Vectors and Matrices

2.1 Vectors

Ordered n-tuple of objects is called a vector

Y= (1 Y2 s V)

Throughout the text we confine ourselves to vectors the elements y; of which are
real numbers.

In contrast, a variable the value of which is a single number, not a vector, is called
scalar.

Example 2.1. We can describe some economic unit EU by the vector
EU= (output, # of employees, capital stock, profit)

Given a vector y = (y1,...,)s), elements y;, i = 1,...,n are called
components of the vector. We will usually denote vectors by bold letters." The
number n of components is called the dimension of the vector y. The set of all
n—dimensional vectors is denoted by R” and called n-dimensional real space?.

Two vectors X,y € R" are equal if x; = y; foralli =1,2,...,n.

Letx = (x,...,x,) andy = (y1,...,yn) be two vectors. We compare these
two vectors element by element and say that x is greater than y if for alli x; > y;,
and denote this statement by x > y. Analogously, we can define x > y.

Note that, unlike in the case of real numbers, for vectors when x > y does not
hold, this does not imply y > x. Indeed, consider the vectors x = (1,0) andy =
(0, 1). It can be easily seen that neither x > y nory > x is true.

: - —
'Some other notations for vectors are y and y .
>The terms arithmetic space, number space and coordinate space are also used.
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18 2 Vectors and Matrices

A vector 0 = (0,0, ..., 0) (also denoted by 0) is called a null vector.?

A vectorx = (x1, X2, ..., X,) is called non-negative (which is denoted by x > 0)
if x; > O foralli.

A vector x is called positive if x; > 0 for all i. We denote this case by x > 0.

2.1.1 Algebraic Properties of Vectors

One can define the following natural arithmetic operations with vectors.
Addition of two n-vectors

X+y=0i+yi.x2+ Y., % + V)

Subtraction of two n-vectors

X—y= (X1 =Y, X2—=Y2..... Xp — Yn)

Multiplication of a vector by a real number A

Ay = Ay, Ava, ..o, Ay,)

Example 2.2. Let EU; = (Y}, L, K|, P;) be a vector representing an economic
unit, say, a firm, see Example 2.1 (where, as usually, Y is its output, L is the number
of employees, K is the capital stock, and P is the profit). Let us assume that it is
merged with another firm represented by a vector EU, = (Y3, L,, K3, P>) (that is,
we should consider two separate units as a single one). The resulting unit will be
represented by a sum of two vectors

EU; = (Y1 + Y2, L1 + Lo, Ky + K», Py + P,) = EU; + EU,.

In this situation, we have also EU, = EU; — EU,. Moreover, if the second firm
is similar to the first one, we can assume that EU; = EU,, hence the unit

EU3 = (2Y152L152K15 2Pl) = 2EU1

gives also an example of the multiplication by a number 2.

This example, as well as other ‘economic’ examples in this book has an
illustrative nature. Notice, however, that the profit of the merged firm might be
higher or lower than the sum of two profits P; + Ps.

3The null vector is also called zero vector.
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The following properties of the vector operations above follow from the defini-
tions:

la. x +y =y + x (commutativity).

Ib. (x +y) +z = x + (y + z) (associativity).

le.x+0=x.
Ild.x+ (—x) = 0.
2a. 1x = x.

2b. A(ux) = Au(x).
3a. (A + wx = Ax + ux.
3b. A(x+y) = Ax + Ay.

Exercise 2.1. Try to prove these properties yourself.

2.1.2 Geometric Interpretation of Vectors and Operations
on Them

Consider R? plane. Vector z = (aj,a,) is represented by a directed line segment
from the origin (0, 0) to (a1, o), see Fig.2.1.

The sum of the two vectors z; = («y, B1) and z, = (oz, f2) is obtained by
adding up their coordinates, see Fig.2.2.

In this figure, the sum z; + z, = (o) +a3, B+ B2) is represented by a diagonal
of a parallelogram sides of which being formed by the vectors z; and z,.

Multiplication of a vector by a scalar has a contractionary (respectively, expan-
sionary) effect if the scalar in absolute value is less (respectively, greater) than unity.
The direction of the vector does not change if the scalar is positive, and it changes
by 180 degrees if the scalar is negative. Figure 2.3 plots scalar multiplication for a
vector X, two scalars A; > 1 and —1 < A, < 0.

The difference of the two vectors z, and z; is shown on Fig.2.4.

The projection of the vector a on x—axis is denoted by pr.a, and is shown in
Fig.2.5 below.

Letzy, ...,z be a set of vectors in R”. If there exist real numbers A1, ..., A not
all being equal to 0 and

o Lz = (1. 00)

Fig. 2.1 A vector on the 0
plane R?
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Fig. 2.2 The sum of two
vectors

Fig. 2.3 The multiplication
of a vector by a scalar
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Fig. 2.4 The difference
of vectors
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Mz + Ayzo + -+ Azp =0,

then these vectors are called linearly dependent.

