
2Vectors and Matrices

2.1 Vectors

Ordered n-tuple of objects is called a vector

y D .y1; y2; : : : ; yn/:

Throughout the text we confine ourselves to vectors the elements yi of which are
real numbers.

In contrast, a variable the value of which is a single number, not a vector, is called
scalar.

Example 2.1. We can describe some economic unit EU by the vector

EU= (output, # of employees, capital stock, profit)

Given a vector y D .y1; : : : ; yn/, elements yi ; i D 1; : : : ; n are called
components of the vector. We will usually denote vectors by bold letters.1 The
number n of components is called the dimension of the vector y. The set of all
n–dimensional vectors is denoted by Rn and called n-dimensional real space2.

Two vectors x; y 2 Rn are equal if xi D yi for all i D 1; 2; : : : ; n.
Let x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ be two vectors. We compare these

two vectors element by element and say that x is greater than y if for all i xi > yi ,
and denote this statement by x > y. Analogously, we can define x � y.

Note that, unlike in the case of real numbers, for vectors when x > y does not
hold, this does not imply y � x. Indeed, consider the vectors x D .1; 0/ and y D
.0; 1/. It can be easily seen that neither x � y nor y � x is true.

1Some other notations for vectors are Ny and �!
y .

2The terms arithmetic space, number space and coordinate space are also used.
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18 2 Vectors and Matrices

A vector 0 D .0; 0; : : : ; 0/ (also denoted by N0) is called a null vector.3

A vector x D .x1; x2; : : : ; xn/ is called non-negative (which is denoted by x � 0)
if xi � 0 for all i .

A vector x is called positive if xi > 0 for all i . We denote this case by x > 0.

2.1.1 Algebraic Properties of Vectors

One can define the following natural arithmetic operations with vectors.
Addition of two n-vectors

x C y D .x1 C y1; x2 C y2; : : : ; xn C yn/

Subtraction of two n-vectors

x � y D .x1 � y1; x2 � y2; : : : ; xn � yn/

Multiplication of a vector by a real number �

�y D .�y1; �y2; : : : ; �yn/

Example 2.2. Let EU1 D .Y1; L1; K1; P1/ be a vector representing an economic
unit, say, a firm, see Example 2.1 (where, as usually, Y is its output, L is the number
of employees, K is the capital stock, and P is the profit). Let us assume that it is
merged with another firm represented by a vector EU2 D .Y2; L2; K2; P2/ (that is,
we should consider two separate units as a single one). The resulting unit will be
represented by a sum of two vectors

EU3 D .Y1 C Y2; L1 C L2; K1 C K2; P1 C P2/ D EU1 C EU2:

In this situation, we have also EU2 D EU3 � EU1. Moreover, if the second firm
is similar to the first one, we can assume that EU1 D EU2, hence the unit

EU3 D .2Y1; 2L1; 2K1; 2P1/ D 2 � EU1

gives also an example of the multiplication by a number 2.
This example, as well as other ‘economic’ examples in this book has an

illustrative nature. Notice, however, that the profit of the merged firm might be
higher or lower than the sum of two profits P1 C P2.

3The null vector is also called zero vector.
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The following properties of the vector operations above follow from the defini-
tions:

1a. x C y D y C x (commutativity).
1b. .x C y/ C z D x C .y C z/ (associativity).
1c. x C 0 D x.
1d. x C .�x/ D 0.
2a. 1x D x.
2b. �.�x/ D ��.x/.
3a. .� C �/x D �x C �x.
3b. �.x C y/ D �x C �y.

Exercise 2.1. Try to prove these properties yourself.

2.1.2 Geometric Interpretation of Vectors and Operations
on Them

Consider R2 plane. Vector z D .˛1; ˛2/ is represented by a directed line segment
from the origin .0; 0/ to .˛1; ˛2/, see Fig. 2.1.

The sum of the two vectors z1 D .˛1; ˇ1/ and z2 D .˛2; ˇ2/ is obtained by
adding up their coordinates, see Fig. 2.2.

In this figure, the sum z1 C z2 D .˛1 C˛2; ˇ1 Cˇ2/ is represented by a diagonal
of a parallelogram sides of which being formed by the vectors z1 and z2.

Multiplication of a vector by a scalar has a contractionary (respectively, expan-
sionary) effect if the scalar in absolute value is less (respectively, greater) than unity.
The direction of the vector does not change if the scalar is positive, and it changes
by 180 degrees if the scalar is negative. Figure 2.3 plots scalar multiplication for a
vector x, two scalars �1 > 1 and �1 < �2 < 0.

The difference of the two vectors z2 and z1 is shown on Fig. 2.4.
The projection of the vector a on x�axis is denoted by prxa, and is shown in

Fig. 2.5 below.
Let z1; : : : ; zs be a set of vectors in Rn. If there exist real numbers �1; : : : ; �s not

all being equal to 0 and

Fig. 2.1 A vector on the
plane R2
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Fig. 2.2 The sum of two
vectors
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Fig. 2.3 The multiplication
of a vector by a scalar
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z2

z1

z2 � z1

�1z1 C �2z2 C � � � C �szs D 0;

then these vectors are called linearly dependent.

Example 2.3. Three vectors a D .1; 2; 3/, b D .4; 5; 6/ and c D .7; 8; 9/ are
linearly dependent because
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Fig. 2.5 The projection
of a vector a on the x-axis
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Fig. 2.6 Unit vectors in R3
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e1=(1,0,0)
e2=(0,1,0)

e3=(0,0,1) 

1a � 2b C 1c D 0:

The vectors z1; : : : ; zs are called linearly independent if

�1z1 C � � � C �szs D 0

holds only whenever �1 D �2 D � � � D �s D 0.
Note that the n vectors e1 D .1; 0; : : : ; 0/, e2 D .0; 1; : : : ; 0/, : : : , en D

.0; 0; : : : ; 1/ (see Fig. 2.6 for the case n D 3) are linearly independent in Rn.
Assume that vectors z1; : : : ; zs are linearly dependent, i.e., there exists at least

one �i , where 1 � i � s, such that �i ¤ 0 and

�1z1 C �2z2 C � � � C �i zi C � � � C �szs D 0:

Then

�i zi D ��1z1 � �2z2 � � � � � �i�1zi�1 � �iC1ziC1 � � � � � �szs;

and
zi D �1z1 C � � � C �i�1zi�1 C �iC1ziC1 C � � � C �szs; (2.1)

where �j D ��j =�i , for all j ¤ i and j 2 f1; : : : ; sg.
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A vector a is called a linear combination of the vectors b1; : : : ; bn if it can be
represented as

a D ˛1b1 C � � � C ˛nbn;

where ˛1; : : : ; ˛n are real numbers. In particular, (2.1) shows that the vector zi is a
linear combination of the vectors z1; : : : ; zi�1; ziC1; : : : ; zs .

