
Chapter 2
Loop Measures

2.1 A Measure on Based Loops

We denote by P
x the family of probability laws on piecewise constant paths

defined by Pt.

P
x(γ(t1) = x1, . . . , γ(th) = xh) = Pt1(x, x1)Pt2−t1(x1, x2) . . . Pth−th−1(xh−1, xh)

The corresponding process is a Markov chain in continuous time. It can also
be constructed as the process ξNt, where ξn is the discrete time Markov
chain starting at x, with transition matrix P , and Nt an independent Poisson
process.

In the transient case, the lifetime is a.s. finite and denoting by p(γ) the
number of jumps and Ti the jump times, we have:

P
x(p(γ) = k, γT1 = x1, . . . , γTk

= xk, T1 ∈ dt1, . . . , Tk ∈ dtk)

=
Cx,x1 ...Cxk−1,xk

κxk

λxλx1 ...λxk

1{0<t1<...<tk}e
−tkdt1...dtk

For any integer p ≥ 2, let us define a based loop with p points in X as a
couple l = (ξ, τ) = ((ξm, 1 ≤ m ≤ p), (τm, 1 ≤ m ≤ p + 1)) in Xp × R

p+1
+ ,

and set ξp+1 = ξ1 (equivalently, we can parametrize the associated discrete
based loop by Z/pZ). The integer p represents the number of points in the
discrete based loop ξ = (ξ1, . . . , ξp(ξ)) and will be denoted p(ξ), and the τm

are holding times. Note however that two time parameters are attached to
the base point since the based loops do not in general end or start with a
jump.

Based loops with one point (p = 1) are simply given by a pair (ξ, τ) in
X × R+.
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14 2 Loop Measures

Based loops have a natural time parametrization l(t) and a time period
T (ξ) =

∑p(ξ)+1
i=1 τi. If we denote

∑m
i=1 τi by Tm: l(t) = ξm on [Tm−1, Tm)

(with by convention T0 = 0 and ξ1 = ξp+1).
Let P

x,y
t denote the (non normalized) “bridge measure” on piecewise

constant paths from x to y of duration t constructed as follows:
If t1 < t2 < ... < th < t,

P
x,y
t (l(t1) = x1, . . . , l(th) = xh) = [Pt1 ]

xh
x1

[Pt2−t1 ]
x1
x2

...[Pt−th
]xh
y

1
λy

Its mass is px,y
t =

[Pt]
x
y

λy
. For any measurable set A of piecewise constant paths

indexed by [0 t], we can also write

P
x,y
t (A) = Px(A ∩ {xt = y}) 1

λy
.

Exercise 8. Prove that P
y,x
t is the image of P

x,y
t by the operation of time

reversal on paths indexed by [0 t].

A σ-finite measure μ is defined on based loops by

μ =
∑

x∈X

∫ ∞

0

1
t
P

x,x
t λxdt

Remark 4. The introduction of the factor 1
t will be justified in the following.

See in particular formula (2.3). It can be interpreted as the normalization of
the uniform measure on the loop, according to which the base point is chosen.

From the expression of the bridge measure, we see that by definition of μ,
if t1 < t2 < ... < th < t,

μ(l(t1) = x1, . . . , l(th) = xh, T ∈ dt) = [Pt1+t−th
]
xh
x1 [Pt2−t1 ]x1

x2
...[Pth−th−1 ]

xh−1
xh

1

t
dt.

(2.1)

Note also that for k > 1, using the second expression of P
x,y
t and the

fact that conditionally on Nt = k, the jump times are distributed like an
increasingly reordered k-uniform sample of [0 t]

λxP
x,x
t (p = k, ξ1 = x1, ξ2 = x2, . . . , ξk

= xk, T1 ∈ dt1, . . . , Tk ∈ dtk)

= 1{x=x1}e
−t t

k

k!
P x1

x2
P x2

x3
...P xk

x1
1{0<t1<...tk<t}

k!
tk

dt1...dtk

= 1{x=x1}P
x1
x2

P x2
x3

...P xk
x 1{0<t1<...tk<t}e−tdt1...dtk
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Therefore,

μ(p = k, ξ1 = x1, .., ξk = xk, T1 ∈ dt1, .., Tk ∈ dtk, T ∈ dt) (2.2)

= P x1
x2

..P xk
x1

1{0<t1<...<tk<t}
t

e−tdt1...dtkdt (2.3)

for k > 1.
Moreover, for one point-loops, μ{p(ξ) = 1, ξ1 = x1, τ1 ∈ dt} = e−t

t dt.
It is clear on these formulas that for any positive constant c, the energy

forms e and ce define the same loop measure.

