
Chapter 2
Simultaneous Diagonalisation
(Modal Damping)

In this chapter we describe undamped and modally damped systems. They
are wholly explained by the knowledge of the mass and the stiffness matrix.
This is the broadly known case and we shall outline it here, not only because
it is an important special case, but because it is often used as a starting
position in the analysis of general damped systems.

2.1 Undamped Systems

The system (1.1) is called undamped,, if the damping vanishes: 𝐶 = 0.
The solution of an undamped system is best described by the generalised

eigenvalue decomposition of the matrix pair 𝐾,𝑀 :

𝛷𝑇𝐾𝛷 = diag(𝜇1, . . . , 𝜇𝑛), 𝛷𝑇𝑀𝛷 = 𝐼. (2.1)

We say that the matrix 𝛷 reduces the pair 𝐾,𝑀 of symmetric matrices to
diagonal form by congruence. This reduction is always possible, if the matrix
𝑀 is positive definite. Instead of speaking of the matrix pair one often speaks
of the matrix pencil, (that is, matrix function) 𝐾 − 𝜆𝑀 . If 𝑀 = 𝐼 then (2.1)
reduces to the (standard) eigenvalue decomposition valid for any symmetric
matrix 𝐾, in this case the matrix 𝛷 is orthogonal.

An equivalent way of writing (2.1) is

𝐾𝛷 =𝑀𝛷diag(𝜇1, . . . , 𝜇𝑛), 𝛷𝑇𝑀𝛷 = 𝐼. (2.2)

or also
𝐾𝜙𝑗 = 𝜇𝑗𝑀𝜙𝑗 , 𝜙𝑇𝑗 𝑀𝜙𝑘 = 𝛿𝑘𝑗 .

Thus, the columns 𝜙𝑗 of 𝛷 form an 𝑀 -orthonormal basis of eigenvectors of
the generalised eigenvalue problem

𝐾𝜙 = 𝜇𝑀𝜙, (2.3)
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16 2 Simultaneous Diagonalisation (Modal Damping)

whereas 𝜇𝑘 are the zeros of the characteristic polynomial

det(𝐾 − 𝜇𝑀)

of the pair 𝐾,𝑀 . Hence

𝜇 =
𝜙𝑇𝐾𝜙

𝜙𝑇𝑀𝜙
, in particular, 𝜇𝑘 =

𝜙𝑇𝑘𝐾𝜙𝑘

𝜙𝑇𝑘𝑀𝜙𝑘

shows that all 𝜇𝑘 are positive, if both 𝐾 and𝑀 are positive definite as in our
case. So we may rewrite (2.1) as

𝛷𝑇𝐾𝛷 = 𝛺2, 𝛷𝑇𝑀𝛷 = 𝐼 (2.4)

with
𝛺 = diag(𝜔1, . . . , 𝜔𝑛), 𝜔𝑘 =

√
𝜇𝑘 (2.5)

The quantities 𝜔𝑘 will be called the eigenfrequencies of the system (1.1) with
𝐶 = 0. The generalised eigenvalue decomposition can be obtained by any
common matrix computation package (e.g. by calling eig(K,M) in MATLAB).

The solution of the homogeneous equation

𝑀𝑥̈+𝐾𝑥 = 0 (2.6)

is given by the formula

𝑥(𝑡) = 𝛷

⎡
⎢⎣
𝑎1 cos𝜔1𝑡+ 𝑏1 sin𝜔1𝑡

...

𝑎𝑛 cos𝜔𝑛𝑡+ 𝑏𝑛 sin𝜔𝑛𝑡

⎤
⎥⎦ , 𝑎 = 𝛷−1𝑥0, 𝜔𝑘𝑏𝑘 = (𝛷−1𝑥̇0)𝑘,

(2.7)
which is readily verified. The values 𝜔𝑘 are of interest even if the damping 𝐶
does not vanish and in this context they are called the undamped frequencies
of the system (1.1).

In physical language the formula (2.7) is oft described by the phrase ‘any
oscillation is a superposition of harmonic oscillations or eigenmodes’ which
are

𝜙𝑘(𝑎𝑘 cos𝜔𝑘𝑡+ 𝑏𝑘 sin𝜔𝑘𝑡), 𝑘 = 1, . . . , 𝑛.