Example 2.3. Three vectors a = (1,2,3), b = (4,5,6) and ¢ = (7,8,9) are

linearly dependent because
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Fig. 2.5 The projection y
of a vector a on the x-axis

Fig. 2.6 Unit vectors in R3

e3=(0,0,1)

la—2b+ 1c=0.
The vectors zy, .. ., z; are called linearly independent if
A,]Zl +"'+ASZS =0

holds only whenever Ay = A, =--- = A; = 0.
Note that the n vectors e = (1,0,...,0), &2 = (0,1,...,0), ..., ¢, =
(0,0,...,1) (see Fig. 2.6 for the case n = 3) are linearly independent in R”.
Assume that vectors zp, ...,z are linearly dependent, i.e., there exists at least
one A;, where 1 <i <, such that A; # 0 and

A,]Zl +A2Z2+"'+Aizi +"'+ASZS =0
Then
Aizi = =Mz — Aoy — -+ — Aim1Zi—1 — Aip1Zip1 — 0 — A,

and
Z; = Wiz + o i—1Zio + i1 Zip1 e U Z, (2.1

where ; = —A;/A;, forall j #iand j € {1,...,s}.
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A vector a is called a linear combination of the vectors by, ...,b, if it can be
represented as
a=aib; + -+ a,b,,

where ¢, ..., ®, are real numbers. In particular, (2.1) shows that the vector z; is a
linear combination of the vectors zi,...,Z;—1, Zi+1, .. ., Zs.
These results can be formulated as

Theorem 2.1. If vectors zi,...,Z; are linearly dependent, then at least one of
them is a linear combination of other vectors. Vectors one of which is a linear
combination of others are linearly dependent.

2.1.3 Geometric Interpretation in R?
Are the vectors z and Az (see Fig. 2.7) linearly dependent?

Note from Fig.2.8 that the vector A1z; + A,Z; is a linear combination of the
vectors z; and z,. Any three vectors in R? are linearly dependent!

Remark 2.1. Consider the following n vectors in R”.

Az

Fig. 2.7 Are these vectors
linearly dependent?

Alll +A222

Fig. 2.8 A linear
combination of two vectors
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a; = (1,-2,0,0,...,0)
a, = (0,1,-2,0,...,0)

a,_; = (0,0,...,0,1,-2)
a, = (—27"7D,0,...,0,0,1)
These vectors are linearly dependent since
27"a; + 27" Va, + ... 4 271a, = 0.
If n > 40 then 2="D < 10712, a very small number. Moreover, if n > 64, then
27" = 0 for computers. So, for n > 64, we can assume that in our system a, is

given by a, = (0,...,0, 1). Thus, the system is written as

a, = (1,-2,0,0,...,0)
a, =(0,1,-2,0,...,0)

a,_ = (0,0,...,0,1,-2)
a, =(0,0,...,0,0, 1)

But this system is linearly independent. (Check it!)
This example shows how sensitive might be linear dependency of vectors to
rounding.

Exercise 2.2. Check if the following three vectors are linearly dependent:
(aa=(1,2,1),b=(-2,3,-2),c = (7,4,7);
(bya=(1,2,3),b=(0,—-1,3),¢ = (2,-1,2).

2.2 Dot Product of Two Vectors

Definition 2.1. For any two vectors X = (x1,...,x,) andy = (y1,..., y»), the dot
product* of x and y is denoted by (x,y), and is defined as

n
(X.¥) = X1y1 4+ Xoya + o 4+ XaYu = ) Xiyi. (2.2)

i=1

40ther terms for dot product are scalar product and inner product.
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Example 2.4. Leta; = (1,-2,0,...,0)anda, = (0,1,-2,0,...,0). Then

(,a) =1-0+(=2)-14+0-(=2)+0-0+...4+0-0=—2.

Example 2.5 (Household expenditures). Suppose the family consumes n goods. Let
p be the vector of prices of these commodities (we assume competitive economy and
take them as given), and q be the vector of the amounts of commodities consumed
by this household. Then the total expenditure of the household can be obtained by
dot product of these two vectors

E=(p.9).

Dot product (x,y) of two vectors x and y is a real number and has the following
properties, which can be checked directly:
1. (x,y) = (y,x) (symmetry or commutativity)
2. (Ax,y) = A(x,y) for all A € R (associativity with respect to multiplication by a
scalar)
3. (X1 +X2,¥) = (X1,Y) + (x2,y) (distributivity)
4. (x,x) > 0and (x,x) = 0iff x = 0 (non-negativity and non-degeneracy).

2.2.1 The Length of a Vector, and the Angle Between
Two Vectors

Definition 2.2. The length of a vector x in R” is defined as 4/ (x, x) and denoted by

| x |.Ifx = (x1,...,x,) then | X |= ,/xlz + --- 4+ x2. The angle ¢ between any
two nonzero vectors x and y in R” is defined as

XY o< 23)

cosp = ,0<
[x[]y|

We will see below that this definition of cos ¢ is correct, that is, the right hand
side of the above formula belongs to the interval [—1, 1].

Let us show first that the angle between two vectors X and y in the Cartesian
plane is the geometric angle (Fig. 2.9).

Take any two vectors X = (x1,x;) andy = (y1,),) in R%. Theny — x =
(y1 — X1, y2 — x2). By the law of cosines we have

ly = xI* = [y* + Ix* = 2|y x| cos ¢,

or

1 —x1)? + (12— x2)* =y + 7 + »3 +X§—2\/y12 +y§\/Xf+X§COS<p-
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Fig. 2.9 The angle between
two vectors
V2 |- —
|
y I y—x
I
ha X1
0 A ‘
\
X \
X /- = = — — =
Then
Yix1 + y2xo _ (xy)

ose= “Ix(lyl
X
Y XD

Definition 2.3. Two vectors x and y in R” are called orthogonal (notation: x L y)
if the angle between them is /2, i.e. (x,y) = 0.

Theorem 2.1 (Pythagoras). Let x andy be two orthogonal vectors in R". Then

Ix+yPP=Ix]>+]yl*. (2.4)

Proof | x+y[’= (x+y.x+y) = XX+ XY+ )+ .y =|x+]y
since x and y are orthogonal. |

The immediate generalization of the above theorem is the following one.

