Chapter 5
Understanding Architectural Elements
from Requirements Traceability Networks

Inah Omoronyia, Guttorm Sindre, Stefan Biffl, and Tor Stalhane

Abstract The benefits of requirements traceability to understand architectural
representations are still hard to achieve. This is because architectural knowledge
usually remains implicit in the heads of the architects, except the architecture design
itself. The aim of this research is to make architectural knowledge more explicit
by mining homogenous and heterogeneous requirements traceability networks. This
chapter investigates such networks achieved by event-based traceability and call
graphs. Both traces are harvested during a software project. An evaluation study
suggests the potential of this approach. Traceability networks can be used in under-
standing some of the resulting architectural styles based on the real time state of
a software project. We also demonstrate the use of traceability networks to monitor
initial system decisions and identify bottlenecks in a software project.

5.1 Introduction

In spite of substantial research progress in the areas of requirements engineering
and software architectures, little attention has been paid to how to bridge the gap
between the two [1]. It is essential to know how to transition from requirements to
architecture and vice versa, and to understand the impact of architectural design on
existing and evolving software requirements. This research focuses on investigating
how requirement traceability approaches can be used to bridge this gap between
software requirements and architectural representations.

When software requirements evolve, appropriate traceability mechanisms can
provide an understanding and better management of the linking between require-
ments and associated artefacts during evolving project cycles [2]. Evolution of
software requirements suggests a similar evolution in architecture because changes
to software requirements normally imply updates to the different components
used to achieve the system. Such component updates can trigger a change in
structure of the system and the relationship of updated components with other
components of the system.

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures, 61
DOI 10.1007/978-3-642-21001-3_5, © Springer-Verlag Berlin Heidelberg 2011

62 I. Omoronyia et al.

Thus, the main research question is how software requirements evolution impacts
on the underlying architecture of the system. This question will be addressed by
investigating how traceability relations between software requirements and different
components in a system reveal its architectural implications. Turner et al. [3] des-
cribe a requirement feature as “a coherent and identifiable bundle of system func-
tionality that helps characterize the system from the user perspective.” We envisage
a scenario where decisions are previously taken on the desired architecture to be
used in implementing a specified feature in the system. We subsequently harvest
homogenous and heterogeneous requirements traceability networks. Such traceabi-
lity networks can also represent semantic graphs from which the actual architectural
representation of the system can be inferred. The aim then is to compare and validate
the desired architecture against the real-time inferred system architecture used
to implement a desired user feature.

In the remaining part of this chapter, Sect. 5.2 first provides the background on
requirements traceability and software architectures and discusses the architectural
information needs of different stakeholders. Section 5.3 presents the automated
requirements traceability mechanism that is used to realize our traceability
networks. A system architectural inference mechanism based on extracted require-
ments traceability networks is explained. Section 5.4 presents an evaluation of our
approach based on an implemented prototype. Section 5.5 presents related work
and subsequently our conclusion and further work in Sect. 5.6.

5.2 Requirements Traceability and Software Architectures

5.2.1 |Inferring Architectural Rationale from Traceability
Networks

Software architecture seeks to represent the structure of the system to be developed.
The structure is defined by components, their properties and inter-relationships
[4]. As pointed out by Bass et al. [5], a project’s software architecture acts as
a blueprint, serves as a vehicle for communication between stakeholders and con-
tains a manifest of earliest design decisions. An architecture is the first artifact that
can be analyzed to determine how well the quality attributes of an ongoing project
are being achieved. In line with other chapters in this book, architectural characteri-
sations range from the actual architecture of the system to its inferred or intended
architecture. Such architectures do not exist in isolation, rather they are influenced
by external factors such as the system requirement features and quality goals from
the customer and developing organization, task breakdown structure and developer
task assignment, lifecycle etc. Architectural rationale is thus a means to understand
design architectures by considering the external factors that has influenced their
realisation. Architectural rationale is realised as stakeholders endeavour to satisfy
their architectural information needs by asking questions that have architectural

5 Understanding Architectural Elements from Requirements Traceability Networks 63

implications (see example of questions in Sect. 5.2.2). Architectural rationale is
essential to access if a desired architectural plan for achieving a specified system’s
requirement is being realized in the tangible real-time representation of the system.

There are different viewpoints on traceability, but mostly aimed at addressing
the same research problem of enhancing conformance and understanding during
software development processes. Palmer [6] claims “traceability gives essential
assistance in understanding the relationships that exist within and across software
requirements, design and implementation.” Requirements traceability enables the
harmonization between the stakeholder’s requirements and the artifacts produced
along the software development process. Alternatively, requirements traceability is
aimed at identifying and utilizing relationships between system requirements and
other artefacts produced during a software project’s lifecycle [7]. Typically, such
artefacts include external documents, code segments, hardware components and
associated stakeholders. Traceability facilitates software understanding, account-
ability, and validation & verification processes. These benefits of traceability have
particularly been realized between explicit software artifacts, such as homogenous
relationships between instances of requirement and heterogeneous relationships
between requirements and code artefacts [8]. Relationships have varying degrees
of relevance depending on the stakeholder involved.

The benefits of requirements traceability to software architectural representations
are still little explored. This is because architectural knowledge which consists of
architecture design, design decisions, assumptions and context, usually remains
implicit in the minds of the architects, except the delivered architecture design itself [9].

Figure 5.1 represents our approach to investigating architectural representations
from harvested traceability links. This scenario assumes that at the early phase of

a) Early phase architectural expectations

Feature

~ “, e ——— 1.1llv phase architectural rationale

Architectural Design
Decisions

T

Dec 1
Dec 2

Dec n

b Infered realtime architecture based on traceability links

Feature Entities
Realtime traceability CQ.E) CDl) Architectural Design
Fl— | —_subgraph for F1 Stakeholders v Decisions
= — " Inference of Tec 1
e ucz 5 = 4 design rationale Dec 2
/\ —» .
Decn
R1 R2
/ \ Compaonenty
R21 R22

Fig. 5.1 Inferring architectural rationale from traceability links

64 I. Omoronyia et al.

the project, architectural decisions are made to implement specific features of the
system. Such features can further generate a set of use cases and more concrete
requirements that achieve the use case (Fig. 5.1a). Subsequently, different
stakeholders use a set of components to achieve a specified system feature as
shown in Fig. 5.1b. Thus, the main concern here is deriving some real time
architectural insight based on the trace links generated between system features
or use cases, components and stakeholders.