These results can be formulated as

Theorem 2.1. If vectors z1; : : : ; zs are linearly dependent, then at least one of
them is a linear combination of other vectors. Vectors one of which is a linear
combination of others are linearly dependent.

2.1.3 Geometric Interpretation in R2

Are the vectors z and �z (see Fig. 2.7) linearly dependent?
Note from Fig. 2.8 that the vector �1z1 C �2z2 is a linear combination of the

vectors z1 and z2. Any three vectors in R2 are linearly dependent!

Remark 2.1. Consider the following n vectors in Rn.

Fig. 2.7 Are these vectors
linearly dependent? �
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Fig. 2.8 A linear
combination of two vectors
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a1 D .1; �2; 0; 0; : : : ; 0/

a2 D .0; 1; �2; 0; : : : ; 0/

:: : :
:: : :
:: : :

an�1 D .0; 0; : : : ; 0; 1; �2/

an D .�2�.n�1/; 0; : : : ; 0; 0; 1/

These vectors are linearly dependent since

2�na1 C 2�.n�1/a2 C � � � C 2�1an D 0:

If n > 40 then 2�.n�1/ < 10�12, a very small number. Moreover, if n > 64, then
2�n D 0 for computers. So, for n > 64, we can assume that in our system an is
given by an D .0; : : : ; 0; 1/. Thus, the system is written as

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

a1 D .1; �2; 0; 0; : : : ; 0/

a2 D .0; 1; �2; 0; : : : ; 0/

:: : :

:: : :

:: : :

an�1 D .0; 0; : : : ; 0; 1; �2/

an D .0; 0; : : : ; 0; 0; 1/

But this system is linearly independent. (Check it!)
This example shows how sensitive might be linear dependency of vectors to

rounding.

Exercise 2.2. Check if the following three vectors are linearly dependent:
(a) a D .1; 2; 1/; b D .�2; 3; �2/; c D .7; 4; 7/;
(b) a D .1; 2; 3/; b D .0; �1; 3/; c D .2; �1; 2/.

2.2 Dot Product of Two Vectors

Definition 2.1. For any two vectors x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/, the dot
product4 of x and y is denoted by .x; y/, and is defined as

.x; y/ D x1y1 C x2y2 C � � � C xnyn D
nX

iD1

xi yi : (2.2)

4Other terms for dot product are scalar product and inner product.
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Example 2.4. Let a1 D .1; �2; 0; : : : ; 0/ and a2 D .0; 1; �2; 0; : : : ; 0/. Then

.a1; a2/ D 1 � 0 C .�2/ � 1 C 0 � .�2/ C 0 � 0 C : : : C 0 � 0 D �2:

Example 2.5 (Household expenditures). Suppose the family consumes n goods. Let
p be the vector of prices of these commodities (we assume competitive economy and
take them as given), and q be the vector of the amounts of commodities consumed
by this household. Then the total expenditure of the household can be obtained by
dot product of these two vectors

E D .p; q/:

Dot product .x; y/ of two vectors x and y is a real number and has the following
properties, which can be checked directly:
1. .x; y/ D .y; x/ (symmetry or commutativity)
2. .�x; y/ D �.x; y/ for all � 2 R (associativity with respect to multiplication by a

scalar)
3. .x1 C x2; y/ D .x1; y/ C .x2; y/ (distributivity)
4. .x; x/ � 0 and .x; x/ D 0 iff x D 0 (non-negativity and non-degeneracy).

2.2.1 The Length of a Vector, and the Angle Between
Two Vectors

Definition 2.2. The length of a vector x in Rn is defined as
p

.x; x/ and denoted by

j x j. If x D .x1; : : : ; xn/ then j x jD
q

x2
1 C � � � C x2

n. The angle ' between any
two nonzero vectors x and y in Rn is defined as

cos ' D .x; y/

j x j j y j ; 0 � ' � �: (2.3)

We will see below that this definition of cos ' is correct, that is, the right hand
side of the above formula belongs to the interval Œ�1; 1�.

Let us show first that the angle between two vectors x and y in the Cartesian
plane is the geometric angle (Fig. 2.9).

Take any two vectors x D .x1; x2/ and y D .y1; y2/ in R2. Then y � x D
.y1 � x1; y2 � x2/. By the law of cosines we have

jy � xj2 D jyj2 C jxj2 � 2 jyj jxj cos ';

or

.y1 � x1/2 C .y2 � x2/2 D y2
1 C x2

1 C y2
2 C x2

2 � 2

q

y2
1 C y2

2

q

x2
1 C x2

2 cos ':
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Fig. 2.9 The angle between
two vectors
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2

D .x; y/

j x j j y j :

Definition 2.3. Two vectors x and y in Rn are called orthogonal (notation: x ? y)
if the angle between them is �=2, i.e. .x; y/ D 0.

Theorem 2.1 (Pythagoras). Let x and y be two orthogonal vectors in Rn. Then

j x C y j2Dj x j2 C j y j2 : (2.4)

Proof. j x Cy j2D .x Cy; x Cy/ D .x; x/C .x; y/C .y; x/C .y; y/ D j x j2 C j y j2
since x and y are orthogonal. �

The immediate generalization of the above theorem is the following one.

