Chapter 2
Loop Measures

2.1 A Measure on Based Loops

We denote by P* the family of probability laws on piecewise constant paths
defined by P;.

P*(y(t1) = @1,...,¥(tn) = zn) = Poy (2, 21) Pig—ty (x1,22) . .. Py —t,_, (Th—1,%n)

The corresponding process is a Markov chain in continuous time. It can also
be constructed as the process &y, where &, is the discrete time Markov
chain starting at z, with transition matrix P, and N; an independent Poisson
process.

In the transient case, the lifetime is a.s. finite and denoting by p(y) the
number of jumps and T; the jump times, we have:

P*(p(y) = kyyr, = 21,1, = Tk, 11 € dby, ..., Ty € diy,)

Cozr-Cop ) zubay,

T e A Hoct<cuye bty

For any integer p > 2, let us define a based loop with p points in X as a
couple I = (£,7) = (€1 < m < p), (T, 1 <m < p+1)) in XP x REF
and set {p11 = &1 (equivalently, we can parametrize the associated discrete
based loop by Z/pZ). The integer p represents the number of points in the
discrete based loop & = (£1,...,&p¢)) and will be denoted p(€), and the 7,
are holding times. Note however that two time parameters are attached to
the base point since the based loops do not in general end or start with a
jump.

Based loops with one point (p = 1) are simply given by a pair (£, 7) in
X xRy.
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14 2 Loop Measures

Based loops have a natural time parametrization [(¢) and a time period
T(€) = PO 7 If we denote 3™, 7; by Tt U(t) = & on [Tp_1, Tn)
(with by convention Ty = 0 and & = &p11).

Let P{*Y denote the (non normalized) “bridge measure” on piecewise
constant paths from x to y of duration ¢ constructed as follows:

Ift <ty <... <ty <t,

X xT T xr 1
]P)t ’y(l(tl) = T1ye--y l(th) = (Eh) = [Ptl]x’f[PtQ_tl]I;...[Pt_th]yh)\—
y

Its mass is p;¥ = “;‘1]:
indexed by [0 t], we can also write

. For any measurable set A of piecewise constant paths

PEY(A) = Po(AN {0 = gD

Y

Exercise 8. Prove that PY'* is the image of P{"Y by the operation of time
reversal on paths indexed by [0 ¢].

A o-finite measure p is defined on based loops by

001 L, T

reX

Remark 4. The introduction of the factor % will be justified in the following.
See in particular formula (2.3). It can be interpreted as the normalization of
the uniform measure on the loop, according to which the base point is chosen.

From the expression of the bridge measure, we see that by definition of pu,
ity <ty <..<tp<t,

zp_q1 1
M(l(tl) =T1,... 7l(th) =uxp, T € dt) = [Pt1+t7th}§;b[Pt27t1}§;---[Pthfth,l}:v: ! Zdt.
2.1)

Note also that for & > 1, using the second expression of P;"¥ and the
fact that conditionally on N; = k, the jump times are distributed like an
increasingly reordered k-uniform sample of [0 ]

MNP (p =k, 61 = 21,8 = 22,...,§, = ap, Th €dty,..., Ty € diy)

e K

= 1{m:11}67 A P;;Pf;...lek 1{0<t1<...tk<t} t_kdtl"'dtk

= 1{I211}P;21 Pf;Pfk 1{0<t1<___tk<t}€_tdt1...dlfk
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Therefore,
[L(p =k& =21, ., & =x, 11 €dty,.., T, € dty, T € dt) (22)
1
= Pj;..Pfl’“Me‘tdtl...dtkdt (2.3)

for k> 1.

Moreover, for one point-loops, p{p(§) = 1,& = x1, 71 € dt} = et;tdt.

It is clear on these formulas that for any positive constant ¢, the energy
forms e and ce define the same loop measure.

2.2 First Properties

Note that the loop measure is invariant under time reversal.

If D is a subset of X, the restriction of y to loops contained in D, denoted
uP is clearly the loop measure induced by the Markov chain killed at the exit
of D. This can be called the restriction property.

