
Chapter 5

Understanding Architectural Elements

from Requirements Traceability Networks

Inah Omoronyia, Guttorm Sindre, Stefan Biffl, and Tor Stålhane

Abstract The benefits of requirements traceability to understand architectural

representations are still hard to achieve. This is because architectural knowledge

usually remains implicit in the heads of the architects, except the architecture design

itself. The aim of this research is to make architectural knowledge more explicit

by mining homogenous and heterogeneous requirements traceability networks. This

chapter investigates such networks achieved by event-based traceability and call

graphs. Both traces are harvested during a software project. An evaluation study

suggests the potential of this approach. Traceability networks can be used in under-

standing some of the resulting architectural styles based on the real time state of

a software project. We also demonstrate the use of traceability networks to monitor

initial system decisions and identify bottlenecks in a software project.

5.1 Introduction

In spite of substantial research progress in the areas of requirements engineering

and software architectures, little attention has been paid to how to bridge the gap

between the two [1]. It is essential to know how to transition from requirements to

architecture and vice versa, and to understand the impact of architectural design on

existing and evolving software requirements. This research focuses on investigating

how requirement traceability approaches can be used to bridge this gap between

software requirements and architectural representations.

When software requirements evolve, appropriate traceability mechanisms can

provide an understanding and better management of the linking between require-

ments and associated artefacts during evolving project cycles [2]. Evolution of

software requirements suggests a similar evolution in architecture because changes

to software requirements normally imply updates to the different components

used to achieve the system. Such component updates can trigger a change in

structure of the system and the relationship of updated components with other

components of the system.

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_5, # Springer-Verlag Berlin Heidelberg 2011

61

Thus, the main research question is how software requirements evolution impacts

on the underlying architecture of the system. This question will be addressed by

investigating how traceability relations between software requirements and different

components in a system reveal its architectural implications. Turner et al. [3] des-

cribe a requirement feature as “a coherent and identifiable bundle of system func-

tionality that helps characterize the system from the user perspective.” We envisage

a scenario where decisions are previously taken on the desired architecture to be

used in implementing a specified feature in the system. We subsequently harvest

homogenous and heterogeneous requirements traceability networks. Such traceabi-

lity networks can also represent semantic graphs from which the actual architectural

representation of the system can be inferred. The aim then is to compare and validate

the desired architecture against the real-time inferred system architecture used

to implement a desired user feature.

In the remaining part of this chapter, Sect. 5.2 first provides the background on

requirements traceability and software architectures and discusses the architectural

information needs of different stakeholders. Section 5.3 presents the automated

requirements traceability mechanism that is used to realize our traceability

networks. A system architectural inference mechanism based on extracted require-

ments traceability networks is explained. Section 5.4 presents an evaluation of our

approach based on an implemented prototype. Section 5.5 presents related work

and subsequently our conclusion and further work in Sect. 5.6.

5.2 Requirements Traceability and Software Architectures

5.2.1 Inferring Architectural Rationale from Traceability
Networks

Software architecture seeks to represent the structure of the system to be developed.

The structure is defined by components, their properties and inter-relationships

[4]. As pointed out by Bass et al. [5], a project’s software architecture acts as

a blueprint, serves as a vehicle for communication between stakeholders and con-

tains a manifest of earliest design decisions. An architecture is the first artifact that

can be analyzed to determine how well the quality attributes of an ongoing project

are being achieved. In line with other chapters in this book, architectural characteri-

sations range from the actual architecture of the system to its inferred or intended

architecture. Such architectures do not exist in isolation, rather they are influenced

by external factors such as the system requirement features and quality goals from

the customer and developing organization, task breakdown structure and developer

task assignment, lifecycle etc. Architectural rationale is thus a means to understand

design architectures by considering the external factors that has influenced their

realisation. Architectural rationale is realised as stakeholders endeavour to satisfy

their architectural information needs by asking questions that have architectural

62 I. Omoronyia et al.

implications (see example of questions in Sect. 5.2.2). Architectural rationale is

essential to access if a desired architectural plan for achieving a specified system’s

requirement is being realized in the tangible real-time representation of the system.

There are different viewpoints on traceability, but mostly aimed at addressing

the same research problem of enhancing conformance and understanding during

software development processes. Palmer [6] claims “traceability gives essential

assistance in understanding the relationships that exist within and across software

requirements, design and implementation.” Requirements traceability enables the

harmonization between the stakeholder’s requirements and the artifacts produced

along the software development process. Alternatively, requirements traceability is

aimed at identifying and utilizing relationships between system requirements and

other artefacts produced during a software project’s lifecycle [7]. Typically, such

artefacts include external documents, code segments, hardware components and

associated stakeholders. Traceability facilitates software understanding, account-

ability, and validation & verification processes. These benefits of traceability have

particularly been realized between explicit software artifacts, such as homogenous

relationships between instances of requirement and heterogeneous relationships

between requirements and code artefacts [8]. Relationships have varying degrees

of relevance depending on the stakeholder involved.

The benefits of requirements traceability to software architectural representations

are still little explored. This is because architectural knowledge which consists of

architecture design, design decisions, assumptions and context, usually remains

implicit in theminds of the architects, except the delivered architecture design itself [9].

Figure 5.1 represents our approach to investigating architectural representations

from harvested traceability links. This scenario assumes that at the early phase of

Fig. 5.1 Inferring architectural rationale from traceability links

5 Understanding Architectural Elements from Requirements Traceability Networks 63

the project, architectural decisions are made to implement specific features of the

system. Such features can further generate a set of use cases and more concrete

requirements that achieve the use case (Fig. 5.1a). Subsequently, different

stakeholders use a set of components to achieve a specified system feature as

shown in Fig. 5.1b. Thus, the main concern here is deriving some real time

architectural insight based on the trace links generated between system features

or use cases, components and stakeholders.