Theorem 2.2. Let z1; : : : ; zs be a set of mutually orthogonal vectors in Rn, i.e., for
all i; j and i ¤ j; .zi ; zj / D 0. Then

j z1 C z2 C � � � C zs j2Dj z1 j2 C j z2 j2 C � � � C j zs j2 : (2.5)

From the definition of the angle (2.3), it follows that

�1 � .x; y/

j x jj y j � 1;

since ' 2 Œ0; ��. The above inequalities can be rewritten as

.x; y/2

j x j2j y j2 � 1;

or



26 2 Vectors and Matrices

.x; y/2 � .x; x/ � .y; y/: (2.6)

The inequality (2.6) is called Cauchy5 inequality.
Let us prove it so that we can better understand why the angle ' between two

vectors can take any value in the interval of Œ0; ��.

Proof. Given any two vectors x and y in Rn, consider the vector x � �y, where � is
a real number. By axiom 4 of dot product we must have

.x � �y; x � �y/ � 0;

that is,
�2.y; y/ � 2�.x; y/ C .x; x/ � 0:

But then the discriminant of the quadratic equation

�2.y; y/ � 2�.x; y/ C .x; x/ D 0

can not be positive. Therefore, it must be true that

.x; y/2 � .x; x/ � .y; y/ � 0:

�

Corollary 2.2. For all x and y in Rn,

j x C y j�j x j C j y j : (2.7)

Proof. Note that

j x C y j2D .x C y; x C y/ D .x; x/ C 2.x; y/ C .y; y/

Now using 2.x; y/ � 2 j .x; y/ j� 2 j x jj y j by Cauchy inequality, we obtain

j x C y j2 � .x; x/ C 2 j x j � j y j C .y; y/

D .j x j C j y j/2

implying the desired result. �

5Augustin Louis Cauchy (1789–1857) was a great French mathematician. In addition to his works
in algebra and determinants, he had created a modern approach to calculus, so-called epsilon–delta
formalism.
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Exercise 2.3. Plot the vectors u D .1; 2/, v D .�3; 1/ and their sum w D u C v
and check visually the above inequality.

Exercise 2.4. Solve the system of equations

8
<

:

.0; 0; 1; 1/ ? x;

.1; 2; 0; �1/ ? x;

hx; ai D jaj � jxj;

where a D .2; 1; 0; 0/ and x is an unknown vector from R4.

Exercise 2.5. Two vectors a and b are called parallel if they are linearly dependent
(notation: akb). Solve the system of equations

�
.0; 0; �3; 4/kx;

jxj D 15:

Exercise 2.6. Find the maximal angle of the triangle ABC , where A D .0; 1; 2; 0/,
B D .0; 1; 0; �1/ and C D .1; 0; 0; 1/ are three points in R4.

Exercise 2.7. Given three points A.0; 1; 2; 3/, B.1; �1; 1; �1/ and C.1; 1; 0; 0/ in
R4, find the length of the median AM of the triangle ABC .

2.3 An Economic Example: Two Plants

Consider a firm operating two plants in two different locations. They both produce
the same output (say, 10 units) using the same type of inputs. Although the amounts
of inputs vary between the plants the output level is the same.

The firm management suspects that the production cost in Plant 2 is higher than
in Plant 1. The following information was collected from the managers of these
plants.

PLANT 1
Input Price Amount used

Input 1 3 9
Input 2 5 10
Input 3 7 8

PLANT 2
Input Price Amount used

Input 1 4 8
Input 2 7 12
Input 3 3 9
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Question 1. Does this information confirm the suspicion of the firm management?

Answer. In order to answer this question one needs to calculate the cost function. Let
wij denote the price of the i th input at the j th plant and xij denote the quantity of i th
input used in production j th plant (i D 1; 2; 3 and j D 1; 2). Suppose both of these
magnitudes are perfectly divisible, therefore can be represented by real numbers.
The cost of production can be calculated by multiplying the amount of each input
by its price and summing over all inputs.

This means price and quantity vectors (p and q) are defined on real space and
inner product of these vectors are defined. In other words, both p and q are in the
space R3. The cost function in this case can be written as an inner product of price
and quantity vectors as

c D .w; q/; (2.8)

where c is the cost, a scalar. Using the data in the above tables cost of production
can be calculated by using (2.8) as:

In Plant 1 the total cost is 133, which implies that unit cost is 13.3.
In Plant 2, on the other hand, cost of production is 143, which gives unit cost as

14.3 which is higher than the first plant.
That is, the suspicion is reasonable.

Question 2. The manager of the Plant 2 claims that the reason of the cost differences
is the higher input prices in her region than in the other. Is the available information
supports her claim?

Answer. Let the input price vectors for Plant 1 and 2 be denoted as p1 and p2.
Suppose that the latter is a multiple � of the former, i.e.,

p2 D �p1:

Since both vectors are in the space R3, length is defined for both. From the definition
of length one can obtain that

jp2j D �jp1j:
In this case, however as can be seen from the tables this is not the case. Plant I enjoys
lower prices for inputs 2 and 3, whereas Plant 2 enjoys lower price for input 3. For
a rough guess, one can still compare the lengths of the input price vectors which are

jp1j D 9:11; jp2j D 8:60;

which indicates that price data does not support the claim of the manager of the
Plant 2. When examined more closely, one can see that the Plant 2 uses the most
expensive input (input 2) intensely. In contrast, Plant 2 managed to save from using
the most expensive input (in this case input 3). Therefore, the manager needs to
explain the reasons behind the choice mixture of inputs in her plant.
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2.4 Another Economic Application: Index Numbers

One of the problems that applied economists deal with is how exactly the microe-
conomic information concerning many (in fact in millions) prices and quantities
of goods can be aggregated into smaller number of price and quantity variables?
Consider an economy which produces many different (in terms of quality, location
and time) goods. This means there will thousands, if not millions, of prices to be
considered.

Suppose, for example, one wants to estimate the rate of inflation for this
economy. Inflation is the rate of change in the general price level, i.e., it has to
be calculated by taking into account the changes in the prices of all goods. Assume
that there are n different goods. Let pi be the price and qi is the quantity of the good
i . Consider two points in time, 0 and t . Denote the aggregate value of all goods at
time 0 and t , respectively, as

V 0 D
nX

i

p0
i q0

i (2.9)

and

V t D
nX

i

pt
i q

t
i : (2.10)

If p0 D .p0
1; : : : ; p0

n/ and q0 D .q0
1; : : : ; q0

n/ are the (row) vectors characterizing
prices and quantities of goods, respectively, then V 0 D .p0; q0/ is just the dot
product of vectors p0 and q0. Then V t is the dot product of the vectors pt and
qt , i.e. V t D .pt ; qt /.