It is not straightforward to achieve architectural insight based on tangible
representation of the system and harvested traceability links since different
components of a system can be associated with multiple desired features of the
system and in most cases worked on by different stakeholders from varying pers-
pectives, to achieve different tasks or features. Hence, traces between system
components, features and stakeholders will result in a complex web from which
the core challenge is to infer an earlier guiding design rationale. The aim of this
research is to reveal architectural rationale from such a real-time traceability
viewpoint. This is achieved by mining homogenous and heterogeneous require-
ments traceability networks. In this chapter, we focus on a subset of possible
architectural insights classified either as explicit or implicit. Explicit insight can
be directly inferred from generated traceability networks, e.g., the architecture style
revealed by real-time links between project entities. Implicit architectural insight is
the additional information that can be assumed based on the interaction between
the different project entities, e.g., development model, feature and requirements
breakdown structure, decomposition and allocation of responsibility, assignment
to processes and threads, etc.

5.2.2 Stakeholder Needs for Architectural Information

Palmer’s [6] viewpoint of requirements traceability suggests that the relationships
between different project entities can allow architects to show compliance with the
requirements and help early identification of requirements not satisfied by the initial
architecture. Hence, some information needs must be satisfied by the traceability
links. It is expected that a stakeholder’s needs will vary depending on role (e.g.,
architect/programmer/tester) and task (e.g., initial development/maintenance). As
an example, consider software developer D who needs to make some changes to
a software product due to a requirements change, e.g., the customers have expressed
a wish for altering a certain use case. Unless the task is trivial, there are a number of
questions that D might ask, for example:

— Which code artefacts (e.g., classes) are involved in implementing the use case
and how do they affect the architecture of the system, e.g., a predefined archi-
tectural style or the system feature and requirements breakdown structure?

— If the class C is modified to fulfil the requirements change, what other use cases
or system features might also be affected by this modification? And what

5 Understanding Architectural Elements from Requirements Traceability Networks 65

adaptation is required in the initial architecture, (e.g., the assignment of class
components to processes and threads)?

— Who were the stakeholders involved in writing the use case, or the class C
and other classes that are relevant for the use case? How has the desired
change affected the decomposition and allocation of responsibility in the initial
software architecture?

We refer to these requests as architectural information needs, defined as
the traceability links between entity instances, system features or use cases,
stakeholders and code artefacts. Such information is essential to understand the
architecture. Ideally the traceability links required to answer such questions might
have been explicitly captured during the project, e.g., which developer contributes
to which artefacts, and which artefacts are related to each other? But this rarely
happens — at best such traceability information is incomplete and outdated because
many developers find it too time-consuming to update it.

In the remaining part of this research, we investigate traceability links harvested
automatically by event based tracing and the use of call graphs. We then evaluate
a number of architectural representations inferred from the harvested traceability
links.

5.3 Deriving Requirements Traceability Networks for Inferring
Architectural Representations

In this section, we present an automated method for harvesting a traceability
network based on the scenario below:

Scenario. Bill, Amy, and Ruben are members of a team developing an online
cinema ticketing system, TickX. There are two front-end use cases required:
Purchase Tickets and Browse Movies. Additional use cases for system admini-
strators are not discussed here. A number of code artefacts are being developed to
realise TickX, including Ticket.java, Customer.java, Account.java, Booking.java,
Movie.java, MovieCataglog.java, and Cinema.java.

While Amy and Bill have been collaborating to implement the Purchase Tickets
use case, Ruben has been responsible for the Browse Movies use case. The
following interaction trails were observed:

— While Amy was collaborating on Purchase Tickets she created and updated
the Account.java and Customer.java code artefacts. She viewed and updated
Booking.java a number of times. She also viewed MovieCatalog.java and
Cinema.java.

— In the initial phase of Bill’s collaboration on the Purchase Tickets use case,
he viewed Account.java and MovieCatalog.java. Then he created and updated
Ticket.java and Booking.java.

66 I. Omoronyia et al.

— Ruben’s implementation of the Browse Movies use case involved the creation
and further updating of MovieCatalog.java, Cinema.java, and Movie.java.
Ruben also viewed Ticket.java a number of times.

Traceability links can be homogenous, e.g., a code component being related to
another code component, or heterogeneous, e.g., a relationship between a developer
and code component, or a use case and component. The detailed interaction event
trails is as shown in Fig. 5.2. Any selected time-point corresponds to at least one
event associated with a use case, a developer, and a code artefact. For instance, at
time-point 1, a create event associated with Account.java was executed by Amy
while working on the Purchase Tickets use case. Similarly, time-point 7 has two
events: Ruben updated Cinema.java (absolute update delta 50 [magnitude of the
update based on character difference]) while working on Browse Movies, and Bill
viewed Account.java as he worked on Purchase Tickets.

In this scenario, the Purchase Tickets use case is associated with Bill, Amy and
a number of code artefacts. Also, MovieCatalog.java is associated with the three
developers as well as the two use cases. On the whole, within such a rather small
and seemingly uncomplicated scenario involving only two use cases, three
developers and eight code artefacts, 27 different traceability links can be identified.
To make sense of such number of dependencies, they must be ranked for relevance.
For instance, the relevance of traceability links between a use case and developer is
dependent on the number of interaction events generated over time by the developer
in achieving the use case. A relevance measure of trace links between two entities is
non-symmetric. This is because the relevance measure is firstly dependent on the
number of other entity instances a selected entity can be traced to, and secondly the
amount of interaction events generated as a result of each trace link.

