
Chapter 1
Introduction

This monograph is devoted to an analysis of a classical mathematical model in
population biology, known as the stochastic logistic SIS model. It serves as a model
both for the spread of an infection that gives no immunity and for density dependent
population growth, and it also appears as an important special case of a contact
process that accounts for spatial influences. These three interpretations of the model
are further discussed in Chap. 2. In that chapter it is also shown that the SIS model
is just one out of a whole family of logistic models. The model is used outside
population biology in areas such as the spread of rumours, the spread of technical
innovations, and the theory of chemical reactions. The deterministic version of
this model takes the form of a nonlinear differential equation that can be solved
explicitly, and where a bifurcation phenomenon appears that corresponds to a very
powerful qualitative so-called threshold result. We are mainly concerned with the
stochastic version of this model, and with establishing counterparts in the stochastic
model to the threshold result that holds for the deterministic model.

The deterministic version of the logistic model goes back to Verhulst [74], while
the first studies of its stochastic version are due to Feller [26], Bartlett [11], and
Weiss and Dishon [76]. The interest in this model grew slowly at first. One sign
of this is that the model was not discussed in the influential book on models in
mathematical epidemiology by Bailey [7], although references to the papers by
Feller and by Weiss and Dishon were included. The model has since then appeared
in several contexts. Bartholomew [9] has applied it to study the transmission of
rumours, Oppenheim et al. [56] use it as a model for chemical reactions, Cavender
[16] uses it as an example of a birth-and-death process, Norden [53] describes it as
a stochastic logistic model, while Kryscio and Lefèvre [39], Nåsell [44, 45, 47, 49],
and Andersson and Djehiche [4] return to the epidemic context. Kryscio and
Lefèvre summarize and extend the work of the previous authors. Cavender [16] and
Kryscio and Lefèvre [39] introduce two very useful auxiliary processes discussed
below. Nåsell [44] provides extensions of these results. He introduces the important
transition region (see below) into the study. Further improvements given in this
monograph are based on the papers by Ferrari et al. [27] and by Clancy and Pollett
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[18]. Additional work on this and similar models are reported by Grasman [31],
Ovaskainen [57], Newman et al. [51], Doering et al. [24], Assaf et al. [6], and Cairns
et al. [15].

The stochastic model that we deal with takes the form of a birth–death process
with discrete state space and continuous time. Using the language of epidemic mod-
elling, we find that the state of the process gives the number of infected individuals
as a function of time in a constant population of N individuals. It takes integer values
from zero up to N. The model accounts for two changes in state, corresponding to
infection and recovery. The hypotheses of the model specify the rates at which these
two changes occur. The model properties can be derived from a linear system of
differential equations for its state probabilities, called Kolmogorov equations. The
number of variables in this system of equations equals the total number of states,
which is N + 1.

It is very useful for the analysis to consider the deterministic version of this
stochastic model. It can be derived in two different ways. The first way of deriving
it, which is common among deterministic modellers, is to interpret the hypothesized
transition rates deterministically. This leads immediately to a non-linear differential
equation for the number or the proportion of infected individuals. Its solution
gives this proportion as a function of time. We see here one important difference
between stochastic and deterministic models: The state variable of the latter is not
limited to integer values, since it appears in the model as a function of time that is
differentiable and therefore continuous.

The second way of deriving the deterministic version of the model is as an
approximation of the stochastic one. We are lead to the same differential equation as
above after scaling with the population size N and letting N approach infinity. One
consequence of this is that the parameter N disappears from the scene in the
deterministic setting. The influence of N is important in the stochastic setup, and
absent in the deterministic one. The fact that the deterministic model is an approxi-
mation of the stochastic one raises the question if the approximation is acceptable.
Apparently, acceptability requires the population size N to be sufficiently large.
But it is important to agree on what criteria should be used in judging such
acceptability. The only way to find out is to do a full analysis of the stochastic
model. This is the purpose of the present monograph for the stochastic SIS model.
The main mathematical tools that we shall use in this work are taken from the area
of asymptotic analysis. We shall develop approximations of the various quantities
that are of interest in the stochastic model as N approaches infinity. We strive for
approximations that are asymptotic, but we shall not always succeed.

