore

1

r1+1 Z *nZ ) r2+1
=S 0 S ape =3 (3 a2
n=0 n=0

2 S21+r2+lzn _ (
n=0

implying the identities
sttt = ZA” S (2.47)

Furthermore, for r # —1,—2,... an easy computation shows the following well-

known equality
nr
Al =———(1 1)). 2.4
= oo (2.48)
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After this preparation we are able to improve Theorem 9 for Cesaro summation of
arbitrary order r > 0.

Theorem 10. Let r > 0, and 1 < p < oo,1 < g < oo, Then the matrix A =
CrZD(l/loglogk) given by
A;fk 1
aj=< A loglogk
0 k>j

k< j

is (p,q)-maximizing. For q < p the log-term is superfluous.

Note again that the last statement on the log-term is a special case of (the last
statement in) Theorem 7.

Let us prove Theorem 10. As in the preceding section (see Theorem 1 and
Theorem 5) we only have to show that there is some constant C > 0 such that for
each orthonormal system (x;) in some L, (i) and each sequence (04) of scalars we

have
r—1

j

i—k

Hsu_p]Z L Zafxng < C||(o loglogk)|».. (2.49)
J k=0 ) (=0 2

Fix such (x) and (o), and recall from (2.45) that in our special situation

j k J
k=0 (=0 k=0
and
ro__ 1 r
0j =375
J

By Theorem 9 the case r = 1 in (2.49) is already proved, and the case r > 1 is an
immediate consequence of the next lemma (see also [1]).

Lemma9. Letr > —1and € > 0. Then

[[sup|oj <[], < [ sup[ojl],-
j j
Proof. From (2.47) we deduce that s;-+€ = Z',i:()Ai:,: sy, and from (2.44) that

1 ¢ 1
F%A;A;k =1.
J =
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Hence we conclude

Gk

r+£|_}z

k=0

£
Ar+ 0<k<j

which clearly proves our claim. g

The proof of (2.49) for 1 > r > 0 is slightly more complicated, and will follow
from two Tauberian type results (we analyze proofs from [1, p.77,110]).

Lemma 10.

(1) Forr>—1/2ande >0

r+ite

H <CHsup

Z|k| |,

Hsup|6

(2) Forr>1/2

)

Proof. For (1) note that by (2.47) and the Cauchy-Schwarz inequality

[sup +12| of ', < ¢ (lalB+ | suplor]

ri+e2 Y 2 1 J liey2
o [ < Xloif 1 2 (AJA2T0),
k=0 (A2 2 =0
J
and by (2.48) (for j > 1)
1 J lien er J 1
- ATA 2 <C— k71+2£<c‘_,
(Ar.+%+8)2 IZO( k2 j—k )" < 1]2r+1+2£ IZE) =%

J

the conclusion. For the proof of (2) note first that

1 <
]+12|o“|2 D R 2|ok|),
k=0

hence for .
1 J
8 =—Y o/ ' —of
J J+1k§(‘)| k k|
we get that
Jso 7 2], <2, + oo 7 2, )
i Jt15 1 j 1 i Jt1E

< 2(Hsup5;
pe

+|
1 J

r|>
JMa/ "
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It remains to check that ||sup; 67|, < C|le|3. Since A}, = A~ we have by
(2.50) that
J AL
of—o/ = 2( f—Jfk)akxk
. -1
P VY

1
= AVAr — 2 (Ar kAr l—Ar ,1(A )O(kxk

1 J
2 kOCkxk,
A = J
hence by orthogonality
1 & )
r —
I35 =5 2, Arzz Pl
130 0% ATTIN2
PLLIIC N
ST SN A
From (2.48) we get
oo -1 oo [ _
$ (Arhy ce 5 Uk
e Y A
1 2k I oo j2r72 1
. —
SQ@Z(J*/‘) +G Y, <Gy
=k j=2k+1
But then

A
n=0

oo 1 2”
<G Y > Koyl
02"+ 15
oo 1 o
<Cy Zk|0¢k|2 Z WSCSZAOMZ,
k=0 n:2n>k k=0

which gives

sup On

|su <CYlwl
k=0

This completes the proof of (2). O
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Finally, we complete the

Proof (of (2.49) for 0 < r < 1). By Theorem 9

H Su_pG}HZ < Cl|(ox loglogk)]|2,
J

hence we deduce from Lemma 10 that for all € > 0

1+e||? 1 &oop
supo? H gCleup - le} H
H j J 2 j J+1k§(‘)| k| 1

2
<& (Nl +| supo}]|)) < sl (eutoglogh) 3.
J

A repetition of this argument gives

H 2 || 1 2]‘| *%+8|2
sup o;j §C1Hsup,— (o)) H
j 2 i IS !

2 e 2
<l + |[supoi|) < Csll(ex loglogh) 3.
J

the desired inequality. o

This finishes the proof of Theorem 10, a result which in the form presented here
is new — but let us mention again that the inequality (2.49) on orthonormal series
behind Theorem 10 corresponds to the fundamental coefficient tests for Cesaro
summation proved by Kaczmarz [43] and Menchoff [61, 62] (see also (1.7) and
(1.8)). As in the Corollaries 1 and 3 we take advantage to add another natural scale
of summing operators.

Corollary 4. For r > 0 all matrices A = C" XDy 10g10gk) from Theorem 10, if
considered as operators from { into {, are 1-summing.

2.2.4 Kronecker Matrices

We now generate some matrices which later lead to laws of large numbers. The
second part of the following simple lemma is usually known as Kronecker’s lemma.