Key:
+ represents create or view events
Numeric values represents absolute update delta for an update event

Amy DI | Crease C

Account java Al Customer java AL Twkerpva AT | Parchase Ticket T2
Bookng java A2 Movieva A% Browie Mavees T | B D2 | Update U
Comea ava Al MovieCatalog gva Al Kuben D3 | View v
Interaction Types
€ v € U U CcuUvYvV C U C UV CUVVCUUUV UV U
Al | * 300 150 *
A2 * N * * s 90
A3 50 4 10
A4 * M
AS ¢ 5 5
AB *+ 650 + * * &
Entitiss A7 * s *
T * 650 50 * 7 0 * s
T7”|* 300 150 +* o+ * 135 ¢+ + 30 *+ ¢+ 4+ g + 35 0|90
D1 | * 300 150 RS L » 60
D2 * * 115 * * N 90
0 oy O W B — it - Ml A
1 2 3 4 5 6 T B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 M 25
Time

Fig. 5.2 Monitored interaction trails used to achieve TickX across 25 time-points

5 Understanding Architectural Elements from Requirements Traceability Networks 67

This demonstrated scenario poses a number of questions. Firstly, what are the
possible automated methods for harvesting a traceability network? Secondly, how
can the system’s architectural representations be revealed by these networks? In
addressing the first question, this research investigates an event based mechanism
for retrieving interaction events for the subsequent generation of traceability
networks. This involves capturing navigation and change events that are generated
by the developers. The advantage of this approach is the opportunity to automati-
cally harvest real-time trace links. The event based approach also provides a basis
for inferring real-time architectural representations. Some ideas for such an
approach has been presented in earlier work [10]. In this section, we present an
event based linear mechanism to generate traceability links and rank their rele-
vance. Since event based approaches are sometimes prone to generating false
positives, we also use call graphs to validate the event based networks.

5.3.1 Event-Based Mechanism for Capturing Trace Links

In a previous paper [2], we proposed an automated event-based process for
harvesting requirement traceability links relating code artefacts and developers to
use cases. Trace links were formed by monitoring events initiated by a developer
working in the context of a use case on a code artefact. The relative importance, or
relevance, of a code artefact or developer to a selected use case was based on the
type and frequency of developer actions, e.g., create, edit or view; and on the
entity’s sphere of influence in the system, i.e., how many other entities they are
associated with .

This chapter explores how the harvested requirement traceability links can be
used to generate a complete traceability network for a software development
project. Furthermore, it is investigated how the relative importance of trace links
can be used to provide insight into the centrality of each developer, use case and
code artefact to the software project as a whole. Centrality is a structural attribute of
nodes within a network and provides insight into the importance, influence and
prominence of that particular node. Based on the centrality of entities in traceability
networks, we investigate architectural rationale that can be inferred.

The event based mechanism uses events generated within a development tool
and the sphere of influence of project entities to derive requirements trace networks.
Rather than monitoring the entire space of interactions that can occur, we focus on
a core set of event types that influence the changing state of a software project —
create, update and view. Associated with an ‘update’ is the update delta — the
absolute difference in the number of characters changed or added to the code
artefact before and after the event. A ‘view’ event indirectly affects the state of
artefacts, possibly enhancing the understanding of a developer in order to update
the same artefact or other artefact instances.

During collaboration different work contexts — associations between use case
(system features), developer and artefact entities — are formed. These work contexts

68 I. Omoronyia et al.

are constantly changing in response to events, and entities may participate in
several work contexts. Figure 5.3 shows example work contexts for Amy, Purchase
Tickets, and MovieCatalag.java. In Fig. 5.3a, Amy is the entity that forms the
perspective of the work context graph while the Purchase Tickets use case and the
classes MovieCatalog, Account, Customer, Booking and Cinema are all the entities
relevant to Amy’s work context.

Weights are assigned to each interaction event type as shown in Table 5.1. The
weights were derived from the study of CVS records in real development projects
[11], and are in line with related work by Fritz et al. [12] that emphasized the
importance of the creator of code artefacts. In addition, studies conducted by Zou
and Godfrey [2] suggested the need to distinguish between random and relevant
view events. Thus, viewing is weighted relatively lightly compared to creates and
updates (weighted by the size of the update in terms of the absolute number of
characters changed). Typically, changing one line of code is much less significant
compared to rewriting an entire module.

This research assumes that the size of an entity’s work context is proportional to
its relative influence in the collaboration space. A use case implemented by several
developers and artefacts is considered to hold more information about the state of
a project than a use case associated with only a small number of developers and
artefacts. This is captured by the concept of sphere of influence (SOI).

SOI is a general concept used to capture both geographic and semantic
groupings, and provides a well-defined boundary for interactions [13]. SOI
indicates the region over which an entity exacts some kind of relevance and is
defined by its work context. The SOI ratio is used to represent the relative influence
an entity has on the collaboration space. The SOI ratio of an entity is defined as the

‘Purchase
Tickets"

MovieCatalog.java

Fig. 5.3 Work context graphs

Cinema.java

Ticket.java

Booking.java

Booking.java

Table 5.1 Interaction type weightings

Interaction type View Update Create
Weighting factor 0.001 0.0001*A 0.01
A, absolute update delta

5 Understanding Architectural Elements from Requirements Traceability Networks 69

number of unique entity instances directly associated with it divided by the number
of unique entity instances in the whole collaboration space. For the motivating
example the SOI ratio of Amy is 6/9 (entities in Amy’s work context/total number
of entities — two use cases and seven classes).

The concepts of interaction events combined with SOI ratio forms the basis for
deriving trace networks with semantic insight on centrality of involved entity
instances. Figure 5.3 shows three directed graphs. In general, a graph G has a set
ofnodes £ = {e;, e5,---,¢,} andasetofarcs L = {[;, 5, ---, 1,,} which are ordered
pairs of distinct entities [= < ¢;, ¢; >. The arc < ¢;, e; > is directed from ¢; to e;.
Thus, < ¢;, e; > # < e}, ¢; >. In our usage, the graphs are three-partite since their
entities E can be partitioned into three subsets E.., E; and E, (use cases, developers
and code artefacts). All arcs connect entities in different subsets.

The weight attribute of each arc is specified by the accumulative linear combi-
nation of weights gained as a result of events associated with that arc and the
sphere of influence of the entity that forms the perspective of work context. More
formally, the cumulative weight x associated with an arc < e;, ¢; > in response to
an event is given by (5.1), where ¢ is the type of event (possible values shown in
table 1), s the SOI ratio of ¢;, and n the total number of interactions associated
with the arc < ¢;, ¢; >. Thus, the weight attributed for the arc < e;, ¢; > after n
interactions is based upon its previous value plus the value of the last interaction
multiplied by the SOI ratio of e;.