It is not straightforward to achieve architectural insight based on tangible

representation of the system and harvested traceability links since different

components of a system can be associated with multiple desired features of the

system and in most cases worked on by different stakeholders from varying pers-

pectives, to achieve different tasks or features. Hence, traces between system

components, features and stakeholders will result in a complex web from which

the core challenge is to infer an earlier guiding design rationale. The aim of this

research is to reveal architectural rationale from such a real-time traceability

viewpoint. This is achieved by mining homogenous and heterogeneous require-

ments traceability networks. In this chapter, we focus on a subset of possible

architectural insights classified either as explicit or implicit. Explicit insight can

be directly inferred from generated traceability networks, e.g., the architecture style

revealed by real-time links between project entities. Implicit architectural insight is

the additional information that can be assumed based on the interaction between

the different project entities, e.g., development model, feature and requirements

breakdown structure, decomposition and allocation of responsibility, assignment

to processes and threads, etc.

5.2.2 Stakeholder Needs for Architectural Information

Palmer’s [6] viewpoint of requirements traceability suggests that the relationships

between different project entities can allow architects to show compliance with the

requirements and help early identification of requirements not satisfied by the initial

architecture. Hence, some information needs must be satisfied by the traceability

links. It is expected that a stakeholder’s needs will vary depending on role (e.g.,

architect/programmer/tester) and task (e.g., initial development/maintenance). As

an example, consider software developer D who needs to make some changes to

a software product due to a requirements change, e.g., the customers have expressed

a wish for altering a certain use case. Unless the task is trivial, there are a number of

questions that D might ask, for example:

– Which code artefacts (e.g., classes) are involved in implementing the use case

and how do they affect the architecture of the system, e.g., a predefined archi-

tectural style or the system feature and requirements breakdown structure?

– If the class C is modified to fulfil the requirements change, what other use cases

or system features might also be affected by this modification? And what

64 I. Omoronyia et al.

adaptation is required in the initial architecture, (e.g., the assignment of class

components to processes and threads)?

– Who were the stakeholders involved in writing the use case, or the class C

and other classes that are relevant for the use case? How has the desired

change affected the decomposition and allocation of responsibility in the initial

software architecture?

We refer to these requests as architectural information needs, defined as

the traceability links between entity instances, system features or use cases,

stakeholders and code artefacts. Such information is essential to understand the

architecture. Ideally the traceability links required to answer such questions might

have been explicitly captured during the project, e.g., which developer contributes

to which artefacts, and which artefacts are related to each other? But this rarely

happens – at best such traceability information is incomplete and outdated because

many developers find it too time-consuming to update it.

In the remaining part of this research, we investigate traceability links harvested

automatically by event based tracing and the use of call graphs. We then evaluate

a number of architectural representations inferred from the harvested traceability

links.

5.3 Deriving Requirements Traceability Networks for Inferring

Architectural Representations

In this section, we present an automated method for harvesting a traceability

network based on the scenario below:

Scenario. Bill, Amy, and Ruben are members of a team developing an online

cinema ticketing system, TickX. There are two front-end use cases required:

Purchase Tickets and Browse Movies. Additional use cases for system admini-

strators are not discussed here. A number of code artefacts are being developed to

realise TickX, including Ticket.java, Customer.java, Account.java, Booking.java,

Movie.java, MovieCataglog.java, and Cinema.java.

While Amy and Bill have been collaborating to implement the Purchase Tickets

use case, Ruben has been responsible for the Browse Movies use case. The

following interaction trails were observed:

– While Amy was collaborating on Purchase Tickets she created and updated

the Account.java and Customer.java code artefacts. She viewed and updated

Booking.java a number of times. She also viewed MovieCatalog.java and

Cinema.java.

– In the initial phase of Bill’s collaboration on the Purchase Tickets use case,

he viewed Account.java and MovieCatalog.java. Then he created and updated

Ticket.java and Booking.java.

5 Understanding Architectural Elements from Requirements Traceability Networks 65

– Ruben’s implementation of the Browse Movies use case involved the creation

and further updating of MovieCatalog.java, Cinema.java, and Movie.java.

Ruben also viewed Ticket.java a number of times.

Traceability links can be homogenous, e.g., a code component being related to

another code component, or heterogeneous, e.g., a relationship between a developer

and code component, or a use case and component. The detailed interaction event

trails is as shown in Fig. 5.2. Any selected time-point corresponds to at least one

event associated with a use case, a developer, and a code artefact. For instance, at

time-point 1, a create event associated with Account.java was executed by Amy

while working on the Purchase Tickets use case. Similarly, time-point 7 has two

events: Ruben updated Cinema.java (absolute update delta 50 [magnitude of the

update based on character difference]) while working on Browse Movies, and Bill

viewed Account.java as he worked on Purchase Tickets.

In this scenario, the Purchase Tickets use case is associated with Bill, Amy and

a number of code artefacts. Also, MovieCatalog.java is associated with the three

developers as well as the two use cases. On the whole, within such a rather small

and seemingly uncomplicated scenario involving only two use cases, three

developers and eight code artefacts, 27 different traceability links can be identified.

To make sense of such number of dependencies, they must be ranked for relevance.

For instance, the relevance of traceability links between a use case and developer is

dependent on the number of interaction events generated over time by the developer

in achieving the use case. A relevance measure of trace links between two entities is

non-symmetric. This is because the relevance measure is firstly dependent on the

number of other entity instances a selected entity can be traced to, and secondly the

amount of interaction events generated as a result of each trace link.