Exercise 2.1 Show that the eigenmodes are those solutions 𝑥(𝑡) of the
equation (2.6) in which ‘all particles oscillate in the same phase’ that is,

𝑥(𝑡) = 𝑥0𝑇 (𝑡),

where 𝑥0 is a fixed non-zero vector and 𝑇 (𝑡) is a scalar-valued function of 𝑡
(the above formula is also well known under the name ‘Fourier ansatz’).
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The eigenvalues 𝜇𝑘, taken in the non-decreasing ordering, are given by the
known minimax formula

𝜇𝑘 = max
𝑆𝑛−𝑘+1

min
𝑥∈𝑆𝑛−𝑘+1

𝑥 ∕=0

𝑥𝑇𝐾𝑥

𝑥𝑇𝑀𝑥
= min

𝑆𝑘

max
𝑥∈𝑆𝑘
𝑥 ∕=0

𝑥𝑇𝐾𝑥

𝑥𝑇𝑀𝑥
, (2.8)

where 𝑆𝑗 denotes any subspace of dimension 𝑗. We will here skip proving
these – fairly known – formulae, valid for any pair𝐾,𝑀 of symmetric matrices
with𝑀 positive definite. We will, however, provide a proof later within a more
general situation (see Chap. 10 below).

The eigenfrequencies have an important monotonicity property. We intro-
duce the relation called relative stiffness in the set of all pairs of positive
definite symmetric matrices 𝐾,𝑀 as follows. We say that the pair 𝐾̂, 𝑀̂ is
relatively stiffer than 𝐾,𝑀 , if the matrices 𝐾̂ −𝐾 and 𝑀 − 𝑀̂ are positive
semidefinite (that is, if stiffness is growing and the mass is falling).

Theorem 2.2 Increasing relative stiffness increases the eigenfrequencies.
More precisely, if 𝐾̂ − 𝐾 and 𝑀 − 𝑀̂ are positive semidefinite then the
corresponding non-decreasingly ordered eigenfrequencies satisfy

𝜔𝑘 ≤ 𝜔̂𝑘.

Proof. Just note that
𝑥𝑇𝐾𝑥

𝑥𝑇𝑀𝑥
≤ 𝑥𝑇 𝐾̂𝑥

𝑥𝑇 𝑀̂𝑥

for all non-vanishing 𝑥. Then take first minimum and then maximum and the
statement follows from (2.8). Q.E.D.

If in Example 1.1 the matrix 𝐾̂ is generated by the spring stiffnesses 𝑘𝑗
then by (1.10) for 𝛿𝐾 = 𝐾̂ −𝐾 we have

𝑥𝑇 𝛿𝐾𝑥 = 𝛿𝑘1𝑥
2
1 +

𝑛∑
𝑗=2

𝛿𝑘𝑗(𝑥𝑗 − 𝑥𝑗−1)
2 + 𝛿𝑘𝑛+1𝑥

2
𝑛, (2.9)

where
𝛿𝑘𝑗 = 𝑘𝑗 − 𝑘𝑗 .

So, 𝑘𝑗 ≥ 𝑘𝑗 implies the positive semidefiniteness of 𝛿𝐾, that is the relative

stiffness is growing. The same happens with the masses: take 𝛿𝑀 = 𝑀̂ −𝑀 ,
then

𝑥𝑇 𝛿𝑀𝑥 =

𝑛∑
𝑗=1

𝛿𝑚𝑗𝑥
2
𝑗 , 𝛿𝑚𝑗 = 𝑚̂𝑗 −𝑚𝑗
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and 𝑚̂𝑗 ≤ 𝑚𝑗 implies the negative semidefiniteness of 𝛿𝑀 – the relative
stiffness is again growing. Thus, our definition of the relative stiffness has
deep physical roots.

