
Chapter 2

The Basics

Chemical reactions of the first and second order are the basis of all binding kinetics,

binding equilibria and enzyme kinetics. Kinetic experiments must be calculated

from a set of differential equations, whereas equilibrium binding studies can be

calculated from a set of ordinary equations. Chapter 2 provides guidelines to write

such equations for any reaction scheme. This is independent of the solution, be it

analytical or numerical.

2.1 Equations for First and Second Order Reactions

When a ligand L binds to a receptor R (2.1), the probability of interaction is

proportional to both concentrations. The rate of product formation d[LR]/dt there-

fore is the product of these concentrations times a constant, which is called the rate

constant k. Rate constants are denoted as lower case letters.

Second order association : Lþ R ! LR (2.1)

Second order rates : d[LR]/dt ¼ k1 � [L] � [R] (2.2)

d[L]/dt ¼ �k1 � [L] � [R] (2.3)

d[R]/dt ¼ �k1 � [L] � [R] (2.4)

These are differential equations. They have to be written for the concentration

changes of all components of the reaction, for L, R and LR. Note that we follow the

convention and write concentrations in square brackets. This convention cannot be

upheld in computer code, where a square bracket cannot be part of a variable name.

In octave and MATLAB, square brackets define a vector or matrix.

Once the complex LR has been formed, it may or may not dissociate. The

dissociation rate is proportional to the concentration of the complex.
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First order dissociation : LR ! Lþ R (2.5)

First order rates : d[LR]/dt ¼ �k�1 � [LR] (2.6)

d[L]/dt ¼ k�1 � [LR] (2.7)

d[R]/dt ¼ k�1 � [LR] (2.8)

The negative sign in (2.6) indicates that the concentration of LR is decreased

upon the decay of the complex. Reaction schemes (2.1) and (2.5) together with the

basic reaction rates (2.2)–(2.4) and (2.6)–(2.8) contain all the physics required to

understand this textbook. Complex biochemical reactions result from bimolecular

association and monomolecular dissociation and combinations of these steps.

The above differential equations have been solved analytically, but let us use this

example to understand numerical solutions of differential equations: Mathemati-

cally, a differential quotient dx/dt is the limiting value of the difference quotient

Dx/Dt for infinitesimal small differences. Computer programs use a practical

version of this definition: Calculate the differences Dx of all concentrations for a

small time interval Dt, add these differences to the original values and do the

calculations for the next time interval. Repeat these steps until the time range of

interest is covered. That is all. For ordinary differential equations (they can be

written as dx/dt ¼ f(x, t), like all combinations of first and second order reactions)

octave provides the function lsode, a general procedure to solve them. The

function lsode will be covered in Chap. 6, but let us discuss the general principle

with the simple example of a reversible reaction:

Lþ RÐk1
k�1

LR (2.9)

Reversible binding (2.9) leads to the formation of the complex LR and to a

corresponding decrease of L and R. The difference quotients are:

D[L]/Dt ¼ �k1 � [L] � [R]þ k�1 � [LR] (2.10)

D[R]/Dt ¼ �k1 � [L] � [R]þ k�1 � [LR] (2.11)

D[LR]/Dt ¼ k1 � [L] � [R]� k�1 � [LR] (2.12)

When all rate constants and all initial concentrations are known, the concentra-

tion changes D[LR], D[L] and D[R] can be calculated from (2.10)–(2.12) for any

given time interval Dt.
Let us assume that the experiment simply consists of mixing receptor and ligand

to total concentrations R0 and L0, respectively. At time zero, the concentrations are

[R] ¼ R0, [L] ¼ L0, [LR] ¼ 0. After the small time interval Dt, these

concentrations are [R] ¼ R0 þ D[R], [L] ¼ L0 þ D[L] and [LR] ¼ 0 þ D[LR].
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For the next time interval Dt these new concentrations have to be inserted in

(2.10)–(2.12) in order to compute the new concentration changes, and so forth.

These are very basic repetitive operations, ideally suited for a computer.

Equilibrium is reached for reversible reactions (2.9) when the dissociation rate

(1.6) is equal to association rate (2.2)

k1 � [L] � [R] ¼ k�1 � [LR] (2.13)

This leads to (2.14) with the equilibrium dissociation constant KD1. Equilibrium

constants K1 ¼ k1/k�1 and equilibrium dissociation constants KD1 ¼ k�1/k1 are

denoted with uppercase letters. In life science and in this textbook, equilibrium

dissociation constants KD are used rather than equilibrium constants K. They

correspond to the ligand concentration where half of the binding sites for this KD

are occupied.