2.2 First Properties

Note that the loop measure is invariant under time reversal.
If D is a subset of X , the restriction of μ to loops contained in D, denoted

μD is clearly the loop measure induced by the Markov chain killed at the exit
of D. This can be called the restriction property.

Let us recall that this killed Markov chain is defined by the restriction of
λ to D and the restriction PD of P to D2 (or equivalently by the restriction
eD of the Dirichlet form e to functions vanishing outside D).

As
∫

tk−1

k! e−tdt = 1
k , it follows from (2.2) that for k > 1, on based loops,

μ(p(ξ) = k, ξ1 = x1, . . . , ξk = xk) =
1
k

P x1
x2

...P xk
x1

. (2.4)

In particular, we obtain that, for k ≥ 2

μ(p = k) =
1
k
Tr(P k)

and therefore, as Tr(P ) = 0, in the transient case:

μ(p > 1) =
∞∑

2

1
k

Tr(P k) = − log(det(I − P )) = log(det(G)
∏

x

λx) (2.5)

since (denoting Mλ the diagonal matrix with entries λx), we have

det(I − P ) =
det(Mλ − C)

det(Mλ)

Note that det(G) is defined as the determinant of the matrix Gx,y. It is
the determinant of the matrix representing the scalar product defined on
R

|X| (more precisely, on the space of measures on X) by G in any basis,
orthonormal with respect to the natural euclidean scalar product on R

|X|.
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Moreover

∫

p(l)1{p>1}μ(dl) =
∞∑

2

Tr(P k) = Tr((I − P )−1P ) = Tr(GC)

2.3 Loops and Pointed Loops

It is clear on formula (2.1) that μ is invariant under the time shift that acts
naturally on based loops.

A loop is defined as an equivalence class of based loops for this shift.
Therefore, μ induces a measure on loops also denoted by μ.

A loop is defined by the discrete loop ξ
◦

formed by the ξi in circular order,
(i.e. up to translation) and the associated holding times. We clearly have:

μ(ξ
◦

= (x1, x2, . . . , xk)
◦
) = P x1

x2
...P xk

x1

provided the loop is primitive i.e. does not have a non trivial period, as it is
in this case formed by p equivalent based loops. Otherwise, the right hand
side should be divided by the mutiplicity. However, loops are not easy to
parametrize, that is why we will work mostly with based loops or with pointed
loops. These are defined as based loops ending with a jump, or equivalently
as loops with a starting point. They can be parametrized by a based discrete
loop and by the holding times at each point. Calculations are easier if we work
with based or pointed loops, even though we will deal only with functions
independent of the base point.

The parameters of the pointed loop naturally associated with a based loop
are ξ1, . . . , ξp and

τ1 + τp+1= τ∗
1 , τi = τ∗

i , 2 ≤ i ≤ p

An elementary change of variables, shows the expression of μ on pointed loops
can be written:

μ(p = k, ξi = xi, τ
∗
i ∈ dti) = P x1

x2
...P xk

x1

t1∑
ti

e−
∑

tidt1...dtk. (2.6)

Trivial (p = 1) pointed loops and trivial based loops coincide.
Note that loop functionals can be written

Φ(l◦) =
∑

1{p=k}Φk((ξi, τ
∗
i ), i = 1, . . . , k)

with Φk invariant under circular permutation of the variables (ξi, τ
∗
i ).
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Then, for non negative Φk

∫

Φk(l
◦
)μ(dl) =

∑∫

Φk((xi, ti)i = 1, . . . , k)P x1
x2

...P xk
x1

e−
∑

ti
t1∑
ti

dt1...dtk

and by invariance under circular permutation, the term t1 can be replaced
by any ti. Therefore, adding up and dividing by k, we get that

∫

Φk(l
◦
)μ(dl) =

∑ ∫
1
k

Φk((xi, ti)i = 1, . . . , k)P x1
x2

...P xk
x1

e−
∑

tidt1...dtk.

