
Chapter 2
Commutative Theory

2.1 Maximizing Matrices

We invent a class of infinite matrices A = (a jk)∞
j,k=0 called (p,q)-maximizing; its

definition (see Definition 1 in Sect. 2.1.3) is motivated by a number of classical
maximal inequalities intimately related with almost sure summation of orthogonal
series with respect to Cesàro, Riesz, and Abel summation. The main examples
(given in the next section) are matrix products A = S Σ and their “diagonal
perturbations” S Σ D1/ω , where S is a summation process (see (1.5)), Σ = (σ jk)
the so-called sum matrix defined by

σ jk =

⎧
⎨

⎩

1 k ≤ j

0 k > j ,
(2.1)

and D1/ω the diagonal matrix with respect to a Weyl sequence ω . Recall that
an increasing and unbounded sequence (ωk) of positive scalars is said to be a
Weyl sequence with respect to a summation method S = (s jk) whenever for each
orthonormal series in L2(μ) we have that

∑
k

αkxk = lim
j

∑
k

s jk

k

∑
�=0

α� x� μ-a. e. (2.2)

provided ∑k |αkωk|2 < ∞; as already explained in (1.6) we call a theorem of this
type a coefficient test.

Based on Nagy’s dilation lemma we in Theorem 1 characterize (2,2)-
maximizing matrices in terms of orthonormal series in L2(μ), a result which
later in Sect. 2.2 will turn out to be crucial in order to derive non trivial examples
of maximizing matrices from classical coefficient tests. Theorem 2 shows that
for q < p every matrix product S Σ is (p,q)-maximizing, whereas for q ≥ p an
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16 2 Commutative Theory

additional log-term is needed. By Theorem 7 we have that S Σ D(1/ logn) is (p,q)-
maximizing whenever q≥ p. In this context a characterization of (p,q)-maximizing
matrices in terms of p-summing and p-factorable operators (Theorems 3 and 4) in
combination with Grothendieck’s fundamental theorem of the metric theory of
tensor products leads to a powerful link between the theory of general orthogonal
series and its related Lp-theory (Theorem 5).

Let us once again mention that this first section was very much inspired by
Bennett’s seminal papers [2] and [3]. Finally, note that some of our proofs at a
first glance may look cumbersome (see e.g. Lemma 2), but we hope to convince
the reader that our special point of view later, in the noncommutative part of these
notes, will be very helpful.

2.1.1 Summation of Scalar Series

For a scalar matrix S = (s jk) j,k∈N0 with positive entries we call a scalar- or Banach
space-valued sequence (xk) S-summable whenever the sequence

( ∞

∑
k=0

s jk

k

∑
�=0

x�

)

j
(2.3)

of linear means of the partial sums of ∑k xk (is defined and) converges. The matrix
S is said to be a summation method or a summation process if for each convergent
series s = ∑k xk the sequence of linear means from (2.3) converges to s,

s = lim
j

∞

∑
k=0

s jk

k

∑
�=0

x� . (2.4)

All results and examples we need on summation methods are contained in the mono-
graphs of Alexits [1] and Zygmund [98]. The following simple characterization of
summation methods is due to Toeplitz [91].

Proposition 1. Let S = (s jk) be a scalar matrix with positive entries. Then S is a
summation method if and only if

(1) lim j ∑∞
k=0 s jk = 1

(2) lim j s jk = 0 for all k

Moreover, for each Banach space X and each convergent series s = ∑k xk in X we
have (2.4), the limit taken in X.

Here we will only prove the fact that (1) and (2) are sufficient conditions for S
to be a summation method, or more generally, that (1) and (2) imply (2.4) for every
series ∑k xk in a Banach space X (the necessity of (1) and (2) will not be needed in
the following).
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Proof. Take a series s = ∑∞
k=1 xk in a Banach space X , and fix some ε > 0. Then

there is k0 such that we have ‖∑k
�=0 x� − s‖ ≤ ε for all k ≥ k0. Then for any j we

have

∥
∥
∥

∞

∑
k=0

s jk

k

∑
�=0

x� − s
∥
∥
∥ ≤

∥
∥
∥

∞

∑
k=0

s jk(
k

∑
�=0

x�− s)
∥
∥
∥+

∥
∥
∥s

∞

∑
k=0

s jk − s
∥
∥
∥

≤
k0

∑
k=0

s jk‖
k

∑
�=0

x�− s‖+
∞

∑
k=k0+1

s jk‖
k

∑
�=0

x� − s‖+
∥
∥
∥s

∞

∑
k=0

s jk − s
∥
∥
∥

≤
k0

∑
k=0

s jk‖
k

∑
�=0

x�− s‖+ ε
∞

∑
k=0

s jk +
∥
∥
∥s

∞

∑
k=0

s jk − s
∥
∥
∥,

and hence the conclusion follows from (1) and (2). ��
The following are our basic examples:

(1) The identity matrix id = (δ jk) is trivially a summation method, and obviously
(xk) is summable if and only if it is id-summable.

(2) The matrix C = (c jk) given by

c jk :=

⎧
⎨

⎩

1
j + 1

k ≤ j

0 k > j

is called Cesàro matrix, and for each series ∑k xk (in a Banach space X)

∞

∑
k=0

c jk

k

∑
�=0

x� =
1

j + 1

j

∑
k=0

k

∑
�=0

x�

is its jth Cesàro mean. C-summable sequences are said to be Cesàro summable.
(3) For r ∈ R define Ar

0 = 1, and for n ∈ N

Ar
n :=

(
n + r

n

)

=
(r + 1) . . . (r + n)

n!
;

in particular, we have A1
n = n + 1 and A0

n = 1. Then for r > 0 the matrix Cr =
(cr

jk) defined by

cr
jk :=

⎧
⎪⎨

⎪⎩

Ar−1
j−k

Ar
j

k ≤ j

0 k > j
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is said to be the Cesàro matrix of order r. Obviously, we have that C1 = C.
All entries of Cr are positive, and on account of the well-known formula
∑n

k=0 Ar−1
k = Ar

n and the fact that Ar
n = O(nr) (see also (2.44) and (2.48)) we

have
j

∑
k=0

cr
jk = 1 and cr

jk ≤ c
( j− k)r−1

jr .

Hence, by the preceding proposition the matrices Cr form a scale of summation
processes. Sequences which are Cr-summable are said to be Cesàro summable
of order r.

(4) Let (λk)∞
k=0 be a strictly increasing sequence of positive scalars which con-

verges to ∞, and such that λ0 = 0. Then the so-called Riesz matrix Rλ defined
by

rλ
jk :=

⎧
⎨

⎩

λk+1 −λk

λ j+1
k ≤ j

0 k > j

forms a summation process; indeed

j

∑
k=0

λk+1 −λk

λ j+1
=

1
λ j+1

(λ j+1 −λ0) = 1 ,

and

lim
j

λk+1 −λk

λ j+1
= 0 .

We call Rλ -summable sequences Riesz summable. Note that for λ j = j we have
Rλ = C. Moreover, it is not difficult to see that for λ = (2 j) Riesz-summation
means nothing else than ordinary summation.

(5) Take a positive sequence (ρ j) which increases to 1. Then the matrix Aρ given
by

aρ
jk := ρk

j (1−ρ j)

obviously defines a summation process. These matrices are called Abel matri-
ces. Recall that a sequence (xk) is said to be Abel summable whenever the limit

lim
r→1

∞

∑
k=0

xkrk

exists. For 0 < r < 1 we have

∞

∑
k=0

xkrk =
∞

∑
k=0

rk(1− r)
k

∑
�=0

x�

which justifies our name for Aρ .
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2.1.2 Maximal Inequalities in Banach Function Spaces

As usual Lp(μ), 1 ≤ p ≤ ∞ denotes the Banach space of all (equivalence classes
of) p-integrable functions over a (in general σ -finite and complete) measure space
(Ω ,Σ ,μ) (with the usual modification for p = ∞). We write �p(Ω) whenever Ω
is a set with the discrete measure, and �p for Ω = N0 and �n

p for Ω = {0, . . . ,n} .
The canonical basis vectors are then denoted by ei , i ∈ Ω . More generally, we will
consider Banach function spaces (sometimes also called Köthe function spaces)
E = E(μ), i.e. Banach lattices of (μ-almost everywhere equivalence classes of)
scalar-valued μ-locally integrable functions on Ω which satisfy the following two
conditions:

• If |x| ≤ |y| with x ∈ L0(μ) and y ∈ E(μ), then x ∈ E(μ) and ‖x‖ ≤ ‖y‖.
• For every A ∈ Σ of finite measure the characteristic function χA belongs to E(μ).

Examples are Lp-, Orlicz, Lorentz, and Marcinkiewicz spaces.
Recall that a vector-valued function f : Ω → X , where X now is some Banach

space, is μ-measurable whenever it is an almost everywhere limit of a sequence of
vector-valued step functions. Then

E(X) = E(μ ,X)

consists of all (μ-equivalence classes of) μ-measurable functions f : Ω → X such
that ‖ f‖X ∈ E(μ), a vector space which together with the norm

‖ f‖E(μ,X) =
∥
∥‖ f (·)‖X

∥
∥

E(μ)

forms a Banach space. For E(μ) = Lp(μ) this construction leads to the space
Lp(X) = Lp(μ ,X) of Bochner integrable functions; as usual �p(X) and �n

p(X) stand
for the corresponding spaces of sequences in X .

We now invent two new spaces of families of integrable functions which will give
a very comfortable setting to work with the maximal inequalities we are interested
in. Let I be a partially ordered and countable index set, E = E(μ) a Banach function
space, and X a Banach space. Then

E(X)[�∞] = E(μ ,X)[�∞(I)]

denotes the space of all families ( fi)i∈I in E(μ ,X) having a maximal function which
again belongs to E(μ),

sup
i∈I

‖ fi(·)‖X ∈ E(μ) .

Together with the norm

‖( fi)‖E(X)[�∞] :=
∥
∥sup

i∈I
‖ fi(·)‖X

∥
∥

E(μ)
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E(μ ,X)[�∞(I)] forms a Banach space. The following simple characterization will
be extremely useful.

Lemma 1. Let ( fi)i∈I be a family in E(μ ,X). Then ( fi)i∈I belongs to
E(μ ,X)[�∞(I)] if and only if there is a bounded family (zi)i∈I of functions in
L∞(μ ,X) and a scalar-valued function f ∈ E(μ) such that

fi = zi f for all i

(the pair ((zi), f ) is then said to be a factorization of ( fi)). In this case, we have

‖( fi)‖E(X)[�∞] = inf sup
i∈I

‖zi‖∞ ‖ f‖E(μ) ,

the infimum taken over all possible factorizations.

For the sake of completeness we include the trivial

Proof. Let ( fi)∈ E(μ ,X)[�∞(I)]. Put f := supi ‖ fi(·)‖X ∈ E(μ) and define zi(w) :=
fi(w)/ f (w) whenever f (w) 	= 0, and zi(w) := 0 whenever f (w) = 0. Obviously,
fi = zi f and supi ‖zi‖∞ ≤ 1, hence ‖ f‖E(μ) supi ‖zi‖ ≤ ‖( fi)‖E(X)[�∞]. Conversely,
we have

sup
i
‖ fi(·)‖X ≤ sup

i
‖zi‖∞‖ f (·)‖X ∈ E(μ) ,

and hence
‖( fi)‖E(X)[�∞] ≤ sup

i
‖zi‖∞‖ f‖E(μ) ,

which completes the argument. ��
We will also need the closed subspace

E(μ ,X)[c0(I)] ⊂ E(μ ,X)[�∞(I)] ,

all families ( fi) ∈ E(μ ,X)[�∞(I)] for which there is a factorization fi = zi f with
limi ‖zi‖L∞(X) = 0 and f ∈ E(μ); this notation seems now natural since we as usual
denote the Banach space of all scalar zero sequences (xi)i∈I by c0(I), and c0 =
c0(N0). The following lemma is a simple tool linking the maximal inequalities we
are interested in with almost everywhere convergence.

Lemma 2. Each family ( fi) ∈ E(μ ,X)[c0(I)] converges to 0 μ-almost everywhere.

Again we give the obvious

Proof. Let fi = zi f be a factorization of ( fi) with limi ‖zi‖L∞(X) = 0 and f ∈ E(μ),
and let (εi) be a zero sequence of positive scalars. Clearly, for each i there is a μ-null
set Ni such that ‖zi(·)‖X ≤ ‖zi‖L∞(X) + εi on the complement of Ni. Take an element
w in the complement of the set N := [| f |= ∞]∪(∪iNi). Then for ε > 0 there is i0 such
that ‖zi‖L∞(X) + εi ≤ ε

| f (w)| for each i ≥ i0 , and hence | fi(w)| = ‖zi(w)‖X | f (w)| ≤
(‖zi‖L∞(X) + εi)| f (w)| ≤ ε . ��
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2.1.3 (p,q)-Maximizing Matrices

Recall that a sequence (xk) in a Banach space X is said to be unconditionally
summable (or equvialently, the series ∑k xk is unconditionally convergent) whenever
every rearrangement ∑k xπ(k) of the series converges. It is well-known that the vector
space �unc

1 (X) of all unconditionally convergent series in X together with the norm

w1((xk)) := sup
‖α‖∞≤1

∥
∥

∞

∑
k=0

αkxk
∥
∥ < ∞ .

forms a Banach space. More generally, for 1 ≤ p ≤ ∞ a sequence (xk) in a Banach
space X is said to be weakly p-summable if for every α ∈ �p′ the series ∑k αkxk

converges in X , and by a closed graph argument it is equivalent to say that

wp((xk)) = wp((xk),X) := sup
‖α‖p′≤1

∥
∥

∞

∑
k=0

αkxk
∥
∥ < ∞ .

The name is justified by the fact that (xk) is weakly p-summable if and only if
(x′(xk)) ∈ �p for each x′ ∈ X ′, and in this case we have

wp((xk)) = sup
‖x′‖≤1

(

∑
k

|x′(xk)|p
) 1

p
< ∞.

The vector space of all weakly p-summable sequences in X together with the
norm wp forms the Banach space �w

p(X) (after the usual modification the case
p = ∞ gives all bounded sequences). A sequence (xk) is weakly summable
(= weakly 1-summable) whenever the series ∑k xk is unconditionally convergent,
and the converse of this implication characterizes Banach spaces X which do not
contain a copy of c0. This is e.g. true for the spaces Lp(μ), 1 ≤ p < ∞.

The following definition is crucial – let A = (a jk) j,k∈N0 be an infinite matrix
which satisfies that ‖A‖∞ := sup jk |a jk| < ∞, or equivalently, A defines a bounded
and linear operator from �1 into �∞ with norm ‖A‖∞.

Definition 1. We say that A is (p,q)-maximizing, 1 ≤ p < ∞ and 1 ≤ q ≤ ∞,
whenever for each measure space (Ω ,μ), each weakly q′-summable sequence (xk)
in Lp(μ) and each α ∈ �q we have that

sup
j

∣
∣
∣

∞

∑
k=0

a jkαkxk

∣
∣
∣ ∈ Lp(μ) ,

or in other terms
( ∞

∑
k=0

a jkαkxk

)

j∈N0
∈ Lp(μ)[�∞] .
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Note that here all series ∑∞
k=0 a jkαkxk converge in Lp(μ). Clearly, by a closed graph

argument a matrix A is (p,q)-maximizing if and only if the following maximal
inequality holds: For all sequences (xk) and (αk) as above

∥
∥
∥sup

j

∣
∣

∞

∑
k=0

a jkαkxk

∣
∣
∥
∥
∥

p
≤C‖α‖qwq′((xk)) ;

here C ≥ 0 is a constant which depends on A, p,q only, and the best of these
constants is denoted by

mp,q(A) := infC .

Our main examples of maximizing matrices are generated by classical summation
processes, and will be given in Sect. 2.2. Most of them are of the form

A = S Σ D1/ω , a jk :=
1

ωk

∞

∑
�=k

s j� , (2.5)

where S is a summation process as defined in Sect. 2.1.1, Σ is the so-called sum
matrix defined by

σ jk :=

⎧
⎨

⎩

1 k ≤ j

0 k > j ,

and D1/ω a diagonal matrix with respect to a Weyl sequence ω for S (see again
(2.2)). Since each such S can be viewed as an operator on �∞ (see Proposition 1,(1)),
matrices of the form S Σ D1/ω define operators from �1 into �∞.

Note that by definition such a matrix A = S Σ D1/ω is (p,q)-maximizing when-
ever for each measure space (Ω ,μ), each weakly q′-summable sequence (xk) in
Lp(μ) and each α ∈ �q we have that

sup
j

∣
∣
∣

∞

∑
k=0

s jk

k

∑
�=0

α�

ω�
x�

∣
∣
∣ ∈ Lp(μ) , (2.6)

or in other terms
( ∞

∑
k=0

s jk

k

∑
�=0

α�

ω�
x�

)

j
∈ Lp(μ)[�∞] .

Let us once again repeat that by an obvious closed graph argument A = S Σ D1/ω is
(p,q)-maximizing if and only if for all sequences (xk) and (αk) as in (2.6) we have

∥
∥
∥ sup

j

∣
∣

∞

∑
k=0

s jk

k

∑
�=0

α�

ω�
x�

∣
∣
∥
∥
∥

p
≤C‖α‖qwq′((xk)) ,

C ≥ 0 a constant which depends on A, p,q only.
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It is not difficult to check (see also Sect. 2.2.6,(6)) that for the transposed At of
an infinite matrix A the duality relation

mp,q(A) = mq′,p′(At) (2.7)

holds, and that mp,q(A) is decreasing in p and increasing in q, i.e. for p2 ≤ p1 and
q1 ≤ q2

mp1,q1(A) ≤ mp2,q2(A) ≤ m1,∞(A) (2.8)

(this will also be obtained as a by-product from Theorem 3). Finally, we include a
simple lemma which helps to localize some of our coming arguments.