The next question is: how do small changes in the system parameters
𝑘𝑗 ,𝑚𝑗 affect the eigenvalues? We make the term ‘small changes’ precise as
follows

∣𝛿𝑘𝑗 ∣ ≤ 𝜖𝑘𝑗 , ∣𝛿𝑚𝑗 ∣ ≤ 𝜂𝑚𝑗 (2.10)

with 0 ≤ 𝜖, 𝜂 < 1. This kind of relative error is typical both in physical
measurements and in numerical computations, in fact, in floating point
arithmetic 𝜖, 𝜂 ≈ 10−𝑑 where 𝑑 is the number of significant digits in a decimal
number.

The corresponding errors in the eigenvalues will be an immediate conse-
quence of (2.10) and Theorem 2.2. Indeed, from (2.9) and (2.10) it follows

∣𝑥𝑇 𝛿𝐾𝑥∣ ≤ 𝜖𝑥𝑇𝐾𝑥, ∣𝑥𝑇 𝛿𝑀𝑥∣ ≤ 𝜂𝑥𝑇𝑀𝑥. (2.11)

Then

(1 − 𝜖)𝑥𝑇𝐾𝑥 ≤ 𝑥𝑇 𝐾̂𝑥 ≤ (1 + 𝜖)𝑥𝑇𝐾𝑥

and

(1− 𝜂)𝑥𝑇𝑀𝑥 ≤ 𝑥𝑇 𝑀̂𝑥 ≤ (1 + 𝜂)𝑥𝑇𝑀𝑥

such that the pairs

(1− 𝜖)𝐾, (1 + 𝜂)𝑀 ; 𝐾̂, 𝑀̂ ; (1 + 𝜖)𝐾, (1− 𝜂)𝑀

are ordered in growing relative stiffness. Therefore by Theorem 2.2 the
corresponding eigenvalues

1− 𝜖

1 + 𝜂
𝜇𝑘, 𝜇̂𝑘,

1 + 𝜖

1− 𝜂
𝜇𝑘

satisfy
1− 𝜖

1 + 𝜂
𝜇𝑘 ≤ 𝜇̂𝑘 ≤ 1 + 𝜖

1− 𝜂
𝜇𝑘 (2.12)

(and similarly for the respective 𝜔𝑘, 𝜔̂𝑘). In particular, for 𝛿𝜇𝑘 = 𝜇̂𝑘 −𝜇𝑘 the
relative error estimates

∣𝛿𝜇𝑘∣ ≤ 𝜖 + 𝜂

1− 𝜂
𝜇𝑘 (2.13)

are valid. Note that both (2.12) and (2.13) are quite general. They depend
only on the bounds (2.11), the only requirement is that both matrices 𝐾,𝑀
be symmetric and positive definite.
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In the case 𝑀̂ =𝑀 = 𝐼 the more commonly known error estimate holds

𝜇𝑘 +min𝜎(𝐾̂ −𝐾) ≤ 𝜇̂𝑘 ≤ 𝜇𝑘 +max𝜎(𝐾̂ −𝐾) (2.14)

and in particular
∣𝛿𝜇𝑘∣ ≤ ∥𝐾̂ −𝐾∥. (2.15)

The proof again goes by immediate application of Theorem 2.2 and is left to
the reader.

2.2 Frequencies as Singular Values

There is another way to compute the eigenfrequencies 𝜔𝑗 . We first make the
decomposition

𝐾 = 𝐿1𝐿
𝑇
1 , 𝑀 = 𝐿2𝐿

𝑇
2 , (2.16)

𝑦1 = 𝐿𝑇
1 𝑥, 𝑦2 = 𝐿𝑇

2 𝑥̇,

(here 𝐿1, 𝐿2 may, but need not be Cholesky factors). Then we make the
singular value decomposition

𝐿−1
2 𝐿1 = 𝑈𝜮𝑉 𝑇 (2.17)

where 𝑈, 𝑉 are real orthogonal matrices and 𝜮 is diagonal with positive
diagonal elements. Hence

𝐿−1
2 𝐿1𝐿

𝑇
1 𝐿

−𝑇
2 = 𝑈𝜮2𝑈𝑇

or
𝐾𝛷 =𝑀𝛷𝜮2, 𝛷 = 𝐿−𝑇

2 𝑈

Now we can identify this 𝛷 with the one from (2.4) and 𝜮 with 𝛺. Thus the
eigenfrequencies of the undamped system are the singular values of the matrix
𝐿−1
2 𝐿1.