Fig. 5.2 Monitored interaction trails used to achieve TickX across 25 time-points

66 I. Omoronyia et al.

This demonstrated scenario poses a number of questions. Firstly, what are the

possible automated methods for harvesting a traceability network? Secondly, how

can the system’s architectural representations be revealed by these networks? In

addressing the first question, this research investigates an event based mechanism

for retrieving interaction events for the subsequent generation of traceability

networks. This involves capturing navigation and change events that are generated

by the developers. The advantage of this approach is the opportunity to automati-

cally harvest real-time trace links. The event based approach also provides a basis

for inferring real-time architectural representations. Some ideas for such an

approach has been presented in earlier work [10]. In this section, we present an

event based linear mechanism to generate traceability links and rank their rele-

vance. Since event based approaches are sometimes prone to generating false

positives, we also use call graphs to validate the event based networks.

5.3.1 Event-Based Mechanism for Capturing Trace Links

In a previous paper [2], we proposed an automated event-based process for

harvesting requirement traceability links relating code artefacts and developers to

use cases. Trace links were formed by monitoring events initiated by a developer

working in the context of a use case on a code artefact. The relative importance, or

relevance, of a code artefact or developer to a selected use case was based on the

type and frequency of developer actions, e.g., create, edit or view; and on the

entity’s sphere of influence in the system, i.e., how many other entities they are

associated with .

This chapter explores how the harvested requirement traceability links can be

used to generate a complete traceability network for a software development

project. Furthermore, it is investigated how the relative importance of trace links

can be used to provide insight into the centrality of each developer, use case and

code artefact to the software project as a whole. Centrality is a structural attribute of

nodes within a network and provides insight into the importance, influence and

prominence of that particular node. Based on the centrality of entities in traceability

networks, we investigate architectural rationale that can be inferred.

The event based mechanism uses events generated within a development tool

and the sphere of influence of project entities to derive requirements trace networks.

Rather than monitoring the entire space of interactions that can occur, we focus on

a core set of event types that influence the changing state of a software project –

create, update and view. Associated with an ‘update’ is the update delta – the

absolute difference in the number of characters changed or added to the code

artefact before and after the event. A ‘view’ event indirectly affects the state of

artefacts, possibly enhancing the understanding of a developer in order to update

the same artefact or other artefact instances.

During collaboration different work contexts – associations between use case

(system features), developer and artefact entities – are formed. These work contexts

5 Understanding Architectural Elements from Requirements Traceability Networks 67

are constantly changing in response to events, and entities may participate in

several work contexts. Figure 5.3 shows example work contexts for Amy, Purchase

Tickets, and MovieCatalag.java. In Fig. 5.3a, Amy is the entity that forms the

perspective of the work context graph while the Purchase Tickets use case and the

classes MovieCatalog, Account, Customer, Booking and Cinema are all the entities

relevant to Amy’s work context.

Weights are assigned to each interaction event type as shown in Table 5.1. The

weights were derived from the study of CVS records in real development projects

[11], and are in line with related work by Fritz et al. [12] that emphasized the

importance of the creator of code artefacts. In addition, studies conducted by Zou

and Godfrey [2] suggested the need to distinguish between random and relevant

view events. Thus, viewing is weighted relatively lightly compared to creates and

updates (weighted by the size of the update in terms of the absolute number of

characters changed). Typically, changing one line of code is much less significant

compared to rewriting an entire module.

This research assumes that the size of an entity’s work context is proportional to

its relative influence in the collaboration space. A use case implemented by several

developers and artefacts is considered to hold more information about the state of

a project than a use case associated with only a small number of developers and

artefacts. This is captured by the concept of sphere of influence (SOI).

SOI is a general concept used to capture both geographic and semantic

groupings, and provides a well-defined boundary for interactions [13]. SOI

indicates the region over which an entity exacts some kind of relevance and is

defined by its work context. The SOI ratio is used to represent the relative influence
an entity has on the collaboration space. The SOI ratio of an entity is defined as the

‘Purchase
Tickets’

‘Purchase
Tickets’

‘Purchase
Tickets’

Ticket.java

Cinema.java

Booking.java

Customer.java

Account.java

‘Browse Movies’

Amy

MovieCatalog.java

Account.java

Customer.java

Booking.java

Cinema.java

Bill

Bill

Ruben

Amy

Amy

MovieCatalog.java

MovieCatalog.java

Fig. 5.3 Work context graphs

Table 5.1 Interaction type weightings

Interaction type View Update Create

Weighting factor 0.001 0.0001*D 0.01

D, absolute update delta

68 I. Omoronyia et al.

number of unique entity instances directly associated with it divided by the number

of unique entity instances in the whole collaboration space. For the motivating

example the SOI ratio of Amy is 6/9 (entities in Amy’s work context/total number

of entities – two use cases and seven classes).

The concepts of interaction events combined with SOI ratio forms the basis for

deriving trace networks with semantic insight on centrality of involved entity

instances. Figure 5.3 shows three directed graphs. In general, a graph G has a set

of nodes E ¼ {e1, e2, · · ·, en} and a set of arcs L ¼ {l1, l2, · · ·, lm} which are ordered
pairs of distinct entities lk ¼ < ei, ej >. The arc < ei, ej > is directed from ei to ej.
Thus, < ei, ej > 6¼ < ej, ei >. In our usage, the graphs are three-partite since their

entities E can be partitioned into three subsets Ec, Ed and Ea (use cases, developers

and code artefacts). All arcs connect entities in different subsets.

The weight attribute of each arc is specified by the accumulative linear combi-

nation of weights gained as a result of events associated with that arc and the

sphere of influence of the entity that forms the perspective of work context. More

formally, the cumulative weight x associated with an arc < ei, ej > in response to

an event is given by (5.1), where t is the type of event (possible values shown in

table 1), s the SOI ratio of ei, and n the total number of interactions associated

with the arc < ei, ej >. Thus, the weight attributed for the arc < ei, ej > after n
interactions is based upon its previous value plus the value of the last interaction

multiplied by the SOI ratio of ei.

xðnÞ<ei;ej> ¼ xðn�1Þ<ei;ej> þ tðnÞ<ei;ej>sðnÞei (5.1)

As a further illustration of how to use events generated while developing TickX

as shown in Fig. 5.2, time-point 8 represents a view event carried out by Bill while

working on the Purchase Tickets use case using MovieCatalog.java. Subsequent to

this, time-points 1, 2, 5 and 7 are other events carried out by Amy and Bill using

Account.java within the work context of Purchase Tickets. Thus, the SOI of

Purchase Tickets at time-point 8 is 0.67 (four artefacts and developers in the

Purchase Tickets work context divided by six artefacts and developers in total).