Theorem 2.2. Letz,,...,z, be a set of mutually orthogonal vectors in R”, i.e., for
alli, jandi # j, (z;,z;) = 0. Then

lz 4+ dz =l P+ P+ |z 2. 2.5)

From the definition of the angle (2.3), it follows that

1< (x,y) <1
| x1ly |

since ¢ € [0, r]. The above inequalities can be rewritten as

(x.y)?
| x?ly >~

’

or
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xy)* < (xx) - (y.y) (2.6)

The inequality (2.6) is called Cauchy’ inequality.
Let us prove it so that we can better understand why the angle ¢ between two
vectors can take any value in the interval of [0, ].

Proof. Given any two vectors x and y in R”, consider the vector x — Ay, where A is
areal number. By axiom 4 of dot product we must have

(X_/\ysX—/XY) 207

that is,
A2(y,y) — 2A(x,y) + (x,X) > 0.

But then the discriminant of the quadratic equation
A'Z(yv y) - ZA(Xv y) + (Xv X) =0
can not be positive. Therefore, it must be true that

x.y)? = (x,x)- (y.y) 0.

Corollary 2.2. Forallx andy in R",

Ix+y|<Ix|+]y]. 2.7

Proof. Note that
[x+y = x+y.x+Yy) = (X,%) +2(x,y) + (y.y)
Now using 2(x,y) < 2| (x,y) |[<2|x ||y | by Cauchy inequality, we obtain

Ix+yP=xx)+2[x|-|y|l+(.y
=(x|+]|y]?

implying the desired result. O

3 Augustin Louis Cauchy (1789-1857) was a great French mathematician. In addition to his works
in algebra and determinants, he had created a modern approach to calculus, so-called epsilon—delta
formalism.
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Exercise 2.3. Plot the vectorsu = (1,2), v = (—3,1) and theirsumw = u + v
and check visually the above inequality.

Exercise 2.4. Solve the system of equations

(0,0,1,1) L x,
(1,2,0,—1) L x,
(x,a) = [a] - |x],

where a = (2, 1, 0,0) and x is an unknown vector from R4,

Exercise 2.5. Two vectors a and b are called parallel if they are linearly dependent
(notation: a||b). Solve the system of equations

(0,0, -3, 4)|x,
x| = 15.

Exercise 2.6. Find the maximal angle of the triangle ABC, where A = (0, 1,2,0),
B =(0,1,0,—1)and C = (1,0,0, 1) are three points in R4,

Exercise 2.7. Given three points A(0, 1,2,3), B(1,—1,1,—1) and C(1, 1,0,0) in
R*, find the length of the median AM of the triangle ABC.

2.3  An Economic Example: Two Plants

Consider a firm operating two plants in two different locations. They both produce
the same output (say, 10 units) using the same type of inputs. Although the amounts
of inputs vary between the plants the output level is the same.

The firm management suspects that the production cost in Plant 2 is higher than
in Plant 1. The following information was collected from the managers of these
plants.

PLANT 1
Input Price Amount used
Input 1 3 9
Input 2 5 10
Input 3 7 8
PLANT 2
Input Price  Amount used
Input 1 4 8
Input 2 7 12

Input 3 3 9
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Question 1. Does this information confirm the suspicion of the firm management?

Answer. In order to answer this question one needs to calculate the cost function. Let
w;; denote the price of the i th input at the j th plant and x;; denote the quantity of i th
input used in production jth plant (i = 1,2,3 and j = 1, 2). Suppose both of these
magnitudes are perfectly divisible, therefore can be represented by real numbers.
The cost of production can be calculated by multiplying the amount of each input
by its price and summing over all inputs.

This means price and quantity vectors (p and q) are defined on real space and
inner product of these vectors are defined. In other words, both p and q are in the
space R3. The cost function in this case can be written as an inner product of price
and quantity vectors as

¢ = (w,q), (2.8)

where c is the cost, a scalar. Using the data in the above tables cost of production
can be calculated by using (2.8) as:

In Plant 1 the total cost is 133, which implies that unit cost is 13.3.

In Plant 2, on the other hand, cost of production is 143, which gives unit cost as
14.3 which is higher than the first plant.

That is, the suspicion is reasonable.

Question 2. The manager of the Plant 2 claims that the reason of the cost differences
is the higher input prices in her region than in the other. Is the available information
supports her claim?

Answer. Let the input price vectors for Plant 1 and 2 be denoted as p; and p».
Suppose that the latter is a multiple A of the former, i.e.,

p2 = Ap1.

Since both vectors are in the space R?, length is defined for both. From the definition
of length one can obtain that

Ip2| = Alpsl.

In this case, however as can be seen from the tables this is not the case. Plant I enjoys
lower prices for inputs 2 and 3, whereas Plant 2 enjoys lower price for input 3. For
arough guess, one can still compare the lengths of the input price vectors which are

[pi| = 9.11, [p2| = 8.60,

which indicates that price data does not support the claim of the manager of the
Plant 2. When examined more closely, one can see that the Plant 2 uses the most
expensive input (input 2) intensely. In contrast, Plant 2 managed to save from using
the most expensive input (in this case input 3). Therefore, the manager needs to
explain the reasons behind the choice mixture of inputs in her plant.