Lemma 11. Let A = (ajx) be a lower triangular matrix with entries in a Banach
space X. Then

J k _ v/ 1 5/ k :
(1) X—o Tk = Yi—0@jk— T+ Yo Xi—oajt forevery |

(2) lim; ;Tll Zizo kaji = 0 whenever (Z',i:() a jk) converges
' j
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(3) Let A be a lower triangle scalar matrix which is (p,q)-maximizing. Then the
matrix B defined by

apip k<j
b= g1k =

0 k>j
is again (p,q)-maximizing.

Proof. Statement (1) is immediate, and implies (2). In order to prove (3) apply (1)
to see that for every choice of finitely many scalars &, ..., &; we have

)

J k J
SUP’ Y — 1ajk§k‘ <2 Sup’ Y apéy
i it i k=0

and therefore by definition
mpq(B) < 2mp 4(A),

the conclusion. O

It makes sense to call matrices (b ;) like in statement (3) Kronecker matrices — to
see a first example, note that by Theorem 7 and the preceding lemma for any lower
triangular summation process S the matrix

k1T &

is (p,q)-maximizing. Sometimes the log-term can be improved — for example, for
Cesaro summation of order » > 0; here we conclude from Theorem 10 that logk
may be replaced by loglogk. But the following theorem shows that in this case in
fact no log-term at all is needed.

Theorem 11. Let 1 < p < oo 1 < g < co. The matrix M defined by

k k
— (=) k<
mj =< j+1 J+1 (2.52)
0 k>j
is (p,q)-maximizing. More generally, for r > 0 the matrix M" defined by
A’
L =S
miy = JF 1A% (2.53)
0 k>j

is (p,q)-maximizing.
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Let us start with the proof of (2.52). Again we follow our general philosophy —
we only show a maximal inequality for orthonormal series: Fix such a series Y, ogxx
in Lp(u), and put

O—i k ——oyx and jL(l— )ocx
= ) KXk IJ, ATl Xk -

J+1
In order to prove that M is (p,q)-maximizing, by Theorem 1 and Theorem 5 it
suffices to show that
[[sup;l]l, < Cllel2, (2.54)
J

C > 0 some universal constant. The proof of this inequality follows from a careful
analysis of Moricz [63, Theorem 1]; similar to the proof of (2.28) and (2.38) we
check three estimates:

3y — w5 < Cillex3 (2.55)
n=0
- 2
Sl max |} —ppll; < Collelf3 (2.56)
n—0  2n<f<ontl
S (lud 3 < Glle3; (2.57)

n=0
indeed, for 2" < j < 2m+!
2
1 1P < (11 — g |+ 150 — |+ [15])
< 3(|1f — pgn

3(X . max P Y % b Y S P).
n=0

— 02n<[<2n+l

1+ |13 — g * + |15 |?)

| /\

Since the right side is independent of j, we obtain

1 1
max |{; — fp|
2n<gS2n+1 J

| supluf 3 < 3( SN AR NI
J n=0 n=0 n=0

which by (2.55), (2.56), and (2.57) gives the conclusion. (2.55) follows by orthogo-
nality from

oo =) n 1 2" 2
g~ b3 = X [ | g S Kown du
,ZZ) 2! 212 ”gb (2n+1)2k§6

- 412
Z;)zfurl Zk'“"'
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Sl 3 (5)

n:2">k
- L
=Yl ¥ () <Gl
k=0 ok NPT 2%

and (2.57) from

2l

2711 Zka"x"‘ ap = 2 2n+1 2 2"2'0""2

<2|ak|2 > () <Gleld

n:2">k

For the proof of (2.56) note that for 2" < ¢ < 2"*! by the Cauchy-Schwarz inequality

on+l1 on+l1 1
2
Wb < Y el <22 (Y w - uP)’
j=21+1 j=2"+1
and hence
2n+1
1 12 n 1 1 2
max — Lo |” <2 F— U]t
2n<€§2n+l|ﬂe Pon|” < j:;HWj u; il
Since
Ik k iy k
1
M= —( *.—)Othk* f(lf—)akxk
J-1 ,ZE)]—FI j+1 kg;)] Jj
kR +1)— k22— k(4 1)+ k2 +1)2
22 57 3 O X
=0 FU+1)
J 2]+1) k )
= - O Xk
k:O( 2(j+1)2  ji+1)
and fork < j
KQRj+1)  k2j+1) 2k
7 < < — ,
PU+D TG0 TG+
we have

/|H] i Pdu < /’k T Othk’ du = 2( (Ji1)>2|0‘k|2-



2.2 Basic Examples of Maximizing Matrices 59

Hence
) o 2n+1 j k2
max — Uon|"du < 2" oy (2!
e X Mg — s j:;+ll(§;)12(1+1)2| il
1 2n+1 j kz
< > Y |l
2+ 1%, 55
1 2n+l 2n+l 1

S kg‘ok 1o 2 '

Jj=max(k,2""+1)

2n+l 2n+l 1
@ &l I2 2 5
on+1

1
<— 3 Bl
(27 41)2 kg‘o

This finishes the proof of (2.56):

oo oo 1 2n+l

1,12 2 2
26| max |y N2"|2§’§O—(2n+1)226k|0‘k|

— 2n<g§2n+l
2
2 2
<2|ak| Y (3) <Gl

n:2">k

completing the proof of (2.52).