The expression on the right side, applied to any pointed loop functional
defines a different measure on pointed loops, we will denote by μ∗. It induces
the same measure as μ on loops.

We see on this expression that conditionally on the discrete loop, the
holding times of the loop are independent exponential variables.

μ∗(p = k, ξi = xi, τ
∗
i ∈ dti) =

1
k

∏

i∈Z/pZ

Cxi,xi+1

λxi

e−tidti (2.7)

Conditionally on p(ξ) = k, T is a gamma variable of density tk−1

(k−1)!e
−t

on R+ and ( τ∗
i

T , 1 ≤ i ≤ k) an independent ordered k-sample of the uniform
distribution on (0, T ) (whence the factor 1

t ). Both are independent, condi-
tionally on the number of points p of the discrete loop. We see that μ on based
loops is obtained from μ on the loops by choosing the base point uniformly.
On the other hand, it induces a choice of ξ1 biased by the size of the τ∗

i ’s,
different from μ∗ for which this choice is uniform (whence the factor 1

k ). But
we will consider only loop functionals for which μ and μ∗ coincide.

It will be convenient to rescale the holding time at each ξi by λξi and set

τ̂i =
τ∗
i

λξi

.

The discrete part of the loop is the most important, though we will see
that to establish a connection with Gaussian fields it is necessary to consider
occupation times. The simplest variables are the number of jumps from x to
y, defined for every oriented edge (x, y)

Nx,y = #{i : ξi = x, ξi+1 = y}

(recall the convention ξp+1 = ξ1) and

Nx =
∑

y

Nx,y

Note that Nx = #{i ≥ 1 : ξi = x} except for trivial one point loops for which
it vanishes.



18 2 Loop Measures

Then, the measure on pointed loops (2.6) can be rewritten as:

μ∗(p = 1, ξ = x, τ̂ ∈ dt) = e−λxt dt

t
and (2.8)

μ∗(p = k, ξi = xi, τ̂i ∈ dti) =
1
k

∏

x,y

CNx,y
x,y

∏

x

λ−Nx
x

∏

i∈Z/pZ

λξie
−λξi

tidti. (2.9)

Another bridge measure μx,y can be defined on paths γ from x to y:

μx,y(dγ) =
∫ ∞

0

P
x,y
t (dγ)dt.

Note that the mass of μx,y is Gx,y. We also have, with similar notations as
the one defined for loops, p denoting the number of jumps

μx,y(p(γ) = k, γT1 = x1, . . . , γTk−1 = xk−1, T1 ∈ dt1, . . . , Tk ∈ dtk, T ∈ dt)

=
Cx,x1Cx1,x2 ...Cxk−1,y

λxλx1 ...λy
1{0<t1<...<tk<t}e−tdt1...dtkdt.

From now on, we will assume, unless otherwise specified, that we are in the
transient case.

For any x �= y in X and s ∈ [0, 1], setting P
(s),u
v = Pu

v if (u, v) �= (x, y)
and P

(s),x
y = sP x

y , we can prove in the same way as (2.5) that:

μ(sNx,y1{p>1}) = − log(det(I − P (s))).

Differentiating in s = 1, and remembering that for any invertible matrix
function M(s), d

ds log(det(M(s)) = Tr(M ′(s)M(s)−1), it follows that:

μ(Nx,y) = [(I − P )−1]yxP x
y = Gx,yCx,y

and
μ(Nx) =

∑

y

μ(Nx,y) = λxGx,x − 1 (2.10)

(as G(Mλ − C) = Id).

Exercise 9. Show that more generally

μ(Nx,y(Nx,y − 1)...(Nx,y − k + 1)) = (k − 1)!(Gx,yCx,y)k.

Hint: Show that if M ′′(s) vanishes,

dn

dsn
log(det(M(s))) = (−1)n−1(n − 1)!Tr((M ′(s)M(s)−1)n).
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Exercise 10. Show that more generally, if xi, yi are n distinct oriented
edges:

μ(
∏

Nxi,yi) =
∏

Cxi,yi

1
n

∑

σ∈Sn

∏
Gyσ(i),xσ(i+1)

Hint: Introduce [P (s1,...,sn)]xy equal to P x
y if (x, y) �= (xi, yi) for all i, and

equal to siP
xi
yi

if (x, y) = (xi, yi).