Lemma 3. Let A be an infinite matrix with ‖A‖∞ < ∞, E(μ ,X) a vector-valued
Banach function space, and 1 ≤ p < ∞, 1 ≤ q ≤ ∞. Then the following are
equivalent:

(1) For each α ∈ �q and each weakly q′-summable sequence (xk) in E(μ ,X) we
have that

sup
j

∥
∥
∥

∞

∑
k=0

a jkαkxk(·)
∥
∥
∥

X
∈ E(μ).

(2) There is a constant C > 0 such that for each choice of finitely many scalars
α0, . . . ,αn and functions x0 . . . ,xn ∈ E(μ ,X) we have

∥
∥
∥sup

j

∥
∥

n

∑
k=0

a jkαkxk(·)
∥
∥

X

∥
∥
∥

E
≤C‖α‖qwq′(x) .

In particular, A is (p,q)-maximizing if and only if supn mp,q(An) < ∞ where An

equals A for all entries a jk with 1 ≤ j,k ≤ n and is zero elsewhere; in this case

mp,q(A) = sup
n

mp,q(An) .

Proof. Clearly, if (1) holds, then by a closed graph argument (2) is satisfied.
Conversely, assume that (2) holds. First we consider the case q < ∞. Fix a weakly
q′-summable sequence (xk) in E(μ ,X). By assumption we have

sup
n

∥
∥Φn : �n

q −→ E(μ ,X)[�∞]
∥
∥ = D < ∞ ,

where Φnα :=
(

∑k a jkαkxk
)

j. Hence, by continuous extension we find an operator
Φ : �q → E(μ ,X)[�∞] of norm ≤D which on all �n

q’s coincides with Φn. On the other
hand, since (xk) is weakly q′-summable, the operator

Ψ : �q −→ ∏
N0

E(μ ,X) , Ψ(α) =
(
∑
k

a jkαkxk
)

j
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is defined and continuous. Clearly, we have Ψ = Φ which concludes the proof. If
q = ∞, then for fixed α ∈ �∞ there is D > 0 such that for all n we have

∥
∥Φn : (�n

1)
w(E(μ ,X)) −→ E(μ ,X)[�∞]

∥
∥ ≤ D ,

where now Φn((xk)) :=
(

∑k a jkαkxk
)

j (here (�n
1)

w(E(μ ,X)) of course stands for the
Banach space of all sequences of length n+1 endowed with the weak �1-norm w1).
Since the union of all (�n

1)
w(E(μ ,X)) is dense in the Banach space �w

1 (E(μ ,X)),
all weakly summable sequences (xk) in E(μ ,X), we can argue similarly to the first
case. Finally, note that the last equality in the statement of the lemma follows from
this proof. ��

The definition of (p,q)-maximizing matrices appears here the first time. But
as we have already mentioned several times this notion is implicitly contained
in Bennett’s fundamental work on (p,q)-Schur multipliers from [3]; this will be
outlined more carefully in Sect. 2.2.6.

2.1.4 Maximizing Matrices and Orthonormal Series

In this section we state our main technical tool to derive examples of (p,q)-
maximizing matrices from classical coefficient tests on almost everywhere sum-
mation of orthonormal series and their related maximal inequalities (see (1.6)
and (1.9)). This bridge is mainly based on dilation, a technique concentrated in
the following lemma. Obviously, every orthonormal system in L2(μ) is weakly
2-summable, but conversely each weakly 2-summable sequence is the “restriction”
of an orthonormal system living on a larger measure space.

The following result due to Nagy is known under the name dilation lemma; for a
proof see e.g. [94, Sect. III.H.19.]. It seems that in the context of almost everywhere
convergence of orthogonal series this device was first used in Orno’s paper [68].

Lemma 4. Let (xk) be a weakly 2-summable sequence in some L2(Ω ,μ) with
weakly 2-summable norm w2(xk) ≤ 1. Then there is some measure space (Ω ′,μ ′)
and an orthonormal system (yk) in L2(μ ⊕ μ ′) (μ ⊕ μ ′ the disjoint sum of both
measures) such that each function xk is the restriction of yk.

The following characterization of (2,2)-maximizing matrices in terms of
orthonormal series is an easy consequence of this lemma.

Theorem 1. Let A = (a jk) be an infinite matrix such that ‖A‖∞ < ∞. Then A is
(2,2)-maximizing if and only if for each α ∈ �2, for each measure μ and each
orthonormal system (xk) in L2(μ)

sup
j

∣
∣∑

k

a jkαkxk
∣
∣ ∈ L2(μ) . (2.9)
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Moreover, in this case m2,2(A) equals the best constant C such that for each
orthonormal series ∑k αkxk in an arbitrary L2(μ)

∥
∥
∥sup

j

∣
∣∑

k

a jkαkxk
∣
∣
∥
∥
∥

2
≤C‖α‖2. (2.10)

Proof. Clearly, if A is (2,2)-maximizing, then (2.9) holds and the infimum over all
C > 0 as is (2.10) is ≤ m2,2(A). Conversely, take α ∈ �2 and a weakly 2-summable
sequence (yk) in L2(Ω ,μ) ; we assume without loss of generality that w2(yk) ≤ 1.
By the dilation lemma 4 there is some orthonormal system (xk) in L2(μ ⊕ μ ′) such
that xk|Ω = yk for all k (μ ′ some measure on some measure space Ω ′). We know by
assumption that (

∑
k

a jkαkxk

)

j
∈ L2(μ ⊕ μ ′)[�∞] .

Hence by Lemma 1 there is a bounded sequence (z j) in L∞(μ ⊕ μ ′) and some f ∈
L2(μ ⊕ μ ′) for which ∑k a jkαkxk = z j f for all j. But then as desired

sup
j

∣
∣∑

k

a jkαkyk
∣
∣ = sup

j

∣
∣z j|Ω f |Ω

∣
∣ ∈ L2(μ) .

If moreover the constant C satisfies (2.10), then we have

∥
∥
∥ sup

j

∣
∣∑

k

a jkαkyk

∣
∣
∥
∥
∥

2
≤

∥
∥
∥ sup

j

∣
∣∑

k

a jkαkxk

∣
∣
∥
∥
∥

2
≤C‖α‖2 ,

hence m2,2(A) ≤C. ��

2.1.5 Maximizing Matrices and Summation: The Case q < p

Recall that Σ denotes the sum matrix defined by

σ jk :=

⎧
⎨

⎩

1 k ≤ j

0 k > j .

The study of (p,q)-maximizing matrices of type S Σ , where S is a summation
process, shows two very different cases – the case q < p and the case p ≤ q. The
next theorem handles the first one, for the second see Theorem 7.

Theorem 2. Let 1 ≤ q < p < ∞, and let S be a summation process. Then the matrix
A = S Σ given by

a jk =
∞

∑
�=k

s j�

is (p,q)-maximizing.
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This theorem is due to Bennett [2, Theorem 3.3] (only formulated for the crucial
case, the sum matrix itself) who points out that the technique used for the proof goes
back to Erdös’ article [15].

Lemma 5. Let 1 < q < ∞, and assume that c0, · · · ,cn are scalars such that

|c0|q + . . .+ |cn|q = s > 0 .

Then there is an integer 0 ≤ k ≤ n such that

|c0|q + . . .+ |ck−1|q + |c′k|q ≤ s/2

|c′′k |q + |ck+1|q + . . .+ |cn|q ≤ s/2 ,

where ck = c′k + c′′k and max{|c′k| |c′′k |} ≤ |ck| .
Proof. We start with a trivial observation: Take scalars c,d′,d′′ where d′,d′′ are
positive and such that d′ ≤ |c| ≤ d′ + d′′. Then there is a decomposition c = c′ + c′′
such that |c′| ≤ d′ and |c′′| ≤ d′′; indeed, decompose first the positive number |c|,
and then look at the polar decomposition of c. Take now k such that

|c0|q + . . .+ |ck−1|q ≤ s/2 < |c0|q + . . .+ |ck|q ,

and define

d′
k :=

(
s/2−|c0|q − . . .−|ck−1|q

)1/q

d′′
k :=

(|c0|q + . . .+ |ck|q − s/2
)1/q =

(
s/2−|ck+1|q − . . .−|cn|q

)1/q
.

Since q > 1 we deduce from the starting observation that there is a decomposition
ck = c′k + c′′k with |c′k| ≤ d′

k ≤ |ck| and |c′′k | ≤ d′′
k ≤ |ck| which completes the proof.

��
Now we proceed with the proof of Theorem 2.

Proof. Let us first reduce the case of a general S to the special case S = id: since S
defines a bounded operator on �∞, we have that

sup
j

∣
∣

∞

∑
k=0

s jk

k

∑
�=0

α� x�

∣
∣ ≤ ‖S : �∞ → �∞‖sup

k

∣
∣

k

∑
�=0

α� x�

∣
∣ , (2.11)

hence we only show that the matrix Σ is (p,q)-maximizing. We may assume that
1 < q < p < ∞. By Lemma 3 it suffices to prove that there is a constant c(p,q) > 0
such that for each n

mp,q(Σn) ≤ c(p,q) .
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Fix n, and take x0, . . . ,xn in some Lp(μ) with wq′(xk) = 1 and scalars α0, . . . ,αn with
‖α‖q = 1. We show that

∫

sup
j

∣
∣

j

∑
k=0

αkxk

∣
∣p

dμ ≤ c(p,q) .

To do so use the preceding lemma to split the sum

α0x0(ω)+ . . .+ αnxn(ω)

into two consecutive blocks

B(1)
1 = α0x0(ω)+ . . .+ αk′xk′(ω)

B(1)
2 = αk′′xk′′(ω)+ . . .+ αnxn(ω)

such that each of the q-sums of the coefficients of these blocks is dominated by 1/2
(split ‖α‖q

q = 1). Applying the lemma we split each of the blocks into two further

blocks B(2)
1 ,B(2)

2 and B(2)
3 ,B(2)

4 , respectively. Repeating this process ν times gives

a decomposition of the original sum into 2ν blocks B(ν)
λ , 1 ≤ λ ≤ 2ν , each having

coefficient q-sums dominated by 2−ν . By choosing ν sufficiently large, we may
ensure that

2−ν−1 < min{|αk| |αk 	= 0} ,

so that each block B(ν)
λ contains at most two non-zero terms (indeed, otherwise

2 ·2−ν−1 < 2−ν). We then have for each 1 ≤ j ≤ n and all ω that

∣
∣
∣

j

∑
k=0

αkxk(ω)
∣
∣
∣ ≤

ν

∑
μ=1

max
1≤λ≤2μ

∣
∣B(μ)

λ (ω)
∣
∣+ max

0≤k≤n
|αkxk(ω)| .

Hence, for each r (which will be specified later) we obtain from Hölder’s inequality
that

∣
∣
∣

j

∑
k=0

αkxk(ω)
∣
∣
∣

≤
ν

∑
μ=1

( 2μ

∑
λ=1

∣
∣B(μ)

λ (ω)
∣
∣p

)1/p
+

( n

∑
k=0

|αkxk(ω)|p
)1/p

≤
( ν

∑
μ=1

2−rμ p′
)1/p′( ν

∑
μ=1

2rμ p
2μ

∑
λ=1

∣
∣B(μ)

λ (ω)
∣
∣p

)1/p
+

( n

∑
k=0

|αkxk(ω)|p
)1/p

,
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and with d(p,r) =
(

∑∞
μ=1 2−rμ p′

)1/p′
we conclude

∥
∥
∥sup

j

∣
∣
∣

j

∑
k=0

αkxk

∣
∣
∣

∥
∥
∥

p

≤ d(p,r)
( ν

∑
μ=1

2rμ p
2μ

∑
λ=1

∥
∥B(μ)

λ
∥
∥p

p

)1/p
+

( n

∑
k=0

|αk|p
)1/p

;

use the Minkowski inequality in Lp(μ), the obvious fact that for each choice of
finitely many functions yk ∈ Lp(μ)

∥
∥
∥

(

∑
k

|yk|p
)1/p∥∥

∥
p
=

(

∑
k

‖yk‖p
p

)1/p
,

and finally that all ‖xk‖p ≤ 1. By assumption we have that for every choice of finitely
many scalars β0, · · · ,βn ∥

∥
∥∑

k

βkxk

∥
∥
∥

p
≤ ‖(βk)‖q ,

and that 1 ≤ q < p < ∞, hence

∥
∥
∥ sup

j

∣
∣
∣

j

∑
k=0

αkxk(ω)
∣
∣
∣

∥
∥
∥

p
≤ d(p,r)

( ν

∑
μ=1

2rμ p
2μ

∑
λ=1

2−μ p/q
)1/p

+
( n

∑
k=0

|αk|q
)1/q

≤ d(p,r)
( ν

∑
μ=1

2rμ p
2μ

∑
λ=1

2−μ p/q
)1/p

+ 1

≤ d(p,r)
( ∞

∑
μ=1

2(rp+1−p/q)μ
)1/p

+ 1.

Since this latter term converges for each 0 < r < 1/q−1/p, the proof completes.
��

As already mentioned, the counterpart of this result for q ≥ p will be stated in
Theorem 7.

2.1.6 Banach Operator Ideals: A Repetitorium

A considerably large part for our conceptional approach to almost everywhere
summation theorems of unconditionally convergent series in Lp-spaces together
with their maximal inequalities will be based on the theory of Banach operator
ideals.
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We give, without any proofs, a brief summary of the results needed – in particular,
we recall some of the ingredients from the theory of p-summing and p-factorable
operators. Notes, remarks, and references are given at the end of this section.

An operator ideal A is a subclass of the class of all (bounded and linear)
operators L between Banach spaces such that for all Banach spaces X and Y its
components

A (X ,Y ) := L (X ,Y )∩A

satisfy the following two conditions: A (X ,Y ) is a linear subspace of L (X ,Y )
which contains all finite rank operators, and for each choice of appropriate operators
u,w ∈ L and v ∈ A we have wvu ∈ A (the ideal property). A (quasi) Banach
operator ideal (A ,α) is an operator ideal A together with a function α : A −→R≥0

such that every component (A (X ,Y ),α(·)) is a (quasi) Banach space, α(idK) = 1,
and for each choice of appropriate operators w,v,u we have that

α(wvu) ≤ ‖w‖α(v)‖u‖ .

If (A ,α) is a Banach operator ideal, then it can be easily shown that

‖u‖ ≤ α(u) for all u ∈ A ,

and for all one dimensional operators x′ ⊗ y with x′ ∈ X ′, y ∈ Y

α(x′ ⊗ y) = ‖x′‖‖y‖.

We will only consider maximal Banach operator ideals (A ,α), i.e. ideals which
in the following sense are determined by their components on finite dimensional
Banach spaces: An operator u : X −→ Y belongs to A if (and only if)

sup
M,N

α(M
IM
↪→ X

u−→ Y
QN−→ Y/N) < ∞ , (2.12)

where the supremum is taken over all finite dimensional subspaces M of X , all finite
codimensional subspaces N of X and IM,QN denote the canonical mappings. The
duality theory of operator ideals is ruled by the following two notions, the trace tr
for finite rank operators and the so-called adjoint operator ideals A ∗. If (A ,α) is a
Banach operator ideal, then its adjoint ideal (A ∗,α∗) is given by: u ∈ A ∗(X ,Y ) if

α∗(u) := sup
M,N

sup
‖v:Y/N→M‖≤1

tr(QM uIM v) < ∞

(M and N as above); note that this ideal by definition is maximal. If (A ,α) and
(B,β ) are two quasi Banach operator ideals, then A ◦B denotes the operator ideal
of all compositions u = vw with v ∈ A and w ∈ B, together with the quasi norm
α ◦β (u) := infα(u)β (w). This gives a quasi Banach operator ideal (A ◦B,α ◦β ),
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the product of (A ,α) and (B,β ). Let us finally recall the meaning of a transposed
ideal (A dual,αdual) : It consists of all u ∈ L such that its transposed u′ ∈ A , and
αdual(u) := α(u′).

Now we collect some of the most prominent examples of Banach operator ideals.
Clearly, all operators on Banach spaces together with the operator norm ‖·‖ form the
largest Banach operator ideal, here denoted by L . The Banach ideal of p-summing
operators is one of the fundamental tools of these notes. An operator u : X −→ Y is
said to be p-summing, 1 ≤ p < ∞, whenever there is a constant c ≥ 0 such that for
all weakly p-summable sequences (xk) in X we have

( ∞

∑
k=1

‖u(xk)‖p
) 1

p ≤ c sup
‖x′‖≤1

( ∞

∑
k=1

|x′(xk)|p
) 1

p = wp((xk)) , (2.13)

and the best constant c is denoted by πp(u). It can be seen easily that the class Πp

of all such operators together with the norm πp forms a maximal Banach operator
ideal (Π∞ by definition equals L ).