In order to prove (2.53) we follow the method from Sect. 2.2.3. Once again, we
fix an orthonormal series > 04x; in Ly (1) and show, according to Theorem 1 and
Theorem 5, that for

j Kk j
s = ZA;:,I{ > logxg =Y A% kogay (2.58)
=0 =0 k=0

(for this last inequality see (2.45)) and

1

r - T

Hj = Sjo
(J+DA"
the following maximal inequality holds:

[[sup |ujlll2 < Cllella. (2.59)
J

Again the proof follows from an analysis of the work of Moricz in [63, Theorem 2].
In fact, the proof is very similar to the one of Theorem 10 (note the similarity of
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(2.58) with (2.50)) — for the sake of completeness we give some details. With (2.52)
the case r = 1 is again already proved, and the case r > 0 follows from two analogs
of Lemma 9 and Lemma 10.

Lemma 12. Letr > —1and € > 0. Then

Ly

Jsupta 1, < fsupl.

Proof. By (2.47) (as in the proof of Lemma 9) we have

J

1
r+e __ VA*{*I
u; (jJrl)A&e kgask j—k

1

:WZM (k+1)AZAS) = Zﬁ;k#k

(k+1)A;AS]

with 3 ik = > 0, and for these coefficients (use again (2.44))

(j+1ATe
! 1
rF AE—
2 jk = r+£ EA A
k=0
Hence the conclusion is immediate. O
Lemma 13.

(1) Forr>—1/2ande >0

++e

2 1 J
I=<] i
Hsuplu, , S Sgp‘i+_1£§%lukl 1

(2) Forr>1/2

)

[so s z i, < e (et | sulu
Proof. Observe first (see the preceding proof) that

rtgte _ 1 l —dte
p; t = l +£Z/~ll:(k+1)AlrcAjfk 5

U+1M k=0
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hence as in the proof of Lemma 10 (by the Cauchy-Schwarz inequality) we get

+1+e
;2P < C— Z [T

For the proof of (2) define

r

1 <
5= r—1 _ r2’
j ]+1k§(‘)|‘uk nuk|

and show as in the proof of Lemma 10 first

1
Jswos S, =2+ e ).
and then
5155, <6 % 5 Sk
n=0
o 1 o
§C12k|06k|2 D T §C22|06k|2,
k=0 n:2n>k k=0
which again implies the conclusion easily. g

Finally, we deduce (2.59) (and hence complete the proof of Theorem 11) word
by word as this was done in the proof of Theorem 10 (or better (2.49)) at the end of
Sect.2.2.3.

2.2.5 Abel Matrices

The following result on Abel matrices AP (see Sect.2.1.1 for the definition) is a
straight forward consequence of our results on Cesaro summation.

Theorem 12. Let (pj) be a positive and strictly increasing sequence converging to
1. Then the matrix A = AP ZD1 /1og10gk) given by

i
loglogk

Ajx =

is (p,q)-maximizing. Again for g < p no log-term is needed.
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Proof. The proof is standard, we rewrite the matrix A in terms of the Cesaro matrix.
We have for all j and every choice of finitely many scalars x, . .., x;, that (use (2.46)
forr=1)

> pia=(1-p)* Y sip}
k=0 k=0

n k
—(1-p? 3P X
k=0 (=0

1 k L
=2 (1=p))*pf (k+1) T Z Z,Oxm

k=0

Define the matrix S through s = (1 — pj)zp}‘ (k+1). By (2.43) we know that
Yk Sjk = 1 so that S defines a bounded operator on /... Since we just proved that
AP = §C, the conclusion now follows from Theorem 10 (compare the maximal
functions as in (2.11)). The last statement is a special case of Theorem 2. a

As a sort of by product we obtain from Theorem 4 a further interesting scale of
1-summing operators from ¢; to /.. (see also the Corollaries 1, 3, and 4).

Corollary 5. All matrices A = AP X D j1og10gk) Jorm 1-summing operators from £
into le.

2.2.6 Schur Multipliers

We sketch without any proofs that our setting of maximizing matrices is equivalent
to Bennett’s theory of (p,q)-Schur multipliers from [3]; for precise references see
the notes and remarks at the end of this section. As mentioned above our theory of
maximizing matrices was up to some part modeled along this theory.

An infinite matrix M = (mji);ren, With [[M|| < oo is said to be a (p,q)-
multiplier (1 < p,q < eo) if its Schur product M x A = (mjia i) j x with any infinite
matrix A = (ajx)jken, maps £, into £, whenever A does. In this case, the (p,q)-
multiplier norm of M is defined to be

Upg(M) =sup||[MxA: L, — L],

the infimum taken over all matrices A which define operators from ¢, into ¢, of
norm < 1. For p = g =2 we simply speak of multipliers; we remark that

2 (M) = [|M||e, (2.60)

where ||M||., denotes the completely bounded norm of M which via Schur
multiplication is considered as an operator on the operator space -Z (¢,).
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Moreover, it is known that the (p,q)-multiplier norm has the following formula-
tion in terms of summing norms:

Upg(M)= sup my(MDyg) (2.61)

llalle, <t

(here M is considered as an operator from ¢ into {e, and Dy, : £,; — {1 denotes
again the diagonal operator associated to ¢¢). From Theorem 3 we conclude that M
is a (p,q)-Schur multplier if and only if M is (g, p)-maximizing — with equal norms:

Hpg(M) = mg, ,(M). (2.62)

This in particular means that all facts of the rich theory of Schur multipliers apply
to maximizing operators, and vice versa. We mention some consequences, of course
focusing on maximizing matrices:

(1) Obviously, pp (M) = uy (M"), where M' is the transposed (or dual) matrix
of M, hence by (2.62) we have

my,q(M) =my (M').