We finally note that if Cx,y > 0, any path segment on the graph starting
at x and ending at y can be naturally extended into a loop by adding a jump
from y to x. We have the following

Proposition 4. For Cx,y > 0, the natural extension of μx,y to loops
coincides with Ny,x(l)

Cx,y
μ(dl).

Proof. The first assertion follows from the formulas, noticing that a loop l can
be associated to Ny,x(l) distinct bridges from x to y, obtained by “cutting”
one jump from y to x. ��

Note that a) shows that the loop measure induces bridge measures μx,y

when Cx,y > 0. If Cx,y vanishes, an arbitrarily small positive perturbation
creating a non vanishing conductance between x and y allows to do it. More
precisely, denoting by e(ε) the energy form equal to e except for the additional
conductance C

(ε)
x,y = ε, μx,y can be represented as d

dεμe(ε) |ε=0.

2.4 Occupation Field

To each loop l
◦

we associate local times, i.e. an occupation field {l̂x, x ∈ X}
defined by

l̂x =
∫ T (l)

0

1{l(s)=x}
1

λl(s)
ds =

p(l)∑

i=1

1{ξi=x}τ̂i

for any representative l = (ξi, τ
∗
i ) of l◦.

For a path γ, γ̂ is defined in the same way.
Note that

μ((1 − e−αl̂x)1{p=1}) =
∫ ∞

0

e−t(1 − e−
α

λx
t)

dt

t
= log(1 +

α

λx
). (2.11)

The proof goes by expanding 1− e−
α

λx
t before the integration, assuming first

that α is small and then by analyticity of both members, or more elegantly,
noticing that

∫ b

a
(e−cx − e−dx)dx

x is symmetric in (a, b) and (c, d), by Fubini’s
theorem.

In particular, μ(l̂x1{p=1}) = 1
λx

.
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From formula (2.7), we get easily that the joint conditional distribution
of (l̂x, x ∈ X) given (Nx, x ∈ X) is a product of gamma distributions. In
particular, from the expression of the moments of a gamma distribution, we
get that for any function Φ of the discrete loop and k ≥ 1,

μ((l̂x)k1{p>1}Φ) = λ−k
x μ((Nx + k − 1)...(Nx + 1)NxΦ).

In particular, by (2.10) μ(l̂x) = 1
λx

[μ(Nx) + 1] = Gx,x.

Note that functions of l̂ are not the only functions naturally defined on
the loops. Other such variables of interest are, for n ≥ 2, the multiple local
times, defined as follows:

l̂x1,...,xn =
n−1∑

j=0

∫

0<t1<...<tn<T

1{l(t1)=x1+j ,...,l(tn−j)=xn,...,l(tn)=xj}
∏ 1

λxi

dti.

It is easy to check that, when the points xi are distinct,

l̂x1,...,xn =
n−1∑

j=0

∑

1≤i1<...<in≤p(l)

n∏

l=1

1{ξil
=xl+j}τ̂il

. (2.12)

Note that in general l̂x1,...,xk cannot be expressed in terms of l̂, but

l̂x1 ...l̂xn =
1
n

∑

σ∈Sn

l̂xσ(1),...,xσ(n) .

In particular, l̂x,...,x = 1
(n−1)! [l̂

x]n. It can be viewed as a n-th self
intersection local time.

One can deduce from the definitions of μ the following:

Proposition 5. μ(l̂x1,...,xn) = Gx1,x2Gx2,x3 ...Gxn,x1 .

In particular, μ(l̂x1 ...l̂xn)= 1
n

∑
σ∈Sn

Gxσ(1),xσ(2)Gxσ(2),xσ(3) ...Gxσ(n),xσ(1).