Notice that, in general, between time 0 (initial period) and t (end period) both
the prices and the quantities of goods vary. So simply dividing (2.10) by (2.9) will
not give the rate of inflation. One needs to eliminate the effect of the change in the
quantities. This is the index number problem which has a long history.6

In 1871, Laspeyres7 proposed the following index number formula to deal with
this problem

PL D
Pn

iD1 pt
i q

0
iPn

iD1 p0
i q0

i

(2.11)

Notice that in this formula prices are weighted by initial period quantity weights, in
other words, Laspeyres assumed that price changes did not lead to a change in the
composition of quantities.

6Charles de Ferrare Dutot is credited with the introduction of first price index in his book Refl Kexions
politiques sur les finances et le commerce in 1738. He used the averages of prices, without weights.
7Ernst Louis Etienne Laspeyres (1834–1913) was a German economist and statistician, a represen-
tative of German historical school in economics.
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In 1874, Paasche8, suggested using end-period weights, instead of the initial
period’s

Pp D
Pn

iD1 pt
i q

t
iPn

iD1 p0
i qt

i

Laspeyeres index underestimates, whereas Paasche index overestimates the actual
inflation.

Exercise 2.8. Formulate Laspeyres and Paasche indices in term of price and
quantity vectors.

Outline of the answer:

PL D .pt ; q0/

.p0; q0/
;

PP D .pt ; qt /

.p0; qt /
:

Exercise 2.9. Consider a three good economy. The initial (t D 0) and end period’s
(t D 1) prices and quantities of goods are as given in the following table:

Price (t D 0) Quantity (t D 0) Price (t D 1) Quantity (t D 1)

Good 1 2 50 1,8 90
Good 2 1,5 90 2,2 70
Good 3 0,8 130 1 100

i. Estimate the inflation (i.e. percentage change in overall price level) for this
economy by calculating Laspeyres index

ii. Repeat the same exercise by calculating Paasche index.

For further information on index numbers, we refer the reader to [9, 23].

2.5 Matrices

A matrix is a rectangular array of real numbers

2

6
6
6
6
6
4

a11 a12 : : : a1n

a21 a22 : : : a2n

:: : : :
:: : : :
:: : : :

am1 am2 : : : amn

3

7
7
7
7
7
5

:

8Hermann Paasche (1851–1925), German economist and statistician, was a professor of political
science at Aachen University.



2.5 Matrices 31

We will denote matrices with capital letters A,B,. . . The generic element of a
matrix A is denoted by aij ; i D 1; : : : ; mI j D 1; : : : ; n, and the matrix itself is
denoted briefly as A D kaij km�n. Such a matrix with m rows and n columns is said
to be of order m � n If the matrix is square (that is, m D n), it is simply said to be
of order n.

We denote by 0 the null matrix which contains zeros only. The identity matrix
is a matrix I D In of size n � n whose elements are ik;k D 1 and ik;m D 0 for
k ¤ m; k D 1; : : : ; n and m D 1; : : : ; n, that is, it has units on the diagonal and
zeroes on the other places. The notion of the identity matrix will be discussed in
Sect. 3.2.

Example 2.6. Object – property: Consider m economic units each of which is
described by n indices. Units may be firms, and indices may involve the output,
the number of employees, the capital stock, etc., of each firm.

Example 2.7. Consider an economy consisting of m D n sectors, where for all
i; j 2 f1; 2; : : : ; ng, aij denotes the share of the output produced in sector i and
used by sector j , in the total output of sector i . (Note that in this case the row
elements add up to one.)

Example 2.8. Consider m D n cities. Here aij is the distance between city i and
city j . Naturally, aii D 0, aij > 0, and aij D aj i for all i ¤ j , and i; j 2
f1; 2; : : : ; ng.

We say that a matrix A D �
�aij

�
�

m�n
is non-negative if aij � 0 for all i D

1; : : : ; mI j D 1; : : : ; n: This case is simply denoted by A � 0.
Analogously is defined a positive matrix A > 0.

2.5.1 Operations on Matrices

Let A D �
�aij

�
�

m�n
and B D �

�bij

�
�

m�n
be two matrices. The sum of these matrices

is defined as
A C B D �

�aij C bij

�
�

m�n
:

Example 2.9.
2

4
1 0

4 2

7 1

3

5C
2

4
3 2

7 3

4 1

3

5 D
2

4
4 2

11 5

11 2

3

5 :

Let A D �
�aij

�
�

m�n
and � 2 R. Then

�A D �
��aij

�
�

m�n
:
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Example 2.10.

2

2

4
3 0

2 4

1 9

3

5 D
2

4
6 0

4 8

2 18

3

5

Properties of Matrix Summation and Multiplication by a Scalar

(1-a) A C B D B C A.

(1-b) A C .B C C / D .A C B/ C C .

(1-c) A C .�A/ D 0, where �A D .�1/A.

(1-d) A C 0 D A.

(2-a) 1A D A.

(2-b) �.�A/ D .��/A; �; � 2 R.

(3-a) 0A D 0.

(3-b) .� C �/A D �A C �A; �; � 2 R.

(3-c) � .A C B/ D �A C �B; �; � 2 R.

The properties of these two operations are the same as for vectors from Rn. We
will clarify this later in Chap. 6.

2.5.2 Matrix Multiplication

Let A D �
�aij

�
�

m�n
and B D �

�bjk

�
�

n�p
be two matrices. Then the matrix AB of

order m � p is defined as

AB D
2

4
nX

j D1

aij bjk

3

5

m�p

In other words, a product C D AB of the above matrices A and B is a matrix
C D �

�cij

�
�

m�p
, where cij is equal to the dot product .Ai ; Bj / of the i -th row Ai of

the matrix A and the j -th column Bj of the matrix B considered as vectors from Rn.

Consider 2 � 2 case. Given

A D
�

a11 a12

a21 a22

�

and B D
�

b11 b12

b21 b22

�

;
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Fig. 2.10 A rotation

�

�

�
�

�
�

�
�

�
��

�����������

0

y

x

x0

x

'

we have

AB D
�

a11b11 C a12b21 a11b12 C a12b22

a21b11 C a22b21 a21b12 C a22b22

�

:

Example 2.11.