Let us recall that this killed Markov chain is defined by the restriction of
A to D and the restriction PP of P to D? (or equivalently by the restriction
ep of the Dirichlet form e to functions vanishing outside D).

As Te*tdt = %, it follows from (2.2) that for k > 1, on based loops,

1
plo(€) = k& = 21, & = ) = TPl Bl (2.4)

In particular, we obtain that, for £ > 2

plp = K) = L Tr(P¥)

and therefore, as Tr(P) = 0, in the transient case:
u(p > 1) Z —Tr(P*) = —log(det(I — P)) = log(det(G H)\ (2.5)

since (denoting M, the diagonal matrix with entries \;), we have

det( I — P) = w

det(M,\)

Note that det(G) is defined as the determinant of the matrix G*¥. It is
the determinant of the matrix representing the scalar product defined on
RIXI" (more precisely, on the space of measures on X) by G in any basis,
orthonormal with respect to the natural euclidean scalar product on RIXI,
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Moreover

/p(1)1{p>1}ﬂ(d1) = Tr(P*)=Tr((I - P)"'P) =Tr(GC)
2

2.3 Loops and Pointed Loops

It is clear on formula (2.1) that p is invariant under the time shift that acts
naturally on based loops.

A loop is defined as an equivalence class of based loops for this shift.
Therefore, 1 induces a measure on loops also denoted by p.

A loop is defined by the discrete loop ¢ formed by the &; in circular order,
(i.e. up to translation) and the associated holding times. We clearly have:

o

M(§ = (1'1,1'2,.. -awk)o) = Pf;P;lk

provided the loop is primitive i.e. does not have a non trivial period, as it is
in this case formed by p equivalent based loops. Otherwise, the right hand
side should be divided by the mutiplicity. However, loops are not easy to
parametrize, that is why we will work mostly with based loops or with pointed
loops. These are defined as based loops ending with a jump, or equivalently
as loops with a starting point. They can be parametrized by a based discrete
loop and by the holding times at each point. Calculations are easier if we work
with based or pointed loops, even though we will deal only with functions
independent of the base point.

The parameters of the pointed loop naturally associated with a based loop
are &1,...,&p and

T+ Tp=1,T=17,2<i<p

An elementary change of variables, shows the expression of p on pointed loops
can be written:

t
wlp =k,& =i, 77 € dt,) = PP . P — e~ Ztige . dty,. 2.6
7 7 T2 x1 Zt

Trivial (p = 1) pointed loops and trivial based loops coincide.
Note that loop functionals can be written

(%) = Loy @i((&,7))i=1,... k)

with @), invariant under circular permutation of the variables (&, 7).
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Then, for non negative @y

ty
>t

/@k(lo),u(dl) = Z/@k((:vi,ti)i =1,...,k)PT . Pfre” Xt ——dt..dty,
and by invariance under circular permutation, the term t; can be replaced
by any t;. Therefore, adding up and dividing by k, we get that

/@k(lo)u(dl) :Z/%@k((xi,ti)i: 1,... k)P PPre™ 2 tidty . dty.

The expression on the right side, applied to any pointed loop functional
defines a different measure on pointed loops, we will denote by p*. It induces
the same measure as p on loops.

We see on this expression that conditionally on the discrete loop, the
holding times of the loop are independent exponential variables.

1 Co o,
wp==kK& =1 edti):E [ —==e (2.7)

i€/ T

Conditionally on p(¢) = k, T is a gamma variable of density %e*t

on R} and (:TL, 1 < < k) an independent ordered k-sample of the uniform
distribution on (0,7) (whence the factor 1). Both are independent, condi-
tionally on the number of points p of the discrete loop. We see that u on based
loops is obtained from p on the loops by choosing the base point uniformly.
On the other hand, it induces a choice of £ biased by the size of the 7;"’s,
different from z* for which this choice is uniform (whence the factor ). But
we will consider only loop functionals for which x4 and p* coincide.