X(n)<eiej> = X(n—1)<ei,ej> + t(n)<ei,ej>s(n)ei 3.1

As a further illustration of how to use events generated while developing TickX
as shown in Fig. 5.2, time-point 8 represents a view event carried out by Bill while
working on the Purchase Tickets use case using MovieCatalog.java. Subsequent to
this, time-points 1, 2, 5 and 7 are other events carried out by Amy and Bill using
Account.java within the work context of Purchase Tickets. Thus, the SOI of
Purchase Tickets at time-point 8 is 0.67 (four artefacts and developers in the
Purchase Tickets work context divided by six artefacts and developers in total).
The weight of the arc tracing MovieCatalog.java to the work context of Purchase
Tickets at time-point 8 is 0.0007. The next event involving the use of
MovieCatalog.java within Purchase Tickets is represented in time-point 13, and
the weight gained as a result of this event is 0.0006 and the cumulative weight is
0.0013. By the end of the trail in time-point 25 the relation from MovieCatalog.
java to Purchase Tickets work context has obtained a cumulative weight value of
0.0069.

The total number of context graphs in a software project depends on the unique
number of use cases, code artefacts and developers in the project. A use case may be
related to a number of code artefacts and developers, and vice versa. This produces
a complex network combining the results of different work context graphs.
A typical example of such a network for TickX project is shown in Fig. 5.4.

70 I. Omoronyia et al.

Cigagna

Mgyie

Fig. 5.4 Traceability network for TickX

5.3.2 Capturing Trace Links Between Components
Via Call Graphs

The event-based approach is suitable for capturing heterogeneous links between
stakeholders, use cases/features and associated code components. From an archi-
tectural viewpoint, there is also need to capture direct links between different
components. Here, we investigate the use of call graphs to achieve homogenous
traceability between software components. Call graphs are directed graphs that
represent calling or message passing relationships between components of a sys-
tem. From a software engineering perspective, call graphs are either dynamically
generated (at execution time) or statically generated (at compile time). The core
focus of this work is on the use of static call graphs generated by message passing
between code components. Figure 5.5 is an example of a call graph for TickX.
Figure 5.5 shows that MovieCatalog is a central component through which other
components pass or receive messages.

On the whole, a requirements traceability network is a merge of homogenous
and heterogeneous traceability links. Thus, a requirements traceability network is
a graph of system components, use cases/desired system features and stakeholders
of the system. An example of such a traceability network is shown in Fig. 5.8.

5 Understanding Architectural Elements from Requirements Traceability Networks 71

Fig. 5.5 Graphical
representation of a call graph Account
between different TickX :
Cinema :
components Booking

MovieCatalog

Movie

Ticket
Customer

5.3.3 Centrality of Entities in Traceability Networks

In network analysis, centrality indices are normally used to convey the intuitive
feeling that in most networks some vertices or edges are more central than others
[14, 15]. A centrality index which suits the requirements traceability networks
definition is the Markov centrality, which can be applied to directed and weighted
graphs. To obtain the centrality of entities in this research, the weighted
requirements traceability network shown in Fig. 5.4 is viewed as a Markov chain.
White and Smyth [16] described a Markov chain as a single ‘token’ traversing
a graph in a stochastic manner for an infinitely long time, and the next node (state)
that the token moves to is a stochastic function of the properties of the current node.
They also interpreted the fraction of time (sojourn time) that the token spends at any
single node as being proportional to an estimate of the global importance or
centrality of the node relative to all other nodes in the graph. From the viewpoint
of this research, a Markov chain enables the characterisation of a token moving
from a developer to a selected use case as an indication of the relative importance of
the use case instance to the developer. Similarly, a token moving from a use case
instance to a code artefact indicates the importance of the artefact instance in
achieving the use case.

Centrality is calculated by deriving a transition matrix from the weighted
requirements traceability network, assuming that the likelihood of a token traversal
between two nodes is proportional to the weight associated with the arc linking the
nodes. The weights in a traceability network are then converted to transition
probability weights by normalising the weights on arcs associating entities with
a work context to one. Thus, transition probability is dependent on each arc weight
value and the total number of entities within a work context. Figure 5.6 gives the
transition matrix for TickX. The transition probability of a token from Ticket to
Browse Movies use case is 0.0339 while the reverse probability is 0.0044. Each of
the rows in the transition matrix sums to one. The algorithm and computational
processes for the derivation of transition matrix and the subsequent centrality of
entities was carried out using the Java network/graph framework (JUNG) [17].

Figure 5.8 shows a graph for TickX where the size of each entity is proportional
to its Markov centrality. This figure shows the relatively higher centrality that
MovieCatalog.java has achieved in the collaboration space.

72 I. Omoronyia et al.

Purchase Browse
Amy Bl Ruben ticket movies Movie MovieCatalog Booking Cinema Account Ticket Customer

Amy 0 0 o 0 3000 0 i 00353 00167 | 00023 | 0358 | © | nowmr
Bill 0 0 [05000 0 0 0017 0.2371 0 noel 023E] 0
Ruben 0 i [i 05000 | 01005 €315 [T et | 0 jeonr| o
Purchase ticket | 03284 01716 0 0 { 0 L0355 0.0993 | 00032 | 0.219 |0.07%] 00673
Browse movies | 0 0| 05000 i 0 00| 03281 0 [VVREE: S)
Movie 0 0 03000 0 0.5000 0 0 0 0 y 0 0
MovicCatalog | 00759 OUL74 | 04067 | 00933 | 04067 0 0 i 0 0 0
Booking 00822 04178 ¢ 03000 C 0 0 0 0 0 0
Ginema 00M0 0 04560 | DO440 | 04360 0 0 0 Q 0 0
Account 04638 Opt62| O D 3000 0 0 0 0 0 0 0
Ticket 0 0461|0033) 0466l | 00339 | © [0 0 0 0
Customer 0500 0 i 0 5000 s i 0 i 0 0 0

Fig. 5.6 Transition matrix for TickX requirements traceability network

5.3.4 Model Implementation

The implementation of a prototype envisages a scenario where the requirement
analysts can specify the use cases or features in a shared collaboration space. These
use cases can be updated or removed over the life time of the project and new ones
can be added. Developers are then able to select any use case they are interested in
implementing. Finally, the traceability model is achieved as the use case selected is
automatically traced to every update, create and view event that the developer
carried out on code artefacts while implementing that use case.