By definition it is obvious that (p,¢)-maximizing matrices are insensitive with
respect to row repetitions or row permutations, i.e. if A is (p,¢)-maximizing,
then

mp 4(A) = mp-,q(/i)

where A is obtained from A by repeating or permuting rows. By transposition,
we see that m, , is insensitive to column repetitions or permutations.

(2) For two (p,q)-maximizing matrices A and B their Schur product A * B is again
(p,q)-maximizing, and

my, 4(A*B) =mp4(A) mp4(B)

(a fact obvious for Schur multipliers). A similar result holds for tensor products
(Kronecker products) of Schur multipliers,

my, 4(A®B) <my4(A) mp4(B).

(3) Denote by T, the nth-main triangle projection, i.e. the projection on the vector
space of all infinite matrices A = (a ) j keny, With ||A[|e < e defined by

Li(A) = 3 ajre;@ex;
J+k<n
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obviously, 7,,(A) = A x ©,, where

. 1 j+k<n
@Vl (Ja k) =
0 elsewhere.

Then we conclude from (2.62) that for arbitrary p, g

Hq.p(On) = my4(6,) = mp¢(Z,),

where X, again is the sum matrix (see (2.30)); here the last equality is obvious
by the definition of the (p,q)-maximizing norm. From Theorem 2 and the
estimate from (2.31) (use also (2.8)) we deduce that for some constant C
independent of n
Clogn <
Hq.p(On) < or=
C qg<p.

(4) Recall that a matrix M = (m jk)j,keNg is said to be a Toeplitz matrix whenever it
has the formm j; = c;_; with c = (¢n)nez a scalar sequence. A Toeplitz matrix is
(2,2)-maximizing if and only if there exists a bounded complex Borel measure
u on the torus T such that its Fourier transform fl equals c.

(5) Denote by ¢ the closed convex hull of the set of all (2,2)-maximizing matrices
A of the form aj; = o B, where o and 3 are scalar sequences bounded by 1
and the closure is taken in the coordinatewise topology. Then we have that

¢ C{Almy,(A) <1} CKgC,
K¢ Grothendieck’s constant.

Notes and remarks: The close connection of Schur multipliers and summing opera-
tors was observed and elaborated by many authors. See for example Grothendieck
[21], Kwapien-Pelczynski [50] and, very important here, Bennett’s seminal paper
[3] which is full of relevant information for our purpose and motivated large part
of this second chapter. Equation (2.61) is Bennett’s Theorem [3, Sect.4.3], and
(2.60) is a result due to Haagerup [25]. For Schur multipliers instead of maximizing
matrices the Theorems 4 (note that its analog from [3, Theorem 6.4] for multipliers
is weaker and contains a wrong statement on the constant) and 5 are well-known;
for p = g see [78, Theorem 5.11] and the notes and remarks thereby (Pisier:*“ Once
Kwapien had extended the factorization theorems to the L,-case, it is probably fair
to say that it was not too difficult to extend the theory of Schur mulipliers ...”).
Remark (1), (2) and (4) from Sect. 2.2.6 are taken from Bennett [3] (there of course
formulated for Schur multipliers instead of maximizing martrices), and Remark (5)
from [78]. For the final estimate in 2.2.6, (3) see [2] and [50].
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2.3 Limit Theorems in Banach Function Spaces

It is remarkable that most of the classical almost everywhere summation theorems
for orthogonal series in L, (1) without too many further assumptions in a natural
way extend to vector-valued Banach function spaces E (i, X).

We illustrate that our setting of maximizing matrices in a very comfortable
way leads not only to the most important classical results, but also to strong new
extensions of them. We show, as announced earlier, that most of the classical
coefficient tests on pointwise summation of orthogonal series — in particular those
for Cesaro, Riesz and Abel summation — together with their related maximal
inequalities, have natural analogs for the summation of unconditionally convergent
series in vector-valued Banach function spaces E(u,X).

The main results are collected in the Theorems 13 and 14, and then later applied
to classical summation methods (see the Corollaries 6 and 7). Moreover, we prove
that each unconditionally convergent series in L, (1) is Riesz*-summable for some
sequence A; this is an L,-analog of an important observation on orthonormal series
apparently due to Alexits [1, p.142]. We finish this section with a systematic study of
laws of large numbers in vector-valued Banach function spaces E (i, X ) with respect
to arbitrary summation methods — in particular we extend some “non logarithmical”
laws of large numbers due to Moricz [64].

2.3.1 Coefficient Tests in Banach Function Spaces

We start with a description of the situation in L,-spaces — here the main step is a
rather immediate consequence of our general frame of maximizing matrices:

Assume that S is a summation method and @ a Weyl sequence (see (2.2) for the
defintion) such that for each orthonormal series > oyxy in Ly (1) we have that the
maximal function of the linear means

sy, —x, jENy
k=0 = =0 @

is square integrable,

oo k
sup‘ 2 Sk 2 %xg’ eLly(u); (2.63)
i k=0 " =0 @
this implicitly means to assume that we are in one of the classical situations
described above. How can this result be transferred to Lj-spaces, 1 < p <o ?