It will be convenient to rescale the holding time at each & by A¢, and set

*
~ T;

T, = .
Ag;

The discrete part of the loop is the most important, though we will see
that to establish a connection with Gaussian fields it is necessary to consider
occupation times. The simplest variables are the number of jumps from x to
y, defined for every oriented edge (x,y)

Nyy=#{i: & = 2,61 =y}

(recall the convention &pr1 =&1) and

Note that N, = #{i > 1 : £, = x} except for trivial one point loops for which
it vanishes.
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Then, the measure on pointed loops (2.6) can be rewritten as:
* =~ —A tdt

wp=1&=a,7edt)=¢ m?aund (2.8)

N,y —N, —Xe;ti gp
w(p =k, & =a:,7 € dt;) kHc H/\z lelz_/[Z)\gie sitidt;. (2.9)
i P

Another bridge measure p*¥ can be defined on paths « from x to y:

pt) = [ Bt

Note that the mass of pu*¥ is G*Y. We also have, with similar notations as
the one defined for loops, p denoting the number of jumps

w(p(y) =k,yn =21, ..y, = X1, Th € dtr, .. Ty, € dty, T € dt)

Cz,z Cw ,T Cw s
- 1/\ ;: > Y ] foctr < ctp<ty € Tdby.dtdt.

From now on, we will assume, unless otherwise specified, that we are in the
transient case.

For any z # y in X and s € [0, 1], setting Pl = PYif (u,v) # (z,9)
and PZSS)’I = sPj, we can prove in the same way as (2.5) that:

(Ve vlps1y) = — log(det(I — PO,

Differentiating in s = 1, and remembering that for any invertible matrix

function M(s), & log(det( (s)) = Tr(M'(s)M(s)™1), it follows that:

(Nay) = [(I = P)" LR = G™¥Cay
and
= i(Nay) = AG™" — 1 (2.10)
y
(as G(My — C) = Id).
Exercise 9. Show that more generally
1( Ny (Nay — 1)ecc(Nay — b+ 1)) = (k — 1)I(GTYC, )"

Hint: Show that if M"(s) vanishes,

mn

L log(det(M(s))) = (~1)" " (n — )ITr((M'(s)M(s)")").
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Exercise 10. Show that more generally, if z;,y; are n distinct oriented

edges:
'U(H Nmivyi) = Hcmi,yi% Z HGyo(i)awo(iﬂ)

gES,

Hint: Introduce [P1+52)]2 equal to P2 if (x,y) # (x,y;) for all 4, and
equal to s; Py if (z,y) = (zi,9:)-

We finally note that if C, , > 0, any path segment on the graph starting
at x and ending at y can be naturally extended into a loop by adding a jump
from y to x. We have the following

Proposition 4. For C,, > 0, the natural extension of p™Y to loops
coincides with yz(l) w(dl).

Proof. The first assertion follows from the formulas, noticing that a loop [ can
be associated to Ny ,(I) distinct bridges from z to y, obtained by “cutting”
one jump from y to x. O

Note that a) shows that the loop measure induces bridge measures p*v
when Cy, > 0. If C , vanishes, an arbitrarily small positive perturbation
creating a non vanishing conductance between x and y allows to do it. More
precisely, denoting by e(%) the energy form equal to e except for the additional
conductance C:EE?)J = ¢, u*Y can be represented as d%ue(s) |e=0-

2.4 Occupation Field

To each loop I° we associate local times, i.e. an occupation field {l;, z e X}

defined by
p(l)

N (1)
llﬂ = /O 1{1(5 _I} )\ dS = Z 1{51_30}7'1

for any representatlve I = (&, 7)) of I°.
For a path v, 7 is defined in the same way.
Note that

p((1 = e gy = [ et BTl 1. (21)
0

x

The proof goes by expanding 1 — e~ %! before the integration, assuming first
that « is small and then by analyticity of both members, or more elegantly,
noticing that f;(e_cm —e~47) 4z ig symmetric in (a,b) and (c, d), by Fubini’s
theorem. R

In particular, pu(I®1y,—1}) = 3=
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From formula (2.7), we get easily that the joint conditional distribution
of (lAf”, x € X) given (N, x € X) is a product of gamma distributions. In
particular, from the expression of the moments of a gamma distribution, we
get that for any function @ of the discrete loop and k£ > 1,

()1 sy ®@) = A7 Fu((Ny + k = 1) (N + 1) N, ®).