The weight of the arc tracing MovieCatalog.java to the work context of Purchase

Tickets at time-point 8 is 0.0007. The next event involving the use of

MovieCatalog.java within Purchase Tickets is represented in time-point 13, and

the weight gained as a result of this event is 0.0006 and the cumulative weight is

0.0013. By the end of the trail in time-point 25 the relation from MovieCatalog.

java to Purchase Tickets work context has obtained a cumulative weight value of

0.0069.

The total number of context graphs in a software project depends on the unique

number of use cases, code artefacts and developers in the project. A use case may be

related to a number of code artefacts and developers, and vice versa. This produces

a complex network combining the results of different work context graphs.

A typical example of such a network for TickX project is shown in Fig. 5.4.

5 Understanding Architectural Elements from Requirements Traceability Networks 69

5.3.2 Capturing Trace Links Between Components
Via Call Graphs

The event-based approach is suitable for capturing heterogeneous links between

stakeholders, use cases/features and associated code components. From an archi-

tectural viewpoint, there is also need to capture direct links between different

components. Here, we investigate the use of call graphs to achieve homogenous

traceability between software components. Call graphs are directed graphs that

represent calling or message passing relationships between components of a sys-

tem. From a software engineering perspective, call graphs are either dynamically

generated (at execution time) or statically generated (at compile time). The core

focus of this work is on the use of static call graphs generated by message passing

between code components. Figure 5.5 is an example of a call graph for TickX.

Figure 5.5 shows that MovieCatalog is a central component through which other

components pass or receive messages.

On the whole, a requirements traceability network is a merge of homogenous

and heterogeneous traceability links. Thus, a requirements traceability network is

a graph of system components, use cases/desired system features and stakeholders

of the system. An example of such a traceability network is shown in Fig. 5.8.

Fig. 5.4 Traceability network for TickX

70 I. Omoronyia et al.

5.3.3 Centrality of Entities in Traceability Networks

In network analysis, centrality indices are normally used to convey the intuitive

feeling that in most networks some vertices or edges are more central than others

[14, 15]. A centrality index which suits the requirements traceability networks

definition is the Markov centrality, which can be applied to directed and weighted

graphs. To obtain the centrality of entities in this research, the weighted

requirements traceability network shown in Fig. 5.4 is viewed as a Markov chain.

White and Smyth [16] described a Markov chain as a single ‘token’ traversing

a graph in a stochastic manner for an infinitely long time, and the next node (state)

that the token moves to is a stochastic function of the properties of the current node.

They also interpreted the fraction of time (sojourn time) that the token spends at any

single node as being proportional to an estimate of the global importance or

centrality of the node relative to all other nodes in the graph. From the viewpoint

of this research, a Markov chain enables the characterisation of a token moving

from a developer to a selected use case as an indication of the relative importance of

the use case instance to the developer. Similarly, a token moving from a use case

instance to a code artefact indicates the importance of the artefact instance in

achieving the use case.

Centrality is calculated by deriving a transition matrix from the weighted

requirements traceability network, assuming that the likelihood of a token traversal

between two nodes is proportional to the weight associated with the arc linking the

nodes. The weights in a traceability network are then converted to transition

probability weights by normalising the weights on arcs associating entities with

a work context to one. Thus, transition probability is dependent on each arc weight

value and the total number of entities within a work context. Figure 5.6 gives the

transition matrix for TickX. The transition probability of a token from Ticket to

Browse Movies use case is 0.0339 while the reverse probability is 0.0044. Each of

the rows in the transition matrix sums to one. The algorithm and computational

processes for the derivation of transition matrix and the subsequent centrality of

entities was carried out using the Java network/graph framework (JUNG) [17].

Figure 5.8 shows a graph for TickX where the size of each entity is proportional

to its Markov centrality. This figure shows the relatively higher centrality that

MovieCatalog.java has achieved in the collaboration space.

Account

Booking

Ticket

MovieCatalog

Customer

Movie

Cinema

Fig. 5.5 Graphical

representation of a call graph

between different TickX

components

5 Understanding Architectural Elements from Requirements Traceability Networks 71

5.3.4 Model Implementation

The implementation of a prototype envisages a scenario where the requirement

analysts can specify the use cases or features in a shared collaboration space. These

use cases can be updated or removed over the life time of the project and new ones

can be added. Developers are then able to select any use case they are interested in

implementing. Finally, the traceability model is achieved as the use case selected is

automatically traced to every update, create and view event that the developer

carried out on code artefacts while implementing that use case.

The requirements traceability approach in this chapter has been implemented as

a client server architecture, where the Eclipse IDE for each developer is a client and

the model processing logic and storage of event data is performed on the server. The

client server approach models a shared collaboration space. The client monitors

view, update and create events executed within Eclipse. When a network connec-

tion exists, event data are offloaded to the server. While there is no connection (or

a slow connection) the client will temporarily store event data locally and perform

local model processing logic to give the developer a partial view of current trace

links and their relative centrality – offline mode. The architecture is distributed

across client and server ends, and consists of four core layers: the model, event,

messaging and Rich Client Platform (RCP). The client end of each layer is plugged

into the Eclipse platform while the server end resides on an Apache Tomcat web

application server.