By Theorem 1 our assumption means precisely that the matrix A = SX D/, is
(2,2)-maximizing. As a consequence A by Theorem 5 even is (p,ec)-maximizing,
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1 < p < oo, i.e. for each unconditionally convergent series ¥, x in L, (1) we have
that

oo k
X
sup| ¥ sk Y o | € Ly(w), (264
i k=0 " im0 @

or equivalently in terms of an inequality, there is a constant C > 0 such that for each
such series

oo k
X¢
sup S —H < Cwil(xg).
| op| 35 3 o], < omtw)

But then we deduce from Proposition 2 that for each unconditionally convergent
series X xy in Ly (1)

k

];Oz)—’; - li;nkzas jkgaz)—i U-ae. (2.65)
To summarize, if we start with a classical pointwise summation theorem on
orthogonal series and know in addition that the underlying summation method even
allows a maximal theorem for these series like in (2.63), then we obtain with (2.64)
and (2.65) a strong extension of this result in L,-spaces. Based on tensor products
we now even prove that here L, () can be replaced by an arbitrary vector-valued
Banach function space E(u,X), and this without any further assumption on the
function space E(u) or Banach space X.

Theorem 13. Ler E(i) be a Banach function space, X a Banach space, and A =
(ajk) a (2,2)-maximzing matrix. Then for each unconditionally convergent series
Sixr in E(U,X) the following statements hold:

(1) sup; H Zf:odjkxk(')HX €E(u)
(2) The sequence (22":0 a jkxk)j converges [L-a.e. provided (a i) converges in each
column.

In particular, let S be a summation method and ® a Weyl sequence with the
additional property that for each orthonormal series Y og.xy in Ly(1L) we have

o k
Oy
SU_P‘ > s Y, —XZ‘ € Lo(1).
J k=0 = i=o @

Then for each unconditionally convergent series Y x;. in E (1, X) the following two
statements hold:

) supy | Sosnshe | e

o Xk . o kX
(4) Xiio— =lim; ¥ ospXy_g— MU-ae.
W wy
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Proof. In order to establish (1) we prove that for all n
[idg(ux) @A E(1,X) ®e ] — E(u,X) 2] < Ko ma2(A), (2.66)
where A, equals A for all entries aj; with 1 < j,k <n and is zero elsewhere, and

K¢ again stands for Grothendieck’s constant. Indeed, this gives our conclusion: For
a finite sequence (x;)7_, € E(it,X)"*! we have

a
E(uX)e

(direct calculation) and
(1dE (1.X) KAy ) (ZX/( ® Ek) = Zxk ® A, (er)
k
= zxk (39 zajkakej
k J
=2 (zaijk) ®ej,
J k
therefore

lidEx) ®A"(§X"®e") iy = | S‘}pHga"'kxk(JHXHE( )

Hence we have shown that for every choice of scalars o, ..., o, and functions
X0y, Xn € E(U,X)

H SijH%aijk(-)HxHE(m < Ko maa(A)wi () ,

which then by Lemma 3 allows to deduce the desired result on infinite sequences.
In order to prove (2.66) note first that by (2.24) and again Theorem 4 we have

1(An) <K 12(An) = Kg ma(Ay) .
Hence we deduce from (2.23) and Lemma 3 that
| 1dp(y x) ®An E(u,X)®el] — E(U,X) @7 L] < 1(An) < K mpa(A),

but since
id: E(u,X) @7 0% — E(u,X)[("]] <1,

this gives the desired estimate (2.66) and completes the proof of (1). The proof
of statement (2) is now a consequence of Proposition 2. For a slightly different
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argument which avoids Lemma 3 see the proof of Theorem 17. Finally, for the proof
of (3) and (4) define the matrix

=
A=82XDy/p, ajx:=— ) Si,
l/o J (DkZ;(j

and note that for all j
o oo k
Xy
PTE DD N
k=0 k=0 =0 @

Then we conclude by the assumption on S and Theorem 1 that A is (2,2)-
maximizing which allows to deduce (3) from (2). Since by Proposition 1 for all &

1 & 1/ & 1
limay =lim—Y s, = lim—( Sio— S‘g) —— Q6]
i ja)kg;(’ joa Z(‘)" Z(‘)’ o
statement (4) is consequence of (2). O

To illustrate the preceding result, we collect some concrete examples on sum-
mation of unconditionally convergent series in vector-valued Banach function
spaces. Note that in order to start the method one has to find appropriate maximal
inequalties, i.e. to make sure that the matrices SXD;, are (2,2)-maximizing
(Theorem 1). In the literature most coefficient tests for almost sure summation (with
respect to a summation method S and a Weyl sequence @) do not come jointly
with a maximal inequality. As mentioned, the maximal inequality (2.28) joining
the Menchoff-Rademacher Theorem 6 was discovered much later by Kantorovitch
in [46]. We showed in the preceding Sect.2.2 that in many concrete situations the
needed maximal inequalities follow from a careful analysis of the corresponding
coefficient tests; for pure summation S = id this is the Kantorovitch-Menchoff-
Rademacher inequality (2.28) from Theorem 6, for the Riesz method R* see (2.38)
inducing Theorem 8, for the Cesaro method of order r (2.49) inducing Theorem 10,
and finally Theorem 12 for the Abel method.

Corollary 6. Let Y x; be an unconditionally convergent series in a vector-valued
Banach function space E(l,X). Then

(1) sup, zioi%HXEE(u)

i A — A
RIS
(2) sup; || 2o Ajs1 2i-0 loglogl H

unbounded and posmve sequence (M) of scalars

W) for every strictly increasing,

(3) sup; Zk 0 € E(u) for everyr >0

ZF 0 loglogEH

o Xk
(4) sup; || 2i=oP floglong

sequence (pj) converging to 1.