There is also a non-discrete variant of (2.13): An operator u : X −→ Y is p-
summing if and only if there is a constant c ≥ 0 such that for any function v ∈
Lp(μ ,X) (the Bochner p-integrable functions with values in X) we have

∫

‖u(v(ω))‖pdμ(ω) ≤ c sup
‖x′‖≤1

(∫

|x′(v(ω))|pdμ(ω)
) 1

p
, (2.14)

and in this case again the best c equals πp(u).
The whole theory of p-summing operators is ruled by Pietsch’s domination

theorem: Let X and Y be Banach spaces, and assume that X is a subspace of some
C(K), where K is a compact Hausdorff space. Then u : X −→Y is p-summing if and
only if there is a constant c ≥ 0 and a Borel probability measure μ on K such that
for all x ∈ X

‖u(x)‖ ≤ c
(∫

K
|x(w)|pdμ(ω)

) 1
p
, (2.15)

and in this case the infimum over all possible c is a minimum and equals πp(u).
This result has many equivalent formulations in terms of factorization – we will

need the following particular case: For every p-summing operator u : c0 −→Y there
is a factorization

c0
u

��

Dα ���
��

��
��

�
Y

�p

v

��
(2.16)

with a diagonal operator Dα and an operator v satisfying ‖α‖p‖v‖ ≤ πp(u) .
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Finally, we mention two basic examples which in view of the preceding two
results are prototypical:

(1) πp( j : L∞(μ) ↪→ Lp(μ)) = μ(Ω), where (Ω ,μ) denotes some measure space
and j the canonical embedding.

(2) πp(Dα : c0 −→ �p) = ‖α‖p, where Dα denotes the diagonal operator associ-
ated to α ∈ �p (here c0 can be replaced by �∞).

Let us now describe the adjoint ideal Π ∗
p of Πp in the more general context of

factorable operators. For 1 ≤ p ≤ q ≤ ∞ denote by Γp,q the Banach operator ideal of
all operators u : X −→ Y which have a factorization

X
u

��

v
��

Y
� �

κY
� Y ′′

Lq(μ) � �
j

� Lp(μ)

w

����������

(2.17)

where μ is a probability measure and v,w are two operators (clearly, κY and j denote
the canonical embeddings). The ideal Γp,q of all so-called (p,q)-factorable operators
together with the norm γp,q(u) := inf‖w‖ ‖v‖ forms a maximal Banach operator
ideal. For operators u : X −→ Y between finite dimensional spaces X and Y it can
be easily proved that

γp,q(u) = inf‖w‖‖Dμ‖‖v‖ , (2.18)

where “the infimum is taken over all possible diagrams” of the form

X
u

��

v
��

Y

�m
q

Dμ
�� �m

p .

w

��

Define Ip := Γp,∞ , the class of all p-integral operators, and Γp := Γp,p , the class of
all p-factorable operators; note that Γ2 is the Banach operator ideal of all hilbertian
operators, all operators factorizing through a Hilbert space. Then (as a consequence
of Pietsch’s domination theorem 2.15) for operators u defined on C(K)-spaces or
with values in C(K)-spaces the p-integral and the p-summing norms coincide:

πp(u) = ιp(u) . (2.19)

Note that (I , ι) := (I1, ι1) is the Banach operator ideal of all integral operators –
it is the smallest of all possible maximal Banach operator ideals, and moreover
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it is the adjoint ideal of (L ,‖ · ‖). The following important trace formulas hold
isometrically:

I ∗
p = Πp′ , (2.20)

and more generally for 1 ≤ p ≤ q ≤ ∞

Γ ∗
p,q = Π dual

q′ ◦Πp′ . (2.21)

As an easy consequence of the preceding equality the ideal of (p,q)-factorable
operators can be rewritten as a sort of quotient of summing operators and integral
operators — this “quotient formula” in the future will be absolutely crucial: An
operator u : X −→ Y is (p,q)-factorable if and only if for each operator v ∈
Π dual

q (Z,X) the composition uv ∈ Ip(X ,Y ), and in this case

γp,q(u) = sup
πq(v′)≤1

ιp(uv) . (2.22)

Now we turn to tensor products – the theory of maximal Banach operator ideals
and the theory of tensor products in Banach spaces are two in a sense equivalent
languages. Recall that the projective norm ‖ · ‖π for an element z in the tensor
product X ⊗Y of two Banach spaces is given by

‖z‖π = inf∑
k

‖xk‖‖yk‖ ,

the infimum taken over all finite representation z = ∑k xk ⊗ yk. Dually, the injective
norm ‖ · ‖ε for z = ∑k xk ⊗ yk (a fixed finite representation) is defined by

‖z‖ε = sup
‖x′‖X ′ ,‖y′‖Y ′≤1

∣
∣∑

k

x′(xk)y′(yk)
∣
∣ .

We will need the simple fact: For each integral operator u ∈ L (X ,Y )

ι(u) = sup‖ id ⊗ u : Z ⊗ε X −→ Z ⊗π Y‖ , (2.23)

where the supremum is taken over all Banach spaces Z .
Let us finish with Grothendieck’s fundamental theorem of the metric theory of

tensor products (his théorème fondamental more or less in its original form) which
is in a sense the hidden power in the background of most of the material following:
Every hilbertian operator u : �1 −→ �∞ is integral, and

ι(u) = π1(u) ≤ KG γ2(u) , (2.24)

where KG is a universal constant (this best constant is usually called Grothendieck’s
constant).
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An equivalent formulation of this highly non trivial fact is Grothendieck’s
theorem which states that each operator u : �1 → �2 is 1-summing, and π1(u) ≤
KG‖u‖. We will also need a weaker fact, the so called little Grothendieck theorem:
Every operator u : �1 → �2 is 2-summing; in terms of tensor products this means
that for each such u and each Hilbert space H we have

sup
n
‖u⊗ id : �n

1 ⊗ε H → �n
2(H)‖ ≤ KLG‖u‖ , (2.25)

and here (in contrast to Grothendieck’s theorem) the precise constant KLG = 2/
√

π
(the little Grothendieck constant) is known.

Notes and remarks: Most of the results presented in this section are standard, and
can be found in the textbooks [6, 9, 76, 77], or [94]. The characterization of
summing operators from (2.14) can be found in [94, Sect. III.F.33]. Pietsch’s
domination theorem (2.15) and factorization theorems like (2.16) are crucial, and
contained in each of the above monographs. The trace duality theory of summing,
integral and factorable operators is due to Kwapień, and at least for p = q outlined
in detail in the quoted textbooks; all needed properties of the ideal Γp,q for p 	= q, in
particular its relation with summing and integral norms like (2.19), (2.20), (2.21),
and (2.22), are included in [6, Sects. 18, 25]. The estimate (2.24) is the main result in
Grothendieck’s famous “Résumé” [21] (the original source of all of this material),
and together with (2.25) it forms one of the central topics in all monographs cited
above.

2.1.7 Maximizing Matrices and Summation: The Case q ≥ p

The following characterization of (p,q)-maximizing matrices links the classical
theory of orthonormal series with modern operator theory in Banach spaces. Recall
that by definition every (p,q)-maximizing matrix can be considered as an operator
from �1 into �∞, and denote for α ∈ �q by Dα : �q′ → �1 the diagonal operator
associated to α .

Theorem 3. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, and let A be an infinite matrix with
‖A‖∞ < ∞. Then the following are equivalent:

(1) A is (p,q)-maximizing
(2) ∃ c ≥ 0 ∀ α ∈ �q : πp(ADα) ≤ c‖α‖q

(3) ∃ c ≥ 0 ∀n ∀ u ∈ L (�n
q′ , �1) : πp(Au) ≤ cπq(u′)

(4) ∃ c ≥ 0 ∀ Banach space X ∀ u ∈ Π dual
q (X , �1) : πp(Au) ≤ cπq(u′).

In this case, mpq(A) = sup
‖α‖q≤1

πp(ADα) = sup
πq(u′)≤1

πp(Au).

We try to make the proof a bit more transparent by proving a lemma first.
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Lemma 6. For every operator B : �q′ −→ �∞ the following are equivalent:

(1) B is p-summing.

(2) ∃ c ≥ 0 ∀ x0, . . . ,xm ∈ Lp(μ) :
∥
∥
∥ sup

j

∣
∣

m
∑

k=0
b jkxk

∣
∣
∥
∥
∥

p
≤ cwq′(xk)

In this case, πp(B) := infc.

Proof. Let us first show that (1) implies (2). Take x0, . . . ,xm ∈ Lp(μ). Then we
obtain from (2.14) and the Bochner-integrable function

g :=
m

∑
k=0

xk ⊗ ek ∈ Lp(μ , �m
q′)

that

∥
∥
∥ sup

j

∣
∣
∣

m

∑
k=0

b jkxk

∣
∣
∣

∥
∥
∥

p
=

(∫

‖Bg‖p
∞dμ

) 1
p

≤ πp(B) sup
‖x′‖�m

q
≤1

(∫

|x′ ◦ g|pdμ
) 1

p

= πp(B) sup
‖c‖�m

q
≤1

∥
∥
∥

m

∑
k=0

ckxk

∥
∥
∥

p

= πp(B)wq′(xk,Lp(μ)).

Conversely, it suffices to show that for x0, . . . ,xm ∈ �M
q′

( m

∑
k=0

‖Bxk‖∞

) 1
p ≤ c sup

‖x′‖
�M
q
≤1

( m

∑
k=0

|x′(xk)|p
) 1

p
.

Put y� := ∑M
n=0 xn(�)en ∈ �m

p , 0 ≤ � ≤ M . Then we have

∥
∥
∥sup

j

∣
∣
∣

M

∑
�=0

b j�y�

∣
∣
∣

∥
∥
∥

�m
p

=
( m

∑
k=0

sup
j

∣
∣
∣

M

∑
�=0

b j�y�(k)
∣
∣
∣

p) 1
p

=
( m

∑
k=0

sup
j

∣
∣
∣

M

∑
�=0

b j�

m

∑
n=0

xn(�)en(k)
∣
∣
∣

p) 1
p

=
( m

∑
k=0

‖Bxk‖p
∞

) 1
p



2.1 Maximizing Matrices 35

and

sup
‖x′‖

�M
q
≤1

( m

∑
k=0

|x′(xk)|p
) 1

p = sup
‖x′‖

�M
q
≤1

sup
‖d‖�m

p′
≤1

∣
∣
∣

m

∑
k=0

dk x′(xk)
∣
∣
∣

= sup
‖d‖�m

p′
≤1

sup
‖c‖

�M
q
≤1

∣
∣
∣

M

∑
�=0

c�

m

∑
k=0

dkxk(�)
∣
∣
∣

= sup
c

sup
d

∣
∣
∣

m

∑
k=0

dk

M

∑
�=0

c�

m

∑
n=0

xn(�)en(k)
∣
∣
∣

= sup
c

∥
∥
∥

M

∑
�=0

c�

m

∑
n=0

xn(�)en

∥
∥
∥

�m
p

= sup
‖c‖

�M
q
≤1

∥
∥
∥

M

∑
�=0

c� y�

∥
∥
∥

�m
p

= wq′
(
y� , �

m
p

)
.

Since we assume that (2) holds, these two equalities complete the proof. ��
Now we are prepared for the

Proof (of Theorem 3). First assume that A is (p,q)-maximizing, i.e. for every choice
of a measure μ , a sequence α ∈ �q and functions x0, . . . ,xm ∈ Lp(μ) we have

∥
∥
∥ sup

j

∣
∣

j

∑
k=0

a jkαkxk
∣
∣
∥
∥
∥

p
≤ mp,q(A)‖α‖q wq′(xk) .

But then the preceding lemma implies that ADα : �q′ −→ �∞ is p-summing, and
πp(ADα) ≤ mp,q(A)‖α‖q. Conversely, assume that (2) holds. Then, again by the
lemma,

∥
∥
∥ sup

j

∣
∣

j

∑
k=0

a jkαkxk

∣
∣
∥
∥
∥

p
≤ c‖α‖q wq′(xk) ,

which yields (1). Next, we show that (2) implies (3). Take some u ∈ L (�n
q′ , �1).

Then by (2.16) there is a factorization

c0

u′|c0
��

Dα ���
��

��
��

�
�n

q

�q

R

��
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with ‖Dα‖ ‖R‖ ≤ πq(u′). But then (2) implies (3):

πp(Au) = πp(ADα R′) ≤ πp(ADα)‖R‖ ≤ c‖α‖q‖R‖ ≤ cπq(u′) .

Now we prove the implication (3) ⇒ (4): Recall that the Banach operator ideal
(Πp,πp) is maximal (see (2.12)). Hence, we fix some operator u : X −→ �1, and
assume without loss of generality that X is finite dimensional. The aim is to show
that

πp(Au) ≤ cπq(u′) .
It is well-known that there is some finite rank operator S on �1 such that ‖S‖≤ 1+ε
and S|M = id where M := uX (�1 has the metric approximation property, see e.g. [6]
or [53]). Put

v : X −→ M , vx := S ux ,

and let IM : M ↪→ �1 be the canonical embedding. Without loss of generality there is
a linear bijection T : M −→ �dimM

1 such that ‖T‖ ‖T−1‖ ≤ 1+ε (�1 is a L1,λ -space,
λ > 1; for this see again [6] or [53]). Again by (2.16) there is a factorization

�n
∞

(Tu)′
��

R ���
��

��
��

X ′

�N
q

S

��
πq(R)‖S‖ ≤ πq((Tu)′) .

Hence, we conclude that

πp(Au) = πp(AIMu)

= πp(AIMT−1Tu)

≤ πp(AIMT−1R′)‖S′‖
(3)
≤ c πq((IMT−1R′)′)‖S‖
≤ c πq(R)‖T−1‖ ‖S‖
≤ cπq((Tu)′)‖T−1‖ ≤ c πq(u′)(1 + ε) ,

the conclusion. This completes the whole proof since (4) trivially implies (2). ��
The preceding characterization has some deep consequences.

Theorem 4. Let A be an infinite matrix such that ‖A‖∞ < ∞, and assume that 1 ≤
p < ∞, 1 ≤ q ≤ ∞ with p ≤ q.
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(1) A is (2,2)-maximizing if and only if A : �1 −→ �∞ is hilbertian, and in this case
m2,2(A) = γ2(A).

(2) More generally, A is (p,q)-maximizing if and only if A : �1 −→ �∞ is (p,q)-
factorable,

�1
A

��

v
��

�∞

Lq(μ) � �
j

� Lp(μ) ,

w

��

and in this case mp,q(A) = γp,q(A).
(3) In particular, A is (p,∞)-maximizing if and only if A : �1 −→ �∞ is p-summing

(= p-integral by (2.19)), and in this case mp,∞(A) = πp(A).

Proof. It suffices to check (2) since (1) is an immediate consequence of (2),
and (3) follows from (2) and (2.19). But (2) obviously is a consequence of the
characterization of maximizing operators given in Theorem 3, (1) ⇔ (4) combined
with the quotient formula from (2.22) and the equality from (2.19). ��

Note that (1) and (3) in combination with Grothendieck’s théorème fondamental
from (2.24) show that a matrix A is (2,2)-maximizing (A : �1 → �∞ is hilbertian)
if and only A is (1,∞)-maximizing (A : �1 → �∞ is integral). This is part of the
following theorem which together with Theorem 1 is our second crucial tool
later used to deduce a commutative and noncommutative Lp-theory of classical
coefficient tests.

Theorem 5. Let A be an infinite matrix such that ‖A‖∞ < ∞. The following are
equivalent:

(1) A is (2,2)-maximizing.
(2) A is (1,∞)-maximizing.
(3) A is (p,q)-maximizing for some 1 ≤ p ≤ 2 ≤ q ≤ ∞.
(4) A is (p,q)-maximizing for all 1 ≤ p < ∞, 1 ≤ q ≤ ∞.

In this case, K−1
G m1,∞(A) ≤ m2,2(A) ≤ m1,∞(A) .

Proof. We have already explained that the first two statements are equivalent. All
other implications are then either trivial or follow by monotonicity. ��

2.1.8 Almost Everywhere Summation

As anounced earlier one aim of this second chapter is to develop an Lp-theory
for classical coefficient tests for almost sure summation of orthonormal series.
The following theorem links the type of maximal inequalities in Lp-spaces we
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are interested in (i.e. inequalities induced by maximizing matrices) with almost
everywhere convergence.

Proposition 2. Let A = (a jk) be a (p,q)-maximizing matrix which converges in
each column, and E(μ ,X) a vector-valued Banach function space. Then for every
α ∈ �q and every weakly q′-summable sequence (xk) in E(μ ,X) (in the case q = ∞
we only consider unconditionally summable sequences) the sequence

( ∞

∑
k=0

a jkαkxk

)

j

converges μ-almost everywhere.

Our proof will turn out to be a sort of model for the noncommutative case in
Chap. 3; see Lemmas 22 and 27. That is the reason why we isolate the following
lemma which here appears to be a bit too “heavy” – but obviously it allows to
deduce the preceding proposition as an immediate consequence.

Lemma 7. Let A = (a jk) be a matrix with ‖A‖∞ < ∞ and such that each column
forms a convergent sequence, E(μ ,X) a vector-valued Banach function space, and
1 ≤ q ≤ ∞. Assume that

( ∞

∑
k=0

a jkαkxk

)

j
∈ E(μ ,X)[�∞]

for every sequence α ∈ �q and every weakly q′-summable sequence (xk) in E(μ ,X)
(in the case q = ∞ we only consider unconditionally summable sequences). Then for
every such α and (xk) the sequence

( ∞

∑
k=0

a jkαkxk

)

j

converges μ-almost everywhere.

Proof. We show that for every α and x as in the statement we have

( ∞

∑
k=0

aikαkxk −
∞

∑
k=0

a jkαkxk

)

(i, j)
∈ E(μ ,X)[c0(N2

0)] ; (2.26)

then we conclude from Lemma 2 that for each w in the complement of a zero set N

lim
(i, j)→∞

(

∑
k

aikαkxk(w)−∑
k

a jkαkxk(w)
)

(i, j)
= 0.