2.4 Another Economic Application: Index Numbers 29

2.4  Another Economic Application: Index Numbers

One of the problems that applied economists deal with is how exactly the microe-
conomic information concerning many (in fact in millions) prices and quantities
of goods can be aggregated into smaller number of price and quantity variables?
Consider an economy which produces many different (in terms of quality, location
and time) goods. This means there will thousands, if not millions, of prices to be
considered.

Suppose, for example, one wants to estimate the rate of inflation for this
economy. Inflation is the rate of change in the general price level, i.e., it has to
be calculated by taking into account the changes in the prices of all goods. Assume
that there are n different goods. Let p; be the price and ¢; is the quantity of the good
i. Consider two points in time, 0 and 7. Denote the aggregate value of all goods at
time O and ¢, respectively, as

Vo= plql (2.9)
i
and
n
vi=>Y"plqi. (2.10)
i
If p° = (p?, ,pY)and ¢° = (q?, ..., qY) are the (row) vectors characterizing

prices and quantities of goods, respectively, then V° = (p°,q°) is just the dot
product of vectors p’ and q°. Then V' is the dot product of the vectors p’ and
q',ie. Vi = (p'.q").

Notice that, in general, between time O (initial period) and ¢ (end period) both
the prices and the quantities of goods vary. So simply dividing (2.10) by (2.9) will
not give the rate of inflation. One needs to eliminate the effect of the change in the
quantities. This is the index number problem which has a long history.®

In 1871, Laspeyres’ proposed the following index number formula to deal with
this problem

Yo pid}
Yiapiq
Notice that in this formula prices are weighted by initial period quantity weights, in

other words, Laspeyres assumed that price changes did not lead to a change in the
composition of quantities.

P, = @2.11)

Charles de Ferrare Dutot is credited with the introduction of first price index in his book Refléxions
politiques sur les finances et le commerce in 1738. He used the averages of prices, without weights.

"Ernst Louis Etienne Laspeyres (1834—1913) was a German economist and statistician, a represen-
tative of German historical school in economics.
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In 1874, Paasche®, suggested using end-period weights, instead of the initial
period’s
Yz Pidi
Yo pid;

Laspeyeres index underestimates, whereas Paasche index overestimates the actual
inflation.

P, =

Exercise 2.8. Formulate Laspeyres and Paasche indices in term of price and
quantity vectors.
Outline of the answer:

_ .9
Fp.q")’
_ ®.9)
%)

Exercise 2.9. Consider a three good economy. The initial (+ = 0) and end period’s
(t = 1) prices and quantities of goods are as given in the following table:

Price  =0) Quantity (f =0) Price( =1) Quantity (t = 1)

Good 1 2 50 1,8 90
Good 2 1,5 90 2,2 70
Good 3 0,8 130 1 100

i. Estimate the inflation (i.e. percentage change in overall price level) for this
economy by calculating Laspeyres index
ii. Repeat the same exercise by calculating Paasche index.

For further information on index numbers, we refer the reader to [9,23].

2.5 Matrices

A matrix is a rectangular array of real numbers

ap apn Ain
azg an Ay
aml am? . . . Amn

8Hermann Paasche (1851-1925), German economist and statistician, was a professor of political
science at Aachen University.
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We will denote matrices with capital letters A,B,...The generic element of a
matrix A is denoted by a;;, i = 1,...,m; j = 1,...,n, and the matrix itself is
denoted briefly as A = ||a;; || nx». Such a matrix with m rows and n columns is said
to be of order m x n If the matrix is square (that is, m = n), it is simply said to be
of order n.

We denote by 0 the null matrix which contains zeros only. The identity matrix
is a matrix [ = [, of size n x n whose elements are iy = 1 and i, = 0 for
k #m,k =1,...,nand m = 1,...,n, that is, it has units on the diagonal and
zeroes on the other places. The notion of the identity matrix will be discussed in
Sect.3.2.

Example 2.6. Object — property: Consider m economic units each of which is
described by n indices. Units may be firms, and indices may involve the output,
the number of employees, the capital stock, etc., of each firm.

Example 2.7. Consider an economy consisting of m = n sectors, where for all
i,j € {1,2,...,n}, a;; denotes the share of the output produced in sector i and
used by sector j, in the total output of sector i. (Note that in this case the row
elements add up to one.)

Example 2.8. Consider m = n cities. Here a;; is the distance between city i and
city j. Naturally, a;; = 0, a;; > 0, and a;; = aj; foralli # j,andi,j €
{1,2,...,n}.

We say that a matrix A = ||aij Han is non-negative if a¢;; > 0 for all i =
1,....,m; j =1,...,n. This case is simply denoted by 4 > 0.
Analogously is defined a positive matrix A > 0.

2.,5.1 Operations on Matrices

Let A = Jay |
is defined as

and B = ||b,-j || be two matrices. The sum of these matrices

mXn mXn

A+ B = |ay + by

mxn *
Example 2.9.
1 0 3 2 4 2
4 2 |+ 7 3 | =] 11 5
7 1 4 1 11 2

Let A = ||a;;|, . and A € R. Then

mXn

AA = ||Aaij H

mxn *
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Example 2.10.

3.0 6 0
212 4 |=|4 38
1 9 2 18

Properties of Matrix Summation and Multiplication by a Scalar

(1-a) A+ B = B + A.

(I-b) A+ (B+C)=(A+ B) +C.
(1-c) A+ (—A) =0, where —4 = (—1)A.
(1-d) A+0=A.

(2-a) 14 = A.
(2-b) A(uA) = (Au)A, A, ueR.
(3-a) 04 = 0.