) for every positive strictly increasing
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Moreover, in each of these cases

a)k_hmzs’kz‘ U—ae.,

where the summation method S is either given by the identity, Rieszl, Cesaro”, or
AbelP matrix, and © is the related Weyl sequence from (1) up to (4).

For E(u,X) = L,(u) the origin of statement (1) in Corollary 6 lies in the article
[50, Theorem 5.1] of Kwapient and Pelczyniski where a slightly weaker result is
shown. The final form of (1) in L,-spaces is due to Bennett [2, Theorem 2.5,
Corollary 2.6] and Maurey-Nahoum [59], and was reproved in [68]. Moreover, in
this special situation, statement (2) is also due to Bennett [2, Theorem 6.4], whereas
both statements (3) and (4) seem to be new. Recall that the underlying four classical
coefficient tests for orthogonal series are well-known theorems by Kaczmarz [43],
Kantorovitch [46], Menchoff [60, 61, 62], Rademacher [81], and Zygmund [97].
Finally, we mention that by use of Corollary 2 a “lacunary version” of statement (1)
can be proved.

We now extend the preceding result considerably. A Banach function space E (1)
is said to be p-convex if there is some constant C > 0 such that for each choice of
finitely many functions x1,...,x, € E(i) we have

1/p

H( |xk|p) HE(u) SC(%”%HZ(”)) ) (2.68)

and the best such C is usually denoted by M(P)(E(u)) (compare also with
Sect.3.1.1). We here only mention that every Banach space L, () is p-convex with
constant 1, but there are numerous other examples as can be seen e.g. in [53, 54].

Theorem 14. Let A = (ajx) be a (p,q)-maximizing matrix, E() a p-convex
Banach function space, and X a Banach space. Then for every o € £, and every
weakly q'-summable sequence (x;.) in E(1L,X) we have

SUPH zajkakxk(')HX €E(u),
i "o

and moreover (Zk 0a ,kockxk) converges [L-a.e. provided each column of A con-

verges, for this latter statement assume that (xx) is unconditionally summable
whenever q = oo.

Note that Theorem 14 still contains Theorem 13 as a special case: If A is
(2,2)-maximizing, then we conclude from Theorem 5 that the matrix A is even
(1,e0)-maximizing. Since every Banach function space E is 1-convex, in this special
situation no convexity condition is needed.
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Proof. Again, it suffices to show that for every choice of finitely many scalars
®, .-, 0y
lide(x) ©AnDa  E(1,X) @e ly — E(, X)[2)]
(2.69)
< MP(E()) mpq(A)]er]g

where Dy, stands for the induced diagonal operator, and A,, equals A for all entries
aj with 0 < j, k < n and is zero elsewhere. Indeed, as above we then obtain the
conclusion: For any finite sequence (x)7_, € E(1,X)""! we have

n
IZZJXI( o E(uX)®ely,
and
(ldE(pX ®A D(x) (Zxk@)ek) Z(Zajkakxk) ®ej.
k
Then

|00 @D (S ) e = | sup | ol .,
and hence we obtain the inequality
| sup | S amonry||, < MO EW) myg4) ellgwy (xe) -
ik (1)

Finally, this inequality combined with Lemma 3 gives the statement of the theorem.
For the proof of (2.69) fix scalars o,...,0,. By the general characterization of
(p,q)-maximizing matrices from Theorem 3 as well as (2.18) and (2.19), we obtain
a factorization

AnDg
[}

with
IR I Dull IS < (1+€) 1p(ADa) < (1+€) mp 4(A)][etlg-
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Tensorizing gives the commutative diagram

145 (u.x) ©AnDo

E(u,X) ®e E(u,X)[en)
idE(u,X) ®R idE(/_l‘X) S
idE(u,X) ®Dy
E(11,X) @¢ L2 Uy (E(u,X)) -

By the metric mapping property of € we have
lidex) @R|| < IR

and moreover

HidE(mX) ®Dy, (iiXk@ek) ) (é”likxkugmx))l/l’

& 1/p
< sup il (3 )
k k=0

implies
[[idg(u.x) @Dyl < 1Dyl -
We show that

[ idgux) @S| < MP(E)) IS : (2.70)

indeed, as an easy consequence of (2.68) and Holder’s inequality we obtain

| s y|zs,kxk il = 0 (2|s,k|f’) (lexk O

..........

m

:.' sup (§)|Sjk|p/> H(ZHXk HX) HE(u)

1/p

<MP)(E(u) sup (Z |s]k|[7> /v (él\xklh’éwx)) )

and this completes the proof of (2.69). The result on almost everywhere convergence
again follows by Proposition 2. O
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Corollary 6 presents analogs of classical coefficient theorems with logarithmic
Weyl sequences for unconditionally convergent series in vector-valued Banach
function spaces, e.g. on Cesaro or Riesz summation. The following result shows that
under restrictions on the series and the underlying function space these logarithmic
terms are superfluous.

Corollary 7. Assume that 1 < g < p < e, and let E(l) be a p-convex Banach
function space and X a Banach space. Then for each o € {; and each weakly
q'-summable sequence (x;) in E(1L,X) we have

A1 —

(1) sup; Zizoakxk(')HXEE(N)
(2) sup; ZiZOA—MZIEZOQgXZ(-)HX € E(u) for every strictly increasing,
j+1

unbounded and positive sequence (M) of scalars
r—1

(3) sup; Zizo A—;k 212:0 ch)Cg(-)HX € E(u) for every r >0
J

(4) sup; (| o pjl-‘ oy xe(+) HX € E(u) for every positive strictly increasing sequence
(pj) converging to 1.