But this means that in �N the sequence
(

∑
k

a jkαkxk

)

j
is pointwise Cauchy, the

conclusion.
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In order to show (2.26) we first consider the case 1 ≤ q < ∞. Fix a weakly
q′-summable sequence (xk) in E(μ ,X). Note first that for (uk) ∈ E(μ ,X)[�∞]

(uk −ul)(k,l) ∈ E(μ ,X)[�∞(N2
0)]

and ∥
∥
∥ sup

k,l
‖uk(·)−ul(·)‖X

∥
∥
∥

E(μ)
≤ 2

∥
∥
∥sup

k
‖uk(·)‖X

∥
∥
∥

E(μ)
;

this is obvious, but for later use in noncommutative settings let us also mention
the following argument: if uk = zk f is a factorization according to the definition of
E(μ ,X)[�∞], then

uk −ul = (zk − zl) f

defines a factorization for (uk −ul)(k,l). Hence by assumption the mapping

Φ : �q −→ E(μ ,X)[�∞(N2
0)]

α �
(

∑
k

aikαkxk −∑
k

a jkαkxk

)

(i, j)

is defined, linear and (by a closed graph argument) bounded. Our aim is to
show that Φ has values in the closed subspace E(μ ,X)[c0(N2

0)]. By continuity it
suffices to prove that, given a finite sequence α = (α0, . . . ,αk0 ,0, . . .) of scalars,
Φα ∈ E(μ ,X)[c0(N2

0)] . Clearly, (αkxk)0≤k≤k0 ∈ E(μ ,X)[�∞], and hence there is a
factorization

αkxk = zk f , 0 ≤ k ≤ k0

with ‖zk‖L∞(X) ≤ 1 and f ∈ E(μ). But then for all i, j

k0

∑
k=0

aikαkxk −
k0

∑
k=0

a jkαkxk =
k0

∑
k=0

(aik −a jk)αkxk =
( k0

∑
k=0

(aik −a jk)zk

)
f .

This means that the right side of this equality defines a factorization of

( k0

∑
k=0

aikαkxk −
k0

∑
k=0

a jkαkxk

)

(i, j)
.

Since

∥
∥
∥

k0

∑
k=0

(aik −a jk)zk

∥
∥
∥

L∞(X)
≤

k0

∑
k=0

|aik −a jk|‖zk‖L∞(X) ≤
k0

∑
k=0

|aik −a jk| ,
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and A converges in each column, we even see that as desired

(

∑
k

aikαkxk −∑
k

a jkαkxk

)

(i, j)
∈ E(μ ,X)[c0(N2

0)].

For the remaining case q = ∞ fix α ∈ �∞ and define

Φ : �unc
1 (E(μ)) −→ E[�∞(N2

0)]

(xk) �
(

∑
k

aikαkxk −∑
k

a jkαkxk

)

(i, j)
.

Like in the first case we see that Φ is well-defined and continuous. Since the finite
sequences are dense in �unc

1 (E(μ ,X)), we can finish exactly as above. ��

2.2 Basic Examples of Maximizing Matrices

For some fundamental coefficient tests within the theory of pointwise summation of
general orthogonal series with respect to classical summation methods, we isolate
the maximal inequalities which come along with these results. In view of the results
of the preceding section this leads to several interesting scales of (p,q)-maximizing
matrices A – the main results are given in the Theorems 7 (ordinary summation),
8 (Riesz summation), 9 and 10 (Cesàro summation), 11 (Kronecker matrices), and
12 (Abel summation).

Let us once again repeat that most of our examples (but not all) have the form
A = (a jk) j,k∈N0 = S Σ D1/ω , where S is some summation process (see (2.4)), D1/ω
some diagonal matrix with some Weyl sequence ω for S (see (2.2)), and Σ the sum
matrix (see (2.1)):

a jk :=
1

ωk

∞

∑
�=k

s j� . (2.27)

In the final section, we link our setting of maximizing matrices with Bennett’s
powerful theory of (p,q)-multipliers. We recall again that logx always means
max{1, logx}.

2.2.1 The Sum Matrix

We already know from Theorem 2 that every matrix S Σ is (p,q)-maximizing
whenever q < p. The aim here is to prove the fundamental inequality of the theory
of general orthonormal series – the famous Kantorovitch-Menchoff-Rademacher
maximal inequality. This result will then show that every matrix of the form
S Σ D(1/ logk) in fact is (p,q)-maximizing for arbitrary p,q.
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Theorem 6. Let (xk) be an orthonormal system in L2(μ) and (αk) a scalar
sequence satisfying ∑∞

k=0 |αk logk|2 < ∞. Then the orthonormal series ∑k αkxk

converges almost everywhere, and its maximal function satisfies

∥
∥
∥sup

j

∣
∣

j

∑
k=0

αkxk

∣
∣
∥
∥
∥

2
≤C‖(αk logk)‖2 , (2.28)

where C is an absolute constant.

Improving many earlier results, the statement on almost everywhere convergence
was independently discovered by Menchoff [60] and Rademacher [81], and today
it is usually called Menchoff-Rademacher theorem (see e.g. [1, 47, 94]). Note
that it is best possible in the following sense: Menchoff in [60] constructed an
orthonormal system (xk) such that for every increasing sequence (ωk) in R≥1 with
ωk = o(logk) there is an orthonormal series ∑k αkxk which is divergent almost
everywhere, but such that ∑∞

k=0 |αkωk|2 < ∞. The maximal inequality (2.28) was
isolated by Kantorovitch [46], and the result on almost everywhere convergence is
clearly an easy consequence of it (see also Proposition 2). The optimality of the
log-term in (2.28) can also be shown by use of the discrete Hilbert transform on �2

(see e.g. [2, 50, 59]).
The proof of the Kantorovitch-Menchoff-Rademacher maximal inequality (2.28)

is done in two steps. First we show the following weaker estimate: Let (αk)n
k=0 be

scalars and (xk)n
k=0 an orthonormal system in L2(μ). Then

∥
∥
∥ max

0≤ j≤n

∣
∣
∣

j

∑
k=0

αkxk

∣
∣
∣

∥
∥
∥

2
≤ K logn‖α‖2 , (2.29)

where K > 0 is an absolute constant.
Although the literature provides many elementary proofs of this inequality, we

prefer to present a proof within our setting of maximizing matrices. In view of
Theorem 1 the preceding estimate is equivalent to

m2,2(Σn) ≤ K logn ,

where Σn denotes the “finite” sum matrix

σn
jk :=

{
1 k ≤ j ≤ n

0 j < k ≤ n .
(2.30)

We show the apparently stronger (but by Theorem 5 equivalent) result

m1,∞(Σn) ≤ K logn , (2.31)
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which by Theorem 3, our general characterization of maximizing matrices through
summing operators, is an immediate consequence of the following estimate.

Lemma 8. There is a constant K > 0 such that for all n

π1(Σn : �n
1 → �n

∞) ≤ K logn .

This lemma is well-known; see e.g. [2, 3] and [59]; the idea for the proof
presented here is taken from[94, Sect. III.H.24]. For the estimate π1(Σn : �n

1 → �n
∞)≤

π−1 logn + O(1), where π−1 is optimal, see [3, Corollary 8.4].

Proof. Consider on the interval [0,2π ] the matrix-valued function

A(θ ) := D(θ )
(

ei( j−k)θ
)

jk
,

where D(θ ) = ∑n
j=0 ei jθ as usual denotes the Dirichlet kernel. Since we have that

A(θ ) = D(θ )x⊗ y with x = (ei jθ ) j and y = (e−ikθ )k , the matrix A(θ ) represents a
one dimensional operator on C

n. Hence

π1(A(θ ) : �n
1 −→ �n

∞) = ‖A(θ ) : �n
1 −→ �n

∞‖ = |D(θ )| ,

and by the triangle inequality this implies that

π1

( 1
2π

∫ 2π

0
A(θ )dθ

)
≤ 1

2π

∫ 2π

0
|D(θ )|dθ ≤ K logn .

Since by coordinatewise integration we have

Σn =
1

2π

∫ 2π

0
A(θ )dθ ,

the conclusion of the lemma follows. ��
Now we give the

Proof (of Theorem 6). It suffices to check the following two estimates:

∥
∥
∥sup

n

∣
∣
∣

2n

∑
k=0

αkxk

∣
∣
∣

∥
∥
∥

2
≤ C1 ‖(αk logk)‖2 , (2.32)

∑
n

∥
∥
∥ max

2n<�≤2n+1

∣
∣
∣

�

∑
k=0

αkxk −
2n

∑
k=0

αkxk

∣
∣
∣

∥
∥
∥

2

2
≤ C2 ‖(αk logk)‖2

2 ; (2.33)

indeed, for 2m < j ≤ 2m+1
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∣
∣
∣

j

∑
k=0

αkxk

∣
∣
∣
2 ≤

(∣
∣
∣

2m

∑
k=0

αkxk

∣
∣
∣+

∣
∣
∣

j

∑
k=2m+1

αkxk

∣
∣
∣

)2

≤ 2
(∣
∣
∣

2m

∑
k=0

αkxk

∣
∣
∣
2
+

∣
∣
∣

j

∑
k=2m+1

αkxk

∣
∣
∣
2)

≤ 2
(

sup
n

∣
∣
∣

2n

∑
k=0

αkxk

∣
∣
∣
2
+

∞

∑
n=0

max
2n<�≤2n+1

|
�

∑
k=2n+1

αkxk|2
)

.

Hence we obtain by integration from (2.32) and (2.33) as desired

∥
∥
∥sup

j

∣
∣
∣

j

∑
k=0

αkxk

∣
∣
∣

∥
∥
∥

2
≤C‖(αk logk)‖2 .

For the proof of (2.32) put ϕ0 := ∑2
k=0 αkxk and ϕν := ∑2ν+1

k=2ν+1 αkxk, ν ≥ 1. Since
ν + 1 ≤ 2log(2ν), we have by orthogonality

∞

∑
ν=0

(ν + 1)2‖ϕν‖2
2 = ‖ϕ0‖2

2 +
∞

∑
ν=1

(ν + 1)2
2ν+1

∑
k=2ν+1

|αk|2

≤ ‖ϕ0‖2
2 + 4

∞

∑
ν=1

2ν+1

∑
k=2ν+1

|αk logk|2 ≤ 4‖(αk logk)‖2
2 .

On the other hand supn

∣
∣
∣∑2n

k=0 αkxk

∣
∣
∣ ≤ ∑∞

ν=0 |ϕν | which now implies (2.32):

∥
∥
∥ sup

n

∣
∣
∣

2n

∑
k=0

αkxk

∣
∣
∣

∥
∥
∥

2
≤

∞

∑
ν=0

‖ϕν‖2 =
∞

∑
ν=0

(ν + 1)‖ϕν‖2
1

ν + 1

≤
( ∞

∑
ν=0

(ν + 1)2‖ϕν‖2
2

) 1
2
( ∞

∑
ν=0

1
(ν + 1)2

) 1
2

≤C1‖(αk logk)‖2.

Finally, (2.33) is a consequence of (2.29): We have for all m

∥
∥
∥ max

2m< j≤2m+1

∣
∣
∣

j

∑
k=2m+1

αkxk

∣
∣
∣

∥
∥
∥

2

2
≤C2(log2m)2

2m+1

∑
k=2m+1

|αk|2 ,
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and hence

∞

∑
n=0

∥
∥
∥ max

2n<�≤2n+1

∣
∣
∣

�

∑
k=2n+1

αkxk

∣
∣
∣

∥
∥
∥

2

2
≤C2

∞

∑
n=0

(log2n)2
2n+1

∑
k=2n+1

|αk|2

≤C2

∞

∑
n=0

2n+1

∑
k=2n+1

|αk logk|2

≤C2‖(αk logk)‖2
2.

This completes the proof of Theorem 6. ��
Finally, we extend the preceding theorem within our setting of maximizing

matrices. In combination with Theorem 1 we conclude from Theorem 6 that the
matrix A = ΣD(1/ logk) given by

a jk =

⎧
⎨

⎩

1
logk

k ≤ j

0 k > j
(2.34)

is (2,2)-maximizing, hence Theorem 5 implies that this matrix is even (p,q)-
maximizing for all p,q. The following formal extension of this statement comple-
ments Theorem 2.

Theorem 7. Let S be a summation process, and 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Then
the matrix A = SΣD(1/ logk) given by

a jk =
1

logk

∞

∑
�=k

s j�

is (p,q)-maximizing. Moreover, if q < p, then in the preceding statement no log-term
is needed.

Proof. The matrix S defines a bounded operator on �∞. Hence we see from
the argument already used in (2.11) and Theorem 6 that S Σ D(1/ logk) is (2,2)-
maximizing, and therefore (p,q)-maximizing for all possible p,q by Theorem 5.
The final statement is Theorem 2. ��

The following consequence of Theorem 4 is an interesting by-product on
summing operators.

Corollary 1. Let S be a summation process. Then the matrices A = SΣD(1/ logk)
from Theorem 7, if considered as operators from �1 into �∞, are 1-summing.

We finish this section with a result on the “lacunarity” of the sum matrix Σ .

Corollary 2. Take a strictly increasing unbounded sequence (λn) in R≥0 and let
(�n) be its inverse sequence, i.e. if λ : R≥0 → R≥0 is linear in the interval [n,n + 1]
and λ (n) := λn, then �n := �(n) with � := λ−1. Let Σo = (σo

jk) be an infinite matrix
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which equals the sum matrix Σ except that some columns are entirely zero. If for all
n we have

card{k |�n ≤ k ≤ �n+1 , the k-th column of Σo is non-vanishing} ≤ O(n) ,

then the matrix A defined by

a jk :=

⎧
⎪⎨

⎪⎩

σo
jk

logλ (k)
k ≤ j

0 k > j ,

is (p,q)-maximizing for all p,q.

Proof. By Theorem 5 we only have to show that A is (2,2)-maximal, and hence by
Theorem 1 we check that for a given orthonormal series ∑k αkxk in L2(μ)

∥
∥
∥ sup

j

∣
∣
∣∑

k

σo
jkαkxk

∣
∣
∣

∥
∥
∥

2
≤C‖(αk logλk)‖2 .

The proof is based on the Kantorovitch-Menchoff-Rademacher inequality (2.28),
but it also repeats part of its proof. As there, it suffices to check that the sequence of
partial sums

s j =
j

∑
k=0

σo
jkαkxk , j ∈ N

satisfies the following two inequalities:

∑
n

∥
∥
∥ max

�n<�≤�n+1
|s� − s�n |

∥
∥
∥

2

2
≤ C‖(αk logλk)‖2

2 (2.35)

∥
∥sup

n
|s�n |

∥
∥

2 ≤ C‖(αk logλk)‖2 , (2.36)

C ≥ 1 some constant. We assume without loss of generality that all �n are natural

numbers and all scalars βn :=
(

∑�n+1
k=�n+1 |σo

�n+1kαk|2
)1/2 	= 0. Define the orthonormal

system

yn :=
1
βn

�n+1

∑
k=�n+1

σo
�n+1kαkxk , n ∈ N .

Then we obtain (2.36) from (2.28) (note that σo
�n+1� = σo

�k+1 � for � ≤ �k+1):

∥
∥
∥sup

n

∣
∣
∣

�n+1

∑
k=0

σo
�n+1kαkxk

∣
∣
∣

∥
∥
∥

2
=

∥
∥
∥sup

n

∣
∣
∣

n

∑
k=0

βkyk

∣
∣
∣

∥
∥
∥

2

≤C
( ∞

∑
k=0

log2 k β 2
k

)1/2
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≤C
( ∞

∑
k=0

log2 k
�k+1

∑
�=�k+1

|α�|2
)1/2

≤C‖(αk logλk)‖2 .

Moreover, from another application of (2.28) (more precisely, the weaker estimate
from (2.29)) and the hypothesis on the number of nonzero columns of A we conclude

∥
∥
∥ max

�n<�≤�n+1

∣
∣
∣

�

∑
k=�n+1

σo
�kαkxk

∣
∣
∣

∥
∥
∥

2

2
≤C log2 n

�n+1

∑
�=�n+1

|α�|2

≤ C
�n+1

∑
k=�n+1

|αk logλk|2,

which after summation over all n yields (2.35). ��

2.2.2 Riesz Matrices

For particular summation methods S the log-term in Theorem 7 can be improved. In
the following section we handle Riesz matrices S = Rλ ; recall their definition from
Sect. 2.1.1.

Theorem 8. Let (λn)n be a strictly increasing unbounded sequence of positive num-
bers with λ0 = 0, and 1 ≤ p < ∞,1 ≤ q ≤ ∞. Then the matrix A = Rλ ΣD(1/ loglogλk)
given by

a jk =

⎧
⎨

⎩

(1− λk

λ j+1
)

1
log logλk

k ≤ j

0 k > j

is (p,q)-maximizing. No log-term is needed whenever q < p.

Recall that we agreed to write logλk for max{1, logλk}. Clearly, the last
statement on the log-term is a consequence of Theorem 2. Moreover, note that
for the special case λn = 2n this result still contains the Kantorovitch-Mechoff-
Rademacher inequality (2.28) together with its (p,q)-variants. From Theorem 4 we
deduce the following immediate

Corollary 3. All matrices A = Rλ Σ D(1/ loglogλk) from the preceding Theorem 8, if
considered as operators from �1 into �∞, are 1-summing.