Deterministic modelling has been very successful in many areas of population
biology. The important results are qualitative in nature, and are derived from
nonlinear deterministic models with bifurcation. These results respond to qualitative
questions about the survival or extinction of specific populations. It is not clear
what the counterpart to these qualitative results is in the stochastic version of
the model, especially since the reason for the qualitative results is nonlinearity
in the deterministic formulation, while the nonlinearity is absent in the stochastic
formulation. We shall illuminate this question in the simple case of the stochastic
logistic SIS model.
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It is noteworthy that deterministic and stochastic models disagree qualitatively
with regard to the extinction phenomenon. The deterministic version of the SIS
model has a threshold. This means that the population of infected individuals
is predicted to go extinct if it lies below the threshold, and that it will persist
indefinitely if it lies above the threshold. (We note that the threshold is a point in
a parameter space. We say that a population lies above (below) the threshold if a
certain parameter lies above (below) its threshold value.) In stark contrast to this, we
find that the stochastic model predicts that the population of infected individuals will
ultimately go extinct as time goes on, regardless of where the population is situated
with regard to the deterministic model threshold. However, the time to extinction
turns out to be very different above and below the deterministic model threshold;
it can be really long above the threshold, in some cases exceeding the age of the
universe, while it is short below it. The time to extinction can therefore be used as
a kind of counterpart in the stochastic version of the model to the qualitative result
represented by the threshold that can be established for the deterministic version
of the model. Our study of the time to extinction for the stochastic SIS model will
confirm this.

The fact that deterministic and stochastic models disagree qualitatively as
just mentioned may appear inconsistent with the property that the deterministic
model is an approximation of the stochastic one, but that is not so. As shown in
Andersson and Britton [3], the deterministic model solution is an approximation
of the solution for the stochastic model only on finite time intervals. Thus, the
approximation does not necessarily hold in the limit when time approaches infinity.
A consequence of this is that the endemic infection level predicted by a deterministic
model corresponds to the quasi-stationary distribution rather than to the stationary
distribution in a stochastic model with an absorbing state, as is the case in the model
that is studied here.

The threshold phenomenon can be described by a partition of parameter space
into regions where model properties differ qualitatively. For the deterministic model
it leads to two regions, one above threshold, and the other one below threshold. It
is customary to introduce a parameter that is denoted by R0 and referred to as the
basic reproduction ratio, and with the property that the threshold is identified by
R0 = 1. The situation is different in the stochastic model. The fact that the extra
parameter N is present in the stochastic model has the consequence that this model
has three parameter regions where qualitatively different results occur. Two of them
correspond roughly to the two regions R0 > 1 and R0 < 1 that are present in the
deterministic setup, while the third one is a transition region between the two that
appears near the threshold where R0 = 1. The stochastic model parameter region that
corresponds to the region where R0 > 1 in the deterministic model can be described
in two ways. The first description is purely formal, and based on the fact that we use
concepts from the area of asymptotic analysis. The parameter region is then defined
by the requirement that R0 > 1 as N → ∞. However, from a practical standpoint
this means that R0 − 1 must be strictly positive for any finite value of N. We shall
describe this by saying that R0 is distinctly above one. The second description of
the parameter region where R0 is distinctly above one is in terms of approximate
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boundary values for R0 that depend on N. These boundary values decrease toward
the value one as N increases toward infinity. Similar descriptions apply for the
parameter region where R0 is distinctly below one. The width of the transition region
goes toward zero as N becomes large. In the limit as N reaches infinity, the transition
region becomes empty, as it is in the deterministic version of the model.

The various manifestations of the stochastic logistic model that we are concerned
with all behave in qualitatively different ways in these three parameter regions.
Therefore, by necessity we are led to consider separate derivations of our results
in each of these regions.

The qualitative difference between deterministic and stochastic models men-
tioned above has a consequence that is important for our analysis. The counterpart to
a stable stationary solution of the deterministic model is not a stationary distribution
of the stochastic model, but instead a so-called quasi-stationary distribution. The
stationary distribution of the stochastic model is degenerate. It is reached when
extinction occurs. However, before extinction it will in many cases be true that
the distribution is practically constant. This distribution, called the quasi-stationary
distribution, can mathematically be defined as a stationary distribution, conditional
on non-extinction. It has a very desirable property from a modelling standpoint.
If the system that we are studying has been running for a long time, and if the
only thing that we know about it is that it has not reached extinction, then we
can conclude that the quasi-stationary distribution is the likely distribution of the
state variable. This is one reason for our interest in the quasi-stationary distribution.
Another reason is that knowledge about this distribution also gives us information
about the remaining time to extinction from this distribution. This is a mathematical
result that we make use of in the analysis of the extinction time for the model
that we study. Because of these two properties, the quasi-stationary distribution
plays a central role in our study of the stochastic SIS model. A bit of history of
the concept of quasi-stationarity is given by Pollett [61]. It shows that this concept
originated with the two papers by Yaglom [78] and by Bartlett [10]. Even though
the Yaglom paper preceded that of Bartlett, it appears that Bartlett’s ideas about
quasi-stationarity were original and unaffected by Yaglom. Basic theoretical results
concerning quasi-stationary distributions for continuous-time Markov Chains with
finite state space were later derived by Darroch and Seneta [21]. It is likely that they
were inspired by Bartlett, as indicated in Nåsell [50].