The requirements traceability approach in this chapter has been implemented as
a client server architecture, where the Eclipse IDE for each developer is a client and
the model processing logic and storage of event data is performed on the server. The
client server approach models a shared collaboration space. The client monitors
view, update and create events executed within Eclipse. When a network connec-
tion exists, event data are offloaded to the server. While there is no connection (or
a slow connection) the client will temporarily store event data locally and perform
local model processing logic to give the developer a partial view of current trace
links and their relative centrality — offline mode. The architecture is distributed
across client and server ends, and consists of four core layers: the model, event,
messaging and Rich Client Platform (RCP). The client end of each layer is plugged
into the Eclipse platform while the server end resides on an Apache Tomcat web
application server.

The model layer is the main event processing unit in the architecture. This layer
is responsible for the formation of entity work contexts and their related SOI ratios,
and also generates the centrality values for entities associated with monitored trace
links. The model layer also generates a call graph by parsing the abstract syntax tree
representing a java component in Eclipse IDE. The event layer is responsible for
capturing and archiving interaction event sequences generated within a software

5 Understanding Architectural Elements from Requirements Traceability Networks 73

project. The log.event component is the clearing centre and data warehouse of
all events generated by the project collaborators. The messaging layer carries out
asynchronous processing of request/response messages from the server. The offline.
emulator component emulates the server end functions of the model and event
layers while a developer is generating interaction events in the offline mode.
Finally, the RCP layer resides only on the client end, and provides the minimal
set of components required to build a rich client application in Eclipse.

Figure 5.7 shows a snapshot of an Eclipse view of the visualisation.rpc compo-
nent. System developers can open, activate and deactivate their use cases of interest
by using the popup menu labelled 7 in Fig. 5.7. All events generated by the
developer are traced to the work context of an activated use case. The RCP layer
is also responsible for generating visualisations of requirements traceability
networks of developers, artefacts and use cases. A system developer using the
button labelled 3 in Fig. 5.7 triggers the generation of the traceability network
shown in Fig. 5.8. The size of each node corresponds to its centrality in the
traceability network. A selected node in the network can be moved around within
the visual interface to enhance clarity of trace relations for increasingly complex
trace networks.

The workflow requires that each time a developer wants to carry out a coding
activity, they log in and activate an existing use case located in the central reposi-
tory or create a new one. For each client workstation, only one use case can be
active at a selected time, working on another use case requires that the developer
activates the new use case which automatically deactivates the previous one.
Similarly, the active code artefact is the current artefact being viewed, updated or
created. Switching to another artefact automatically deactivates the previous arte-
fact. This workflow enables cross cutting relations amongst artefacts, developers
and use cases since, over their lifetime, and as they are used to achieve different
aspects of a project, each can be associated with any number of other instances.

(1) 2 {3

3 [4)
| ry ' Y
= y
o= Outline J x = - X
: w Iﬁ" v 3 . 1. Uplead offline interaction events
{ [} ™
\ [| .
% v ’J o x @ m iy =) Switch offling/onling made
*Group#2 .) »
l . 3. Generate reguiremants traceability network
| Use Cases Description _-+1¥ & |
® Ppurchase Tickets TIkR ticket .. 4 Collaboration group attributes
Aavi raca Fo
Erowse Movies (en cace Pow - 5. Active group
g Delee
g New 6. Aclive use case
@ Activate 7. Pap up menu generated with a nght click
on selected use case
' 3 Deactivate
1
® Open..

Fig. 5.7 Snapshot of eclipse view of visualization components

74 I. Omoronyia et al.

Bri ies Purclg@'ickels

7Y I

Fig. 5.8 Trace graph for TickX

As events generated by the developer are traced to the work context of an active use
case and artefact on the server, the centrality value of each entity instance involved
in the traceability network is recalculated.

5.4 Preliminary Study: Inferring Architectural Representations
from Traceability Networks

In this section, we aim to provide possible avenues to addressing the questions
on architectural information needs discussed in Sect. 5.2.2. We achieve this by
discussing insights from the use of traceability networks to infer architectural
representations. The discussion is based on a repository of event based
requirements traceability networks and call graphs generated during a six weeks
study involving ten software engineering students. The students were in the third
year of their Masters/Honours programme. All participants had at least 2.5 years of
object-oriented development experience using Java. All were participating in
project developing ‘Gizmoball’ — an editor and simulator for a pinball table —
working in groups of three [11]. During the study, use cases and system features
were modelled and tagged with meaningful short form descriptions or acronyms
that were easy to understand by the collaborators. Furthermore, to minimize
intrusion and closely mimic real collaboration scenarios, use cases and system
features were defined by developers and subsequently used as a basis for tasks
assignment. At the end of the 6 weeks, structured interviews were conducted with

5 Understanding Architectural Elements from Requirements Traceability Networks 75

eight of the participants (the two remaining participants were unavoidably absent).
The interviews were personalised based on the use cases/system features and code
artefacts that the participant had worked on. All data were anonymized for analysis
and presentation. Feedback from participants suggested that the tool captured
between 60-90% of the interaction events carried out over the study period. The
remaining part of this section first presents how traceability networks are used to
provide insight on architectural styles, then how they help validate initial system
decision and identify potentially overloaded components, critical bottlenecks and
information centres with ensuing architectural implications.

5.4.1 Understanding Architectural Style

Our expectation is that layouts of architectural styles are unfolded and realised with
the accumulation of trace events generated by stakeholders. Thus, if traceability
networks harvested from events associated with the achievement of system features
and desired requirements is realised, then it is also possible to infer the architectural
style used to realize the specified feature or system requirement.

Insights were obtained from our initial study on the inference of architectural
styles from event based traceability networks. Figure 5.9 demonstrates a trace-
ability network for the feature ‘File Demo’ in Gizmoball (a feature requirement that
users should be able to load gizmos from file). The figure shows the different code
artefacts that the developer ‘Tony’ used to realize the desired feature and the trace

CRI- Information Centres

N-1

Applic m@'luw jaya
Gizm Jl.u].1\

i1 java
I.;Im Java

-
™ ’

el jaya

Fig. 5.9 Revealed architectural styles associated in the achievement of gizmoball feature — ‘File
Demo’

76 I. Omoronyia et al.

links between the artefacts. A visual arrangement and repositioning of the artefacts
in the traceability network reveals that a 2-tier architectural style is being used by
Tony to achieve ‘File Demo.” Furthermore, each of the tiers reveals a possible
blackboard approach. This example demonstrates how different architectural styles
can be combined to achieve a specified system feature.