The model layer is the main event processing unit in the architecture. This layer

is responsible for the formation of entity work contexts and their related SOI ratios,

and also generates the centrality values for entities associated with monitored trace

links. The model layer also generates a call graph by parsing the abstract syntax tree

representing a java component in Eclipse IDE. The event layer is responsible for

capturing and archiving interaction event sequences generated within a software

Fig. 5.6 Transition matrix for TickX requirements traceability network

72 I. Omoronyia et al.

project. The log.event component is the clearing centre and data warehouse of

all events generated by the project collaborators. The messaging layer carries out

asynchronous processing of request/response messages from the server. The offline.

emulator component emulates the server end functions of the model and event

layers while a developer is generating interaction events in the offline mode.

Finally, the RCP layer resides only on the client end, and provides the minimal

set of components required to build a rich client application in Eclipse.

Figure 5.7 shows a snapshot of an Eclipse view of the visualisation.rpc compo-

nent. System developers can open, activate and deactivate their use cases of interest

by using the popup menu labelled 7 in Fig. 5.7. All events generated by the

developer are traced to the work context of an activated use case. The RCP layer

is also responsible for generating visualisations of requirements traceability

networks of developers, artefacts and use cases. A system developer using the

button labelled 3 in Fig. 5.7 triggers the generation of the traceability network

shown in Fig. 5.8. The size of each node corresponds to its centrality in the

traceability network. A selected node in the network can be moved around within

the visual interface to enhance clarity of trace relations for increasingly complex

trace networks.

The workflow requires that each time a developer wants to carry out a coding

activity, they log in and activate an existing use case located in the central reposi-

tory or create a new one. For each client workstation, only one use case can be

active at a selected time, working on another use case requires that the developer

activates the new use case which automatically deactivates the previous one.

Similarly, the active code artefact is the current artefact being viewed, updated or

created. Switching to another artefact automatically deactivates the previous arte-

fact. This workflow enables cross cutting relations amongst artefacts, developers

and use cases since, over their lifetime, and as they are used to achieve different

aspects of a project, each can be associated with any number of other instances.

Fig. 5.7 Snapshot of eclipse view of visualization components

5 Understanding Architectural Elements from Requirements Traceability Networks 73

As events generated by the developer are traced to the work context of an active use

case and artefact on the server, the centrality value of each entity instance involved

in the traceability network is recalculated.

5.4 Preliminary Study: Inferring Architectural Representations

from Traceability Networks

In this section, we aim to provide possible avenues to addressing the questions

on architectural information needs discussed in Sect. 5.2.2. We achieve this by

discussing insights from the use of traceability networks to infer architectural

representations. The discussion is based on a repository of event based

requirements traceability networks and call graphs generated during a six weeks

study involving ten software engineering students. The students were in the third

year of their Masters/Honours programme. All participants had at least 2.5 years of

object-oriented development experience using Java. All were participating in

project developing ‘Gizmoball’ – an editor and simulator for a pinball table –

working in groups of three [11]. During the study, use cases and system features

were modelled and tagged with meaningful short form descriptions or acronyms

that were easy to understand by the collaborators. Furthermore, to minimize

intrusion and closely mimic real collaboration scenarios, use cases and system

features were defined by developers and subsequently used as a basis for tasks

assignment. At the end of the 6 weeks, structured interviews were conducted with

Fig. 5.8 Trace graph for TickX

74 I. Omoronyia et al.

eight of the participants (the two remaining participants were unavoidably absent).

The interviews were personalised based on the use cases/system features and code

artefacts that the participant had worked on. All data were anonymized for analysis

and presentation. Feedback from participants suggested that the tool captured

between 60–90% of the interaction events carried out over the study period. The

remaining part of this section first presents how traceability networks are used to

provide insight on architectural styles, then how they help validate initial system

decision and identify potentially overloaded components, critical bottlenecks and

information centres with ensuing architectural implications.

5.4.1 Understanding Architectural Style

Our expectation is that layouts of architectural styles are unfolded and realised with

the accumulation of trace events generated by stakeholders. Thus, if traceability

networks harvested from events associated with the achievement of system features

and desired requirements is realised, then it is also possible to infer the architectural

style used to realize the specified feature or system requirement.

Insights were obtained from our initial study on the inference of architectural

styles from event based traceability networks. Figure 5.9 demonstrates a trace-

ability network for the feature ‘File Demo’ in Gizmoball (a feature requirement that

users should be able to load gizmos from file). The figure shows the different code

artefacts that the developer ‘Tony’ used to realize the desired feature and the trace

Fig. 5.9 Revealed architectural styles associated in the achievement of gizmoball feature – ‘File

Demo’

5 Understanding Architectural Elements from Requirements Traceability Networks 75

links between the artefacts. A visual arrangement and repositioning of the artefacts

in the traceability network reveals that a 2-tier architectural style is being used by

Tony to achieve ‘File Demo.’ Furthermore, each of the tiers reveals a possible

blackboard approach. This example demonstrates how different architectural styles

can be combined to achieve a specified system feature.

It is important to note that we do not claim here that the discovery and combi-

nation of architectural styles is trivial. While some styles such as n-tier or batch

sequential are more easily recognised from visualisation of traceability networks,

other styles such as the blackboard requires more investigation. Also, call graphs in

non trivial cases does not provide the information needed to infer styles. An example

is in cases where communication between the clients of a blackboard and the

blackboard could be via data sharing, middleware, or network communication.

Secondly, the traceability network in Fig. 5.9 demonstrates the pivotal role dis-

played by the artefacts FileHandler and GameModel in realising the architectural

style associated with File Demo. The two artefacts are responsible for the linking

of the two different blackboard styles to reveal a 2-tier architectural style. This

becomes obvious due to our use of different node sizes based on centrality, thus

demonstrating the advantage of this visualization.. Furthermore, for every new link

amongst artefacts that is subsequently introduced by collaborators to the network,

the trace network reveals corresponding adaptation that is required in the initial

architectural rationale for the associated feature of the system.