Proof. Let us denote 1
λy

[Pt]xy by px,y
t or pt(x, y). From the definition of

l̂x1,...,xn and μ, μ(l̂x1,...,xn) equals:

∑

x

λx

n−1∑

j=0

∫ ∫

{0<t1<...<tn<t}

1
t
pt1(x, x1+j) . . . pt−tn(xn+j , x)

∏
dtidt.

where sums of indices k+j are computed mod(n). By the semigroup property,
it equals

n−1∑

j=0

∫ ∫

{0<t1<...<tn<t}

1
t
pt2−t1(x1+j , x2+j) . . . pt1+t−tn(xn+j , x1+j)

∏
dtidt.
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Performing the change of variables v2 = t2 − t1, .., vn = tn − tn−1, v1 =
t1 + t − tn, and v = t1, we obtain:

n−1∑

j=0

∫

{0<v<v1,0<vi}

1
v1 + ... + vn

pv2(x1+j , x2+j) . . . pv1(xn+j , x1+j)
∏

dvidv

=
n−1∑

j=0

∫

{0<vi}

v1

v1 + ... + vn
pv2(x1+j , x2+j) . . . pv1(xn+j , x1+j)

∏
dvi

=
n∑

j=1

∫

{0<vi}

vj

v1 + ... + vn
pv2(x1, x2) . . . pv1(xn, x1)

∏
dvi

=
∫

{0<vi}
pv2(x1, x2) . . . pv1(xn, x1)

∏
dvi

= Gx1,x2Gx2,x3 ...Gxn,x1 .

Note that another proof can be derived from formula (2.12) . ��
Exercise 11. (Shuffle product) Given two positive integers n > k, let Pn,k

be the family of partitions of {1, 2, ...n} into k consecutive non empty intervals
Il = (il, il + 1, . . . , il+1 − 1) with i1 = 1 < i2 < ... < ik < ik+1 = n + 1.
Show that

l̂x1,...,xn l̂y1,...,ym =
m−1∑

j=0

inf(n,m)∑

k=1

∑

I∈Pn,k

∑

J∈Pm,k

l̂xI1 ,yj+J1 ,xI2 ,...yj+Jk

where for example the term yj+J1 appearing in the upper index should be
read as j + j1, . . . , j + j2 − 1.

Similarly, we can define N(x1,y1),...(xn,yn)
to be

n−1∑

j=0

∑

1≤i1<...<in≤p(l)

n∏

l=1

1{ξil
=xl+j,ξil+1=yl+j}.

If (xi, yi) = (x, y) for all i, it equals Nx,y(Nx,y−1)...(Nx,y−n+1)
(n−1)! .

Notice that

∏
N(xi,yi) =

1
n

∑

σ∈Sn

N(xσ(1),yσ(1)),...(xσ(n),y).
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Then we have the following:

Proposition 6.
∫

N(x1,y1),...,(xn,yn)(l)μ(dl) =
( ∏

Cxi,yi

)
Gy1,x2Gy2,x3 · · ·

Gyn,x1 .

The proof is left as exercise.

Exercise 12. For x1 =x2 = ... = xk, we could define different self intersec-
tion local times

l̂x,(k) =
∑

1≤i1<..<ik≤p(l)

k∏

l=1

1{ξil
=x}τ̂il

which vanish on Nx < k. Note that

l̂x,(2) =
1
2
((l̂x)2 −

p(l)∑

i=1

1{ξi=x}(τ̂i)2.

1. For any function Φ of the discrete loop, show that

μ(l̂x,2Φ) = λ−2
x μ

(Nx(Nx − 1)
2

1{Nx≥2}Φ
)
.

2. More generally prove in a similar way that

μ(l̂x,(k)Φ) = λ−k
x μ

(Nx(Nx − 1)...(Nx − k + 1)
k!

1{Nx≥k}Φ
)
.

Let us come back to the occupation field to compute its Laplace transform.
From the Feynman–Kac formula, it comes easily that, denoting M χ

λ
the

diagonal matrix with coefficients χx

λx

P
x,x
t (e−〈l̂,χ〉 − 1) =

1
λx

(
exp(t(P − I − M χ

λ

))x
x − exp(t(P − I))x

x

)
.