KD1 ¼ k�1=k1 ¼ [L] � [R]/[LR] (2.14)

[LR] ¼ [L] � [R]/KD1 (2.15)

Bound ligand and free ligand concentrations must add up to the total ligand

concentration L0. The same must hold for all components of bound and free

receptors which add up to the total receptor concentration R0:

R0 ¼ [R]þ [L] � [R]/KD (2.16)

L0 ¼ [L]þ [L] � [R]=KD (2.17)

Equations (2.16) and (2.17) are two equations with the two unknowns [L] and

[R]. They follow the pattern: “The total concentration of each molecule must be the

sum of free and bound concentrations”. This pattern leads to n equations of n
unknowns. Even the most complex equilibria can be calculated from these

equations. Analytical solutions for such general equations involving numerous

complexes and numerous ligands may be difficult or impossible to find, but

numerical solutions are relatively easy with the help of a suitable algorithm.

Again, as has been discussed for differential equations, the main task for the

scientist lies in writing the equations.

2.2 Equilibrium Binding to Two Sites

The binding of ligands to two sites of a receptor is often described with reaction

scheme (2.18), where a ligand may bind to two sites. Only one singly bound

complex LR and one doubly bound L2R are considered in this scheme. The scheme
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can be extended to incorporate more binding sites, always with only one complex

and one equilibrium dissociation constant for each sequential binding step

2Lþ RÐk1
k�1

Lþ LRÐk2
k�2

L2R (2.18)

Scheme (2.18) is ideally suited for the analysis of equilibrium binding studies,

since it involves a minimal number of constants. It is, however, not a plausible

scheme. Generally, one would expect the ligand to have a choice for binding to one

or to the other site, before the second ligand binds to the non-occupied site. Such a

mechanism of accessible sites is shown in scheme (2.19) where the first ligand may

bind to the “left” (LR) or “right” (RL) site, before a second ligand leads to the

formation of the fully occupied receptor LRL.

ð2:19Þ

Reaction scheme (2.19) has sometimes been called “diamond model” because of

its shape. It illustrates the most general model for two site binding. Sites are

considered to be independent when the ligand bound to one site has the same

affinity independent of the occupation of the other site. This statement translates

to KD1 ¼ KD4 and KD2 ¼ KD3. The sites are equivalent when their affinity is the

same, i.e. KD1 ¼ KD2. For equivalent sites, binding is regarded to be cooperative,

when KD1 > KD3, so that the second ligand binds with a higher affinity. For

KD1 < KD3 and equivalent sites, the binding mechanism is called anticooperative.
One should note that reaction scheme (2.19) shows a coupled equilibrium and

that the affinity of the ternary complex LRL must be independent of the path by

which it was formed.

Upperpath : [LR] ¼ [L] � [R]/KD1 [LRL] ¼ [LR] � [L�=KD3 (2.20)

Lowerpath : [RL] ¼ [L] � [R]/KD2 [LRL] ¼ [RL] � [L]/KD4 (2.21)

If we combine all four equations, we get

[L] � [L] � R½ �=ðKD1 � KD3Þ ¼ L½ � � L½ � � R½ �=ðKD2 � KD4Þ (2.22)

And thus

KD1 � KD3 ¼ KD2 � KD4 (2.23)
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One equilibrium dissociation constant of a coupled equilibrium can therefore be

calculated from the other ones. This principle holds for all coupled equilibria, since

the affinity of a complex must be independent of the path by which it was formed.

The concentrations of the complexes LR, RL and LRL, written in (2.20)–(2.22) are

functions of free concentrations [L] and [R]. The total concentrations R0 and L0

must therefore be equal to

R0 ¼ [R]þ [L] � [R]/KD1þ [L] � [R]/KD2þ [L] � [L] � [R]=ðKD1 � KD3Þ (2.24)

L0 ¼ [L]þ [L] � [R]/KD1þ [L] � [R]/KD2þ 2 � [L] � [L] � [R]/(KD1 �KD3Þ (2.25)

Note that the complex LRL contains two bound ligand molecules. This is taken

into account by the factor 2 in (2.25). For reaction scheme (2.18), the corresponding

sets of equations are given in (2.26) and (2.27):

R0 ¼ [R]þ [L] � [R]/KD1þ [L] � [L] � [R]/(KD1 � KD2Þ (2.26)

L0 ¼ ½L� þ ½L� � [R]=KD1þ 2 � [L] � [L] � [R]=ðKD1 � KD2Þ (2.27)

Note that KD2 in reaction scheme (2.18) indicates the occupation of the second

ligand to form the fully saturated complex LRL, whereas KD2 in reaction scheme

(2.19) denotes the binding of one ligand to an independent second site. Equations

(2.24) and (2.25) can be re-written as (2.28) and (2.29).