This study also reveals that traceability networks for non-trivial projects can be

overwhelming with hundreds or thousands of components. The implied archi-

tectural style used to achieve ‘File Demo’ was revealed by a simple manual visual

rearrangement of existing nodes in the network. To give support for bigger projects,

further work is needed to focus on the automatic machine learning of architectural

styles based on a given traceability network.

5.4.2 Monitoring Initial System Decision and Identifying
Critical Pointers

One of the important lessons learned from the repository of event-based traceability

networks during the 6 weeks study, is related to information that can be derived

from an entity’s centrality measures. An entity’s centrality is useful in revealing

a number of latent properties in the trace relation between requirements, code

components and the underlying system/software architecture. For instance, a high

centrality measure for a developer may suggest that they are working with many

parts of the system. Such high centrality for developers can further suggest that the

components and system features they are working on are crucial to achieving the

system and hence are central to the development process.

The study showed that stakeholders built a perception of their expected centra-

lity measures for entities in the trace network. These expectations are envisaged

76 I. Omoronyia et al.

based on previous decisions made on achieving the system. Such expectations are

then used to monitor the state of the system. An example is the traceability network

shown in Fig. 5.10 and involving collaboration between Greg, Boris and Blair to

achieve Gizmoball. Two project stages were identified – ‘From Demo to Final’
(Translate game demo to final mode), and JUnit Tests (generate test cases for each
gizmo object). Forty five artefacts were identified as being used to achieve these

use cases. While the major responsibility of achieving ‘From Demo to Final’ was
assigned to Boris, the responsibility for JUnit Tests was mainly assigned to Blair.

A snippet from Boris demonstrating insight he obtained while navigating the

traceability network generated as a result of their collaboration (Fig. 5.10) is

shown below:

Boris: . . .If we have done ‘JUnit Test’ how come it only relates to Gizmo.java,
Square.java and GizmoModel.java. . .? Because I know that it should be looking at
virtually all of the code.there is more work to be done in ‘JUnit Tests’

This feedback suggests that Boris was expecting JUnit Tests to have a higher

centrality in the network. He also expected the use case to be related to more code

artefacts. This is because they had decided to use test-driven development and as

such needed every code artefact to be assigned a test case. While they had agreed

and documented their decision on test driven development in their previous group

meeting, the traceability network of the current state of the project rather suggested

that there was still much work to be done to achieve their agreed objective.

Fig. 5.10 Requirements traceability network with 44 code artefacts

5 Understanding Architectural Elements from Requirements Traceability Networks 77

If most developers tend to be associated with a high and equal measure of

centrality, then it might imply a shared code ownership development model such

as extreme programming. In this case, the architectural design rationale associated

with extreme programming practices can then be assumed. This scenario is demon-

strated in the case where the centralities of Tony, Alex and Luke in relation to the

use case ‘Build Mode’ where closely similar. Transcripts from the interview session

confirmed that the three collaborators all worked together in an interchanging

pair fashion to realise the ‘Build Mode’ feature of Gizmoball.

The initial study also showed that the requirements traceability network helped

to reveal issues that developers would easily have overlooked. For instance, inter-

view transcripts from the collaboration between Luke, Alex and Tony to achieve

the Gizmoball project suggested that they used the graph to visualize where the

bigger challenges in the system were. The centrality of nodes in traceability

networks were also used by the group to get a grasp of which use case or system

feature had changed more considerably recently or over the lifetime of the project.

Finally, it can be expected that if a requirements use case or system feature has

a high centrality relative to other use cases, then this can indicate its importance to

the development process. On the other hand it might indicate poor architectural

design and use case definition/allocation practice -for instance, the use case has

not been broken down enough or the architecture has not been well segmented.

Figure 5.11 demonstrates an example of poor segmentation and allocation of com-

ponents to system features. The feature ‘User Interface’ clearly attained a higher

centrality measure relative to other system features. Further insight on the artefacts

associated with the identified system feature revealed that it was associated with

components necessary for realizing build mode (configuration of gizmos) and play

mode (running of gizmos), which are the two main interfaces through which a user

can interact with the gizmoball game. This suggests that the ‘User Interface’ feature

could more appropriately be further decomposed into two other system features.

Fig. 5.11 Requirements traceability network involving 92 code artefacts, five system features and

three developers

78 I. Omoronyia et al.

5.4.3 Lessons Learned and Limitations of Traceability Approach

An advantage of our approach is that requirements traceability links are automati-

cally harvested and constantly updated to reflect the current state of the project.

Furthermore, entities that are more likely to hold greater information about the

project are emphasized by their larger centrality values. The use of call graphs is

essential to harvesting homogenous traceability links between software com-

ponents. The focus of this work has been on the use of abstract syntax tree repre-

senting a software component to generate its static call graphs. Homogenous

traceability links were harvested for top-level static function callers.

A challenge is that the traceability network becomes increasingly cluttered as the

number of entities increases. Thus, while a selected entity from a traceability

network could be moved around within the implementation interface for visual

clarity, this was a difficult process for complex networks. To help overcome this

drawback, a Fisheye visualisation based on centrality has been implemented.

Fisheye view has been shown to be an efficient mechanism to enhance clarity for

complex visualisations with increasing number of nodes [18]. Another challenge

related to scalability is the performance overhead that arises with increasing volume

of captured developer interaction events. Finally, the use of interaction patterns to

make inference on system decision and identifying critical pointers is based only on

the small set of participants in the study. Thus, there is need for more empirical data

in subsequent studies.