Moreover, in each of these cases
o oo k
2 ogxy = lim 2 Sk 2 oyxe(r) H—ae.,
k=0 T k=0 (=0

where the summation method S is either given by the identity, Rieszl, Cesaro”, or
AbelP matrix.

Proof. The argument by now is clear: For each of the considered summation
methods the matrix A = S X by Theorem 2 is (p, ¢)-maximizing. Since

oo k

Z Ajp X = 2 Sik Q2 Xt
k=0 k=0 (=0

Theorem 14 gives the conclusion. The result on pi-a.e. convergence again follows
from Proposition 2. g

Of course, the preceding corollary could also be formulated for arbitrary
summation methods instead of the four concrete examples given here. Statement
(1) is a far reaching extension of a well-known result of Menchoff [60] and Orlicz
[67] for orthonormal series.

Finally, we present a sort of converse of Corollary 6,(2): The sum of every
unconditionally convergent series Y;x; in E(i,X) (such that E(u) and X have
finite cotype) can be obtained by almost everywhere summation of its partial sums
through a properly chosen Riesz method. Recall that a Banach space X has cotype
P, 2 < p < oo whenever there is some constant C > 0 such that for each choice of
finitely many vectors xi,...,x, € X we have
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(Zsr) " <c( [ IZnomlfar)™ @

here r; as usual stands for the ith Rademacher function on [0, 1]. It is well-known
that each L,(u) has cotype max{p,2}. A Banach space X is said to have finite
cotype if it has cotype p for some 2 < p < eo.

Corollary 8. Let E(ut) be a Banach function space and X a Banach space, both of
finite cotype. Assume that Y x; is an unconditionally convergent series in E(1,X),

and f its sum. Then there is a Riesz matrix R* = (r?k) such that

oo k
sup H > Zw(-)HX €E(n),
J k=0 " (=0
and [-almost everywhere
o k
lim )’ rj\k D x =
T k=0 " =0

In the case of orthonormal series this interesting result is a relatively simple
consequence on Zygmund’s work from [97] (see e.g. [1, p.142]).

Proof. Tt can be seen easily that E (i, X) has finite cotype, say cotype r for 2 < r < oo
(see e.g. [57, Theorem 3.3]). We know that the operator

u:co— E(W,X), uey :=x

by aresult of Maurey is g-summing for each r < g < oo; indeed, the fact that £ (1, X)
has cotype r implies that u is (r,1)-summing, and then it is r 4+ £-summing for each
€ >0 (see e.g. [6, Sect. 24.7]). Fix such g. Then by (2.16) we get a factorization

u

O —— E(/'laX)

N

by

where v is some operator and Dy, is a diagonal operator with ¢« € ;. In particular,
we see that x; = oy y, where the yy := v(ey) form a weakly ¢’-summable sequence in
E(u,X). Choose a positive sequence S“k) which increases to oo and which satisfies
Sk |lon|9 < oo. Define first A := 22"*, hence ¥ |0 loglog Ax|? < oo, and second
the desired Riesz matrix R* by

Ak+1 — X
0 k>j.

k< j
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By Theorem 8 the matrix product A = R* 2 D(1/10gl0g2,) given by

Ak 1

aj = Ajv1” loglog Ay
0 k>j

is (p,¢)-maximizing — in particular, we have that

k o
suplzrﬁk Zw‘ = su_p‘ > aji oy loglog Ay )’k‘ €E(u,X).
J k (=0 J k=0

In order to obtain the second statement we conclude from Proposition 2 that
. o
(erk Zw) = ( D aji oy loglog Ay yk) ,
k=0 "/ k=0 J

converges -almost everywhere. Since (r%k) is a summation process we finally see —
taking the limit first in E (i, X) — that

k
fzzxk:hmzr%kzxg u—ae.,
k il

which completes the proof. O

2.3.2 Laws of Large Numbers in Banach Function Spaces

Given a sequence of random variables X; on a probability space all with variation 0,
a typical law of large numbers isolates necessary conditions under which the
arithmetic means
1 J
— 2 X
)

converge to zero almost everywhere. Of course, theorems of this type also make
sense if instead of the arithmetic means we take linear means

ik
D sk X
k=0 (=0

with respect to a given lower triangle summation process S. Via Kronecker’s
Lemma 11 each coefficient test for orthonormal series generates a law of large
numbers for orthogonal sequences — this is the content of the following
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Lemma 14. Let S be an lower triangular summation method and ® a Weyl

>
sequence. Then for each orthogonal sequence (x;) in Ly (1) with Y % [[xk][3 < oo
we have

1 J k
Iim—— » sy > xy =0 u—a.e.
j ]+1k§6 ! Z;)

If S in addition satisfies that for each orthonormal series Y, oxy in Ly (1)
J k
X
S“P‘ 2 ik 2 —xz’ € La(p),
i k=0 " im0 @
2
then for each orthogonal sequence (xy) in Ly(1L) with Y %— [lxk |3 < oo

1 J k
sup‘,— Sik xg’ELg(/.i)
PPN

This result in particular applies to ordinary summation, Riesz* summation, Cesaro”
summation or AbelP summation, and ® in this case is the related optimal Weyl
sequence (see Sect. 2.2).

2
Proof. Take some orthogonal sequence (x) in Lp(u) such that 3 c:—ﬁkaH% < oo,

Then > %lkx"ul”%f”—z is an orthonormal sequence, and since ® is a Weyl sequence
for S we see that

hmzsjkzxifzxk —a.e.