(3-b) (A+ )4 =AA+ pA, A peR.
(3-c) AM(A+B)=AA+AB, A, ueR.

The properties of these two operations are the same as for vectors from R”. We
will clarify this later in Chap. 6.

2.5.2 Matrix Multiplication

Let A = ||a,-j ”mxn and B = Hbjk an;: be two matrices. Then the matrix AB of
order m x p is defined as

n
AB = Zaijbjk
j=1

mxp

In other words, a product C = AB of the above matrices A and B is a matrix
C = ey me;;’ where ¢;; is equal to the dot product (A;, B/) of the i-th row A4; of
the matrix A4 and the j-th column B/ of the matrix B considered as vectors from R”.

Consider 2 x 2 case. Given

A:[all ap :| andB=|:bll bis i|
az; ayn b21 b22
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Fig. 2.10 A rotation y

we have

AB — [allbll + anby anbi + a12b22:| ‘

az by + anby axbiz + anbxn

Example 2.11.

N N W
—_ W N

2_16726
9_432261'

Example 2.12. Rotation of a vector X = (x, y) in R? around the origin by a fixed
angle ¢ (Fig.2.10) can be expressed as a matrix multiplication. If X’ = (x’, y’) is
the rotated vector, then its coordinates can be expressed as

[xi} =R, [x} (2.12)
y y

cosa —sino

where

sina  cosa

is called a rotation matrix.
Note that if we consider the vectors x and X" as 1 x 2 matrices, then (2.12) may
be briefly re-written as X'’ = Ryx’.

Exercise 2.10. Using elementary geometry and trigonometry, prove the equal-
ity (2.12).

Properties of Matrix Multiplication

(1-a) 2(AB) = ((¢A)B) = A(aB).
(1-b) A(BC) = (AB)C.

(1<) A0 = 0.

(2-a) A(B+C) = AB + AC.
(2-b) (A + B)C = AC + BC.
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Remark 2.2. Warning. AB # BA, in general.

Indeed, let A and B be matrices of order m x n and n X p, respectively. To
define the multiplication BA, we must have p = m. But matrices A and B may not
commute even if both of them are square matrices of order m x m. For example,

consider
12 —-12
A_[03i| andB—|:13i|.

18 . -1 4
AB—[39i| while BA—[1 11i|.

We have

Exercise 2.11. Let A and B be square matrices such that AB = BA. Show that:
1. (A+ B)>= A> +24B + B>
2. A>—~B?>=(A—B)(A+ B).

Exercise 2.12.* Prove the above properties of matrix multiplication.

n m m n
Hint. To deduce the property 1-b), use the formula ) (Z xij) => (Z xij).

i=1\j=1 j=1\i=1

Remark 2.3. The matrix multiplication defined above is one of the many concepts
that are counted under the broader term “matrix product”. It is certainly the most
widely used one. However, there are two other matrix products that are of some
interest to economists.

Kronecker Product of Matrices

Let A = |la;; || be an m x n matrix and B = ||b;;| be a p x ¢ matrix. Then the
Kronecker® product of these two matrices is defined as

a“B ..o dlp B
AQ B = e
amB ...au,B
which is an mp x ng matrix. Kronecker product is also referred to as direct product
or tensor product of matrices. For its use in econometrics, see [1, 8, 14].

Leopold Kronecker (1823-1891) was a German mathematician who made a great contribution
both to algebra and number theory. He was one of the founders of so-called constructive
mathematics.
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Hadamard Product of Matrices
The Hadamard'® product of matrices (or elementwise product, or Shur'' product)
of two matrices A = |la;; || and B = ||b;;| of the same dimensions m x n is a
submatrix of the Kronecker product

Ao B = |laijbij |lmxn-
See [1, p. 340] and [24, Sect.36] for the use of Hadamard product in matrix
inequalities.

2.5.3 Trace of a Matrix

Given an nxn matrix A = ||a;; ||, the sum of its diagonal elements Tr A = Y /_, a;;
is called the trace of the matrix A.

Example 2.13.

1 2 3
Tr| 10 20 30 = 321
100 200 300

Exercise 2.13. Let A and B be two matrices of order n. Show that:

(a) Tr(A+ B) =TrA + Tr B.
(bj Tr(AB) = Tr(BA).

2.6 Transpose of a Matrix

Let A = Ha,-j ”mxn' The matrix B = ||b,-j ”nxm is called the franspose of A (and
denoted by A7) if b;; = a;; foralli € {1,2,...,m}and j € {1,2,...,n}.

Example 2.14.

- _[321}
104
o 049

10Jacques Salomon Hadamard (1865-1963), a famous French mathematician who contributed in
many branches of mathematics such as number theory, geometry, algebra, calculus and dynamical
systems, as well as in optics, mechanics and geodesy. His most popular book The psychology of
invention in the mathematical field (1945) gives a nice description of mathematical thinking.

ssai Schur (1875-1941), an Israeli mathematician who was born in Belarus and died in Israel,

made fundamental contributions to algebra, integral and algebraic equations, theory of matrices
and number theory.
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The transpose operator satisfies the following properties:

1. (A1) = A.
2. (A+B)T = AT + BT,
3. (@A) = adT.

4. (AB)T = BT AT.

Proof. To prove the above properties, note that one can formally write

A" = |a; H;Xn =[], -

I Haif men = A. This proves the property 1.

Then (47)" = [aji ],
T
Now, (A + B)' = ai +bijll,, = laji+bjill = lasil o +
H bji ||n><m = AT + BT. This gives the second property.