In particular, by (2.10) pu(I¥) = ﬁ[u(]\fm) +1] = G¥=.

Note that functions of I are not the only functions naturally defined on
the loops. Other such variables of interest are, for n > 2, the multiple local
times, defined as follows:

n—1

TE1 e 1

[Fromtn = Z/ Lt =14yl (tne ) =2nsems z(tn):xj}H/\—dt
j=0 0<t1<..<tn<T Zq

It is easy to check that, when the points x; are distinct,

Totseenn _ Z 3 Hl{&l_m]}ﬁl (2.12)

7=01<i1 <. <in<p(l) I=1

Note that in general 712k cannot be expressed in terms oflA, but

l lmn — 5 lma(l)v ,Ig(n)

O'ESn
In particular, (%% = ﬁ[ﬁ]" It can be viewed as a n-th self

intersection local time.
One can deduce from the definitions of p the following:

Proposition 5. p(l™1%n) = GPP2 G208 GPnoT1
) 73 72 — 1 o o o o o(n) o
In particular, p(I%* .17 ) == 3" g GFo0 T GFo2T0@)  GPo(n)To),

Proof. Let us denote % [Py by pi? or pi(x,y). From the definition of

T8 Tn and I M(Twl’---@”) equals:

n—1
1
Z/\zZ// =D, (T, T145) - - ptftn(fanrjaJ?)Hdtidt-
T 7=0

O<ti<..<tn<t} t

where sums of indices k+j are computed mod(n). By the semigroup property,
it equals

n—1

1
Z// TPt (P14, T245) - - Prist—tn (@i, 1ey) [] dtadt.
= {0<t1<...<tn<t}
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Performing the change of variables vo = to — t1,..,vp = tn — th—1,v1 =
ti +t—t,, and v = t;, we obtain:

n—1
1
E /{0 o }mpvz(xl+jax2+j) o Doy (T, T14g) I I dv;dv
j=0 <v<wvyi,0<v; n

= Z/Ow} —— + npv2(5171+j;5172+j)---pv1($n+j;$1+j)Hdvi

.
= Z/{ —————pu, (21, 22) ... o, (T, 1) [ [ dvs

O<7Ji} U1 + + Un

:/ pvz(gcl,xg)...pvl(:vn,:vl)Hdvi
{0<w;}
o G11;$2G‘T2513”.G1n511.

Note that another proof can be derived from formula (2.12) . O

Exercise 11. (Shuffle product) Given two positive integers n > k, let Py, x
be the family of partitions of {1, 2, ...n} into k consecutive non empty intervals

I = (il,il+1,...,il+1 — 1) withi; =1<is < ... <ip <igp1=n-+ L
Show that
m—1inf(n,m)
Z\m17~~-,$nﬁ/17-~-7ym — E E E Z\Zzl SYjdJ1 T Ig s YitJy
j=0 k=1 I€Pn ik JEPm i

where for example the term y;; 7, appearing in the upper index should be
read as j + j1,...,J +j2 — L.

Similarly, we can define N to be

wlay1)7"'(m7l7yn)
n—1 n
z : § : Hl{&l:rup&lﬂzyzﬂ}'
J=01<i1<...<in <p(l) I=1

Noy(Noy—1)...(No,y—n+1)
(n—1)! '

If (x;,yi) = (z,y) for all 4, it equals
Notice that

1
HN(Ii,yi) = n Z N(Ia(l),ya(l))a---(wa(n)7y)'

ceS,
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Then we have the following:

Proposition 6. [ Ny, ). (wnp0(Dp(dl) = (H Cmi7yi)Gy1;$2Gy27£E3 e
GYnTr,

The proof is left as exercise.