Theorem 8 is due to Bennett [2, Theorem 6.5] who gives a direct, may be more
elementary proof for it, and Corollary 3 was first stated in [3, Corollary 6.4]. Before
we enter the proof of Theorem 8 let us recall what it means in terms of a maximal
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inequality: There is a constant C > 0 such that for each sequence (αk) of scalars and
for each sequence (xk) in Lp(μ)

∥
∥
∥sup

j

∣
∣

j

∑
k=0

λk+1 −λk

λ j+1

k

∑
�=0

α� x�

∣
∣
∥
∥
∥

p
≤C‖(αk log logλk)‖q wq′(xk) . (2.37)

In order to prove this inequality we have to check, by what was shown in Theorem 1
and Theorem 5, an a priori weaker estimate for orthonormal series. It suffices to
prove that for each orthonormal series ∑k αkxk in L2(μ) we have

∥
∥
∥sup

j

∣
∣

j

∑
k=0

λk+1 −λk

λ j+1

k

∑
�=0

α� x�

∣
∣
∥
∥
∥

2
≤C‖(αk loglogλk)‖2 , (2.38)

C > 0 some universal constant. This maximal inequality for orthonormal series cor-
responds to a famous almost everywhere summation theorem due to Zygmund [97];
our proof follows from a careful analysis of the proof of Zygmund’s result given
in Alexits [1, p.141], and it is based on the Kantorovitch-Menchoff-Rademacher
inequality (2.28).

Proof (of (2.38)). Define

s j =
j

∑
k=0

αkxk and σ j =
j

∑
k=0

(
1− λk

λ j+1

)
αkxk .

By assumption there is a strictly increasing function λ : R≥0 → R≥0 being linear
in each interval [n,n + 1] and satisfying λ (n) = λn for all n. Put νn := l(2n), where
l : R≥0 → R≥0 is the inverse function of λ ; we assume that all νn’s are integers
(otherwise the proof needs some modifications). It suffices to check the following
three estimates:

∑
n
‖sνn −σνn‖2

2 ≤ C1‖α‖2
2 (2.39)

∑
n

∥
∥ max

νn<�≤νn+1
|σ�−σνn |

∥
∥2

2 ≤ C2‖α‖2
2 (2.40)

∥
∥sup

n
|sνn |

∥
∥

2 ≤ C3‖(αk log logλk)k‖2 ; (2.41)

indeed, for νm < j ≤ νm+1

|σ j|2 ≤ (|σ j −σνm |+ |σνm − sνm |+ |sνm |)2

≤ 3(|σ j −σνm |2 + |σνm − sνm |2 + |sνm |2)

≤ 3
( ∞

∑
n=0

max
νn<�≤νn+1

|σ�−σνn |2 +
∞

∑
n=0

|σνn − sνn |2 + sup
n
|sνn |2

)
,
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and since the right side is independent of j, we have

sup
j
|σ j|2 ≤ 3

( ∞

∑
n=0

max
νn<�≤νn+1

|σ�−σνn |2 +
∞

∑
n=0

|σνn − sνn |2 + sup
n
|sνn |2

)
.

Hence, we obtain as desired

∥
∥sup

j
|σ j|

∥
∥2

2 ≤ 3
( ∞

∑
n=0

∥
∥ max

νn<�≤νn+1
|σ�−σνn |

∥
∥2

2 +
∞

∑
n=0

‖σνn − sνn‖2
2 +

∥
∥sup

n
|sνn |

∥
∥2

2

)

≤ 3
(
C2‖α‖2

2 +C1‖α‖2
2 +C3‖(αk loglogλk)k‖2

2

) ≤C‖(αk loglogλk)‖2
2.

For the proof of (2.39) note that νn = l(2n)≥ k = λ−1(λk) iff n ≥ logλk. Therefore,
(2.39) is obtained by orthogonality as follows:

∞

∑
n=0

‖sνn −σνn‖2
2 =

∞

∑
n=0

∥
∥
∥

νn

∑
k=0

λk

λνn+1
αkxk

∥
∥
∥

2

2

=
∞

∑
n=0

νn

∑
k=0

( λk

λνn+1

)2|αk|2

≤
∞

∑
k=0

|αk|2 ∑
n:νn≥k

(λk

2n

)2

=
∞

∑
k=0

|αk|2 ∑
n≥logλk

( 1

2n−logλk

)2 ≤C1‖αk‖2
2 .

In order to show (2.40) choose for a fixed m some n such that νn < m ≤ νn+1. Then

|σm −σνn | ≤
m

∑
j=νn

|σ j+1 −σ j| ≤
νn+1

∑
j=νn

|σ j+1 −σ j|

=
νn+1

∑
j=νn

( λ j+1

λ j+2 −λ j+1

) 1
2 |σ j+1 −σ j|

(λ j+2 −λ j+1

λ j+1

) 1
2

≤
( νn+1

∑
j=νn

λ j+1

λ j+2 −λ j+1
|σ j+1 −σ j|2

) 1
2
( νn+1

∑
j=νn

λ j+2 −λ j+1

λ j+1

) 1
2
.

But
νn+1

∑
j=νn

λ j+2 −λ j+1

λ j+1
≤ 1

λνn

νn+1

∑
j=νn

λ j+2 −λ j+1 ≤ 1
2n (2n+3 −2n) = 7
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and by orthogonality

∫

|σ j+1 −σ j|2dμ =
∫ ∣

∣
∣

j+1

∑
k=0

(
1− λk

λ j+2

)
αkxk −

j

∑
k=0

(
1− λk

λ j+1

)
αkxk

∣
∣
∣
2
dμ

=
(λ j+2 −λ j+1

λ j+1λ j+2

)2 ∫ ∣
∣
∣

j+1

∑
k=0

λkαkxk

∣
∣
∣
2
dμ

=
(λ j+2 −λ j+1

λ j+1λ j+2

)2 j+1

∑
k=0

λ 2
k |αk|2 .

Hence

∞

∑
n=0

∫

max
νn<�≤νn+1

|σm −σνn |2dμ ≤ 7
∞

∑
j=0

λ j+1

λ j+2 −λ j+1

∫

|σ j+1 −σ j|2dμ

= 7
∞

∑
j=0

λ j+2 −λ j+1

λ j+1λ 2
j+2

j+1

∑
k=0

λ 2
k |αk|2

= 7
∞

∑
k=0

λ 2
k |αk|2

∞

∑
j=k−1

λ j+2 −λ j+1

λ j+1λ 2
j+2

.

But since

λ j+2 −λ j+1

λ j+1λ 2
j+2

=
λ 2

j+2 −λ 2
j+1

λ j+1λ 2
j+2(λ j+2 + λ j+1)

≤ λ 2
j+2 −λ 2

j+1

λ 2
j+1λ 2

j+2

=
1

λ 2
j+1

− 1

λ 2
j+2

,

we now obtain (2.40):

∞

∑
n=0

∥
∥ max

νn<�≤νn+1
|σ�−σνn |

∥
∥2

2 ≤ 7
∞

∑
k=0

λ 2
k |αk|2

∞

∑
j=k−1

1

λ 2
j+1

− 1

λ 2
j+2

≤ C2 ‖α‖2
2.

Finally, the proof of (2.41): We may assume without loss of generality that all

βn :=

⎧
⎪⎪⎨

⎪⎪⎩

( ν1

∑
k=0

|αk|2
) 1

2
n = 0

( νn+1

∑
k=νn+1

|αk|2
) 1

2
n ≥ 1

are 	= 0. Then the functions

yn :=

⎧
⎪⎪⎨

⎪⎪⎩

1
β0

ν1

∑
k=0

αkxk n = 0

1
βn

νn+1

∑
k=νn+1

αkxk n ≥ 1
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define an orthonormal system in L2(μ). From logn = loglog2n = loglogλνn we
derive

∞

∑
n=0

|βn logn|2 =
ν1

∑
k=0

|αk|2 +
∞

∑
n=1

(logn)2
νn+1

∑
k=νn+1

|αk|2

≤
ν1

∑
k=0

|αk log logλk|2 +
∞

∑
n=1

νn+1

∑
k=νn+1

|αk loglogλk|2

=
∞

∑
k=0

|αk log logλk|2 ,

which in combination with Theorem 6 gives as desired

∥
∥sup

n
|sνn+1 |

∥
∥

2 =
∥
∥
∥ sup

n

∣
∣

n

∑
k=0

βkyk

∣
∣
∥
∥
∥

2

≤C3‖(βk logk)‖2
2 = C3‖(αk loglogλk)‖2

2 .

This completes the proof. ��

2.2.3 Cesàro Matrices

We deal with Cesàro matrices Cr defined in Sect. 2.1.1. Note first that for λn = n
Theorem 8 reads as follows.

Theorem 9. The matrix A = CΣD(1/ loglogk) given by

a jk =

⎧
⎨

⎩

(
1− k

j + 1

) 1
loglogk

k ≤ j

0 k > j
(2.42)

is (p,q)-maximizing for 1 ≤ p < ∞ and 1≤ q ≤ ∞ . No log-term is needed whenever
q < p.

We will now extend this result for Cesàro matrices Cr of order r > 0. For all
needed facts on Cesàro summation of order r we once more refer to the monographs
[1] and [97]. For r ∈ R define Ar

0 = 1, and for n ∈ N

Ar
n :=

(
n + r

n

)

=
(r + 1) . . . (r + n)

n!
;

recall that these numbers are the coefficients of the binomial series
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∞

∑
n=0

Ar
nzn =

1
(1− z)r+1 (2.43)

(z ∈ C with |z| < 1). In particular, we see that the equality

∞

∑
n=0

Ar1+r2+1
n zn = (1− z)−r1−1(1− z)−r2−1 =

∞

∑
n=0

( n

∑
k=0

Ar1
k Ar2

n−k

)
zn

implies the formulas

Ar1+r2+1
n =

n

∑
k=0

Ar1
k Ar2

n−k . (2.44)

For a sequence (xk) in a Banach space and r ∈ R define the Cesàro means

sr
j =

j

∑
k=0

Ar−1
j−ksk and σ r

j =
1
Ar

j
sr

j ,

where sk again is the kth partial sum of the series ∑k xk. Using that ∑ j
k=0 Ar−1

k = Ar
j

(this follows from (2.44)) we see that

sr
j =

j

∑
k=0

Ar−1
j−k(x0 + . . .xk) =

j

∑
k=0

xk(Ar
0 + . . .Ar

j−k) =
j

∑
k=0

Ar
j−kxk . (2.45)

In particular, we obtain from (2.43) and (2.45) that

1
(1− z)r+1

∞

∑
n=0

xnzn =
∞

∑
n=0

( n

∑
k=0

Ar
n−kxk

)
zn =

∞

∑
n=0

sr
nzn ; (2.46)

therefore

∞

∑
n=0

sr1+r2+1
n zn =

( 1
(1− z)r1+1

∞

∑
n=0

xnzn
) 1

(1− z)r2+1

=
∞

∑
n=0

sr1
n zn

∞

∑
n=0

Ar2
n zn =

∞

∑
n=0

( n

∑
k=0

sr1
k Ar2

n−k

)
zn ,

implying the identities

sr1+r2+1
n =

n

∑
k=0

Ar2
n−ksr1

k . (2.47)

Furthermore, for r 	= −1,−2, . . . an easy computation shows the following well-
known equality

Ar
n =

nr

Γ (r + 1)
(1 + o(1)) . (2.48)
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After this preparation we are able to improve Theorem 9 for Cesàro summation of
arbitrary order r > 0.

Theorem 10. Let r > 0, and 1 ≤ p < ∞,1 ≤ q ≤ ∞. Then the matrix A =
CrΣD(1/ loglogk) given by

a jk =

⎧
⎪⎨

⎪⎩

Ar
j−k

Ar
j

1
loglogk

k ≤ j

0 k > j

is (p,q)-maximizing. For q < p the log-term is superfluous.

Note again that the last statement on the log-term is a special case of (the last
statement in) Theorem 7.

Let us prove Theorem 10. As in the preceding section (see Theorem 1 and
Theorem 5) we only have to show that there is some constant C > 0 such that for
each orthonormal system (xk) in some L2(μ) and each sequence (αk) of scalars we
have

∥
∥
∥sup

j

∣
∣

j

∑
k=0

Ar−1
j−k

Ar
j

k

∑
�=0

α� x�

∣
∣
∥
∥
∥

2
≤C‖(αk loglogk)‖2 . (2.49)

Fix such (xk) and (αk), and recall from (2.45) that in our special situation

sr
j =

j

∑
k=0

Ar−1
j−k

k

∑
�=0

α� x� =
j

∑
k=0

Ar
j−kαkxk , (2.50)

and

σ r
j =

1
Ar

j
sr

j .

By Theorem 9 the case r = 1 in (2.49) is already proved, and the case r > 1 is an
immediate consequence of the next lemma (see also [1]).

Lemma 9. Let r > −1 and ε > 0. Then

∥
∥sup

j
|σ r+ε

j |∥∥2 ≤
∥
∥ sup

j
|σ r

j |
∥
∥

2 .

Proof. From (2.47) we deduce that sr+ε
j = ∑ j

k=0 Aε−1
j−k sr

k, and from (2.44) that

1

Ar+ε
j

j

∑
k=0

Ar
kAε−1

j−k = 1 .
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Hence we conclude

|σ r+ε
j | =

∣
∣
∣

j

∑
k=0

Ar
kAε−1

j−k

Ar+ε
j

σ r
k

∣
∣
∣ ≤ sup

0≤k≤ j
|σ r

k | ,

which clearly proves our claim. ��
The proof of (2.49) for 1 > r > 0 is slightly more complicated, and will follow

from two Tauberian type results (we analyze proofs from [1, p.77,110]).

Lemma 10.

(1) For r > −1/2 and ε > 0

∥
∥
∥sup

j
|σ r+ 1

2 +ε
j |

∥
∥
∥

2

2
≤ C

∥
∥
∥ sup

j

1
j + 1

j

∑
k=0

|σ r
k |2

∥
∥
∥

1
.

(2) For r > 1/2

∥
∥
∥sup

j

1
j + 1

j

∑
k=0

|σ r−1
k |2

∥
∥
∥

1
≤ C

(
‖α‖2

2 +
∥
∥
∥sup

j
|σ r

j |
∥
∥
∥

2

2

)
.

Proof. For (1) note that by (2.47) and the Cauchy-Schwarz inequality

∣
∣σ r+ 1

2 +ε
j

∣
∣2 ≤

j

∑
k=0

|σ r
k |2

1

(Ar+ 1
2 +ε

j )2

j

∑
k=0

(
Ar

kA
− 1

2 +ε
j−k

)2
,

and by (2.48) (for j ≥ 1)

1

(Ar+ 1
2 +ε

j )2

j

∑
k=0

(
Ar

kA
− 1

2 +ε
j−k

)2 ≤C1
j2r

j2r+1+2ε

j

∑
k=0

k−1+2ε ≤C
1

j + 1
,

the conclusion. For the proof of (2) note first that

1
j + 1

j

∑
k=0

|σ r−1
k |2 ≤ 2

( 1
j + 1

j

∑
k=0

|σ r−1
k −σ r

k |2 +
1

j + 1

j

∑
k=0

|σ r
k |2

)
,

hence for

δ r
j :=

1
j + 1

j

∑
k=0

|σ r−1
k −σ r

k |2

we get that

∥
∥
∥sup

j

1
j + 1

j

∑
k=0

|σ r−1
k |2

∥
∥
∥

1
≤ 2

(∥
∥
∥sup

j
δ r

j

∥
∥
∥

1
+

∥
∥
∥sup

j

1
j + 1

j

∑
k=0

|σ r
k |2

∥
∥
∥

1

)

≤ 2
(∥
∥
∥sup

j
δ r

j

∥
∥
∥

1
+

∥
∥
∥sup

j
|σ r

j |
∥
∥
∥

2

2

)
.
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It remains to check that
∥
∥ sup j δ r

j

∥
∥

1 ≤ C‖α‖2
2. Since Ar

n = Ar−1
n

r+n
r we have by

(2.50) that

σ r
j −σ r−1

j =
j

∑
k=0

(Ar
j−k

Ar
j
− Ar−1

j−k

Ar−1
j

)
αkxk

=
1

Ar
jA

r−1
j

j

∑
k=0

(
Ar

j−kAr−1
j −Ar−1

j−kAr
j

)
αkxk

= − 1
Ar

j

j

∑
k=0

k
r

Ar−1
j−kαkxk,

hence by orthogonality

∥
∥δ r

2n

∥
∥

1 =
1

2n + 1

2n

∑
j=0

1
(Ar

j)2

j

∑
k=0

k2

r2 (Ar−1
j−k)

2|αk|2

=
1

2n + 1
1
r2

2n

∑
k=0

k2|αk|2
2n

∑
j=k

(Ar−1
j−k

Ar
j

)2
.

From (2.48) we get

∞

∑
j=k

(Ar−1
j−k

Ar
j

)2 ≤C1

∞

∑
j=k

( j− k)2r−2

j2r

≤C1
1

k2r

2k

∑
j=k

( j− k)2r−2 +C2

∞

∑
j=2k+1

j2r−2

j2r ≤C3
1
k

.

But then

∞

∑
n=0

∥
∥δ r

2n

∥
∥

1 ≤C4

∞

∑
n=0

1
2n + 1

2n

∑
k=0

k|αk|2

≤C4

∞

∑
k=0

k|αk|2 ∑
n:2n≥k

1
2n+1 ≤C5

∞

∑
k=0

|αk|2 ,

which gives
∥
∥
∥ sup

n
δ r

n

∥
∥
∥

1
≤ 2

∥
∥
∥ sup

n
δ r

2n

∥
∥
∥

1
≤ C

∞

∑
k=0

|αk|2 .