It turns out to be impossible to find explicit expressions for the quasi-stationary
distribution for any population model with density dependence. Progress therefore
rests on finding good approximations. All approximations of the quasi-stationary
distribution of the SIS model that we consider in this monograph are based on
two auxiliary processes introduced by Cavender [16] and by Kryscio and Lefèvre
[39]. These processes are birth–death processes whose transition rates are similar
to those of the SIS model itself. An important difference is that the origin has been
removed from their state spaces. Thus, they lack absorbing states, and have the
same state space as the quasi-stationary distribution. This means that they have
non-degenerate stationary distributions that can be determined explicitly. These
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stationary distributions, called p(1) and p(0), both serve as approximations of the
quasi-stationary distribution.

In an early study of the SIS model, Nåsell [44] noted that the components
of the quasi-stationary distribution satisfy a certain implicit relation. Moreover,
this relation suggested that it should be possible to solve for the quasi-stationary
distribution with the aid of iteration, where the stationary distributions p(1) and p(0)

suggested themselves as natural starting points. Indeed, it turned out that a numerical
method based on this iteration scheme seemed to converge. It was therefore natural
to imagine that an approximation of the quasi-stationary distribution would be
produced by taking just one iteration step. However, it is not clear in what sense an
asymptotic approximation after one iteration step approximates the quasi-stationary
distribution itself. This weakness with the indicated method can now be resolved.

The iteration method can be described by giving a sequence of iterates, where
each one is produced by applying a certain map Ψ to the previous one. This map
will be defined in Chap. 3. It was independently defined and studied in the theoretical
work by Ferrari et al. [27]. They showed that the sequence of iterates converged
to the quasi-stationary distribution for arbitrary initial distributions. A further
important property of this map was shown by Clancy and Pollett [18]. They proved
that it preserves what is called likelihood ratio ordering. A proof is given in Sect. 3.6.
By using this result, we are able to derive asymptotic approximations of the quasi-
stationary distribution itself, and not only of the iterates, in the two parameter
regions where R0 is distinctly larger than one and distinctly smaller than one.
We shall also provide an approximation of the quasi-stationary distribution in the
transition region, but we do not claim that it is asymptotic.

The concept of quasi-stationarity is important for many models in population
biology. It is therefore desirable to have access to methods that give information
about the quasi-stationary distribution for such models. The methods that are
developed in the present study are of value for other models. This is particularly
true for univariate logistic models, for which preparations are made in Chap. 3. But
it holds also for the two bivariate models where already some work on the quasi-
stationary distribution has been reported, namely the Ross malaria model and the
classical SIR model with demography, used for studying childhood infections, see
Nåsell [42, 46, 50].

There are two aims of the present monograph. One of them is, as mentioned
above, to give a useful approximation of the quasi-stationary distribution and of the
time to extinction for the stochastic SIS model. The second aim is to describe the
methods that we have developed for deriving such approximations in such a way
that the reader gains an insight that is useful in work on related stochastic models.

The rest of the monograph is disposed as follows:
Chapter 2 is devoted to model formulation. We give three different population

biology situations that lead to similar mathematical models. We show in particular
that the SIS model is one out of a whole class of logistic models.

Chapter 3 gives important stochastic process background for our study, to a large
part in a more general setting than that provided by the SIS model. We deal with the
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quasi-stationary distribution, the time to extinction, and the two auxiliary processes
introduced by Cavender [16] and by Kryscio and Lefèvre [39]. We show that the
stationary distributions p(0) and p(1) of the auxiliary processes are important both for
the quasi-stationary distribution and for the time to extinction. Also, we define the
map Ψ mentioned above. It is a map between discrete distributions with the property
that the quasi-stationary distribution is the unique fixed point of this map. We discuss
also concepts and results of stochastic ordering. An important conjecture concerning
stochastic ordering for the SIS model pronounced by Kryscio and Lefèvre in 1989
is described. A proof of this conjecture for the SIS model was given by Clancy and
Pollett [18]. Because of its importance, it is included here.