Exercise 12. For 1 =25 =...= 1z}, we could define different self intersec-

tion local times i
ORI Sl | (T

1<iy <..<ip<p(l) I=1

which vanish on N, < k. Note that

®
- 1, - ~
17:(2) — 5(([ )2 — E 1{§i:x}(Ti)2-
i=1

1. For any function @ of the discrete loop, show that

N, —1)

~ _ N,
UG ) :AI%( ( 5 1{%22}@)-

2. More generally prove in a similar way that

Ny(Ny —1)...(Ny — k+1)
k!

(1™ ®p) = )\;kﬂ( 1{N12k}¢)-

Let us come back to the occupation field to compute its Laplace transform.
From the Feynman—Kac formula, it comes easily that, denoting M x the
diagonal matrix with coefficients 3=

Pre (e () — 1) = )\i(exp(t(P — 1= M))s — exp(t(P — 1))3).

T

Integrating in ¢ after expanding, we get from the definition of p (first for x
small enough):

. 50 o k—1
[ = 0au) =32 [ e - 1) - 1@ e
FITr((P — M )F) = Tr((P)F)

=—Tr(log(I — P+ My )) + Tr(log(I — P)).



2.4 Occupation Field 23

Hence, as Tr(log) = log(det)

/(e‘@’<> — 1)du(l) = log[det(~L(—L + My /) ™")]

= —logdet(I + VMx) = logdet(I + GMy)

which now holds for all non negative x as both members are analytic in Y.
Besides, by the “resolvent” equation (1.1):

det(Gy)

det(I + GM,)™! =det(I — G, M,) = d0t(C)

(2.13)

Note that det(I + GM,) = det(l + M xGM /) and det(I — Gy My) =
det(I — M 5xGyM /x), so we can deal with symmetric matrices. Finally we
have

Proposition 7. u(e_<7’x> —1) = —log(det(I + M xGM s5)) = log(%)—))

Note that in particular u(e_tiz —1) = —log(1 4+ tG™*). Consequently, the

image measure of 1 by 1% is I{s>0p— exp(— i —)ds

Considering the Laguerre-type polynomials Dy with generating function
o0
ut
Ztka(u) =elt — 1
1

and setting o, = G**, we have:

Proposition 8. The variables \/LEJI;D;C(Z—Z) are orthonormal in L*(u) for

k >0, and more generally

T 1 ;
E(UﬁDk(U—)UZDj(U—)) = 20k3(G W2k,
z Yy

Proof. By Proposition 7,

Ja- e - et

ozt 048 1 oxt  _ tGTY
=log(l — —= +log(l — —¥ —og det ( Tto.i Ttoot
g( 1+ Uxt) g( L+ Uys) & - lsfayys - liils

= —log(1 — st(G™Y)?).

The proposition follows by expanding both sides in powers of s and ¢, and
identifying the coefficients. O
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Note finally that if xy has support in D, by the restriction property

det(Gg) )

(LG py—oy (€7 <7 =1)) = —log(det(I+M x GV M fx)) = log(m '

Here the determinants are taken on matrices indexed by D and G” denotes
the Green function of the process killed on leaving D.

For paths we have ]P’f’y(efﬁ’xh = % exp(t(L — M§ ))«,y- Hence
e 1 -
PN = (1= P M)y = (G,
y

In particular, note that from the resolvent equation (1.1), we get that

GV = [Ges, ]V + €[Ges, VTG,

[Ces 7" _ 1 d theref btain:
Grr— = Trege= an erefore, we obtain:

Hence

Proposition 9. Under the probability %, [ follows an exponential distri-
bution of mean G**.

Also E* (e~ (X)) = 2 (G Ey Le. [Gyr]®.
Finally, let us note that a direct calculation shows the following result,
analogous to Proposition 4 in which the case x = y was left aside.

Proposition 10. On loops passing through x, p™*(dl) = lAf”u(dl).