It is important to note that we do not claim here that the discovery and combi-
nation of architectural styles is trivial. While some styles such as n-tier or batch
sequential are more easily recognised from visualisation of traceability networks,
other styles such as the blackboard requires more investigation. Also, call graphs in
non trivial cases does not provide the information needed to infer styles. An example
is in cases where communication between the clients of a blackboard and the
blackboard could be via data sharing, middleware, or network communication.
Secondly, the traceability network in Fig. 5.9 demonstrates the pivotal role dis-
played by the artefacts FileHandler and GameModel in realising the architectural
style associated with File Demo. The two artefacts are responsible for the linking
of the two different blackboard styles to reveal a 2-tier architectural style. This
becomes obvious due to our use of different node sizes based on centrality, thus
demonstrating the advantage of this visualization.. Furthermore, for every new link
amongst artefacts that is subsequently introduced by collaborators to the network,
the trace network reveals corresponding adaptation that is required in the initial
architectural rationale for the associated feature of the system.

This study also reveals that traceability networks for non-trivial projects can be
overwhelming with hundreds or thousands of components. The implied archi-
tectural style used to achieve ‘File Demo’ was revealed by a simple manual visual
rearrangement of existing nodes in the network. To give support for bigger projects,
further work is needed to focus on the automatic machine learning of architectural
styles based on a given traceability network.

5.4.2 Monitoring Initial System Decision and Identifying
Critical Pointers

One of the important lessons learned from the repository of event-based traceability
networks during the 6 weeks study, is related to information that can be derived
from an entity’s centrality measures. An entity’s centrality is useful in revealing
a number of latent properties in the trace relation between requirements, code
components and the underlying system/software architecture. For instance, a high
centrality measure for a developer may suggest that they are working with many
parts of the system. Such high centrality for developers can further suggest that the
components and system features they are working on are crucial to achieving the
system and hence are central to the development process.

The study showed that stakeholders built a perception of their expected centra-
lity measures for entities in the trace network. These expectations are envisaged

5 Understanding Architectural Elements from Requirements Traceability Networks 77

based on previous decisions made on achieving the system. Such expectations are
then used to monitor the state of the system. An example is the traceability network
shown in Fig. 5.10 and involving collaboration between Greg, Boris and Blair to
achieve Gizmoball. Two project stages were identified — ‘From Demo to Final’
(Translate game demo to final mode), and JUnit Tests (generate test cases for each
gizmo object). Forty five artefacts were identified as being used to achieve these
use cases. While the major responsibility of achieving ‘From Demo to Final' was
assigned to Boris, the responsibility for JUnit Tests was mainly assigned to Blair.
A snippet from Boris demonstrating insight he obtained while navigating the
traceability network generated as a result of their collaboration (Fig. 5.10) is
shown below:

Boris: .. .If we have done ‘JUnit Test” how come it only relates to Gizmo.java,
Square.java and GizmoModel java. . .? Because I know that it should be looking at
virtually all of the code. there is more work to be done in ‘JUnit Tests’

This feedback suggests that Boris was expecting JUnit Tests to have a higher
centrality in the network. He also expected the use case to be related to more code
artefacts. This is because they had decided to use test-driven development and as
such needed every code artefact to be assigned a test case. While they had agreed
and documented their decision on test driven development in their previous group
meeting, the traceability network of the current state of the project rather suggested
that there was still much work to be done to achieve their agreed objective.

Ti e T'@‘é B . PEP!

o @@:am@%ﬁ; 8-
M‘m_'m : L Ani mafi or@msfu ner 1 L r
Lnlma‘[l@fll‘ld-:l\g"c I \j!

Ani mati indow 6 4
ew@ame p_

Fig. 5.10 Requirements traceability network with 44 code artefacts

78 I. Omoronyia et al.

If most developers tend to be associated with a high and equal measure of
centrality, then it might imply a shared code ownership development model such
as extreme programming. In this case, the architectural design rationale associated
with extreme programming practices can then be assumed. This scenario is demon-
strated in the case where the centralities of Tony, Alex and Luke in relation to the
use case ‘Build Mode’ where closely similar. Transcripts from the interview session
confirmed that the three collaborators all worked together in an interchanging
pair fashion to realise the ‘Build Mode’ feature of Gizmoball.

The initial study also showed that the requirements traceability network helped
to reveal issues that developers would easily have overlooked. For instance, inter-
view transcripts from the collaboration between Luke, Alex and Tony to achieve
the Gizmoball project suggested that they used the graph to visualize where the
bigger challenges in the system were. The centrality of nodes in traceability
networks were also used by the group to get a grasp of which use case or system
feature had changed more considerably recently or over the lifetime of the project.
Finally, it can be expected that if a requirements use case or system feature has
a high centrality relative to other use cases, then this can indicate its importance to
the development process. On the other hand it might indicate poor architectural
design and use case definition/allocation practice -for instance, the use case has
not been broken down enough or the architecture has not been well segmented.
Figure 5.11 demonstrates an example of poor segmentation and allocation of com-
ponents to system features. The feature ‘User Interface’ clearly attained a higher
centrality measure relative to other system features. Further insight on the artefacts
associated with the identified system feature revealed that it was associated with
components necessary for realizing build mode (configuration of gizmos) and play
mode (running of gizmos), which are the two main interfaces through which a user
can interact with the gizmoball game. This suggests that the ‘User Interface’ feature
could more appropriately be further decomposed into two other system features.

Persisnncwandling

Fig.5.11 Requirements traceability network involving 92 code artefacts, five system features and
three developers

5 Understanding Architectural Elements from Requirements Traceability Networks 79
5.4.3 Lessons Learned and Limitations of Traceability Approach

An advantage of our approach is that requirements traceability links are automati-
cally harvested and constantly updated to reflect the current state of the project.
Furthermore, entities that are more likely to hold greater information about the
project are emphasized by their larger centrality values. The use of call graphs is
essential to harvesting homogenous traceability links between software com-
ponents. The focus of this work has been on the use of abstract syntax tree repre-
senting a software component to generate its static call graphs. Homogenous
traceability links were harvested for top-level static function callers.