�
0 1 2

2 1 5

�
2

4
3 6 4

2 5 8

7 1 9

3

5 D
�

16 7 26

43 22 61

�

:

Example 2.12. Rotation of a vector x D .x; y/ in R2 around the origin by a fixed
angle ' (Fig. 2.10) can be expressed as a matrix multiplication. If x0 D .x0; y0/ is
the rotated vector, then its coordinates can be expressed as

�
x0
y0
�

D R˛

�
x

y

�

; (2.12)

where

R˛ D
�

cos ˛ � sin ˛

sin ˛ cos ˛

�

is called a rotation matrix.
Note that if we consider the vectors x and x0 as 1 � 2 matrices, then (2.12) may

be briefly re-written as x0T D R˛xT .

Exercise 2.10. Using elementary geometry and trigonometry, prove the equal-
ity (2.12).

Properties of Matrix Multiplication

(1-a) ˛.AB/ D ..˛A/B/ D A.˛B/.
(1-b) A.BC / D .AB/C .
(1-c) A0 D 0.
(2-a) A.B C C / D AB C AC .
(2-b) .A C B/C D AC C BC .
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Remark 2.2. Warning. AB ¤ BA, in general.

Indeed, let A and B be matrices of order m � n and n � p, respectively. To
define the multiplication BA, we must have p D m. But matrices A and B may not
commute even if both of them are square matrices of order m � m. For example,
consider

A D
�

1 2

0 3

�

and B D
��1 2

1 3

�

:

We have

AB D
�

1 8

3 9

�

while BA D
��1 4

1 11

�

:

Exercise 2.11. Let A and B be square matrices such that AB D BA. Show that:
1. .A C B/2 D A2 C 2AB C B2.
2. A2 � B2 D .A � B/.A C B/.

Exercise 2.12.� Prove the above properties of matrix multiplication.

Hint. To deduce the property 1-b), use the formula
nP

iD1

 
mP

j D1

xij

!

D
mP

j D1

�
nP

iD1

xij

�

.

Remark 2.3. The matrix multiplication defined above is one of the many concepts
that are counted under the broader term “matrix product”. It is certainly the most
widely used one. However, there are two other matrix products that are of some
interest to economists.

Kronecker Product of Matrices

Let A D kaij k be an m � n matrix and B D kbij k be a p � q matrix. Then the
Kronecker9 product of these two matrices is defined as

A ˝ B D
2

4
a11B : : : a1nB

: : : : : : : : :

am1B : : : amnB

3

5

which is an mp � nq matrix. Kronecker product is also referred to as direct product
or tensor product of matrices. For its use in econometrics, see [1, 8, 14].

9Leopold Kronecker (1823–1891) was a German mathematician who made a great contribution
both to algebra and number theory. He was one of the founders of so-called constructive
mathematics.
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Hadamard Product of Matrices

The Hadamard10 product of matrices (or elementwise product, or Shur11 product)
of two matrices A D kaij k and B D kbij k of the same dimensions m � n is a
submatrix of the Kronecker product

A ı B D kaij bij km�n:

See [1, p. 340] and [24, Sect. 36] for the use of Hadamard product in matrix
inequalities.

2.5.3 Trace of a Matrix

Given an n�n matrix A D kaij k, the sum of its diagonal elements Tr A D Pn
iD1 ai i

is called the trace of the matrix A.

Example 2.13.

Tr

2

4
1 2 3

10 20 30

100 200 300

3

5 D 321

Exercise 2.13. Let A and B be two matrices of order n. Show that:

(a) Tr.A C B/ D Tr A C Tr B .
(b)� Tr.AB/ D Tr.BA/.

2.6 Transpose of a Matrix

Let A D �
�aij

�
�

m�n
. The matrix B D �

�bij

�
�

n�m
is called the transpose of A (and

denoted by AT ) if bij D aj i for all i 2 f1; 2; : : : ; mg and j 2 f1; 2; : : : ; ng.

Example 2.14.

2

4
3 0

2 4

1 9

3

5

T

D
�

3 2 1

0 4 9

�

10Jacques Salomon Hadamard (1865–1963), a famous French mathematician who contributed in
many branches of mathematics such as number theory, geometry, algebra, calculus and dynamical
systems, as well as in optics, mechanics and geodesy. His most popular book The psychology of
invention in the mathematical field (1945) gives a nice description of mathematical thinking.
11Issai Schur (1875–1941), an Israeli mathematician who was born in Belarus and died in Israel,
made fundamental contributions to algebra, integral and algebraic equations, theory of matrices
and number theory.
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The transpose operator satisfies the following properties:
1. .AT /T D A.
2. .A C B/T D AT C BT .
3. .˛A/T D ˛AT .
4. .AB/T D BT AT .

Proof. To prove the above properties, note that one can formally write

AT D �
�aij

�
�T

m�n
D �
�aj i

�
�

n�m
:

Then .AT /T D �
�aj i

�
�T

n�m
D �
�aij

�
�

m�n
D A. This proves the property 1.

Now, .A C B/T D �
�aij C bij

�
�T

m�n
D �

�aj i C bj i

�
�

n�m
D �

�aj i

�
�

n�m
C

�
�bj i

�
�

n�m
D AT C BT . This gives the second property.

To check the third one, we deduce that .˛A/T D �
�˛aij

�
�T

m�n
D �
�˛aj i

�
�T

n�m
D

˛
�
�aj i

�
�T

n�m
D ˛AT .

Now, it remains to check the fourth property. Let M D AB and N D BT AT ,
where the matrices A and B are of orders m � n and n� p, respectively. Then M D�
�˛mj i

�
�

m�p
with mij D .Ai ; Bj / and N D �

�˛nij

�
�

p�n
with nij D ..BT /i ; .AT /j /.

Since the transposition changes rows and columns, we have the equalities of vectors

.BT /i D Bi ; .AT /j D Aj :

Hence, mij D nj i for all i D 1; : : : ; m and j D 1; : : : ; p. Thus M T D N , as
desired. �

A matrix A is called symmetric if A D AT . A simple example of symmetric
matrices is the distance matrix A D Œaij �, where aij is the distance between the
cities i and j . Obviously, aij D aj i or A D AT .