An implied workflow constraint, based on the implementation of the traceability

model, is that systems analysts and developers explicitly need to be working within

the context of a selected system feature. This is achieved by activating the desired

features or use cases within the development tool. Insight obtained from the initial

study suggests that such workflow constraint can sometimes be difficult to achieve,

especially when developers have strict project schedules. Feedback from our study

shows that the explicit activation of a use case during development work is

sometimes not a primary concern of the participant, and he/she might forget to

formally carry out the use case activation processes within Eclipse IDE. Also

coding on a real project would not necessarily be for a specific use case, but

“utility” code needed by other modules such as generic data access or manipulation

routines.

5.5 Related Work

There are some methods and guidance available that help in the development and

tracing system requirements into an architecture satisfying those requirements. The

work presented by Gr€unbacher et al. [19, 20] on CBSP (Connector, Bus, System,

Property) focuses on reconciling requirements and system architectures. Gr€unbacher
et al.’s approach has been applied to the EasyWinWin requirements negotiation

5 Understanding Architectural Elements from Requirements Traceability Networks 79

technique and the C2 architectural models. The approach taken in our work differs

from Gr€unbacher et al. as our focus is rather on the use of requirements trace-

ability approach to help collaborating developers understand the architectural

implications of each action they perform.

A closely related work is that presented on architectural design recovery by

Jakobac et al. [21–23]. The main motivation for their work is based on the frequent

deviation of developers from the original architecture causing architectural erosion –

a phenomenon in which the initial architecture of an application is (arbitrarily)
modified to the point where its key properties no longer hold. The approach assumes

that a given system’s implementation is available, while the architecturally relevant

information either does not exist, is incomplete, or is unreliable. Jakobac et al. then

used source code analysis techniques for architectural recovery from the systems

implementation. Finally, architectural styles where then leveraged to identify

and reconcile any mismatch between existing and recovered architectural models.

A distinction of our work from Jakobac et al. approach is the associations of

requirement use cases or desired system features to the subsequent tangible archi-

tectural style used to realize the feature or use case. Furthermore, our traceability

links are harvested real time as the system is being realized. Harvested traces are

subsequently used to provide developers with information about the revealed

architecture based on the work that is currently carried out. We provide pointers

to potential bottlenecks and information centres that exist as a result of an initial

architectural rationale.

There are a number of other reverse engineering approaches by which the

architectures of software systems can be recovered. For instance, the IBIS and

Compendium originating from the work of Werner and Rittel [24], presents the

capability to facilitate the management of architectural arguments. Mendonca and

Kramer [25] presented an exploratory reverse engineering approach called X-ray to

aid programmers in recovering architectural runtime information from a distributed

system’s existing software artifacts. Also, Guo et al. [26] used static analysis to

recover software architectures. Guo et al’s. approach extracted software architec-

ture based on program slicing and parameter analysis and dependencies between

the objects based on relation partition algebra. However, these approaches do not

directly focus on how such extracted architectures are related to stakeholders’

requirements of the system. Again, there are different approaches to harvesting

traceability networks. This research has focused on an event based approach for

automated harvesting of heterogeneous relations, and call graph to retrieve homo-

genous trace links between components achieving the system. Other automated

mechanisms for harvesting traceability networks include the use of information

retrieval mechanisms and scenario driven approach. Traceability networks gene-

rated from information retrieval techniques are based on the similarity of terms

used in expressing requirements and design artefacts [27–29]. The scenario-driven

approach is accomplished by observing the runtime behaviour of test scenarios.

Observed behaviour is then translated into a graph structure to indicate common-

alities among entities associated with the behaviour [30].

80 I. Omoronyia et al.

Mader et al. [24] proposed an approach for the automated update of existing

traceability relations during the evolution and refinement of UML analysis and

design models. The approach observes elementary changes applied to UML

models, recognises the broader development activities and triggers the automated

update of impacted traceability relations. The elementary change events on model

elements include add, delete and modify. The broader development activity is also

recognised using a set of rules which helps in associating an elementary change as

constituent parts of intentional development activity. The key similarity between

the approach in this research and Mader et al.’s approach is the focus on

maintaining up-to-date post-requirement traceability relations. In addition, our

approach provides a perception of the centrality of traced entities.

5.6 Conclusion and Further Work

This chapter was motivated by the potential of requirements traceability to under-

standing architectural representations, responding to some typical architectural

information needs during a software project lifecycle. It has presented a technique

for the automatic harvesting of traceability networks for inferring architectural

rationale. Our technique is based on the use of event-based mechanisms to capture

heterogeneous trace links, while call graphs are used to generate homogenous

traceability links between components. The heterogeneous and homogenous trace

links were then combined to form a unified traceability network of system

components, use cases/desired system features and stakeholders (developers) of

the system. The advantage of our approach is that the relative potential and

architectural implications of each node in the traceability network can then be

determined.

An evaluation using a prototype tool implementation has demonstrated the

usefulness of our approach. Using event data captured from a student-based project

carried out over 6 weeks, we demonstrated how traceability networks are used to

provide insight on architectural styles. We also detail how the participants in our

study used the traceability tool to understand the architectural implications of the

different interaction events carried out during their project. Such architectural

implications included impact of executed events on initial system decision and

also identifying bottlenecks and information centres in the software project.

The focus of further work is twofold. First, we aim to investigate the accuracy of

centrality values. This involves understanding the effect various tasks (e.g. mainte-

nance, debugging, refactoring or simply forward engineering) on centrality of

entities. Second, for non-trivial projects, traceability networks can be overwhelm-

ingly complex. Thus, we aim to focus on enhancing the process of inferring

architectural rationale, offering a machine learning approach to supplement manual

analysis. We also plan to find ways to gain better insight from the complex

traceability networks resulting from non-trivial projects.