To check the third one, we deduce that (ozA)T = ||oza,-j || r

mXn

—_— T —_—
: = ol =
o flajif,, = oA’

Now, it remains to check the fourth property. Let M = AB and N = BT AT,
where the matrices 4 and B are of orders m x n and n x p, respectively. Then M =
Hamj,- mep with mjj = (A;, B/)and N = HOH’l,‘j Han with njj = ((BT)i, (AT)J)

Since the transposition changes rows and columns, we have the equalities of vectors
(BT): = B'.(47)] = 4;.

Hence, m;; = nj; foralli = 1,...,mand j = 1,..., p. Thus MT = N, as

desired. |

A matrix A is called symmetric if A = AT. A simple example of symmetric
matrices is the distance matrix A = [a;;], where a;; is the distance between the
cities i and j. Obviously, a;; = a;; or A = A”.

Theorem 2.3. For each matrix A of order n x n, the matrix AAT is symmetric.

Proof. Consider (AAT)T. By the properties 3) and 4), we have (4AT)T
(ATYT AT = AAT. 0

Exercise 2.14. Let A and B be two matrices of order n. Show that Tr A7 = Tr A.

2.7 Rank of a Matrix

Are the vectors X, y, and z in the Fig. 2.11 linearly dependent?
It is obvious that there exists y such that

u+yz=0,

or
ax+ By +yz =0,
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Fig. 2.11 Are the vectors x,
y, and z linearly dependent? u=oax+fy

i.e., these three vectors are linearly dependent.
Let us recall the notion of linear dependence of vectors. Consider vectors

a=(2,-51,-1)
B =(1,3,6,5)
y = (-1,4,1,2).

Are they linearly dependent? To answer, we construct a system of linear equations
as follows: suppose the above vectors are linearly dependent. Then

ac +bBf+cy =0

for some parameters a, b, ¢, which are not all zero. In component-wise form, we
obtain a homogeneous system of linear equation:

2a+1b — ¢=0
—5a+3b+4c=0
a+6b+ ¢c=0
—a+5b+2c=0

Here the system of linear equations is called homogeneous if every equation has the
form “a linear combination of variables is equal to zero”.
One can check directly that a solution of the above system is givenbya = 7,b =
—3 and ¢ = 11. Hence
Tao—38+ 11y = 0.

Consider now a matrix A

aip aip ... A4y

azy Ay ... A2y
A=

gl g2 . . . Agp
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Columns of this matrix can be considered as s-dimensional vectors, and maximal
number of linearly independent columns is called the rank of A.

Example 2.15. Consider the matrix A with columns being the above vectors «, 8
and y

2 1-1

—-53 4
A=

1 61

—-15 2

Since A has 3 columns and the columns are linearly dependent, we have rank A < 2.
On the other hand, it is easy to see that the first two columns of A are linearly
independent, hence rank A > 2. Thus we conclude that rank A = 2.

Example 2.16. For the null matrix 0, we have the rank A = 0. On the other hand,
the unit matrix / of the order n x n has the rank 7.

Theorem 2.4. The maximal number of linearly independent rows of a matrix
equals to the maximal number of its linearly independent columns. Recalling the
notion of the transpose, we have

rank A = rank A7

for every matrix A.
The proof of this theorem is given in Corollary 4.6.

Exercise 2.15. Check this statement for the above matrix A.

2.8 Elementary Operations and Elementary Matrices

In this section, we give a method to find linear dependence of columns of a matrix,
and hence, to calculate its rank.

Let A be a matrix of order m x n. Recall that its rows are n—vectors denoted by
Ay, Aa, ..., Ap. The following simple transformations of A are called elementary
(row) operations. All of them transform A to another matrix A’ of the same order
one or two rows (say, i -th and j-th) of which slightly differs from those of A4:

1. Row switching: A} = A;, A} = A;.
2. Row multiplication: A; = AA;, where A # 0 is a number.
3. Row replacement: A7 = A; + AA;, where A # 0 is a number.
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Example 2.17. Let us apply these operations to the unit matrix

10... 0

01 0
I, =

00...1

The resulting matrices are called elementary transformation matrices; they are:

- .
0...1
1 Y}’jz ;
1...0
- 1_
1
2. TV = A ;
1
- .
1. A
3. Ty = .
1
- 1_

Exercise 2.16.* Show that any elementary operation of the second type is a
composition of several operations of the first and the third type.

Theorem 2.5. If A’ is a result of an elementary operation of a matrix A, then
A =TA,

where T is a matrix of elementary transformation corresponding to the operation.
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Exercise 2.17. Prove this Theorem 2.5.
(Hint: Use the definition of product of two matrices as a matrix entries of which
are the dot products of rows and columns of the multipliers.)

Let #; and #, be elementary operations with corresponding matrices 7 and 7>.
The composition t = ft, of these two operation is another (non-elementary)
operation. It follows from Theorem 2.5 that ¢ transforms any matrix 4 to a matrix

A = t(A) = tl(tz(A)) =TA, where T = T T>.

So, amatrix T corresponding to a composition of elementary operations is a product
of matrices corresponding to the composers.

Another property of elementary operations is that all of them are invertible. This
means that one can define the inverse operations for elementary operations of all
three kinds listed above. For an operation of the first kind (switching), this inverse
operation is the same switching; for the row multiplication by A, it is a multiplication
of the same row by 1/A; finally, for the replacement of A; by A} = A; + AA; the
inverse is a replacement of A} by A} — A4’ = A;. Obviously, all these inverses are
again elementary operations.