An alternative way to prove the proposition is to check it on multiple local
times, using Exercise 11. It can be shown that the algebra formed by linear
combinations of multiple local times generates the loop o-field. Indeed, the
discrete loop can be recovered by taking the multiple local time it indexes
and noting it is the unique one of maximal index length among non vanishing
multiple local times indexed by multiples in which consecutive points are
distinct. Then it is easy to get the holding times as the product of any of
their powers can be obtained from a multiple local time.

Remark 5. Propositions 4 and 10 can be generalized: For example, if z; are n
points, {#1-*nu(dl) can be obtained as the image by circular concatenation
of the product of the bridge measures p® *~+1(dl) and [[1% u(dl) can be
obtained as the sum of the images, by concatenation in all circular orders,
of the product of the bridge measures p¥e@-FoG+1(dl). If (z;,y;) are n

oriented edges, [] N—éﬂ&u(dl) can be obtained as the sum of the images,
T Yi

by concatenation in all circular orders o, of the product of the bridge
measures p¥ePe6+1(dl). One can also evaluate expressions of the form

1% 11 —Id&,u(dl) as a sum of images, by concatenation in all circular

5'3 2Yq

orders, of a product of bridge measures .
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2.5 Wreath Products

The following construction gives an interesting information about the number
of distinct points visited by the loop, which is more difficult to evaluate than
the occupation measure.

Associate to each point x of X an integer n,. Let Z be the product of
all the groups Z/n,Z. On the wreath product space X x Z, define a set of
conductances 5'(9672)7(96/&/) by:

5(m,z),(m’,z’) = g w x’ H 1{zy_z’}

y#z,x’

and set K(; ) = k. This means in particular that in the associated Markov
chain, the first coordinate is an autonomous Markov chain on X and that in
a jump, the Z-configuration can be modified only at the point from which or
to which the first coordinate jumps. _

Denote by € the corresponding energy form. Note that A, .y = Az.

Then, denoting & the loop measure and P the transition matrix on X x Z
defined by e, we have the following

Proposition 11.

1T nz/1{p>1} nl p(dl) = fi(p > 1) = — log(det(I — P)).

reX z, Nz (1)>0 v

In particular, if n, = n for all x,
nl X! / 1{p>1}n7#{x’ Na@>0} (dl) = fi(p > 1) = —log(det(I — P)).

Proof. Each time the Markov chain on X x Z defined by € jumps from a point
above z to a point above y, 2z, and z, are resampled according to the uniform
distribution on Z/n,Z x Z/n,Z, while the other indices z,, are unchanged.
It follows that

pk(x,2) T pT L 1
[PHGE = Z P2 PTl. PTe H —.
L1 Th—1 ye{z,x1,...,.x—1} v

Note that in the set {x, 21,...,zr_1}, distinct points are counted only once,
even if the path visit them several times. There are [], .y n, possible values
for z. The detail of the proof is left as an exercise. O

In the case where X is a group and P defines a random walk, P is
associated with a random walk on X x Z equipped with its wreath product
structure (Cf. [38]).
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2.6 Countable Spaces

The assumption of finiteness of X can of course be relaxed but we will not do
it in detail in these notes, though some infinite examples will be considered.
On countable spaces, the previous results can be extended under transience
conditions. In this case, the Dirichlet space H is the space of all functions
f with finite energy e(f) which are limits in energy norm of functions with

finite support, and the energy defines a Hilbertian scalar product on H.

The energy of a measure is defined as sup;cy %)ﬁ Finitely supported

measures have finite energy. Measures of finite energy are elements of the
dual H* of the Dirichlet space. The potential Gu is well defined for all finite
energy measures j, by the identity e(f,Gu) = (f, ), valid for all f in the
Dirichlet space. The energy of the measure p equals e(Gu) = (Gu, u) (see
[10] for more information).

It should also be noted that the submarkovianity of P (i.e. the non
negativity of k) is not essential in the construction of the loop measure u. It
has only to be positive and I — P has to be invertible.