5 Understanding Architectural Elements from Requirements Traceability Networks 81

References

1. Galster M, Eberlein A, Moussavi M (2006) Transition from requirements to architecture:

a review and future perspective

2. Omoronyia I et al (2009) Use case to source code traceability: the developer navigation view

point

3. Turner CR, Fuggetta A, Lavazza L, Wolf AL (1999) A conceptual basis for feature engineer-

ing. J Syst Softw 49(1):3–15

4. Eden AH, Kazman R (2003) Architecture, design, implementation. ICSE, Portland

5. Bass L, Clements P, Kazman R (2003) Software architecture in practice, 2nd edn. Addison

Wesley, Reading

6. Palmer JD (1997) Traceability. In: Thayer RH, Dorfman M (eds) Software requirements

engineering. IEEE Computer Society Press, Los Alamitos, pp 364–374

7. Ramesh B, Jarke M (2001) Toward reference models for requirements traceability. IEEE

Trans Software Eng 27(1):58–93

8. Egyed A (2003) A scenario-driven approach to trace dependency analysis. IEEE Trans

Software Eng 29(2):116–132

9. Kruchten P, Lago P, van Vliet H (2006) Building up and reasoning about architectural

knowledge. In: Hofmeister C (ed) QoSA-Quality of software architecture. Springer, Vasteras,

pp 43–58

10. Omoronyia I, Ferguson J, Roper M, Wood M (2009) Using developer activity data to enhance

awareness during collaborative software development. Comput Supported CoopWork 18(5–6

December 2009):509–558

11. Omoronyia I (2008) Enhancing awareness during distributed software development. Ph.D.

Dissertation, University of Strathclyde, Glasgow, Scotland

12. Fritz T, Murphy GC, Hill E (2007) “Does a programmer’s activity indicate knowledge of

code?” in ESEC/SIGSOFT FSE 341–350

13. Gutwin C, Greenberg S, Roseman M (1996) Workspace awareness in real-time distributed

groupware: framework, widgets, and evaluation. In: BCS HCI, London, UK, pp 281–298

14. Brandes U, Erlebach T (2007) Network analysis -methodological foundations – introduction,

ser. Lecture notes in computer science. vol 3418. Springer-Verlag, Berlin (2005)

15. Latora V, Marchiori M (2007) A measure of centrality based on network efficiency. New J

Phys 9:188

16. White S, Smyth P (2003) Algorithms for estimating relative importance in networks. In:

Getoor L, Senator TE, Domingos P, Faloutsos C (eds) KDD. ACM, Washington, pp 266–275

17. Java universal network/graph framework. [Online] Available: http://jung.sourceforge.net

18. Hornbaek K, Hertzum M (2007) Untangling the usability of fisheye menus. Acm Transactions

On Computer-Human Interaction 14: 2

19. Gr€unbacher P, Egyed A, Medvidovic N (2001) Reconciling software requirements and

architectures: the CBSP approach. Fifth IEEE international symposium on requirements

engineering (RE’01)

20. Gr€unbacher P, Egyed A, Medvidovic N (2000) Dimensions of concerns in requirements

negotiation and architecture modelling

21. Jakobac V, Medvidovic N, Egyed A (2005) Separating architectural concerns to ease program

understanding. SIGSOFT Softw Eng Notes 30(4):1

22. Jakobac V, Egyed A, Medvidovic N (2004) ARTISAn: an approach and tool for improving

software system understanding via interactive, tailorable source code analysis, TR USC-CSE-

2004-513. USC, USA

23. Medvidovic N, Egyed A, Gruenbacher P (2003) Stemming architectural erosion by coupling

architectural discovery and recovery

24. Mader P, Gotel O, Philippow I (2008) Enabling automated traceability maintenance by

recognizing development activities applied to models., pp 49–58

82 I. Omoronyia et al.

http://jung.sourceforge.net

25. Mendonça N, Kramer J (2001) An approach for recovering distributed system architectures.

Automated Softw Eng 8(3–4):311–354

26. Guo J, Liao Y, Pamula R (2006) Static analysis based software architecture recovery,

computational science and its applications – ICCSA 2006

27. Antoniol G et al (2002) Recovering traceability links between code and documentation. Softw

Eng IEEE Trans 28(10):970–983

28. Oliveto R (2008) Traceability management meets information retrieval methods: strengths

and limitations. In: Proceedings of the 2008 12th European conference on software mainte-

nance and reengineering. IEEE Computer Society, Athens, Greece

29. Lormans M, van Deursen A (2005) Reconstructing requirements coverage views from design

and test using traceability recovery via LSI. In: Proceedings of the 3rd international workshop

on traceability in emerging forms of software engineering, ACM, Long Beach

30. Egyed A (2006) Tailoring software traceability to value-based needs. In: Stefan Biffl AA,

Boehm B, Erdogmus H, Gr€unbacher P (eds) Value-based software engineering, Egyed A.,

Springer-Verlag, pp 287–308

5 Understanding Architectural Elements from Requirements Traceability Networks 83

http://www.springer.com/978-3-642-21000-6

	Chapter 5: Understanding Architectural Elements from Requirements Traceability Networks
	5.1 Introduction
	5.2 Requirements Traceability and Software Architectures
	5.2.1 Inferring Architectural Rationale from Traceability Networks
	5.2.2 Stakeholder Needs for Architectural Information

	5.3 Deriving Requirements Traceability Networks for Inferring Architectural Representations
	5.3.1 Event-Based Mechanism for Capturing Trace Links
	5.3.2 Capturing Trace Links Between Components Via Call Graphs
	5.3.3 Centrality of Entities in Traceability Networks
	5.3.4 Model Implementation

	5.4 Preliminary Study: Inferring Architectural Representations from Traceability Networks
	5.4.1 Understanding Architectural Style
	5.4.2 Monitoring Initial System Decision and Identifying Critical Pointers
	5.4.3 Lessons Learned and Limitations of Traceability Approach

	5.5 Related Work
	5.6 Conclusion and Further Work
	References