A challenge is that the traceability network becomes increasingly cluttered as the
number of entities increases. Thus, while a selected entity from a traceability
network could be moved around within the implementation interface for visual
clarity, this was a difficult process for complex networks. To help overcome this
drawback, a Fisheye visualisation based on centrality has been implemented.
Fisheye view has been shown to be an efficient mechanism to enhance clarity for
complex visualisations with increasing number of nodes [18]. Another challenge
related to scalability is the performance overhead that arises with increasing volume
of captured developer interaction events. Finally, the use of interaction patterns to
make inference on system decision and identifying critical pointers is based only on
the small set of participants in the study. Thus, there is need for more empirical data
in subsequent studies.

An implied workflow constraint, based on the implementation of the traceability
model, is that systems analysts and developers explicitly need to be working within
the context of a selected system feature. This is achieved by activating the desired
features or use cases within the development tool. Insight obtained from the initial
study suggests that such workflow constraint can sometimes be difficult to achieve,
especially when developers have strict project schedules. Feedback from our study
shows that the explicit activation of a use case during development work is
sometimes not a primary concern of the participant, and he/she might forget to
formally carry out the use case activation processes within Eclipse IDE. Also
coding on a real project would not necessarily be for a specific use case, but
“utility” code needed by other modules such as generic data access or manipulation
routines.

5.5 Related Work

There are some methods and guidance available that help in the development and
tracing system requirements into an architecture satisfying those requirements. The
work presented by Grunbacher et al. [19, 20] on CBSP (Connector, Bus, System,
Property) focuses on reconciling requirements and system architectures. Griinbacher
et al.’s approach has been applied to the EasyWinWin requirements negotiation

80 I. Omoronyia et al.

technique and the C2 architectural models. The approach taken in our work differs
from Griinbacher et al. as our focus is rather on the use of requirements trace-
ability approach to help collaborating developers understand the architectural
implications of each action they perform.

A closely related work is that presented on architectural design recovery by
Jakobac et al. [21-23]. The main motivation for their work is based on the frequent
deviation of developers from the original architecture causing architectural erosion —
a phenomenon in which the initial architecture of an application is (arbitrarily)
modified to the point where its key properties no longer hold. The approach assumes
that a given system’s implementation is available, while the architecturally relevant
information either does not exist, is incomplete, or is unreliable. Jakobac et al. then
used source code analysis techniques for architectural recovery from the systems
implementation. Finally, architectural styles where then leveraged to identify
and reconcile any mismatch between existing and recovered architectural models.
A distinction of our work from Jakobac et al. approach is the associations of
requirement use cases or desired system features to the subsequent tangible archi-
tectural style used to realize the feature or use case. Furthermore, our traceability
links are harvested real time as the system is being realized. Harvested traces are
subsequently used to provide developers with information about the revealed
architecture based on the work that is currently carried out. We provide pointers
to potential bottlenecks and information centres that exist as a result of an initial
architectural rationale.

There are a number of other reverse engineering approaches by which the
architectures of software systems can be recovered. For instance, the IBIS and
Compendium originating from the work of Werner and Rittel [24], presents the
capability to facilitate the management of architectural arguments. Mendonca and
Kramer [25] presented an exploratory reverse engineering approach called X-ray to
aid programmers in recovering architectural runtime information from a distributed
system’s existing software artifacts. Also, Guo et al. [26] used static analysis to
recover software architectures. Guo et al’s. approach extracted software architec-
ture based on program slicing and parameter analysis and dependencies between
the objects based on relation partition algebra. However, these approaches do not
directly focus on how such extracted architectures are related to stakeholders’
requirements of the system. Again, there are different approaches to harvesting
traceability networks. This research has focused on an event based approach for
automated harvesting of heterogeneous relations, and call graph to retrieve homo-
genous trace links between components achieving the system. Other automated
mechanisms for harvesting traceability networks include the use of information
retrieval mechanisms and scenario driven approach. Traceability networks gene-
rated from information retrieval techniques are based on the similarity of terms
used in expressing requirements and design artefacts [27-29]. The scenario-driven
approach is accomplished by observing the runtime behaviour of test scenarios.
Observed behaviour is then translated into a graph structure to indicate common-
alities among entities associated with the behaviour [30].

5 Understanding Architectural Elements from Requirements Traceability Networks 81

Mader et al. [24] proposed an approach for the automated update of existing
traceability relations during the evolution and refinement of UML analysis and
design models. The approach observes elementary changes applied to UML
models, recognises the broader development activities and triggers the automated
update of impacted traceability relations. The elementary change events on model
elements include add, delete and modify. The broader development activity is also
recognised using a set of rules which helps in associating an elementary change as
constituent parts of intentional development activity. The key similarity between
the approach in this research and Mader et al.’s approach is the focus on
maintaining up-to-date post-requirement traceability relations. In addition, our
approach provides a perception of the centrality of traced entities.

5.6 Conclusion and Further Work

This chapter was motivated by the potential of requirements traceability to under-
standing architectural representations, responding to some typical architectural
information needs during a software project lifecycle. It has presented a technique
for the automatic harvesting of traceability networks for inferring architectural
rationale. Our technique is based on the use of event-based mechanisms to capture
heterogeneous trace links, while call graphs are used to generate homogenous
traceability links between components. The heterogeneous and homogenous trace
links were then combined to form a unified traceability network of system
components, use cases/desired system features and stakeholders (developers) of
the system. The advantage of our approach is that the relative potential and
architectural implications of each node in the traceability network can then be
determined.

An evaluation using a prototype tool implementation has demonstrated the
usefulness of our approach. Using event data captured from a student-based project
carried out over 6 weeks, we demonstrated how traceability networks are used to
provide insight on architectural styles. We also detail how the participants in our
study used the traceability tool to understand the architectural implications of the
different interaction events carried out during their project. Such architectural
implications included impact of executed events on initial system decision and
also identifying bottlenecks and information centres in the software project.

The focus of further work is twofold. First, we aim to investigate the accuracy of
centrality values. This involves understanding the effect various tasks (e.g. mainte-
nance, debugging, refactoring or simply forward engineering) on centrality of
entities. Second, for non-trivial projects, traceability networks can be overwhelm-
ingly complex. Thus, we aim to focus on enhancing the process of inferring
architectural rationale, offering a machine learning approach to supplement manual
analysis. We also plan to find ways to gain better insight from the complex
traceability networks resulting from non-trivial projects.