1 The computation of 𝛺 by (2.17) may have advantages over the one
by (2.2), in particular, if 𝜔𝑗 greatly differ from each other. Indeed, by setting
in Example 1.1 𝑛 = 3, 𝑘4 = 0, 𝑚𝑖 = 1 the matrix 𝐿1 is directly obtained as

𝐿1 =

⎡
⎣
𝜅1 −𝜅2 0

0 𝜅2 −𝜅3
0 0 𝜅3

⎤
⎦ , 𝜅𝑖 =

√
𝑘𝑖. (2.18)

If we take 𝑘1 = 𝑘2 = 1, 𝑘3 ≫ 1 (that is, the third spring is almost rigid)
then the way through (2.2) may spoil the lower frequency. For instance, with

1Equivalently we may speak of 𝜔𝑗 as the generalised singular values of the pair 𝐿1, 𝐿2.
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the value 𝑘3 = 9.999999 ⋅ 1015 the double-precision computation with Matlab
gives the frequencies

sqrt(eig(K,M)) svd(L_2\L_1)

7.962252170181258e-01 4.682131924621356e-01

1.538189001320851e+00 1.510223959022110e+00

1.414213491662415e+08 1.414213491662415e+08

The singular value decomposition gives largely correct low eigenfrequen-
cies. This phenomenon is independent of the eigenvalue or singular value
algorithm used and it has to do with the fact that standard eigensolution
algorithms compute the lowest eigenvalue of (2.2) with the relative error
≈ 𝜖𝜅(𝐾𝑀−1), that is, the machine precision 𝜖 is amplified by the con-
dition number 𝜅(𝐾𝑀−1) ≈ 1016 whereas the same error with (2.17) is
≈ 𝜖𝜅(𝐿−1

2 𝐿1) = 𝜖
√
𝜅(𝐾𝑀−1) (cf. e.g. [19]). In the second case the

amplification is the square root of the first one!

2.3 Modally Damped Systems

Here we study those damped systems which can be completely explained by
their undamped part. In order to do this it is convenient to make a coordinate
transformation; we set

𝑥 = 𝛷𝑥′, (2.19)

where 𝛷 is any real non-singular matrix. Thus (1.1) goes over into

𝑀 ′𝑥̈′ + 𝐶′𝑥̇′ +𝐾 ′𝑥′ = 𝑔(𝑡), (2.20)

with

𝑀 ′ = 𝛷𝑇𝑀𝛷, 𝐶′ = 𝛷𝑇𝐶𝛷, 𝐾 ′ = 𝛷𝑇𝐾𝛷, 𝑔 = 𝛷𝑇 𝑓. (2.21)

Choose now the matrix 𝛷 as in the previous section, that is,

𝛷𝑇𝑀𝛷 = 𝐼, 𝛷𝑇𝐾𝛷 = 𝛺 = diag(𝜔2
1 , . . . , 𝜔

2
𝑛).

(The right hand side 𝑓(𝑡) in (2.20) can always be taken into account by
the Duhamel’s term as in (3.1) so we will mostly restrict ourselves to consider
𝑓 = 0 which corresponds to a ‘freely oscillating’ system.)

Now, if
𝐷 = (𝑑𝑗𝑘) = 𝛷𝑇𝐶𝛷 (2.22)
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is diagonal as well then (1.1) is equivalent to

𝜉𝑘 + 𝑑𝑘𝑘𝜉𝑘 + 𝜔2
𝑘𝜉𝑘 = 0, 𝑥 = 𝛷𝜉

with the known solution

𝜉𝑘 = 𝑎𝑘𝑢
+(𝑡, 𝜔𝑘, 𝑑𝑘𝑘) + 𝑏𝑘𝑢

−(𝑡, 𝜔𝑘, 𝑑𝑘𝑘), (2.23)

𝑢+(𝑡, 𝜔, 𝑑) = 𝑒𝜆
+(𝜔,𝑑) 𝑡,

𝑢−(𝑡, 𝜔, 𝑑) =

{
𝑒𝜆

−(𝜔,𝑑) 𝑡, 𝛿(𝜔, 𝑑) ∕= 0

𝑡 𝑒𝜆
+(𝜔,𝑑) 𝑡, 𝛿(𝜔, 𝑑) = 0

where

𝛿(𝜔, 𝑑) = 𝑑2 − 4𝜔2,

𝜆±(𝜔, 𝑑) =
−𝑑±√

𝛿(𝜔, 𝑑)

2
.