Most important examples of countable graphs are the non ramified
covering of finite graphs (Recall that non ramified means that the projection
is locally one to one, i.e. that the projection on X of each vertex v of the
covering space has the same number of incident edges as v). Consider a non
ramified covering graph (Y, F') defined by a normal subgroup H,, of I;,. The
conductances C' and the measure A can be lifted in an obvious way to Y as
H,,\I';,-periodic functions but the associated Green function G or semigroup
are non trivial. By applying M) — C, it is easy to check the following:

Proposition 12. G*Y = 37, | Gi@AGW) for any section i of the
canonical projection from'Y onto X.

Let us consider the universal covering (then H,, is trivial). It is easy to
check it will be transient even in the recurrent case as soon as (X, E) is not
circular. N

The expression of the Green function G on a universal covering can be
given exactly when it is a regular tree, i.e. in the regular graph case. In fact
a more general result can be proved as follows:

Given a graph (X, FE), set d, = Zy l{zyer (degree or valency of the
vertex ), Dy 4 = dyd,,4 and denote A, , the incidence matrix 1g({z,y}).

Consider the Green function associated with A, = (d, — 1)u + L, with
0<u< inf(ﬁ,x € X) and for {z,y} € E, Cp , = 1.

u
1—u? "

Proposition 13. On the universal covering T, G =Y = yd@y)

Proof. Note first that as £ > d, — 1, s, is positive for all 2. Then G =
(My — C)~* can be written G = [u=I + (D — I)u — A]~!. Moreover, since
we are on a tree,
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ZAZ mu (d 71) d(z,y)+1+ud(z,y)71

for z # y, hence 3" (\.6% — A, ,)u®@¥) = 0 for z # y and one checks it
equals % —u for z =y. O

It follows from Proposition 12 that for any section i of the canonical
projection from ¥, onto X,

S @) - ey

u
'YEFmU

2.7 Zeta Functions for Discrete Loops

We present briefly the terminology of symbolic dynamics (see for example
[36]) in this simple framework: Setting f(zo,%1,...,%n,...) = 10g(Pyy.,), P
induces the Ruelle operator L associated with f.

The pressure is defined as the logarithm of the highest eigenvalue 3 of P.
It is associated with a unique positive eigenfunction h (normalized in L?())),
by Perron Frobenius theorem. Note that Ph = (h implies \AhP = SAh by

duality and that in the recurrent case, the pressure vanishes and h = ——4—.
y p VAX)

In continuous time, the lowest eigenvalue of —L i.e. 1 — 3 plays the role of
the pressure.

The equilibrium measure associated with f, m = h2\ is the law of the
stationary Markov chain defined by the transition probability B%P; hy.

If P1 =1, ie k=0, we can consider a Feynman Kac type perturbation

pler) = PM N with € | 0 and k a positive measure. Perturbation theory

Ct. for example 13]) shows that 6(5“) —-1= —14o0() =
,\(X)
_en(X (k) —
+ o(¢) and that h )\(X) + o(e).

x 1+5n

A(X
We deduce from that the asymptotic behaviour of

/ (e==(%) — 1)du) (1) = log(det (I — PEM)) — log(det(I — PEE+)))

which is equivalent to — log(1 — BE"+X)) 4 1og(1 — B%)) and therefore to
log ().
£(X)+x(X)
The study of relations between the loop measure p and the zeta function
(det(I — sP))~! and more generally (det(I — M;P))~! with f a function on

[0,1] can be done in the context of discrete loops.
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ex Lsp(f) — (det(I — sP))~!
o ( DI #(€)) = (det(I - 5P))

discrete loops

can be viewed as a type of zeta function defined for s € [0 1/5)

Primitive non trivial (based) discrete loops are defined as discrete based
loops which cannot be obtained by the concatenation of n > 2 identical based
loops. Loops are primitive iff they are classes of primitive based loops.

The zeta function has an Euler product expansion: if we denote by £° this
discrete loop defined by the based discrete loop &, and set, for & = (&1, ..., &),
w(€®) = Pg; ng....ng, it can be seen, by taking the logarithm, that:

_ 1 : ° o\ —1
@ea—sP=ew( X —oOue) = I (- / PEp(E"))
based . primitive
discrete loops discrete loops
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