This completes the proof of (2). ��
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Finally, we complete the

Proof (of (2.49) for 0 < r < 1). By Theorem 9

∥
∥
∥ sup

j
σ1

j

∥
∥
∥

2
≤C‖(αk log logk)‖2 ,

hence we deduce from Lemma 10 that for all ε > 0

∥
∥
∥sup

j
σ

1
2 +ε
j

∥
∥
∥

2

2
≤C1

∥
∥
∥sup

j

1
j + 1

j

∑
k=0

|σ0
k |2

∥
∥
∥

1

≤C2

(
‖α‖2

2 +
∥
∥
∥sup

j
σ1

j

∥
∥
∥

2

2

)
≤C3‖(αk loglogk)‖2

2 .

A repetition of this argument gives

∥
∥
∥sup

j
σ2ε

j

∥
∥
∥

2

2
≤C1

∥
∥
∥sup

j

1
j + 1

j

∑
k=0

|σ− 1
2 +ε

k |2
∥
∥
∥

1

≤C2

(
‖α‖2

2 +
∥
∥
∥sup

j
σ

1
2 +ε
j

∥
∥
∥

2

2

)
≤C3‖(αk loglogk)‖2

2 ,

the desired inequality. ��
This finishes the proof of Theorem 10, a result which in the form presented here

is new – but let us mention again that the inequality (2.49) on orthonormal series
behind Theorem 10 corresponds to the fundamental coefficient tests for Cesàro
summation proved by Kaczmarz [43] and Menchoff [61, 62] (see also (1.7) and
(1.8)). As in the Corollaries 1 and 3 we take advantage to add another natural scale
of summing operators.

Corollary 4. For r > 0 all matrices A = CrΣD(1/ loglogk) from Theorem 10, if
considered as operators from �1 into �∞, are 1-summing.

2.2.4 Kronecker Matrices

We now generate some matrices which later lead to laws of large numbers. The
second part of the following simple lemma is usually known as Kronecker’s lemma.

Lemma 11. Let A = (a jk) be a lower triangular matrix with entries in a Banach
space X. Then

(1) ∑ j
k=0

k
j+1 a jk = ∑ j

k=0 a jk − 1
j+1 ∑ j

k=0 ∑k
�=0 a j� for every j

(2) lim j
1

j+1 ∑ j
k=0 ka jk = 0 whenever

(

∑ j
k=0 a jk

)

j
converges
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(3) Let A be a lower triangle scalar matrix which is (p,q)-maximizing. Then the
matrix B defined by

b jk :=

⎧
⎨

⎩

k
j + 1

a jk k ≤ j

0 k > j

is again (p,q)-maximizing.

Proof. Statement (1) is immediate, and implies (2). In order to prove (3) apply (1)
to see that for every choice of finitely many scalars ξ0, . . . ,ξ j we have

sup
j

∣
∣
∣

j

∑
k=0

k
j + 1

a jkξk

∣
∣
∣ ≤ 2 sup

j

∣
∣
∣

j

∑
k=0

a jkξk

∣
∣
∣ ,

and therefore by definition

mp,q(B) ≤ 2mp,q(A),

the conclusion. ��
It makes sense to call matrices (b jk) like in statement (3) Kronecker matrices – to

see a first example, note that by Theorem 7 and the preceding lemma for any lower
triangular summation process S the matrix

( k
j + 1

1
logk

∞

∑
�=k

s j�

)

j,k
(2.51)

is (p,q)-maximizing. Sometimes the log-term can be improved – for example, for
Cesàro summation of order r > 0; here we conclude from Theorem 10 that logk
may be replaced by loglogk. But the following theorem shows that in this case in
fact no log-term at all is needed.

Theorem 11. Let 1 ≤ p < ∞,1 ≤ q ≤ ∞. The matrix M defined by

m jk :=

⎧
⎨

⎩

k
j + 1

(
1− k

j + 1

)
k ≤ j

0 k > j
(2.52)

is (p,q)-maximizing. More generally, for r > 0 the matrix Mr defined by

mr
jk :=

⎧
⎪⎨

⎪⎩

k
j + 1

Ar
j−k

Ar
j

k ≤ j

0 k > j

(2.53)

is (p,q)-maximizing.
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Let us start with the proof of (2.52). Again we follow our general philosophy –
we only show a maximal inequality for orthonormal series: Fix such a series ∑k αkxk

in L2(μ), and put

μ0
j =

j

∑
k=0

k
j + 1

αkxk and μ1
j =

j

∑
k=0

k
j + 1

(
1− k

j + 1

)
αkxk .

In order to prove that M is (p,q)-maximizing, by Theorem 1 and Theorem 5 it
suffices to show that ∥

∥sup
j
|μ1

j |
∥
∥

2 ≤C‖α‖2 , (2.54)

C > 0 some universal constant. The proof of this inequality follows from a careful
analysis of Moricz [63, Theorem 1]; similar to the proof of (2.28) and (2.38) we
check three estimates:

∞

∑
n=0

‖μ0
2n − μ1

2n‖2
2 ≤ C1‖α‖2

2 (2.55)

∞

∑
n=0

∥
∥ max

2n<�≤2n+1
|μ1

� − μ1
2n |

∥
∥2

2 ≤ C2‖α‖2
2 (2.56)

∞

∑
n=0

‖μ0
2n‖2

2 ≤ C3‖α‖2
2 ; (2.57)

indeed, for 2m < j ≤ 2m+1

|μ1
j |2 ≤ (|μ1

j − μ1
2m |+ |μ0

2m − μ1
2m |+ |μ0

2m|)2

≤ 3
(|μ1

j − μ1
2m |2 + |μ0

2m − μ1
2m |2 + |μ0

2m |2)

≤ 3
( ∞

∑
n=0

max
2n<�≤2n+1

|μ1
� − μ1

2n |2 +
∞

∑
n=0

|μ0
2n − μ1

2n |2 +
∞

∑
n=0

|μ0
2n |2

)
.

Since the right side is independent of j, we obtain

∥
∥ sup

j
|μ1

j |
∥
∥2

2 ≤ 3
( ∞

∑
n=0

∥
∥ max

2n<�≤2n+1
|μ1

j − μ1
2n |

∥
∥2

2 +
∞

∑
n=0

‖μ0
2n − μ1

2n‖2
2 +

∞

∑
n=0

‖μ0
2n‖2

2

)
,

which by (2.55), (2.56), and (2.57) gives the conclusion. (2.55) follows by orthogo-
nality from

∞

∑
n=0

‖μ0
2n − μ1

2n‖2
2 =

∞

∑
n=0

∫ ∣
∣
∣

1
(2n + 1)2

2n

∑
k=0

k2αkxk

∣
∣
∣
2
dμ

=
∞

∑
n=0

1
(2n + 1)4

2n

∑
k=0

k4|αk|2
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≤
∞

∑
k=0

|αk|2 ∑
n:2n≥k

( k
2n

)4

=
∞

∑
k=0

|αk|2 ∑
n≥logk

( 1
n−2logk

)4 ≤C1‖α‖2
2,

and (2.57) from

∞

∑
n=0

∫ ∣
∣
∣

1
2n + 1

2n

∑
k=0

kαkxk

∣
∣
∣
2
dμ =

∞

∑
n=0

1
(2n + 1)2

2n

∑
k=0

k2|αk|2

≤
∞

∑
k=0

|αk|2 ∑
n:2n≥k

( k
2n

)2 ≤C3‖α‖2
2 .

For the proof of (2.56) note that for 2n < �≤ 2n+1 by the Cauchy-Schwarz inequality

|μ1
� − μ1

2n | ≤
2n+1

∑
j=2n+1

1 · |μ1
j − μ1

j−1| ≤ 2n/2
( 2n+1

∑
j=2n+1

|μ1
j − μ1

j−1|2
) 1

2
,

and hence

max
2n<�≤2n+1

|μ1
� − μ1

2n |2 ≤ 2n
2n+1

∑
j=2n+1

|μ1
j − μ1

j−1|2.

Since

μ1
j − μ1

j−1 =
j

∑
k=0

k
j + 1

(
1− k

j + 1

)
αkxk −

j−1

∑
k=0

k
j

(
1− k

j

)
αkxk

=
j

∑
k=0

k j2( j + 1)− k2 j2 − k j( j + 1)2 + k2( j + 1)2

j2( j + 1)2 αkxk

=
j

∑
k=0

(k2(2 j + 1)
j2( j + 1)2 − k

j( j + 1)

)
αkxk

and for k ≤ j
k2(2 j + 1)
j2( j + 1)2 ≤ k(2 j + 1)

j( j + 1)2 ≤ 2k
j( j + 1)

,

we have

∫

|μ1
j − μ1

j−1|2dμ ≤
∫ ∣

∣
∣

j

∑
k=0

k
j( j + 1)

αkxk

∣
∣
∣
2
dμ =

j

∑
k=0

( k
j( j + 1)

)2|αk|2.
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Hence

∫

max
2n<�≤2n+1

|μ1
� − μ1

2n|2dμ ≤ 2n
2n+1

∑
j=2n+1

j

∑
k=0

k2

j2( j + 1)2 |αk|2

≤ 1
(2n + 1)2

2n+1

∑
j=2n+1

j

∑
k=0

k2

j
|αk|2

≤ 1
(2n + 1)2

2n+1

∑
k=0

k2|αk|2
2n+1

∑
j=max(k,2n+1)

1
j

≤ 1
(2n + 1)2

2n+1

∑
k=0

k2|αk|2
2n+1

∑
j=2n+1

1
j

≤ 1
(2n + 1)2

2n+1

∑
k=0

k2|αk|2.

This finishes the proof of (2.56):

∞

∑
n=0

∥
∥ max

2n<�≤2n+1
|μ1

� − μ1
2n |

∥
∥2

2 ≤
∞

∑
n=0

1
(2n + 1)2

2n+1

∑
k=0

k2|αk|2

≤
∞

∑
k=0

|αk|2 ∑
n:2n≥k

( k
2n

)2 ≤C2‖α‖2
2 ,

completing the proof of (2.52).
In order to prove (2.53) we follow the method from Sect. 2.2.3. Once again, we

fix an orthonormal series ∑k αkxk in L2(μ) and show, according to Theorem 1 and
Theorem 5, that for

sr
j =

j

∑
k=0

Ar−1
j−k

k

∑
�=0

�α� x� =
j

∑
k=0

Ar
j−kk αkxk (2.58)

(for this last inequality see (2.45)) and

μ r
j =

1
( j + 1)Ar

j
sr

j ,

the following maximal inequality holds:

‖sup
j
|μ r

j |‖2 ≤ C‖α‖2 . (2.59)

Again the proof follows from an analysis of the work of Moricz in [63, Theorem 2].
In fact, the proof is very similar to the one of Theorem 10 (note the similarity of
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(2.58) with (2.50)) – for the sake of completeness we give some details. With (2.52)
the case r = 1 is again already proved, and the case r > 0 follows from two analogs
of Lemma 9 and Lemma 10.

Lemma 12. Let r > −1 and ε > 0. Then

∥
∥sup

j
|μ r+ε

j |∥∥2 ≤
∥
∥ sup

j
|μ r

j |
∥
∥

2 .

Proof. By (2.47) (as in the proof of Lemma 9) we have

μ r+ε
j =

1

( j + 1)Ar+ε
j

j

∑
k=0

sr
kAε−1

j−k

=
1

( j + 1)Ar+ε
j

j

∑
k=0

μ r
k (k + 1)Ar

kAε−1
j−k =

j

∑
k=0

β jkμ r
k

with β jk =
(k+1)Ar

kAε−1
j−k

( j+1)Ar+ε
j

≥ 0, and for these coefficients (use again (2.44))

j

∑
k=0

β jk ≤ 1

Ar+ε
j

j

∑
k=0

Ar
kAε−1

j−k = 1 .

Hence the conclusion is immediate. ��
Lemma 13.

(1) For r > −1/2 and ε > 0

∥
∥
∥ sup

j
|μ r+ 1

2 +ε
j |

∥
∥
∥

2

2
≤ C

∥
∥
∥ sup

j

1
j + 1

j

∑
k=0

|μ r
k |2

∥
∥
∥

1
.

(2) For r > 1/2

∥
∥
∥ sup

j

1
j + 1

j

∑
k=0

|μ r−1
k |2

∥
∥
∥

1
≤ C

(
‖α‖2

2 +
∥
∥
∥sup

j
|μ r

j |
∥
∥
∥

2

2

)
.

Proof. Observe first (see the preceding proof) that

μ r+ 1
2 +ε

j =
1

( j + 1)A
r+ 1

2 +ε
j

j

∑
k=0

μ r
k(k + 1)Ar

kA
− 1

2 +ε
j−k ,



2.2 Basic Examples of Maximizing Matrices 61

hence as in the proof of Lemma 10 (by the Cauchy-Schwarz inequality) we get

|μ r+ 1
2 +ε

j |2 ≤ C
1

j + 1

j

∑
k=0

|μ r
k |2 .

For the proof of (2) define

δ r
j :=

1
j + 1

j

∑
k=0

|μ r−1
k − μ r

k |2 ,

and show as in the proof of Lemma 10 first

∥
∥
∥sup

j

1
j + 1

j

∑
k=0

|μ r−1
k |2

∥
∥
∥

1
≤ 2

(∥
∥
∥sup

j
δ r

j

∥
∥
∥

1
+

∥
∥
∥sup

j
|μ r

j |2
∥
∥
∥

2

2

)
,

and then

∞

∑
n=0

∥
∥δ r

2n

∥
∥

1 ≤C1

∞

∑
k=0

1
2n + 1

2n

∑
k=0

k|αk|2

≤C1

∞

∑
k=0

k|αk|2 ∑
n:2n≥k

1
2n+1 ≤C2

∞

∑
k=0

|αk|2 ,

which again implies the conclusion easily. ��
Finally, we deduce (2.59) (and hence complete the proof of Theorem 11) word

by word as this was done in the proof of Theorem 10 (or better (2.49)) at the end of
Sect. 2.2.3.

2.2.5 Abel Matrices

The following result on Abel matrices Aρ (see Sect. 2.1.1 for the definition) is a
straight forward consequence of our results on Cesàro summation.

Theorem 12. Let (ρ j) be a positive and strictly increasing sequence converging to
1. Then the matrix A = AρΣD(1/ loglogk) given by

a jk =
ρk

j

loglogk

is (p,q)-maximizing. Again for q < p no log-term is needed.
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Proof. The proof is standard, we rewrite the matrix A in terms of the Cesàro matrix.
We have for all j and every choice of finitely many scalars x0, . . . ,xn that (use (2.46)
for r = 1)

n

∑
k=0

ρk
j xk = (1−ρ j)2

n

∑
k=0

s1
kρk

j

= (1−ρ j)2
n

∑
k=0

ρk
j

k

∑
�=0

s�

=
n

∑
k=0

(1−ρ j)2ρk
j (k + 1)

1
k + 1

k

∑
�=0

�

∑
m=0

xm .

Define the matrix S through s jk = (1 − ρ j)2ρk
j (k + 1). By (2.43) we know that

∑k s jk = 1 so that S defines a bounded operator on �∞. Since we just proved that
Aρ = SC, the conclusion now follows from Theorem 10 (compare the maximal
functions as in (2.11)). The last statement is a special case of Theorem 2. ��

As a sort of by product we obtain from Theorem 4 a further interesting scale of
1-summing operators from �1 to �∞ (see also the Corollaries 1, 3, and 4).

Corollary 5. All matrices A = Aρ Σ D(1/ loglogk) form 1-summing operators from �1

into �∞.

2.2.6 Schur Multipliers

We sketch without any proofs that our setting of maximizing matrices is equivalent
to Bennett’s theory of (p,q)-Schur multipliers from [3]; for precise references see
the notes and remarks at the end of this section. As mentioned above our theory of
maximizing matrices was up to some part modeled along this theory.

An infinite matrix M = (m jk) j,k∈N0 with ‖M‖∞ < ∞ is said to be a (p,q)-
multiplier (1 ≤ p,q ≤ ∞) if its Schur product M ∗A = (m jk a jk) j,k with any infinite
matrix A = (a jk) j,k∈N0 maps �p into �q whenever A does. In this case, the (p,q)-
multiplier norm of M is defined to be

μp,q(M) = sup‖M ∗A : �p → �q‖ ,

the infimum taken over all matrices A which define operators from �p into �q of
norm ≤ 1. For p = q = 2 we simply speak of multipliers; we remark that

μ2,2(M) = ‖M‖cb , (2.60)

where ‖M‖cb denotes the completely bounded norm of M which via Schur
multiplication is considered as an operator on the operator space L (�2).
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Moreover, it is known that the (p,q)-multiplier norm has the following formula-
tion in terms of summing norms:

μp,q(M) = sup
‖α‖�p≤1

πq(M Dα) (2.61)

(here M is considered as an operator from �1 into �∞, and Dα : �p′ → �1 denotes
again the diagonal operator associated to α). From Theorem 3 we conclude that M
is a (p,q)-Schur multplier if and only if M is (q, p)-maximizing – with equal norms:

μp,q(M) = mq,p(M) . (2.62)

This in particular means that all facts of the rich theory of Schur multipliers apply
to maximizing operators, and vice versa. We mention some consequences, of course
focusing on maximizing matrices:

(1) Obviously, μp,q(M) = μq′,p′(Mt ), where Mt is the transposed (or dual) matrix
of M, hence by (2.62) we have

mp,q(M) = mq′,p′(M
t) .