The constants 𝑎𝑘, 𝑏𝑘 in (2.23) are obtained from the initial data 𝑥0, 𝑥̇0
similarly as in (2.7).

However, the simultaneous diagonalisability of the three matrices𝑀,𝐶,𝐾
is rather an exception, as shown by the following theorem.

Theorem 2.3 Let 𝑀,𝐶,𝐾 be as in (1.1). A non-singular 𝛷 such that the
matrices 𝛷𝑇𝑀𝛷, 𝛷𝑇𝐶𝛷, 𝛷𝑇𝐾𝛷 are diagonal exists, if and only if

𝐶𝐾−1𝑀 =𝑀𝐾−1𝐶. (2.24)

Proof. The ‘only if part’ is trivial. Conversely, using (2.4) the identity (2.24)
yields

𝐶𝛷𝛺−2𝛷−1 = 𝛷−𝑇𝛺−2𝛷𝑇𝐶,

hence
𝛷𝑇𝐶𝛷𝛺−2 = 𝛺−2𝛷𝑇𝐶𝛷

and then
𝛺2𝛷𝑇𝐶𝛷 = 𝛷𝑇𝐶𝛷𝛺2

i.e. the two real symmetric matrices 𝛺2 and 𝐷 = 𝛷𝑇𝐶𝛷 commute and 𝛺2 is
diagonal, so there exists a real orthogonal matrix 𝑈 such that 𝑈𝑇𝛺2𝑈 = 𝛺2,
and 𝑈𝑇𝐷𝑈 = diag(𝑑11, . . . , 𝑑𝑛𝑛). Indeed, since the diagonal elements of 𝛺
are non-decreasingly ordered we may write

𝛺 = diag(𝛺1, . . . , 𝛺𝑝),
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where𝛺1, . . . , 𝛺𝑝 are scalar matrices corresponding to distinct spectral points
of 𝛺. Now, 𝐷𝛺2 = 𝛺2𝐷 implies 𝐷𝛺 = 𝛺𝐷 and therefore

𝐷 = diag(𝐷1, . . . , 𝐷𝑝),

with the same block partition. The matrices𝐷1, . . . , 𝐷𝑝 are real symmetric, so
there are orthogonal matrices 𝑈1, . . . , 𝑈𝑝 such that all 𝑈𝑇

𝑗 𝐷𝑗𝑈𝑗 are diagonal.

By setting 𝛷1 = 𝛷diag(𝐷1, . . . , 𝐷𝑝) all three matrices 𝛷𝑇
1𝑀𝛷1, 𝛷

𝑇
1 𝐶𝛷1,

𝛷𝑇
1𝐾𝛷1 are diagonal. Q.E.D.

Exercise 2.4 Show that Theorem 2.3 remains valid, if 𝑀 is allowed to be
only positive semidefinite.

Exercise 2.5 Prove that (2.24) holds, if

𝛼𝑀 + 𝛽𝐶 + 𝛾𝐾 = 0,

where not all of 𝛼, 𝛽, 𝛾 vanish (proportional damping). When is this the case
with 𝐶 from (1.4)–(1.6)?

Exercise 2.6 Prove that (2.24) is equivalent to 𝐶𝑀−1𝐾 = 𝐾𝑀−1𝐶 and
also to 𝐾𝐶−1𝑀 =𝑀𝐶−1𝐾, provided that these inverses exist.

Exercise 2.7 Try to find a necessary and sufficient condition that 𝐶 from
(1.4)–(1.6) satisfies (2.24).

If 𝐶 satisfies (2.24) then we say that the system (1.1) is modally damped.
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