R0 ¼ [R]þ [L] � [R] � ð1=KD1þ 1=KD2Þ þ [L] � [L] � [R]/(KD1 � KD3Þ (2.28)

L0 = [L]þ ½L� � [R] � ð1=KD1þ 1=KD2Þ þ 2 � [L] � [L] � [R]/(KD1 � KD3Þ (2.29)

They are identical when 1/KD1 for scheme (2.18) equals (1/KD1 þ 1/KD2) from

scheme (2.19) and KD1 · KD2 from scheme (2.18) equals KD1 · KD3 from scheme

(2.19).

Equilibrium binding studies therefore cannot distinguish between the sequential

scheme (2.18) and a more plausible scheme of accessible sites (2.19). It will be

shown in Sect. 6.5 that a sequential binding mechanism (2.18) can be identified with

a kinetic “chase” experiment. But only a kinetic experiment with two different

ligands allows the distinction between first and second bound ligand.

2.3 Equilibrium Binding to Any Number of Sites

These conclusions can be generalized: Equilibrium binding studies can only deter-

mine one effective affinity for each occupation of sites, no matter how many

individual complexes can be identified for each monoliganded, diliganded,
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triliganded, etc. occupation. If we know the intrinsic affinities of each individual

binding site at each step, we can compute the simplified affinities of a sequential

scheme. This reasoning does not work in the opposite direction: Since equilibrium

binding studies can only determine one effective equilibrium dissociation constant

for the different occupation of sites, intrinsic equilibrium dissociation constants for

the different sites cannot be deduced without further assumptions.

Only if we assume that affinities of all n individual binding sites are equivalent,

can intrinsic equilibrium dissociation constants KDiintrinsic for the ith steps be

calculated from the effective (sequential) equilibrium dissociation constants (2.30).

KDiintrinsic ¼ ((n� iþ 1)/i) � KDisequential (2.30)

As an example, let us assume two step sequential binding sites with KD1sequential ¼
KD2sequential ¼ 10 mM according to reaction scheme (2.18). These equilibrium disso-

ciation constants of scheme (2.18) translate to KD1intrinsic (¼KD2intrinsic) ¼ 20mMand

KD3intrinsic (¼KD4intrinsic) ¼ 5 mM of reaction scheme (2.19). Therefore, identical

equilibrium dissociation constants for each step of a sequential mechanism (like

(2.18)) translate into cooperative binding when intrinsic equilibrium dissociation

constants of accessible sites are computed.

Calculating equilibrium binding curves from any given reaction scheme is quite

straight-forward. One simply writes one equation (2.31) for each molecule of the

reaction

Total concentration ¼ free concentrationþ bound concentration (2.31)

This corresponds to (2.24) and (2.25). The bound concentration is the sum of all

molecules bound to all complexes. The set of (2.31) can be solved numerically.

These equations need not be linear, and there may be more than one solution.

A reasonable initial estimate ensures that the right solution is found. This is

discussed in Chap. 5.

2.4 Writing Differential Equations for Two Site Binding

Differential equations can readily be solved with numerical methods, but they have

to be set up first. For example, analyzing reaction scheme (2.18) involves the

calculation of four concentrations, namely [R], [L], [LR], and [L2R]. The four

differential equations for the four concentration changes are given in (2.32)–(2.35)

d[R]/dt ¼ �k1 � [R] � [L]þ k�1 � [LR] (2.32)

d[L]/dt ¼ �k1 � [R] � [L]þ k�1 � [LR]� k2 � [LR] � [L]þ k�2 � ½L2R] (2.33)
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d[LR]/dt ¼ k1 � [R] � [L]� k�1 � [LR]� k2 � [LR] � [L]þ k�2 � ½L2R] (2.34)

d[L2R]/dt ¼ k2 � [LR] � [L]� k�2 � ½L2R] (2.35)

Note the algebraic signs. Since all concentrations and rate constants are positive,

a decrease in concentration, that is a negative rate, always is indicated by a negative

sign. Note (2.34), where LR is decreased by the dissociation part of reaction 1 and

the association part of reaction 2. Any second order reaction involves three

components of the reactions. Therefore, reaction 1 with k1 and k�1 affects the

concentration changes of R, L and LR in (2.32), (2.33) and (2.34). Likewise,

reaction 2 with k2 and k�2 involves the components L, LR and L2R and thus affects

(2.33), (2.34) and (2.35). For more complex schemes, such a check that a given rate

constant must be involved in three (or two, for reversible first order) reactions helps

in debugging a program. One can use the “find” function included in any text editor

to make sure that each rate constant of a reversible reaction of the second order

appears three times.