Integrating in t after expanding, we get from the definition of μ (first for χ
small enough):

∫

(e−〈l̂,χ〉 − 1)dμ(l) =
∞∑

k=1

∫ ∞

0

[Tr((P − M χ
λ

)k) − Tr((P )k)]
tk−1

k!
e−tdt

=
∞∑

k=1

1
k

[Tr((P − M χ
λ

)k) − Tr((P )k)]

= − Tr(log(I − P + M χ
λ

)) + Tr(log(I − P )).
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Hence, as Tr(log) = log(det)

∫

(e−〈l̂,χ〉 − 1)dμ(l) = log[det(−L(−L + Mχ/λ)−1)]

= − log det(I + V M χ
λ
) = log det(I + GMχ)

which now holds for all non negative χ as both members are analytic in χ.
Besides, by the “resolvent” equation (1.1):

det(I + GMχ)−1 = det(I − GχMχ) =
det(Gχ)
det(G)

. (2.13)

Note that det(I + GMχ) = det(I + M√
χGM√

χ) and det(I − GχMχ) =
det(I − M√

χGχM√
χ), so we can deal with symmetric matrices. Finally we

have

Proposition 7. μ(e−〈l̂,χ〉 −1) = − log(det(I +M√
χGM√

χ)) = log(det(Gχ)
det(G) )

Note that in particular μ(e−tl̂x − 1) = − log(1 + tGx,x). Consequently, the

image measure of μ by l̂x is 1{s>0}
1
s

exp(− s

Gx,x
)ds.

Considering the Laguerre-type polynomials Dk with generating function

∞∑

1

tkDk(u) = e
ut
1+t − 1

and setting σx = Gx,x, we have:

Proposition 8. The variables 1√
k
σk

xDk( l̂x

σx
) are orthonormal in L2(μ) for

k > 0, and more generally

E(σk
xDk(

l̂x

σx
)σj

yDj(
l̂y

σy
)) =

1
k
δk,j(Gx,y)2k.

Proof. By Proposition 7,

∫

(1 − e
l̂xt

1+σxt )(1 − e
l̂ys

1+σys )μ(dl)

= log(1 − σxt

1 + σxt
) + log(1 − σys

1 + σys
) − log det

(1 − σxt
1+σxt − tGx,y

1+σxt

− sGx,y

1+σys 1 − σys
1+σys

)

= − log(1 − st(Gx,y)2).

The proposition follows by expanding both sides in powers of s and t, and
identifying the coefficients. ��
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Note finally that if χ has support in D, by the restriction property

μ(1{l̂(X\D)=0}(e
−<l̂,χ>−1)) = − log(det(I+M√

χGDM√
χ)) = log

(det(GD
χ )

det(GD)

)
.

Here the determinants are taken on matrices indexed by D and GD denotes
the Green function of the process killed on leaving D.

For paths we have P
x,y
t (e−〈l̂,χ〉) = 1

λy
exp(t(L − M χ

λ

))x,y. Hence

μx,y(e−〈γ̂,χ〉) =
1
λy

((I − P + Mχ/λ)−1)x,y = [Gχ]x,y.

In particular, note that from the resolvent equation (1.1), we get that

Gy,x = [Gεδx ]y,x + ε[Gεδx ]y,xGx,x.

Hence [Gεδx ]y,x

Gy,x = 1
1+εGx,x and therefore, we obtain:

Proposition 9. Under the probability μy,x

Gy,x , l̂x follows an exponential distri-
bution of mean Gx,x.

Also E
x(e−〈γ̂,χ〉) =

∑
y[Gχ]x,yκy i.e. [Gχκ]x.

Finally, let us note that a direct calculation shows the following result,
analogous to Proposition 4 in which the case x = y was left aside.

Proposition 10. On loops passing through x, μx,x(dl) = l̂xμ(dl).

An alternative way to prove the proposition is to check it on multiple local
times, using Exercise 11. It can be shown that the algebra formed by linear
combinations of multiple local times generates the loop σ-field. Indeed, the
discrete loop can be recovered by taking the multiple local time it indexes
and noting it is the unique one of maximal index length among non vanishing
multiple local times indexed by multiples in which consecutive points are
distinct. Then it is easy to get the holding times as the product of any of
their powers can be obtained from a multiple local time.

Remark 5. Propositions 4 and 10 can be generalized: For example, if xi are n
points, l̂x1,...,xnμ(dl) can be obtained as the image by circular concatenation
of the product of the bridge measures μxi,xi+1(dl) and

∏
l̂xiμ(dl) can be

obtained as the sum of the images, by concatenation in all circular orders,
of the product of the bridge measures μyσ(i),xσ(i+1)(dl). If (xi, yi) are n

oriented edges,
∏ Nxi,yi

(l)

Cxi,yi
μ(dl) can be obtained as the sum of the images,

by concatenation in all circular orders σ, of the product of the bridge
measures μyσ(i),xσ(i+1)(dl). One can also evaluate expressions of the form
∏

l̂zj
∏ Nxi,yi

(l)

Cxi,yi
μ(dl) as a sum of images, by concatenation in all circular

orders, of a product of bridge measures .
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2.5 Wreath Products

The following construction gives an interesting information about the number
of distinct points visited by the loop, which is more difficult to evaluate than
the occupation measure.