We return to the stochastic SIS model in Chap. 4. We give explicit expressions for
the stationary distributions p(1) and p(0) of the two auxiliary processes introduced
by Cavender [16] and by Kryscio and Lefèvre [39]. As mentioned above, these
stationary distributions were originally introduced as approximations of the quasi-
stationary distribution of the SIS model. In our approach, they are starting points
for approximations that lead to the main result that we present, namely a uniform
approximation of the quasi-stationary distribution, valid over all three parameter
regions. Chapter 4 also contains numerical illustrations that show that the two sta-
tionary distributions p(1) and p(0) do not provide sufficiently good approximations
of the quasi-stationary distribution q.

Many of the various approximations for the SIS model that are developed in later
chapters are based on approximations involving the normal distribution. This type
of result is of course completely independent of the particular model that we study.
We derive the approximations concerning the normal distribution that we need in
Chap. 5. They include asymptotic approximations of sums of normal densities, and
of sums of reciprocals of normal densities. Even though the normal distribution has
been studied extensively, it appears that these approximation results are new. The
results in this chapter are likely to be highly useful in the search for approximations
of quasi-stationary distributions of other stochastic models.

Approximations of the stationary distribution p(1) are derived in Chaps. 6 and 7.
The first of these two chapters is devoted to derivations, while the second chapter
summarizes the results. Separate approximations are given in each of the three

parameter regions. Furthermore, each approximation of the probability p(1)
n is valid

only in a restricted interval of n-values. This interval is indicated in each case.
Very similarly, we give approximations of the stationary distribution p(0) in

Chaps. 8 and 9. Again, separate results are given in each of the three parameter
regions, and the results hold in restricted n-intervals.

Approximations of images under the map Ψ of the stationary distributions p(1)

and p(0) are derived in Chap. 10. We give also approximations of the images of
p(1) after multiple applications of the map Ψ. These results are used in Chap. 11
to derive approximations of the quasi-stationary distribution in each of the three
parameter regions, again in properly restricted n-intervals.

The expected time to extinction from quasi-stationarity and from the state one
can be determined mathematically from the quasi-stationary distribution q and from
the stationary distribution p(0), respectively. Approximations are given in Chap. 12.
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As can be expected, the approximations take different forms in the three parameter
regions.

The need to present results separately in three different parameter regions is
somewhat unsatisfactory and unelegant. We respond to this by deriving uniform
results that are valid over all three parameter regions. Uniform approximations of
the two stationary distributions p(1) and p(0) and of the quasi-stationary distribution
q are given in Chap. 13. This chapter also contains uniform approximations of the
expected times to extinction from the quasi-stationary distribution and from the state
one. All these results are new. The uniform approximations are improvements over
the results that have been derived separately in each of the three parameter regions.

Chapter 14 discusses thresholds for the stochastic SIS model. Early work on this
model used numerical evaluations as a basis for conjecturing the threshold behavior,
as described by Nåsell [43]. We show that the approximations that we have derived
are consistent with slight variations of these early conjectures.

The monograph finishes with some concluding remarks in Chap. 15.
The monograph is written for a reader who has a good working knowledge about

birth–death processes, including methods for their formulation and analysis. There
are many text-books that deal with this area of stochastic processes. Two good
introductions are the books by Allen [2] and by Taylor and Karlin [71]. Another
introduction that can be recommended is the unpublished report by Schmitz [66].
It is particularly appropriate for a reader of the present monograph, since it deals
with particularities of the SIS model, including a treatment of its quasi-stationary
distribution. It is written in German.

We envision two different readers of this monograph. One of them is mainly
interested in what can be said about the quasi-stationary distribution and the time
to extinction for the SIS model, while the other one is interested not only in these
results, but also wants to understand the methods that we use and to apply them in
analysis of quasi-stationary distributions of other stochastic models. The reader in
the first category is recommended to go directly to Chaps. 11–15, after reading the
introductory chap. 2, and briefly reviewing the contents of Chaps. 3–5. In particular,
he is encouraged to skip the rather technical developments that are given in the
preparatory Chaps. 6, 8, and 10. The very essence of the results are contained in
Sects. 13.4 and 13.5, where we give uniform approximations of both the quasi-
stationary distribution and of the expected time to extinction for the SIS model.
However, it is important to realize that the results of the intermediate Chaps. 6–10
are all needed in the important development in Chap. 11, where approximations
of the quasi-stationary approximation are derived. These intermediate chapters are
on the other hand recommended for the reader in the second category. In particular,
they will acquaint him with the development of asymptotic approximations, which
may be less common knowledge for many persons that work with stochastic models.

There are two appendices to this monograph. The first one gives a summary of the
notation that is used, while the second one contains a number of Maple procedures
in the form of a Maple module. These procedures can be used to do numerical
evaluations of the various quantities that are studied. In particular, they have been
used to produce the plots that are included in the monograph.
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