Differential equations for reaction scheme (2.19) require the calculation of five

concentrations, namely [R], [L], [LR], [RL], and [LRL]. This is shown in equations

(2.36)–(2.40):

d[R]/dt ¼ �k1 � [R] � [L]þ k�1 � [LR]� k2 � [R] � [L]þ k�2 � [RL] (2.36)

d[L]/dt ¼� k1 � [R] � [L]þ k�1 � [LR]� k3 � [LR] � [L]þ k�3 � [LR]
� k2 � [R] � [L]þ k�2 � [LR]� k4 � [RL] � [L]þ k�4 � [LRL]

(2.37)

d LR½ �/dt ¼ k1 � R½ � � L½ � � k�1 � LR½ � � k3 � LR½ � � L½ � þ k�3 � LRL½ � (2.38)

d[RL]/dt ¼ k2 � [R] � [L]� k�2 � [RL]� k4 � [LR] � [L]þ k�4 � [LRL] (2.39)

d[LRL]/dt¼k3 � [LR] � [L]�k�3 � [LRL]þk4 � [LR] � [L]�k�4 � [LRL] (2.40)

The more complex a reaction scheme becomes, the more and longer differential

equations have to be computed. Each reversible reaction corresponds to two

products of rate constant and component of the reactions. Note that the free ligand

L is involved in all four reactions, so that there are eight products in (2.37). There

are two reactions involving the free receptor R in reaction scheme (2.19), so that

there are four products in (2.36). Likewise, two pathways for the dissociation of the

complex LRL are reflected in four products in (2.40).

One important restriction must be considered: Reaction scheme (2.19) contains

a closed loop which corresponds to coupled equilibria calculated in (2.23).

This reduces the number of independent rate constants from 8 (4 reversible

reactions) to 7. Equation (2.23), written for rate constants instead of equilibrium

constants, translates into:
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k1 � k3 � k�2 � k�4 ¼ k2 � k4 � k�1 � k�3 (2.41)

Again (2.41) ensures consistency, just like (2.23). It may be interpreted as a rule

for circular reactions: The product of rate constants in one (clockwise) direction of

reaction scheme (2.19) must be the same as the product of rate constants in the other

(counterclockwise) direction. One of the rate constants in a closed loop therefore

can be calculated from the other ones.

2.5 Writing Differential Equations for Any Reaction Scheme

Writing differential equations for a complex reaction scheme may look compli-

cated, but it does not require much fantasy. First, one counts all complexes and free

ligands. Then one has to write one, and possibly a long one, differential equation for

the concentration change of each of these components. For reversible reactions in a

fixed volume in solution, these concentration changes can only be expected from

second or first order reactions. Each second order reaction has to be considered in

the concentration changes of all three components of the reaction. There may be

first order conformational changes which involve only two components (one for

each conformation) or first order decay which only involves one component,

provided the product is irrelevant and the decay is not reversible. Closed circles

in reaction schemes have to fulfill the criterion of (2.41), namely that the products

of all rate constants in one direction must be the same as the products of rate

constants in the other direction.

That is all. But when differential equations are written as part of a program code,

no typing error is allowed. It helps to use a “find” function in a program editor and

look for all the rate constants individually. Any rate constant involved in a bimo-

lecular reversible reaction must appear thrice. Whenever a given concentration

appears in the differential equation of this concentration, the algebraic sign in front

of the accompanying rate constant must be negative. For reversible reactions, the

number of products in each differential equation must be even. Those little controls

may help.

2.6 Analytical and Numerical Solutions

Only for the simplest cases, the sets of equations described above can be solved

analytically. But when an analytical solution is found, it is precise and reliable for

all feasible concentrations. Finding analytical solutions needs a lot of effort, but

calculating them can be done from one formula with simple spread sheets or pocket

calculators. Some of the most important analytical solutions are covered in Chap. 3.
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Numerical methods are different. They are well established, but they depend on

a computer and a program to run them with. The algorithms are based on

approximations. The results are the same within reasonable errors, but they are

not identical to analytical formulas. Figure 5.2 illustrates this with one example. All

calculations done by computers are limited by the precision of the stored variables.

When small differences of large numbers approach the precision of those large

numbers, they become unreliable. Octave and MATLAB typically issue warnings

when the internal precision is not sufficient. In general, whenever stochastic results

are computed with numerical methods, one should repeat the calculations with

other parameters (concentrations or rate constants). Use a computer, but keep

checking it and do not develop unconfined trust!
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