Associate to each point x of X an integer nx. Let Z be the product of
all the groups Z/nxZ. On the wreath product space X × Z, define a set of
conductances C̃(x,z),(x′,z′) by:

C̃(x,z),(x′,z′) =
1

nxnx′
Cx,x′

∏

y �=x,x′
1{zy=z′

y}

and set κ̃(x,z) = κx. This means in particular that in the associated Markov
chain, the first coordinate is an autonomous Markov chain on X and that in
a jump, the Z-configuration can be modified only at the point from which or
to which the first coordinate jumps.

Denote by ẽ the corresponding energy form. Note that λ̃(x,z) = λx.
Then, denoting μ̃ the loop measure and P̃ the transition matrix on X ×Z

defined by ẽ, we have the following

Proposition 11.

∏

x∈X

nx

∫

1{p>1}
∏

x, Nx(l)>0

1
nx

μ(dl) = μ̃(p > 1) = − log(det(I − P̃ )).

In particular, if nx = n for all x,

n|X|
∫

1{p>1}n−#{x, Nx(l)>0}μ(dl) = μ̃(p > 1) = − log(det(I − P̃ )).

Proof. Each time the Markov chain on X×Z defined by ẽ jumps from a point
above x to a point above y, zx and zy are resampled according to the uniform
distribution on Z/nxZ × Z/nyZ, while the other indices zw are unchanged.
It follows that

[P̃ k](x,z)
(x,z) =

∑

x1,...,xk−1

P x
x1

P x1
x2

...P xk−1
x

∏

y∈{x,x1,...,xk−1}

1
ny

.

Note that in the set {x, x1, . . . , xk−1}, distinct points are counted only once,
even if the path visit them several times. There are

∏
x∈X nx possible values

for z. The detail of the proof is left as an exercise. ��
In the case where X is a group and P defines a random walk, P̃ is

associated with a random walk on X × Z equipped with its wreath product
structure (Cf. [38]).
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2.6 Countable Spaces

The assumption of finiteness of X can of course be relaxed but we will not do
it in detail in these notes, though some infinite examples will be considered.
On countable spaces, the previous results can be extended under transience
conditions. In this case, the Dirichlet space H is the space of all functions
f with finite energy e(f) which are limits in energy norm of functions with
finite support, and the energy defines a Hilbertian scalar product on H.

The energy of a measure is defined as supf∈H

μ(f)2

e(f) . Finitely supported
measures have finite energy. Measures of finite energy are elements of the
dual H

∗ of the Dirichlet space. The potential Gμ is well defined for all finite
energy measures μ, by the identity e(f, Gμ) = 〈f, μ〉, valid for all f in the
Dirichlet space. The energy of the measure μ equals e(Gμ) = 〈Gμ, μ〉 (see
[10] for more information).

It should also be noted that the submarkovianity of P (i.e. the non
negativity of κ) is not essential in the construction of the loop measure μ. It
has only to be positive and I − P has to be invertible.

Most important examples of countable graphs are the non ramified
covering of finite graphs (Recall that non ramified means that the projection
is locally one to one, i.e. that the projection on X of each vertex v of the
covering space has the same number of incident edges as v). Consider a non
ramified covering graph (Y, F ) defined by a normal subgroup Hx0 of Γx0 . The
conductances C and the measure λ can be lifted in an obvious way to Y as
Hx0\Γx0-periodic functions but the associated Green function Ĝ or semigroup
are non trivial. By applying Mλ − C, it is easy to check the following:

Proposition 12. Gx,y =
∑

γ∈Hx0\Γx0
Ĝi(x),γ(i(y)) for any section i of the

canonical projection from Y onto X.

Let us consider the universal covering (then Hx0 is trivial). It is easy to
check it will be transient even in the recurrent case as soon as (X, E) is not
circular.