By definition it is obvious that (p,q)-maximizing matrices are insensitive with
respect to row repetitions or row permutations, i.e. if A is (p,q)-maximizing,
then

mp,q(A) = mp,q(Ã)

where Ã is obtained from A by repeating or permuting rows. By transposition,
we see that mp,q is insensitive to column repetitions or permutations.

(2) For two (p,q)-maximizing matrices A and B their Schur product A∗B is again
(p,q)-maximizing, and

mp,q(A∗B) = mp,q(A) mp,q(B)

(a fact obvious for Schur multipliers). A similar result holds for tensor products
(Kronecker products) of Schur multipliers,

mp,q(A⊗B)≤ mp,q(A) mp,q(B) .

(3) Denote by Tn the nth-main triangle projection, i.e. the projection on the vector
space of all infinite matrices A = (a jk) j,k∈N0 with ‖A‖∞ < ∞ defined by

Tn(A) := ∑
j+k≤n

a jke j ⊗ ek ;
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obviously, Tn(A) = A∗Θn, where

Θn( j,k) :=

⎧
⎨

⎩

1 j + k ≤ n

0 elsewhere .

Then we conclude from (2.62) that for arbitrary p,q

μq,p(Θn) = mp,q(Θn) = mp,q(Σn) ,

where Σn again is the sum matrix (see (2.30)); here the last equality is obvious
by the definition of the (p,q)-maximizing norm. From Theorem 2 and the
estimate from (2.31) (use also (2.8)) we deduce that for some constant C
independent of n

μq,p(Θn) ≤
⎧
⎨

⎩

C logn p ≤ q

C q < p .

(4) Recall that a matrix M = (m jk) j,k∈N0 is said to be a Toeplitz matrix whenever it
has the form m jk = c j−k with c = (cn)n∈Z a scalar sequence. A Toeplitz matrix is
(2,2)-maximizing if and only if there exists a bounded complex Borel measure
μ on the torus T such that its Fourier transform μ̂ equals c.

(5) Denote by C the closed convex hull of the set of all (2,2)-maximizing matrices
A of the form a jk = α j βk, where α and β are scalar sequences bounded by 1
and the closure is taken in the coordinatewise topology. Then we have that

C ⊂ {A | m2,2(A) ≤ 1} ⊂ KG C ,

KG Grothendieck’s constant.

Notes and remarks: The close connection of Schur multipliers and summing opera-
tors was observed and elaborated by many authors. See for example Grothendieck
[21], Kwapień-Pełczyński [50] and, very important here, Bennett’s seminal paper
[3] which is full of relevant information for our purpose and motivated large part
of this second chapter. Equation (2.61) is Bennett’s Theorem [3, Sect. 4.3], and
(2.60) is a result due to Haagerup [25]. For Schur multipliers instead of maximizing
matrices the Theorems 4 (note that its analog from [3, Theorem 6.4] for multipliers
is weaker and contains a wrong statement on the constant) and 5 are well-known;
for p = q see [78, Theorem 5.11] and the notes and remarks thereby (Pisier:“ Once
Kwapień had extended the factorization theorems to the Lp-case, it is probably fair
to say that it was not too difficult to extend the theory of Schur mulipliers . . .”).
Remark (1), (2) and (4) from Sect. 2.2.6 are taken from Bennett [3] (there of course
formulated for Schur multipliers instead of maximizing martrices), and Remark (5)
from [78]. For the final estimate in 2.2.6, (3) see [2] and [50].
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2.3 Limit Theorems in Banach Function Spaces

It is remarkable that most of the classical almost everywhere summation theorems
for orthogonal series in L2(μ) without too many further assumptions in a natural
way extend to vector-valued Banach function spaces E(μ ,X).

We illustrate that our setting of maximizing matrices in a very comfortable
way leads not only to the most important classical results, but also to strong new
extensions of them. We show, as announced earlier, that most of the classical
coefficient tests on pointwise summation of orthogonal series – in particular those
for Cesàro, Riesz and Abel summation – together with their related maximal
inequalities, have natural analogs for the summation of unconditionally convergent
series in vector-valued Banach function spaces E(μ ,X).

The main results are collected in the Theorems 13 and 14, and then later applied
to classical summation methods (see the Corollaries 6 and 7). Moreover, we prove
that each unconditionally convergent series in Lp(μ) is Rieszλ -summable for some
sequence λ ; this is an Lp-analog of an important observation on orthonormal series
apparently due to Alexits [1, p.142]. We finish this section with a systematic study of
laws of large numbers in vector-valued Banach function spaces E(μ ,X) with respect
to arbitrary summation methods – in particular we extend some “non logarithmical”
laws of large numbers due to Moricz [64].

2.3.1 Coefficient Tests in Banach Function Spaces

We start with a description of the situation in Lp-spaces – here the main step is a
rather immediate consequence of our general frame of maximizing matrices:

Assume that S is a summation method and ω a Weyl sequence (see (2.2) for the
defintion) such that for each orthonormal series ∑k αkxk in L2(μ) we have that the
maximal function of the linear means

∞

∑
k=0

s jk

k

∑
�=0

α�

ω�
x� , j ∈ N0

is square integrable,

sup
j

∣
∣
∣

∞

∑
k=0

s jk

k

∑
�=0

α�

ω�
x�

∣
∣
∣ ∈ L2(μ) ; (2.63)

this implicitly means to assume that we are in one of the classical situations
described above. How can this result be transferred to Lp-spaces, 1 ≤ p < ∞ ?

By Theorem 1 our assumption means precisely that the matrix A = S Σ D1/ω is
(2,2)-maximizing. As a consequence A by Theorem 5 even is (p,∞)-maximizing,
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1 ≤ p < ∞, i.e. for each unconditionally convergent series ∑k xk in Lp(μ) we have
that

sup
j

∣
∣
∣

∞

∑
k=0

s jk

k

∑
�=0

x�

ω�

∣
∣
∣ ∈ Lp(μ) , (2.64)

or equivalently in terms of an inequality, there is a constant C > 0 such that for each
such series

∥
∥
∥sup

j

∣
∣

∞

∑
k=0

s jk

k

∑
�=0

x�

ω�

∣
∣
∥
∥
∥

p
≤Cw1(xk) .

But then we deduce from Proposition 2 that for each unconditionally convergent
series ∑k xk in Lp(μ)

∞

∑
k=0

xk

ωk
= lim

j

∞

∑
k=0

s jk

k

∑
�=0

x�

ω�
μ-a.e. (2.65)

To summarize, if we start with a classical pointwise summation theorem on
orthogonal series and know in addition that the underlying summation method even
allows a maximal theorem for these series like in (2.63), then we obtain with (2.64)
and (2.65) a strong extension of this result in Lp-spaces. Based on tensor products
we now even prove that here Lp(μ) can be replaced by an arbitrary vector-valued
Banach function space E(μ ,X), and this without any further assumption on the
function space E(μ) or Banach space X .

Theorem 13. Let E(μ) be a Banach function space, X a Banach space, and A =
(a jk) a (2,2)-maximzing matrix. Then for each unconditionally convergent series
∑k xk in E(μ ,X) the following statements hold:

(1) sup j

∥
∥
∥∑∞

k=0 a jkxk(·)
∥
∥
∥

X
∈ E(μ)

(2) The sequence
(
∑∞

k=0 a jkxk
)

j converges μ-a.e. provided (a jk) converges in each
column.

In particular, let S be a summation method and ω a Weyl sequence with the
additional property that for each orthonormal series ∑k αkxk in L2(μ) we have

sup
j

∣
∣
∣

∞

∑
k=0

s jk

k

∑
�=0

α�

ω�
x�

∣
∣
∣ ∈ L2(μ) .

Then for each unconditionally convergent series ∑k xk in E(μ ,X) the following two
statements hold:

(3) sup j

∥
∥
∥∑∞

k=0 s jk ∑k
�=0

x�(·)
ω�

∥
∥
∥

X
∈ E(μ)

(4) ∑∞
k=0

xk

ωk
= lim j ∑∞

k=0 s jk ∑k
�=0

x�

ω�
μ-a.e.
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Proof. In order to establish (1) we prove that for all n

‖ idE(μ,X)⊗An : E(μ ,X)⊗ε �n
1 −→ E(μ ,X)[�n

∞]‖ ≤ KG m2,2(A) , (2.66)

where An equals A for all entries a jk with 1 ≤ j,k ≤ n and is zero elsewhere, and
KG again stands for Grothendieck’s constant. Indeed, this gives our conclusion: For
a finite sequence (xk)n

k=0 ∈ E(μ ,X)n+1 we have

w1(xk) =
∥
∥
∥

n

∑
k=0

xk ⊗ ek

∥
∥
∥

E(μ,X)⊗ε �n
1

(direct calculation) and

(
idE(μ,X)⊗An

)(

∑
k

xk ⊗ ek

)
= ∑

k

xk ⊗An(ek)

= ∑
k

xk ⊗∑
j

a jkαke j

= ∑
j

(

∑
k

a jkxk

)
⊗ e j ,

therefore

∥
∥ idE(μ,X)⊗An

(

∑
k

xk ⊗ ek

)∥
∥

E(μ,X)[�n
∞] =

∥
∥
∥ sup

j

∥
∥∑

k

a jkxk(·)
∥
∥

X

∥
∥
∥

E(μ)
.

Hence we have shown that for every choice of scalars α0, . . . ,αn and functions
x0, . . . ,xn ∈ E(μ ,X)

∥
∥
∥sup

j

∥
∥∑

k

a jkxk(·)
∥
∥

X

∥
∥
∥

E(μ)
≤ KG m2,2(A)w1(xk) ,

which then by Lemma 3 allows to deduce the desired result on infinite sequences.
In order to prove (2.66) note first that by (2.24) and again Theorem 4 we have

ι(An) ≤ KG γ2(An) = KG m2,2(An) .

Hence we deduce from (2.23) and Lemma 3 that

‖ idE(μ,X)⊗An : E(μ ,X)⊗ε �n
1 −→ E(μ ,X)⊗π �n

∞‖ ≤ ι(An) ≤ KG m2,2(A) ,

but since
‖ id : E(μ ,X)⊗π �n

∞ → E(μ ,X)[�n
∞]‖ ≤ 1 ,

this gives the desired estimate (2.66) and completes the proof of (1). The proof
of statement (2) is now a consequence of Proposition 2. For a slightly different
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argument which avoids Lemma 3 see the proof of Theorem 17. Finally, for the proof
of (3) and (4) define the matrix

A = S Σ D1/ω , a jk :=
1

ωk

∞

∑
�=k

s j� ,

and note that for all j
∞

∑
k=0

a jk xk =
∞

∑
k=0

s jk

k

∑
�=0

x�

ω�
.

Then we conclude by the assumption on S and Theorem 1 that A is (2,2)-
maximizing which allows to deduce (3) from (2). Since by Proposition 1 for all k

lim
j

a jk = lim
j

1
ωk

∞

∑
�=k

s j� = lim
j

1
ωk

( ∞

∑
�=0

s j�−
k−1

∑
�=0

s j�

)
=

1
ωk

, (2.67)

statement (4) is consequence of (2). ��
To illustrate the preceding result, we collect some concrete examples on sum-

mation of unconditionally convergent series in vector-valued Banach function
spaces. Note that in order to start the method one has to find appropriate maximal
inequalties, i.e. to make sure that the matrices SΣD1/ω are (2,2)-maximizing
(Theorem 1). In the literature most coefficient tests for almost sure summation (with
respect to a summation method S and a Weyl sequence ω) do not come jointly
with a maximal inequality. As mentioned, the maximal inequality (2.28) joining
the Menchoff-Rademacher Theorem 6 was discovered much later by Kantorovitch
in [46]. We showed in the preceding Sect. 2.2 that in many concrete situations the
needed maximal inequalities follow from a careful analysis of the corresponding
coefficient tests; for pure summation S = id this is the Kantorovitch-Menchoff-
Rademacher inequality (2.28) from Theorem 6, for the Riesz method Rλ see (2.38)
inducing Theorem 8, for the Cesàro method of order r (2.49) inducing Theorem 10,
and finally Theorem 12 for the Abel method.

Corollary 6. Let ∑k xk be an unconditionally convergent series in a vector-valued
Banach function space E(μ ,X). Then

(1) sup j

∥
∥
∥∑ j

k=0
xk(·)
logk

∥
∥
∥

X
∈ E(μ)

(2) sup j

∥
∥
∥∑ j

k=0
λk+1 −λk

λ j+1
∑k

�=0
x�(·)

loglogλ�

∥
∥
∥

X
∈ E(μ) for every strictly increasing,

unbounded and positive sequence (λk) of scalars

(3) sup j

∥
∥
∥∑ j

k=0

Ar−1
j−k

Ar
j

∑k
�=0

x�(·)
loglog�

∥
∥
∥

X
∈ E(μ) for every r > 0

(4) sup j

∥
∥
∥∑∞

k=0 ρk
j

xk(·)
log logk

∥
∥
∥

X
∈ E(μ) for every positive strictly increasing

sequence (ρ j) converging to 1.
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Moreover, in each of these cases

∞

∑
k=0

xk

ωk
= lim

j

∞

∑
k=0

s jk

k

∑
�=0

x�

ω�
μ −a.e. ,

where the summation method S is either given by the identity, Rieszλ , Cesàror, or
Abelρ matrix, and ω is the related Weyl sequence from (1) up to (4).

For E(μ ,X) = Lp(μ) the origin of statement (1) in Corollary 6 lies in the article
[50, Theorem 5.1] of Kwapień and Pełczyński where a slightly weaker result is
shown. The final form of (1) in Lp-spaces is due to Bennett [2, Theorem 2.5,
Corollary 2.6] and Maurey-Nahoum [59], and was reproved in [68]. Moreover, in
this special situation, statement (2) is also due to Bennett [2, Theorem 6.4], whereas
both statements (3) and (4) seem to be new. Recall that the underlying four classical
coefficient tests for orthogonal series are well-known theorems by Kaczmarz [43],
Kantorovitch [46], Menchoff [60, 61, 62], Rademacher [81], and Zygmund [97].
Finally, we mention that by use of Corollary 2 a “lacunary version” of statement (1)
can be proved.

We now extend the preceding result considerably. A Banach function space E(μ)
is said to be p-convex if there is some constant C ≥ 0 such that for each choice of
finitely many functions x1, . . . ,xn ∈ E(μ) we have

∥
∥
∥

(

∑
k

|xk|p
)1/p∥∥

∥
E(μ)

≤C
(

∑
k

‖xk‖p
E(μ)

)1/p
, (2.68)

and the best such C is usually denoted by M(p)(E(μ)) (compare also with
Sect. 3.1.1). We here only mention that every Banach space Lp(μ) is p-convex with
constant 1, but there are numerous other examples as can be seen e.g. in [53, 54].

Theorem 14. Let A = (a jk) be a (p,q)-maximizing matrix, E(μ) a p-convex
Banach function space, and X a Banach space. Then for every α ∈ �q and every
weakly q′-summable sequence (xk) in E(μ ,X) we have

sup
j

∥
∥
∥

∞

∑
k=0

a jkαkxk(·)
∥
∥
∥

X
∈ E(μ) ,

and moreover
(

∑∞
k=0 a jkαkxk

)

j converges μ-a.e. provided each column of A con-

verges; for this latter statement assume that (xk) is unconditionally summable
whenever q = ∞.

Note that Theorem 14 still contains Theorem 13 as a special case: If A is
(2,2)-maximizing, then we conclude from Theorem 5 that the matrix A is even
(1,∞)-maximizing. Since every Banach function space E is 1-convex, in this special
situation no convexity condition is needed.
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Proof. Again, it suffices to show that for every choice of finitely many scalars
α0, . . . ,αn

‖ idE(μ,X)⊗AnDα : E(μ ,X)⊗ε �n
q′ −→ E(μ ,X)[�n

∞]‖
≤ M(p)(E(μ)) mp,q(A)‖α‖q ,

(2.69)

where Dα stands for the induced diagonal operator, and An equals A for all entries
a jk with 0 ≤ j,k ≤ n and is zero elsewhere. Indeed, as above we then obtain the
conclusion: For any finite sequence (xk)n

k=0 ∈ E(μ ,X)n+1 we have

wq′(xk) =
∥
∥
∥

n

∑
k=0

xk ⊗ ek

∥
∥
∥

E(μ,X)⊗ε �n
q′

and (
idE(μ,X)⊗AnDα

)(

∑
k

xk ⊗ ek

)
= ∑

j

(

∑
k

a jkαkxk

)
⊗ e j .

Then

∥
∥ idE(μ,X)⊗AnDα

(

∑
k

xk ⊗ ek

)∥
∥

E(μ,X)[�n
∞] =

∥
∥
∥sup

j

∥
∥∑

k

a jkαkxk(·)
∥
∥

X

∥
∥
∥

E(μ)
,

and hence we obtain the inequality

∥
∥
∥sup

j

∥
∥∑

k

a jkαkxk(·)
∥
∥

X

∥
∥
∥

E(μ)
≤ M(p)(E(μ)) mp,q(A)‖α‖q wq′(xk) .