Theorem 2.3. For each matrix A of order n � n, the matrix AAT is symmetric.

Proof. Consider .AAT /T . By the properties 3) and 4), we have .AAT /T D
.AT /T AT D AAT . �
Exercise 2.14. Let A and B be two matrices of order n. Show that Tr AT D Tr A.

2.7 Rank of a Matrix

Are the vectors x; y, and z in the Fig. 2.11 linearly dependent?
It is obvious that there exists � such that

u C �z D 0;

or
˛x C ˇy C �z D 0;
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Fig. 2.11 Are the vectors x,
y, and z linearly dependent?

�

�

�
�
�
���

�
���
������
�����

�
�

�
�

��

�
�

�


˛x

ˇy

x
y

z

u D ˛x C ˇy

i.e., these three vectors are linearly dependent.
Let us recall the notion of linear dependence of vectors. Consider vectors

˛ D .2; �5; 1; �1/

ˇ D .1; 3; 6; 5/

� D .�1; 4; 1; 2/ :

Are they linearly dependent? To answer, we construct a system of linear equations
as follows: suppose the above vectors are linearly dependent. Then

a˛ C bˇ C c� D 0

for some parameters a; b; c, which are not all zero. In component-wise form, we
obtain a homogeneous system of linear equation:

8
ˆ̂
<

ˆ̂
:

2a C 1b � c D 0

�5a C 3b C 4c D 0

a C 6b C c D 0

�a C 5b C 2c D 0

Here the system of linear equations is called homogeneous if every equation has the
form “a linear combination of variables is equal to zero”.

One can check directly that a solution of the above system is given by a D 7; b D
�3 and c D 11. Hence

7˛ � 3ˇ C 11� D 0:

Consider now a matrix A

A D

2

6
6
6
6
6
4

a11 a12 : : : a1n

a21 a22 : : : a2n

:: : : :
:: : : :
:: : : :

as1 as2 : : : asn

3

7
7
7
7
7
5

:
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Columns of this matrix can be considered as s-dimensional vectors, and maximal
number of linearly independent columns is called the rank of A.

Example 2.15. Consider the matrix A with columns being the above vectors ˛; ˇ

and �

A D

2

6
6
4

2 1 �1

�5 3 4

1 6 1

�1 5 2

3

7
7
5 :

Since A has 3 columns and the columns are linearly dependent, we have rank A � 2.
On the other hand, it is easy to see that the first two columns of A are linearly
independent, hence rank A � 2. Thus we conclude that rank A D 2.

Example 2.16. For the null matrix 0, we have the rank A D 0. On the other hand,
the unit matrix I of the order n � n has the rank n.

Theorem 2.4. The maximal number of linearly independent rows of a matrix
equals to the maximal number of its linearly independent columns. Recalling the
notion of the transpose, we have

rank A D rank AT

for every matrix A.

The proof of this theorem is given in Corollary 4.6.

Exercise 2.15. Check this statement for the above matrix A.

2.8 Elementary Operations and Elementary Matrices

In this section, we give a method to find linear dependence of columns of a matrix,
and hence, to calculate its rank.

Let A be a matrix of order m � n. Recall that its rows are n–vectors denoted by
A1; A2; : : : ; Am. The following simple transformations of A are called elementary
(row) operations. All of them transform A to another matrix A0 of the same order
one or two rows (say, i -th and j -th) of which slightly differs from those of A:
1. Row switching: A0

i D Aj , A0
j D Ai .

2. Row multiplication: A0
i D �Ai , where � ¤ 0 is a number.

3. Row replacement: A0
i D Ai C �Aj , where � ¤ 0 is a number.
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Example 2.17. Let us apply these operations to the unit matrix

In D

2

6
6
6
4

1 0 : : : 0

0 1 0
: : :

0 0 : : : 1

3

7
7
7
5

:

The resulting matrices are called elementary transformation matrices; they are:

1. Ti;j D

2

6
6
6
6
6
6
6
6
6
6
6
6
4

1

: : :

0 : : : 1
:::

: : :
:::

1 : : : 0
: : :

1

3

7
7
7
7
7
7
7
7
7
7
7
7
5

I

2. Ti .�/ D

2

6
6
6
6
6
6
4

1
: : :

�
: : :

1

3

7
7
7
7
7
7
5

I

3. Ti;j .�/ D

2

6
6
6
6
6
6
6
6
6
6
6
6
4

1
: : :

1 : : : �

: : :
:::

1
: : :

1

3

7
7
7
7
7
7
7
7
7
7
7
7
5

:

Exercise 2.16.� Show that any elementary operation of the second type is a
composition of several operations of the first and the third type.

Theorem 2.5. If A0 is a result of an elementary operation of a matrix A, then

A0 D TA;

where T is a matrix of elementary transformation corresponding to the operation.
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Exercise 2.17. Prove this Theorem 2.5.
(Hint: Use the definition of product of two matrices as a matrix entries of which

are the dot products of rows and columns of the multipliers.)

Let t1 and t2 be elementary operations with corresponding matrices T1 and T2.
The composition t D t1t2 of these two operation is another (non-elementary)
operation. It follows from Theorem 2.5 that t transforms any matrix A to a matrix

A0 D t.A/ D t1.t2.A// D TA; where T D T1T2:

So, a matrix T corresponding to a composition of elementary operations is a product
of matrices corresponding to the composers.

Another property of elementary operations is that all of them are invertible. This
means that one can define the inverse operations for elementary operations of all
three kinds listed above. For an operation of the first kind (switching), this inverse
operation is the same switching; for the row multiplication by �, it is a multiplication
of the same row by 1=�; finally, for the replacement of Ai by A0

i D Ai C �Aj the
inverse is a replacement of A0

i by A0
i � �A0

j D Ai . Obviously, all these inverses are
again elementary operations.

We obtain the following

Lemma 2.6. Suppose that some elementary operation transforms a matrix A to A0.
Then there is another elementary operation, which transforms the matrix A0 to A.

Another property of elementary operations is given in the following theorem.