The expression of the Green function Ĝ on a universal covering can be
given exactly when it is a regular tree, i.e. in the regular graph case. In fact
a more general result can be proved as follows:

Given a graph (X, E), set dx =
∑

y 1{x,y}∈E (degree or valency of the
vertex x), Dx,y = dxδx,y and denote Ax,y the incidence matrix 1E({x, y}).

Consider the Green function associated with λx = (dx − 1)u + 1
u , with

0 < u < inf( 1
dx−1 , x ∈ X) and for {x, y} ∈ E, Cx,y = 1.

Proposition 13. On the universal covering Tx0 , Ĝ x,y = ud(x,y) u
1−u2 .

Proof. Note first that as 1
u > dx − 1, κx is positive for all x. Then Ĝ =

(Mλ − C)−1 can be written Ĝ = [u−1I + (D − I)u − A]−1. Moreover, since
we are on a tree,
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∑

x

Az,xud(x,y) = (dz − 1)ud(z,y)+1 + ud(z,y)−1

for z �= y, hence
∑

x(λzδ
z
x − Az,x)ud(x,y) = 0 for z �= y and one checks it

equals 1
u − u for z = y. ��

It follows from Proposition 12 that for any section i of the canonical
projection from Tx0 onto X ,

∑

γ∈Γx0

ud(i(x),γ(i(y))) = (
1
u
− u)Gx,y.

2.7 Zeta Functions for Discrete Loops

We present briefly the terminology of symbolic dynamics (see for example
[36]) in this simple framework: Setting f(x0, x1, . . . , xn, ...) = log(Px0,x1), P
induces the Ruelle operator Lf associated with f .

The pressure is defined as the logarithm of the highest eigenvalue β of P .
It is associated with a unique positive eigenfunction h (normalized in L2(λ)),
by Perron Frobenius theorem. Note that Ph = βh implies λhP = βλh by
duality and that in the recurrent case, the pressure vanishes and h = 1√

λ(X)
.

In continuous time, the lowest eigenvalue of −L i.e. 1− β plays the role of
the pressure.

The equilibrium measure associated with f , m = h2λ is the law of the
stationary Markov chain defined by the transition probability 1

βhx
P x

y hy.
If P1 = 1, i.e. κ = 0, we can consider a Feynman Kac type perturbation

P (εκ) = PM λ
λ+εκ

, with ε ↓ 0 and κ a positive measure. Perturbation theory

(Cf. for example [13]) shows that β(εκ) − 1 = 1
λ(X)

∑
x

λx

1+εκx
− 1 + o(ε) =

− εκ(X)
λ(X) + o(ε) and that h(εk) = 1√

λ(X)
+ o(ε).

We deduce from that the asymptotic behaviour of
∫

(e−ε〈l̂,χ〉 − 1)dμ(εκ)(l) = log(det(I − P (εκ))) − log(det(I − P (ε(κ+χ))))

which is equivalent to − log(1 − β(ε(κ+χ))) + log(1 − β(εκ)) and therefore to
log( κ(X)

κ(X)+χ(X) ).
The study of relations between the loop measure μ and the zeta function

(det(I − sP ))−1 and more generally (det(I −MfP ))−1 with f a function on
[0, 1] can be done in the context of discrete loops.
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exp
( ∑

based
discrete loops

1
p(ξ)

sp(ξ)μ(ξ)
)

= (det(I − sP ))−1

can be viewed as a type of zeta function defined for s ∈ [0 1/β)
Primitive non trivial (based) discrete loops are defined as discrete based

loops which cannot be obtained by the concatenation of n ≥ 2 identical based
loops. Loops are primitive iff they are classes of primitive based loops.

The zeta function has an Euler product expansion: if we denote by ξ◦ this
discrete loop defined by the based discrete loop ξ, and set, for ξ = (ξ1, . . . , ξk),
μ(ξ◦) = P ξ1

ξ2
P ξ2

ξ3
....P ξk

ξ1
, it can be seen, by taking the logarithm, that:

(det(I−sP ))−1 = exp
( ∑

based
discrete loops

1

p(ξ)
sp(ξ)μ(ξ)

)
=

∏

primitive
discrete loops

(
1−

∫

sp(ξ◦)μ(ξ
◦
)
)−1
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