82

I. Omoronyia et al.

References

1.

2.

10.

11.

13.

14.

16.

17.
18.

19.

20.

21.

22.

23.

24.

Galster M, Eberlein A, Moussavi M (2006) Transition from requirements to architecture:
a review and future perspective

Omoronyia I et al (2009) Use case to source code traceability: the developer navigation view
point

. Turner CR, Fuggetta A, Lavazza L, Wolf AL (1999) A conceptual basis for feature engineer-

ing. J Syst Softw 49(1):3-15

. Eden AH, Kazman R (2003) Architecture, design, implementation. ICSE, Portland
. Bass L, Clements P, Kazman R (2003) Software architecture in practice, 2nd edn. Addison

Wesley, Reading

. Palmer JD (1997) Traceability. In: Thayer RH, Dorfman M (eds) Software requirements

engineering. IEEE Computer Society Press, Los Alamitos, pp 364-374

. Ramesh B, Jarke M (2001) Toward reference models for requirements traceability. IEEE

Trans Software Eng 27(1):58-93

. Egyed A (2003) A scenario-driven approach to trace dependency analysis. IEEE Trans

Software Eng 29(2):116-132

. Kruchten P, Lago P, van Vliet H (2006) Building up and reasoning about architectural

knowledge. In: Hofmeister C (ed) QoSA-Quality of software architecture. Springer, Vasteras,
pp 43-58

Omoronyia I, Ferguson J, Roper M, Wood M (2009) Using developer activity data to enhance
awareness during collaborative software development. Comput Supported Coop Work 18(5-6
December 2009):509-558

Omoronyia I (2008) Enhancing awareness during distributed software development. Ph.D.
Dissertation, University of Strathclyde, Glasgow, Scotland

. Fritz T, Murphy GC, Hill E (2007) “Does a programmer’s activity indicate knowledge of

code?” in ESEC/SIGSOFT FSE 341-350

Gutwin C, Greenberg S, Roseman M (1996) Workspace awareness in real-time distributed
groupware: framework, widgets, and evaluation. In: BCS HCI, London, UK, pp 281-298
Brandes U, Erlebach T (2007) Network analysis -methodological foundations — introduction,
ser. Lecture notes in computer science. vol 3418. Springer-Verlag, Berlin (2005)

. Latora V, Marchiori M (2007) A measure of centrality based on network efficiency. New J

Phys 9:188

White S, Smyth P (2003) Algorithms for estimating relative importance in networks. In:
Getoor L, Senator TE, Domingos P, Faloutsos C (eds) KDD. ACM, Washington, pp 266-275
Java universal network/graph framework. [Online] Available: http://jung.sourceforge.net
Hornbaek K, Hertzum M (2007) Untangling the usability of fisheye menus. Acm Transactions
On Computer-Human Interaction 14: 2

Griinbacher P, Egyed A, Medvidovic N (2001) Reconciling software requirements and
architectures: the CBSP approach. Fifth IEEE international symposium on requirements
engineering (RE’01)

Griinbacher P, Egyed A, Medvidovic N (2000) Dimensions of concerns in requirements
negotiation and architecture modelling

Jakobac V, Medvidovic N, Egyed A (2005) Separating architectural concerns to ease program
understanding. SIGSOFT Softw Eng Notes 30(4):1

Jakobac V, Egyed A, Medvidovic N (2004) ARTISAn: an approach and tool for improving
software system understanding via interactive, tailorable source code analysis, TR USC-CSE-
2004-513. USC, USA

Medvidovic N, Egyed A, Gruenbacher P (2003) Stemming architectural erosion by coupling
architectural discovery and recovery

Mader P, Gotel O, Philippow I (2008) Enabling automated traceability maintenance by
recognizing development activities applied to models., pp 49-58

http://jung.sourceforge.net

25.

26.

27.

28.

29.

30.

Understanding Architectural Elements from Requirements Traceability Networks 83

Mendong¢a N, Kramer J (2001) An approach for recovering distributed system architectures.
Automated Softw Eng 8(3—4):311-354

Guo J, Liao Y, Pamula R (2006) Static analysis based software architecture recovery,
computational science and its applications — ICCSA 2006

Antoniol G et al (2002) Recovering traceability links between code and documentation. Softw
Eng IEEE Trans 28(10):970-983

Oliveto R (2008) Traceability management meets information retrieval methods: strengths
and limitations. In: Proceedings of the 2008 12th European conference on software mainte-
nance and reengineering. IEEE Computer Society, Athens, Greece

Lormans M, van Deursen A (2005) Reconstructing requirements coverage views from design
and test using traceability recovery via LSI. In: Proceedings of the 3rd international workshop
on traceability in emerging forms of software engineering, ACM, Long Beach

Egyed A (2006) Tailoring software traceability to value-based needs. In: Stefan Biffl AA,
Boehm B, Erdogmus H, Griinbacher P (eds) Value-based software engineering, Egyed A.,
Springer-Verlag, pp 287-308

2 Springer
http://www.springer.com/978-3-642-21000-6

Relating Software Requirements and &rchitectures
Avgeriou, P.; Grundy, |.; Hall, J.G.; Lago, P.; Mistrik, .
(Eds.)

2011, X0, 387 p., Hardcowver

ISBEN: 978-3-642-21000-6

	Chapter 5: Understanding Architectural Elements from Requirements Traceability Networks
	5.1 Introduction
	5.2 Requirements Traceability and Software Architectures
	5.2.1 Inferring Architectural Rationale from Traceability Networks
	5.2.2 Stakeholder Needs for Architectural Information

	5.3 Deriving Requirements Traceability Networks for Inferring Architectural Representations
	5.3.1 Event-Based Mechanism for Capturing Trace Links
	5.3.2 Capturing Trace Links Between Components Via Call Graphs
	5.3.3 Centrality of Entities in Traceability Networks
	5.3.4 Model Implementation

	5.4 Preliminary Study: Inferring Architectural Representations from Traceability Networks
	5.4.1 Understanding Architectural Style
	5.4.2 Monitoring Initial System Decision and Identifying Critical Pointers
	5.4.3 Lessons Learned and Limitations of Traceability Approach

	5.5 Related Work
	5.6 Conclusion and Further Work
	References