Finally, this inequality combined with Lemma 3 gives the statement of the theorem.
For the proof of (2.69) fix scalars α0, . . . ,αn. By the general characterization of
(p,q)-maximizing matrices from Theorem 3 as well as (2.18) and (2.19), we obtain
a factorization

�n
q′

AnDα
��

R

��

�n
∞

�m
∞

Dμ
�� �m

p

S

��

with
‖R‖ ‖Dμ‖ ‖S‖ ≤ (1 + ε) ιp(ADα) ≤ (1 + ε) mp,q(A)‖α‖q .
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Tensorizing gives the commutative diagram

E(μ ,X)⊗ε �n
q′

idE(μ ,X)⊗AnDα
��

idE(μ ,X)⊗R

��

E(μ ,X)[�n
∞]

E(μ ,X)⊗ε �m
∞

idE(μ ,X)⊗Dμ
�� �m

p (E(μ ,X)) .

idE(μ ,X)⊗S

��

By the metric mapping property of ε we have

∥
∥ idE(μ,X)⊗R

∥
∥ ≤ ‖R‖ ,

and moreover

∥
∥
∥ idE(μ,X)⊗Dμ

( m

∑
k=0

xk ⊗ ek

)∥
∥
∥

�m
p (E(μ,X))

=
( m

∑
k=0

‖μk xk‖p
E(μ,X)

)1/p

≤ sup
k
‖xk‖E(μ,X)

( m

∑
k=0

|μk|p
)1/p

implies ∥
∥ idE(μ,X)⊗Dμ

∥
∥ ≤ ‖Dμ‖ .

We show that

∥
∥ idE(μ,X)⊗S

∥
∥≤ M(p)(E(μ))‖S‖ ; (2.70)

indeed, as an easy consequence of (2.68) and Hölder’s inequality we obtain

∥
∥
∥ sup

j=1,...,n

∥
∥

m

∑
k=0

s jkxk(·)
∥
∥

X

∥
∥
∥

E(μ)
≤

∥
∥
∥ sup

j=1,...,n

( m

∑
k=0

|s jk|p
′)1/p′( m

∑
k=0

‖xk(·)‖p
X

)1/p∥∥
∥

E(μ)

= sup
j=1,...,n

( m

∑
k=0

|s jk|p
′)1/p′∥∥

∥

( m

∑
k=0

‖xk(·)‖p
X

)1/p∥∥
∥

E(μ)

≤ M(p)(E(μ)) sup
j=1,...,n

( m

∑
k=0

|s jk|p
′)1/p′( m

∑
k=0

‖xk‖p
E(μ,X)

)1/p
,

and this completes the proof of (2.69). The result on almost everywhere convergence
again follows by Proposition 2. ��
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Corollary 6 presents analogs of classical coefficient theorems with logarithmic
Weyl sequences for unconditionally convergent series in vector-valued Banach
function spaces, e.g. on Cesàro or Riesz summation. The following result shows that
under restrictions on the series and the underlying function space these logarithmic
terms are superfluous.

Corollary 7. Assume that 1 ≤ q < p < ∞, and let E(μ) be a p-convex Banach
function space and X a Banach space. Then for each α ∈ �q and each weakly
q′-summable sequence (xk) in E(μ ,X) we have

(1) sup j

∥
∥
∥∑ j

k=0 αkxk(·)
∥
∥
∥

X
∈ E(μ)

(2) sup j

∥
∥
∥∑ j

k=0
λk+1 −λk

λ j+1
∑k

�=0 α� x�(·)
∥
∥
∥

X
∈ E(μ) for every strictly increasing,

unbounded and positive sequence (λk) of scalars

(3) sup j

∥
∥
∥∑ j

k=0

Ar−1
j−k

Ar
j

∑k
�=0 α� x�(·)

∥
∥
∥

X
∈ E(μ) for every r > 0

(4) sup j

∥
∥
∥∑∞

k=0 ρk
j α� x�(·)

∥
∥
∥

X
∈ E(μ) for every positive strictly increasing sequence

(ρ j) converging to 1.

Moreover, in each of these cases

∞

∑
k=0

αkxk = lim
j

∞

∑
k=0

s jk

k

∑
�=0

α� x�(·) μ −a.e. ,

where the summation method S is either given by the identity, Rieszλ , Cesàror, or
Abelρ matrix.

Proof. The argument by now is clear: For each of the considered summation
methods the matrix A = S Σ by Theorem 2 is (p,q)-maximizing. Since

∞

∑
k=0

a jk xk =
∞

∑
k=0

s jk

k

∑
�=0

x� ,

Theorem 14 gives the conclusion. The result on μ-a.e. convergence again follows
from Proposition 2. ��

Of course, the preceding corollary could also be formulated for arbitrary
summation methods instead of the four concrete examples given here. Statement
(1) is a far reaching extension of a well-known result of Menchoff [60] and Orlicz
[67] for orthonormal series.

Finally, we present a sort of converse of Corollary 6,(2): The sum of every
unconditionally convergent series ∑k xk in E(μ ,X) (such that E(μ) and X have
finite cotype) can be obtained by almost everywhere summation of its partial sums
through a properly chosen Riesz method. Recall that a Banach space X has cotype
p, 2 ≤ p < ∞ whenever there is some constant C ≥ 0 such that for each choice of
finitely many vectors x1, . . . ,xn ∈ X we have
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(

∑
k

‖xk‖p
)1/p ≤C

(∫ 1

0

∥
∥∑

k

rk(t)xk

∥
∥2

dt
)1/2

; (2.71)

here rk as usual stands for the ith Rademacher function on [0,1]. It is well-known
that each Lp(μ) has cotype max{p,2}. A Banach space X is said to have finite
cotype if it has cotype p for some 2 ≤ p < ∞.

Corollary 8. Let E(μ) be a Banach function space and X a Banach space, both of
finite cotype. Assume that ∑k xk is an unconditionally convergent series in E(μ ,X),
and f its sum. Then there is a Riesz matrix Rλ = (rλ

jk) such that

sup
j

∥
∥
∥

∞

∑
k=0

rλ
jk

k

∑
�=0

x�(·)
∥
∥
∥

X
∈ E(μ) ,

and μ-almost everywhere

lim
j

∞

∑
k=0

rλ
jk

k

∑
�=0

x� = f .

In the case of orthonormal series this interesting result is a relatively simple
consequence on Zygmund’s work from [97] (see e.g. [1, p.142]).

Proof. It can be seen easily that E(μ ,X) has finite cotype, say cotype r for 2≤ r < ∞
(see e.g. [57, Theorem 3.3]). We know that the operator

u : c0 −→ E(μ ,X), uek := xk

by a result of Maurey is q-summing for each r < q < ∞; indeed, the fact that E(μ ,X)
has cotype r implies that u is (r,1)-summing, and then it is r + ε-summing for each
ε > 0 (see e.g. [6, Sect. 24.7]). Fix such q. Then by (2.16) we get a factorization

c0
u

��

Dα ����
��

��
��

��
E(μ ,X)

�q

v

��

where v is some operator and Dα is a diagonal operator with α ∈ �q. In particular,
we see that xk = αkyk where the yk := v(ek) form a weakly q′-summable sequence in
E(μ ,X). Choose a positive sequence (μk) which increases to ∞ and which satisfies
∑k |αkμk|q < ∞. Define first λk := 22μk , hence ∑k |αk log logλk|q < ∞, and second
the desired Riesz matrix Rλ by

rλ
jk :=

⎧
⎨

⎩

λk+1 −λk

λ j+1
k ≤ j

0 k > j .
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By Theorem 8 the matrix product A = Rλ Σ D(1/ loglogλk) given by

a jk =

⎧
⎨

⎩

(
1− λk

λ j+1

) 1
log logλk

k ≤ j

0 k > j

is (p,q)-maximizing – in particular, we have that

sup
j

∣
∣
∣∑

k

rλ
jk

k

∑
�=0

x�

∣
∣
∣ = sup

j

∣
∣
∣

∞

∑
k=0

a jk αk log logλk yk

∣
∣
∣ ∈ E(μ ,X) .

In order to obtain the second statement we conclude from Proposition 2 that

(

∑
k

rλ
jk

k

∑
�=0

x�

)

j
=

( ∞

∑
k=0

a jk αk log logλk yk

)

j

converges μ-almost everywhere. Since (rλ
jk) is a summation process we finally see –

taking the limit first in E(μ ,X) – that

f = ∑
k

xk = lim
j

∑
k

rλ
jk

k

∑
�=0

x� μ − a.e. ,

which completes the proof. ��

2.3.2 Laws of Large Numbers in Banach Function Spaces

Given a sequence of random variables Xk on a probability space all with variation 0,
a typical law of large numbers isolates necessary conditions under which the
arithmetic means

1
j + 1

j

∑
k=0

Xk

converge to zero almost everywhere. Of course, theorems of this type also make
sense if instead of the arithmetic means we take linear means

j

∑
k=0

s jk

k

∑
�=0

X�

with respect to a given lower triangle summation process S. Via Kronecker’s
Lemma 11 each coefficient test for orthonormal series generates a law of large
numbers for orthogonal sequences – this is the content of the following
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Lemma 14. Let S be an lower triangular summation method and ω a Weyl

sequence. Then for each orthogonal sequence (xk) in L2(μ) with ∑k
ω2

k
k2 ‖xk‖2

2 < ∞
we have

lim
j

1
j + 1

j

∑
k=0

s jk

k

∑
�=0

x� = 0 μ −a.e.

If S in addition satisfies that for each orthonormal series ∑k αkxk in L2(μ)

sup
j

∣
∣
∣

j

∑
k=0

s jk

k

∑
�=0

α�

ω�
x�

∣
∣
∣ ∈ L2(μ) ,

then for each orthogonal sequence (xk) in L2(μ) with ∑k
ω2

k
k2 ‖xk‖2

2 < ∞

sup
j

∣
∣
∣

1
j + 1

j

∑
k=0

s jk

k

∑
�=0

x�

∣
∣
∣ ∈ L2(μ) .

This result in particular applies to ordinary summation, Rieszλ summation, Cesàror

summation or Abelρ summation, and ω in this case is the related optimal Weyl
sequence (see Sect. 2.2).

Proof. Take some orthogonal sequence (xk) in L2(μ) such that ∑k
ω2

k
k2 ‖xk‖2

2 < ∞.

Then ∑k
ωk‖xk‖2

k
xk

‖xk‖2
is an orthonormal sequence, and since ω is a Weyl sequence

for S we see that

lim
j

j

∑
k=0

s jk

k

∑
�=0

x�

�
=

∞

∑
k=0

xk

k
μ −a.e.

Define the matrix A = SΣ and note that for each choice of finitely many scalars
ξ0, . . . ,ξ j

j

∑
k=0

a jkξk =
j

∑
k=0

s jk

k

∑
�=0

ξ� .

Hence by Kronecker’s Lemma 11,(2) we see that

0 = lim
j

1
j + 1

j

∑
k=0

a jkxk = lim
j

1
j + 1

j

∑
k=0

s jk

k

∑
�=0

x� μ −a.e.

To prove the second result, note that by assumption we have that

sup
j

∣
∣
∣

j

∑
k=0

s jk

k

∑
�=0

x�

�

∣
∣
∣ ∈ L2(μ) .
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Hence we apply Lemma 11,(1) to conclude that

sup
j

∣
∣
∣

1
j + 1

j

∑
k=0

s jk

k

∑
�=0

x�

∣
∣
∣ = sup

j

∣
∣
∣

j

∑
k=0

1
j + 1

a jkxk

∣
∣
∣

≤ 2sup
j

∣
∣
∣

j

∑
k=0

a jk
xk

k

∣
∣
∣

= 2 sup
j

∣
∣
∣

j

∑
k=0

s jk

k

∑
�=0

x�

�

∣
∣
∣ ∈ L2(μ) ,

the conclusion. ��
To see an example we mention the law of large numbers which in the sense of

the preceding result corresponds to the Menchoff-Rademacher theorem 6 (see e.g.

[82, p.86-87]): For each orthogonal system (xk) in L2(μ) with ∑k
log2 k

k2 ‖xk‖2
2 < ∞

we have

lim
j

1
j + 1

j

∑
k=0

xk = 0 μ −a.e.

and

sup
j

∣
∣
∣

1
j + 1

j

∑
k=0

xk

∣
∣
∣ ∈ L2(μ) . (2.72)

The main aim of this section is to show that each such law of large numbers
for orthogonal sequences of square integrable random variables which additionally
satisfies a maximal inequality like in (2.72), transfers in a very complete sense to a
law of large numbers in vector-valued Banach function spaces E(μ ,X).

Theorem 15. Let S be a lower triangular summation method. Assume that ω is an
increasing sequence of positive scalars such that for each orthogonal sequence (xk)

in L2(μ) with ∑k
ω2

k
k2 ‖xk‖2

2 < ∞ we have

sup
j

∣
∣
∣

1
j + 1

j

∑
k=0

s jk

k

∑
�=0

x�

∣
∣
∣ ∈ L2(μ) .

Then for each unconditionally convergent series ∑k
ωk
k xk in E(μ ,X)

(1) sup j

∥
∥
∥ 1

j+1 ∑ j
k=0 s jk ∑k

�=0 x�(·)
∥
∥
∥

X
∈ E(μ)

(2) lim j
1

j+1 ∑ j
k=0 s jk ∑k

�=0 x� = 0 μ-a.e.

Proof. We have to repeat part of the preceding proof. For every orthonormal series
∑k αkxk in L2(μ) we have by assumption that

sup
j

∣
∣
∣

j

∑
k=0

1
j + 1

s jk

k

∑
�=0

�

ω�
α�x�

∣
∣
∣ ∈ L2(μ) .
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Moreover for

b jk :=

⎧
⎨

⎩

k
( j + 1)ωk

∑ j
�=k s j� k ≤ j

0 k > j

(compare with (2.5)) we have for each choice of scalars ξ0, . . . ,ξ j that

j

∑
k=0

b jkξk =
j

∑
k=0

1
j + 1

s jk

k

∑
�=0

�

ω�
ξ� .

Hence, we deduce from Theorem 1 that B is (2,2)-maximizing, and obtain (1) from
Theorem 13, (1). Moreover, since the kth column of B converges to 0 (compare
with (2.67)), we deduce from Theorem 13, (2) that the limit in (2) exists almost
everywhere, and it remains to show that this limit is 0 almost everywhere. Define
the matrix A = SΣ . Since S is a summation method and the series ∑k

xk
k converges

in E(μ ,X), we have

∞

∑
k=0

xk

k
= lim

j

j

∑
k=0

s jk

k

∑
�=0

x�

�
= lim

j

j

∑
k=0

a jk
xk

k
,

the limits taken in E(μ ,X). Hence by Kronecker’s Lemma 11,(2) we see that in
E(μ ,X)

0 = lim
j

1
j + 1

j

∑
k=0

a jkxk = lim
j

1
j + 1

j

∑
k=0

s jk

k

∑
�=0

x� .

As a consequence a subsequence of the latter sequence converges almost every-
where to 0 which clearly gives the claim. ��

As a particular case, we deduce from (2.72) the following

Corollary 9. For sequences (xk) in E(μ ,X) for which ∑k
logk

k xk converges uncon-
ditionally we have

lim
j

1
j + 1

j

∑
k=0

xk = 0 μ −a.e.

and

sup
j

∥
∥
∥

1
j + 1

j

∑
k=0

xk(·)
∥
∥
∥

X
∈ E(μ) .

Applying Theorem 9 to Theorem 15 we obtain in the same way that, given a
sequence (xk) in E(μ ,X) for which ∑k

log logk
k xk converges unconditionally, we have

lim
j

1
( j + 1)2

j

∑
k=0

k

∑
�=0

x� = 0 μ −a.e. (2.73)
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and

sup
j

∥
∥
∥

1
( j + 1)2

j

∑
k=0

k

∑
�=0

x�(·)
∥
∥
∥

X
∈ E(μ) .

It is surprising and part of the next theorem that in contrast to the situation in
Corollary 9 the double logarithmic term in the assumption for (2.73) is superfluous –
even for Cesàro summation of arbitrary r > 0.

Theorem 16. Let ∑k
xk
k be an unconditionally convergent series in some vector-

valued Banach function space E(μ ,X). Then for each r > 0 we have

(1) sup j

∥
∥
∥ 1

j+1 ∑ j
k=0

Ar−1
j−k
Ar

j
∑k

�=0 x�

∥
∥
∥

X
∈ E(μ)

(2) lim j
1

j+1 ∑ j
k=0

Ar−1
j−k
Ar

j
∑k

�=0 x� = 0 μ −a.e.

For the very special case of orthogonal sequences (xk) in some L2(μ) statement (2)
of this result is due to Moricz [63, Theorem 2]; our proof will use Theorem 11 which
after all was a consequences of the maximal inequalities (2.54) and (2.59).

Proof. Recall the definition of Cesàro summation of order r from Sect. 2.1.1:

cr
jk :=

⎧
⎪⎨

⎪⎩

Ar−1
j−k

Ar
j

k ≤ j

0 k > j ,

and that for each choice of scalars ξ0, . . . ,ξ j we have

1
j + 1

j

∑
k=0

Ar−1
j−k

Ar
j

k

∑
�=0

�ξ� =
j

∑
k=0

k
j + 1

Ar
j−k

Ar
j

ξk

(see (2.45)). Moreover, we proved in Theorem 11 that the matrix Mr defined by

mr
jk :=

⎧
⎪⎨

⎪⎩

k
j + 1

Ar
j−k

Ar
j

k ≤ j

0 k > j

is (2,2)-maximizing. Hence, we know that by the very definition of maximizing

matrices for each orthogonal sequence (xk) in L2(μ) with ∑k
‖xk‖2

2
k2 < ∞ we have

sup
j

∣
∣
∣

1
j + 1

j

∑
k=0

Ar−1
j−k

Ar
j

k

∑
�=0

x�

∣
∣
∣ ∈ L2(μ) ,

i.e. the matrix Cr satisfies the assumptions of Theorem 15 which in turn gives the
desired result (ωk = 1). ��
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