Theorem 2.7. Suppose that some columns Ai1 ; : : : ; Aik of a matrix A are linearly
dependent, that is, their linear combination is equal to zero

˛1A
i1 C � � � C ˛kAik D 0:

Let B be a matrix obtained from A by a sequence of several elementary opera-
tions. Then the corresponding linear combination of columns of B is also equal
to zero

˛1B
i1 C � � � C ˛kBik D 0:

Proof. Let T1; : : : ; Tq be the matrices of elementary operations whose compositions
transforms A to B . Then B D TA, where T is a matrix product T D Tq : : : T2T1.
This means that every column Bj of the matrix B is equal to TAj . Thus,

˛1B
i1 C� � �C˛kBik D ˛1TAi1 C� � �C˛kTAik D T .˛1A

i1 C� � �C˛kAik / D T 0 D 0:

�
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Corollary 2.8. Let a matrix B be obtained from a matrix A by a sequence of several
elementary operations. Then a collection Ai1 ; : : : ; Aik of columns of the matrix A is
linearly dependent if and only if corresponding collection Bi1 ; : : : ; Bik is linearly
dependent.

In particular, this means that rank A D rank B .

Proof. The ‘only if’ statement immediately follows from Theorem 2.7.
According to Lemma 2.6, the matrix A as well may be obtained from B via a

sequence of elementary operations (inverses of the given ones). Thus, we can apply
the ‘only if’ part to the collection Bi1 ; : : : ; Bik of columns of the matrix B . This
imply the ‘if’ part.

By the definition of rank, the equality rank A D rank B follows. �

Example 2.18. Let us find the rank of the matrix

A D
2

4
1 2 3

4 5 6

7 8 9

3

5 :

Before calculations, we apply some elementary operations. First, let us substitute
the third row: A3 with A3 � 2A2. We get the matrix

A0 D
2

4
1 2 3

4 5 6

�1 �2 �3

3

5 :

Now, substitute again: A0
3 7! A0

3 C A0
1 and then A0

2 7! A0
2 � 4A0

1. We obtain the
matrix

A00 D
2

4
1 2 3

0 �3 �6

0 0 0

3

5 :

Finally, let us substitute A00
1 ! A00

1 C .2=3/A00
2 and multiply A00

2 ! .�1=3/A00
2 . We

obtain the matrix

B D
2

4
1 0 �1

0 1 2

0 0 0

3

5 :

It is obvious that the first two columns of this matrix B are linearly independent
while B3 D �B1 C 2B2. Hence rank A D rank B D 2.

Definition 2.4. A matrix A is said to have a (row) canonical form (see Fig. 2.12),
if the following four conditions are satisfied:
1. All nonzero rows are above any rows of all zeroes.
2. The first nonzero coefficient of any row (called also leading coefficient) is always

placed to the right of the leading coefficient of the row above it.
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Fig. 2.12 Row echelon form
of a matrix

*

*

* *
* *

0

*

Fig. 2.13 Canonical form of
a matrix 1

*
*

0

*
1

1
1

0 0 0*

3. All leading coefficients are equal to 1.
4. All entries above a leading coefficient in the same column are equal to 0.

If only first two of the above conditions are satisfied, then the matrix is said to
have a row echelon form (see Fig. 2.13).

Example 2.19. In Example 2.18 above, the marix A00 has a row echelon form while
the matrix B has even a canonical form.

It is easy to calculate the rank of a matrix in an echelon form: it is simply equal
to the number of nonzero rows in it.

Theorem 2.9. Every matrix A can be transformed via a number of elementary
operations to another matrix B in a row echelon form (and even in a canonical
form). Then the rank of the matrix A is equal to the number of nonzero rows of the
matrix B .

Let us give an algorithm to construct an echelon form of the matrix. This
algorithm is called the Gaussian12 elimination procedure. It reduces all columns
of the matrix one-by-one to the columns of some matrix in a row echelon form. In a
recent step, we assume that a submatrix consisting of the first .j � 1/ columns has
an echelon form. Suppose that this submatrix has .i � 1/ nonzero rows.

In the j -th step, we provide the following:
1. If all elements of the j -th column beginning with aij and below are equal to zero,

the procedure is terminated. Then we go to the .j C 1/-th step of the algorithm.
2. Otherwise, find the first nonzero element (say, aij ) in the j -th column in the i -th

row and below. If it is not aij , switch two rows Ai and Aj of the matrix. (see
Fig. 2.14).

Now, we obtain a matrix A such that apk ¤ 0 (Fig. 2.15).

12Carl Friedrich Gauss (1777–1855) was a great German mathematician and physicist. He made
fundamental contribution to a lot of branches of pure and applied mathematics including geodesy,
statistics, and astronomy.
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Fig. 2.14 The Gaussian
elimination, row switching

*

*

*

* *

*

0

0

0 0

*

0 * * *

*

j

ak,j

ai,j

ak,j+1k

i

k+1

Fig. 2.15 The Gaussian
elimination, row subtraction

*

*

*

* *

*
0

0

ai,j+1

k

0 ai,j

* *

0

0

i

* * *

ak,j+1

j

-Ai*ak+1,j/ai,jk+1

Fig. 2.16 The Gaussian
elimination, the result of row
subtractions

*

*

*

* *

*

0

0

* *

ak,j+10

* *0

j

ai,j ai,j+1

0

k

i

k+1

3. For every p > i , provide the following row replacement: the row Ap ! Ap �
.apj =aij /Aj (Fig. 2.16).
These three types of operations are sufficient to construct a row echelon form. In

the next step of the algorithm, we take p C 1 in place of p and j C 1 in place of j .
Note that in the above Example 2.18 we used this algorithm to transform A0 to

A00. Another example is given below.