We obtain the following

Lemma 2.6. Suppose that some elementary operation transforms a matrix A to A’.
Then there is another elementary operation, which transforms the matrix A’ to A.

Another property of elementary operations is given in the following theorem.

Theorem 2.7. Suppose that some columns A", ..., A% of a matrix A are linearly
dependent, that is, their linear combination is equal to zero

a1 AT 4 o A =0,

Let B be a matrix obtained from A by a sequence of several elementary opera-
tions. Then the corresponding linear combination of columns of B is also equal
to zero

a1 B 4 4 B = 0.

Proof. Let Ty, ..., T, be the matrices of elementary operations whose compositions
transforms A to B. Then B = TA, where T is a matrix product " = T, ... T7T.
This means that every column B/ of the matrix B is equal to TA/. Thus,

o B+ 4o B* = i TA" +-- 4o TA* = T(a; A"+ 4o, A%*) = T0 = 0.

|
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Corollary 2.8. Let a matrix B be obtained from a matrix A by a sequence of several

elementary operations. Then a collection A™, ..., A** of columns of the matrix A is
linearly dependent if and only if corresponding collection B, ..., B is linearly
dependent.

In particular, this means that rank A = rank B.

Proof. The ‘only if” statement immediately follows from Theorem 2.7.
According to Lemma 2.6, the matrix A as well may be obtained from B via a
sequence of elementary operations (inverses of the given ones). Thus, we can apply

the ‘only if” part to the collection Bit, ..., B of columns of the matrix B. This
imply the ‘if” part.
By the definition of rank, the equality rank A = rank B follows. O

Example 2.18. Let us find the rank of the matrix

123
A=1456
789

Before calculations, we apply some elementary operations. First, let us substitute
the third row: A3 with A3 —2A4,. We get the matrix

1 23
A=|4 56
—-1-2-3

Now, substitute again: A +— A} + A} and then A}, — A} — 4A. We obtain the
martrix

12 3
A"=10-3-6
00 O

Finally, let us substitute A7 — A + (2/3)A% and multiply A7 — (—1/3)A’. We
obtain the matrix
10-1
B=|012
00 0

It is obvious that the first two columns of this matrix B are linearly independent
while B3 = —B! + 2B2. Hence rank 4 = rank B = 2.

Definition 2.4. A matrix A is said to have a (row) canonical form (see Fig.2.12),

if the following four conditions are satisfied:

1. All nonzero rows are above any rows of all zeroes.

2. The first nonzero coefficient of any row (called also leading coefficient) is always
placed to the right of the leading coefficient of the row above it.
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Fig. 2.12 Row echelon form
of a matrix

Fig. 2.13 Canonical form of
a matrix

3. All leading coefficients are equal to 1.
4. All entries above a leading coefficient in the same column are equal to 0.

If only first two of the above conditions are satisfied, then the matrix is said to
have a row echelon form (see Fig.2.13).

Example 2.19. In Example 2.18 above, the marix A” has a row echelon form while
the matrix B has even a canonical form.

It is easy to calculate the rank of a matrix in an echelon form: it is simply equal
to the number of nonzero rows in it.

Theorem 2.9. Every matrix A can be transformed via a number of elementary
operations to another matrix B in a row echelon form (and even in a canonical
form). Then the rank of the matrix A is equal to the number of nonzero rows of the
matrix B.

Let us give an algorithm to construct an echelon form of the matrix. This
algorithm is called the Gaussian'? elimination procedure. It reduces all columns
of the matrix one-by-one to the columns of some matrix in a row echelon form. In a
recent step, we assume that a submatrix consisting of the first (j — 1) columns has
an echelon form. Suppose that this submatrix has (i — 1) nonzero rows.

In the j-th step, we provide the following:

1. If all elements of the j-th column beginning with a;; and below are equal to zero,
the procedure is terminated. Then we go to the (j + 1)-th step of the algorithm.
2. Otherwise, find the first nonzero element (say, a;;) in the j-th column in the i-th
row and below. If it is not a;;, switch two rows A; and A; of the matrix. (see
Fig.2.14).
Now, we obtain a matrix A such that a,; # 0 (Fig.2.15).

12Carl Friedrich Gauss (1777-1855) was a great German mathematician and physicist. He made
fundamental contribution to a lot of branches of pure and applied mathematics including geodesy,
statistics, and astronomy.
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Fig. 2.14 The Gaussian j

elimination, row switching _ ]
* * * *
0 * *

Fig. 2.15 The Gaussian
elimination, row subtraction

A e

J
%
. -
i E 0 Aijpy o F
0
%

k+1 0 * * -Ai*akﬂ,j/aid

Fig. 2.16 The Gaussian j
elimination, the result of row [ ]
subtractions ¥k * o *
0 * *
i 0 | Ay | ager e ®
k 0 ak,j+1 e %
k+1 0 0 * e %

3. For every p > i, provide the following row replacement: the row 4, — A, —
(apj /a,-j)Aj (Flg 216)
These three types of operations are sufficient to construct a row echelon form. In
the next step of the algorithm, we take p + 1 in place of p and j + 1 in place of ;.
Note that in the above Example 2.18 we used this algorithm to transform A’ to
A”. Another example is given below.