Define the matrix A = SX and note that for each choice of finitely many scalars

o, &)
Zalkék = 251k2§/
k=0 (=0

Hence by Kronecker’s Lemma 11,(2) we see that

J

1L ¢
—hm zajkxk m-—— zsjkzw u—a.e.
/ I+15S 75

To prove the second result, note that by assumption we have that

sup‘Zsjkz ‘GLZ
k=0

J
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Hence we apply Lemma 11,(1) to conclude that

1 j k J 1
sup‘.— ZSijX[‘:Sup‘Z—, ajkxk‘
RN gk e S i i+l

J
§25up’ Zajkﬁ’
J k=0 k

J ko
¢
:quplzsjk27’€L2(#)v
i Y=o T =0

the conclusion. O

To see an example we mention the law of large numbers which in the sense of
the preceding result corresponds to the Menchoff-Rademacher theorem 6 (see e.g.
[82, p.86-871): For each orthogonal system (x) in Ly(1) with ¥ k’,;#ﬂxkﬂg < oo
we have )

J - 0
lim —— » x; = —a.e.
o+l ,Z;) ‘ H
and
J
Zxk’ € Lo(u). (2.72)

1
sup‘,—
JRLY Rl Y

The main aim of this section is to show that each such law of large numbers
for orthogonal sequences of square integrable random variables which additionally

satisfies a maximal inequality like in (2.72), transfers in a very complete sense to a
law of large numbers in vector-valued Banach function spaces E (1, X).

Theorem 15. Let S be a lower triangular summation method. Assume that @ is an
increasing sequence of positive scalars such that for each orthogonal sequence (xy)

in Ly(1) with 3 c:—éfokH% < oo we have

1 4 k
sup‘.— Y sk in‘ €Ly(1).
R
Then for each unconditionally convergent series Y. %xk in E(u,X)
(1) sup; | 7 Sosahox ()|, € Ew)

(2) 1imj]%z;:0sjkz’gzox€ =0 u-ae.

Proof. We have to repeat part of the preceding proof. For every orthonormal series
>k 04xx in Ly (1) we have by assumption that

Lol Kot
sup‘ —Sjk —Otg)C[‘ELZ‘u .
j IZE)J+1 ! Zb“’f )
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Moreover for .
TN ij sip k<j
bjk:: (]+1)(Dk =k J
0 k>j
(compare with (2.5)) we have for each choice of scalars &, ..., &; that

Zb/kék 2 1]k2 &

Hence, we deduce from Theorem 1 that B is (2,2)-maximizing, and obtain (1) from
Theorem 13, (1). Moreover, since the kth column of B converges to 0 (compare
with (2.67)), we deduce from Theorem 13, (2) that the limit in (2) exists almost
everywhere, and it remains to show that this limit is 0 almost everywhere. Define
the matrix A = SX. Since S is a summation method and the series Y, % converges
in E(u,X), we have

> . 2 Kxp Xk
Y L =tim Y sy Y = =lim Y aj—
ko k:OSij:O ¢ k:()ajkk,

k=0

the limits taken in E(u,X). Hence by Kronecker’s Lemma 11,(2) we see that in
E(u,X)

S
O:h}anr_lkg()aijk hjn—zsjkzx/

As a consequence a subsequence of the latter sequence converges almost every-
where to 0 which clearly gives the claim. g
As a particular case, we deduce from (2.72) the following

Corollary 9. For sequences (x;) in E(W,X) for which Y, %xk converges uncon-
ditionally we have

1 J
Iim—— ) x,=0 —a.e.
jj+1k§;)" H
and
1 J
supH,— xk-H cE(u).
; ]HZ,O O]l € Ew)

Applying Theorem 9 to Theorem 15 we obtain in the same way that, given a
sequence (xx) in E(u,X) for which X ka converges unconditionally, we have

ZZW 0 u—ae. (2.73)
J"H Zk 00=0
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and

ol 1 % Bt <)
k=0 (=0
It is surprising and part of the next theorem that in contrast to the situation in
Corollary 9 the double logarithmic term in the assumption for (2.73) is superfluous —
even for Cesaro summation of arbitrary r > 0.

Theorem 16. Let Y, )-;(k be an unconditionally convergent series in some vector-
valued Banach function space E(U,X). Then for each r > 0 we have
A 1
(1) sup, || 7 50 St 5 ]| € E)
A~ l

(2) hrnj]HZk 0 A, Z[ 0Xx¢ =0 p—ae.

For the very special case of orthogonal sequences (x;) in some L, (i) statement (2)
of this result is due to Moricz [63, Theorem 2]; our proof will use Theorem 11 which
after all was a consequences of the maximal inequalities (2.54) and (2.59).

Proof. Recall the definition of Cesaro summation of order r from Sect. 2.1.1:

r—1
j—k .
k<
=4 A
0 k>j,
and that for each choice of scalars &, . ..,&; we have
1 J rf k J k A
P A Z = £&
]+ k=0 (=0 k— 0]+ 1 A

(see (2.45)). Moreover, we proved in Theorem 11 that the matrix M" defined by
ko ALy
0 k>j

k<j

is (2,2)-maximizing. Hence, we know that by the very definition of maximizing

matrices for each orthogonal sequence (xy) in Lo () with ¥ =52 ||ka2 < oo we have

Ar 1 k
sz‘ €Lr(1),
(=0

1
sup‘,
j J+1IZE)

i.e. the matrix C” satisfies the assumptions of Theorem 15 which in turn gives the
desired result (@, = 1). a
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