Example 2.20. Using Gauss algorithm, let us construct a row echelon form of the
matrix

A D
2

4
0 0 3

2 6 �2

4 12 �1

3

5 :

In the beginning, i D j D 1, that is, we begin with the first column. In operation
1, we find the first nonzero element of this column, that is, a21. In operation 2, we
switch the first and the second rows and get the matrix
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2

4
2 6 �2

0 0 3

4 12 �1

3

5 :

In operation 3, we subtract the doubled first row from the third one and get the
matrix 2

4
2 6 �2

0 0 3

0 0 3

3

5 :

Now, we provide the same three steps for the submatrix formed by the last two
rows. The first nonzero column of the submatrix is the third one, so, in operation 1
we put p D 3. In operation 2, we find the first nonzero element of the column of the
submatrix (a23 D 3). In operation 3, we replace the first row A1 by A1 C .1=3/A2

and the third row A3 by A3 � A2. We obtain a matrix in a row echelon form

2

4
2 6 �2

0 0 3

0 0 0

3

5 :

The next theorem gives a stronger version of Gaussian elimination.

Theorem 2.10. 1. Every matrix A can also be transformed via elementary opera-
tions to a matrix C in a canonical form.

2. The above canonical form C is unique for every matrix A, that is, it does not
depend on the sequence of elementary operations which leads to this from.

Exercise 2.18. Prove the above Theorem 2.10.

Hint. To prove the first part, extend the above algorithm in the following way.
To construct a canonical form, we need the same operations 1 and 2 as in the Gauss
algorithm, a modified version of the above operation 3 and an additional operation 4.

(3’) For every p ¤ i , provide the following row replacement: the row Ap !
Ap � .apj =aij /Aj .

(4) Replace the i -th row Ai by .1=aij /Ai , that is, divide the i -th row by its first
nonzero coefficient aij .

For the second part of the theorem, use Corollary 2.8.

Exercise 2.19. Find the canonical form of the matrix from Example 2.20.

2.9 Problems

1. Find a vector x such that:
(a) x C y D z, where y D .0; 3; 4; �2/, and z D .3; 2; 1; �5/.
(b) 5x D y � z, where y D .�1; �1; 2/ and z D .0; 1; 7/.
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2. Let x and y be two vectors in Rn. Prove that:
(a) x C y D x if and only if y D 0.
(b) �x D 0 and � ¤ 0 if and only if x D 0.

3. Prove that vectors z1; : : : ; zs in Rn are linearly dependent if one of them is the
null vector.

4. Are the vectors below linearly dependent?

a1 D .1; 0; 0; 2; 5/

a2 D .0; 1; 0; 3; 4/

a3 D .0; 0; 1; 4; 7/

a4 D .2; �3; 4; 11; 12/

5. Let z1; : : : ; zs be linearly independent vectors and x be a vector such that

x D �1z1 C � � � C �szs;

where �i 2 R for all i . Show that this representation is unique.
6. Show that n vectors given by

x1 D .1; 0; 0; : : : 0; 0/

x2 D .0; 1; 0; : : : 0; 0/

: : : : : : : :

xn D .0; 0; 0; : : : 0; 1/

are linearly independent in Rn.
7. Find the rank of the following matrices:

(a)

2

4
2 �1 3 �2 4

4 �2 5 1 7

2 �1 1 8 2

3

5; (b)

2

6
6
4

3 �1 3 2 5

5 �3 2 3 4

1 �3 �5 0 �7

7 �5 1 4 1

3

7
7
5.

8. Show that n vectors given by

x1 D .�11; �12; : : : �1;n�1; �1n/

x2 D .0; �22; : : : �2;n�1; �2n/

: : : : : : :

xn D .0; 0; : : : 0; �nn/

are linearly independent in Rn if �ii ¤ 0 for all i .
9. Check that in Definition 2.1 all axioms 1 � 4 are satisfied.

10. Show that the Cauchy inequality (2.6) holds with the equality sign if x and y
are linearly dependent.

11. How many boolean (with components equal to 0 or 1) vectors exist in Rn?
12. Find an example of matrices A; B and C such that AB D AC , A ¤ 0, and

B ¤ C .
13. Find an example of matrices A and B such that A ¤ 0, B ¤ 0, but AB D 0.
14. Show that A0 D 0A D 0.
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15. Prove that .˛A/.ˇB/ D .˛ˇ/ AB for all real numbers ˛ and ˇ, and for all
matrices A and B such that the matrix products exist.

16. Prove that .˛A/ B D ˛ .AB/ D A .˛B/ for each real number ˛ and for all
matrices A and B such that the matrix products exist.

17. Let A; B and C be n � n matrices. Show that ABC D CAB if AC D CA and
BC D CB .

18. Find a 2 � 3 matrix A and a 3 � 2 matrix B such that

AB D
�

1 0

0 1

�

:

19. Let

A D
�

1 �1

�3 3

�

:

(a) Find x ¤ 0 such that Ax D 0.
(b) Find y ¤ 0 such that yA D 0.

20. Let ˛ and ˇ be two angles. Prove the following property of rotation matrices:

R˛Cˇ D R˛Rˇ:

21. Prove the properties of matrix summation.
22. Calculate

2

4
0 2 �1

�2 �1 2

3 �2 �1

3

5

2

4
70 34 �107

52 26 �68

101 50 �140

3

5

2

4
27 �18 10

�46 31 �17

3 2 1

3

5 :

23. How A � B will change if:
(a) i th and j th rows of A are interchanged?
(b) a constant c times j th row of A is added to its i th row?

(c) i th and j th columns of B are interchanged?

(d) a constant c times j th column of B is added to its i th column?
24.* Show that rank.AB/ � rank A and rank.AB/ � rank B .
25.* Show that the sum of the entries of the Hadamard product AıB of two matrices

A and B of order n (so-called a Frobenius13 product) .A; B/F is equal to
Tr ABT .

26.* Prove that any matrix A can be represented as A D B C C , where B is
symmetric matrix and C is an anti-symmetric matrix (i.e., C T D �C ).

27. Find all 2 � 2 matrices A satisfying A2 D 0.
28. Find all 2 � 2 matrices A satisfying A2 D I2.

13Ferdinand Georg Frobenius (1849–1917) was a famous German algebraist. He made a great
contribution to group theory and also proved a number of significant theorems in algebraic
equations, geometry, number theory, and theory of matrices.
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29. Find a row echelon form and the rank of the matrix

2

4
0 0 �1 3

�2 �1 2 1

2 1 �4 5

3

5 :

30. Find the canonical form of the matrix

2

4
1 3 0 0

5 15 2 1

�2 �6 1 3

3

5 :
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