Example 2.20. Using Gauss algorithm, let us construct a row echelon form of the
matrix

00 3
A=126 =2
412 -1

In the beginning, i = j = 1, that is, we begin with the first column. In operation
1, we find the first nonzero element of this column, that is, a»;. In operation 2, we
switch the first and the second rows and get the matrix
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26 =2
00 3
412 -1

In operation 3, we subtract the doubled first row from the third one and get the
matrix

262

00 3

00 3

Now, we provide the same three steps for the submatrix formed by the last two
rows. The first nonzero column of the submatrix is the third one, so, in operation 1
we put p = 3. In operation 2, we find the first nonzero element of the column of the
submatrix (a3 = 3). In operation 3, we replace the first row A; by A + (1/3) A,
and the third row A3 by A3 — A,. We obtain a matrix in a row echelon form

262
00 3
000

The next theorem gives a stronger version of Gaussian elimination.

Theorem 2.10. [. Every matrix A can also be transformed via elementary opera-
tions to a matrix C in a canonical form.

2. The above canonical form C is unique for every matrix A, that is, it does not
depend on the sequence of elementary operations which leads to this from.

Exercise 2.18. Prove the above Theorem 2.10.

Hint. To prove the first part, extend the above algorithm in the following way.
To construct a canonical form, we need the same operations 1 and 2 as in the Gauss
algorithm, a modified version of the above operation 3 and an additional operation 4.

(3’) For every p # i, provide the following row replacement: the row 4, —
Ap - (apj/a,-j)Aj.

(4) Replace the i-th row A; by (1/a;;)A;, that is, divide the i-th row by its first
nonzero coefficient a;;.

For the second part of the theorem, use Corollary 2.8.

Exercise 2.19. Find the canonical form of the matrix from Example 2.20.

2.9 Problems

1. Find a vector x such that:
(a) x+y =12z, wherey = (0,3,4,-2),andz = (3,2, 1,-5).
(b) 5x =y —2z,wherey = (—1,—1,2)and z = (0, 1, 7).
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2.

3.

4.

11.
12.

13.
14.

Problems 45

Let x and y be two vectors in R”. Prove that:
(a) x+y=xifandonlyify = 0.
(b) Ax =0and A # 0if and only if x = 0.
Prove that vectors zy, . ..,z in R” are linearly dependent if one of them is the
null vector.
Are the vectors below linearly dependent?

a;= (1, 0,0, 2, 5)
a=(0, 1,0, 3, 4
as=(0, 0,1, 4, 7)
a; = (2, -3, 4, 11, 12)

. Letzy,...,z, be linearly independent vectors and x be a vector such that

X = Aizy + -+ Az,

where A; € R for all i. Show that this representation is unique.

. Show that n vectors given by

x; =(1,0,0,...0,0)
x> =(0,1,0,...0,0)
X, =(0,0,0,...0, 1)

are linearly independent in R”.

. Find the rank of the following matrices:

o5y 122

(@] 4-25 17|;(®b)
)11 82 1-3-50-7
7-5 14 1

. Show that n vectors given by

X1 = (M, M2, - =1, Nin)
xo = (0, 722, ... N2.0—1, N2n)

x, = (0, 0, ... 0, num)

are linearly independent in R" if n;; # 0 for all i.

. Check that in Definition 2.1 all axioms 1 — 4 are satisfied.
. Show that the Cauchy inequality (2.6) holds with the equality sign if x and y

are linearly dependent.

How many boolean (with components equal to 0 or 1) vectors exist in R"?
Find an example of matrices A, B and C such that AB = AC, A # 0, and
B #C.

Find an example of matrices A and B such that A # 0, B # 0,but AB = 0.
Show that A0 = 04 = 0.
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15.

16.

17.

18.

19.

20.

21.
22.

23.

24 *

25.%

26.%

27.
28.

2 Vectors and Matrices

Prove that (¢A)(BB) = («f) AB for all real numbers « and S, and for all
matrices A and B such that the matrix products exist.

Prove that (¢A) B = « (AB) = A (aB) for each real number « and for all
matrices A and B such that the matrix products exist.

Let A, B and C be n x n matrices. Show that ABC = CAB if AC = CA and
BC = CB.

Find a 2 x 3 matrix A and a 3 x 2 matrix B such that

as=[¢0]
01

3]

(a) Find x # 0 such that Ax = 0.
(b) Findy # 0 such that yA = 0.
Let « and B be two angles. Prove the following property of rotation matrices:

Let

Rutp = RyRy.

Prove the properties of matrix summation.
Calculate

0 2 -1 70 34 —107 27 —18 10
-2-12 52 26 —68 —46 31 —17
3 —2-1 101 50 —140 32 1

How A - B will change if:
(a) ith and jth rows of A are interchanged?
(b) a constant ¢ times jth row of A is added to its i th row?

(c) ith and jth columns of B are interchanged?

(d) a constant ¢ times jth column of B is added to its i th column?

Show that rank(A B) < rank A and rank(AB) < rank B.

Show that the sum of the entries of the Hadamard product Ao B of two matrices
A and B of order n (so-called a Frobenius"® product) (A, B)r is equal to
TrABT.

Prove that any matrix A can be represented as A = B + C, where B is
symmetric matrix and C is an anti-symmetric matrix (i.e., CT = —C).

Find all 2 x 2 matrices A satisfying A% = 0.

Find all 2 x 2 matrices A satisfying 4> = I,.

3Ferdinand Georg Frobenius (1849-1917) was a famous German algebraist. He made a great
contribution to group theory and also proved a number of significant theorems in algebraic
equations, geometry, number theory, and theory of matrices.
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29. Find a row echelon form and the rank of the matrix

0 0 —-13
—-2-121
2 1 —45

30. Find the canonical form of the matrix

I 300
5 1521
-2-613
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