Chapter 2
Simultaneous Diagonalisation

(Modal Damping)

In this chapter we describe undamped and modally damped systems. They
are wholly explained by the knowledge of the mass and the stiffness matrix.
This is the broadly known case and we shall outline it here, not only because
it is an important special case, but because it is often used as a starting
position in the analysis of general damped systems.

2.1 Undamped Systems

The system (1.1) is called undamped,, if the damping vanishes: C' = 0.
The solution of an undamped system is best described by the generalised
etgenvalue decomposition of the matrix pair K, M:

ST KO = diag(uy, ..., pn), PTMP=1I. (2.1)

We say that the matrix @ reduces the pair K, M of symmetric matrices to
diagonal form by congruence. This reduction is always possible, if the matrix
M is positive definite. Instead of speaking of the matrix pair one often speaks
of the matriz pencil, (that is, matrix function) K — AM. If M = I then (2.1)
reduces to the (standard) eigenvalue decomposition valid for any symmetric
matrix K, in this case the matrix @ is orthogonal.

An equivalent way of writing (2.1) is

K& = Mddiag(p, ..., p1n), P MP=1. (2.2)

or also .
Ko¢j=p;Mo;, ¢ Mbr = dy;.

Thus, the columns ¢; of @ form an M-orthonormal basis of eigenvectors of
the generalised eigenvalue problem

K¢ = uMs, (2.3)
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whereas uy, are the zeros of the characteristic polynomial
det(K — pM)
of the pair K, M. Hence

W= OTKS in particular, uy = O K o
¢T M’ ’ O Moy,

shows that all uy are positive, if both K and M are positive definite as in our
case. So we may rewrite (2.1) as

'K =02, dTMI=1 (2.4)

with
2 =diag(w1,...,wn), Wik =/t (2.5)

The quantities wy, will be called the eigenfrequencies of the system (1.1) with

C = 0. The generalised eigenvalue decomposition can be obtained by any

common matrix computation package (e.g. by calling eig(K,M) in MATLAB).
The solution of the homogeneous equation

Mi+ Kz =0 (2.6)
is given by the formula

a1 coswit + by sinwqt
x(t)=9 . a=dtag,  wpby = (P a0,
ay, COS Wyt + by, sinw, t
(2.7)
which is readily verified. The values wy are of interest even if the damping C'
does not vanish and in this context they are called the undamped frequencies
of the system (1.1).

In physical language the formula (2.7) is oft described by the phrase ‘any
oscillation is a superposition of harmonic oscillations or eigenmodes’ which
are

or(ak coswyt + b sinwgt), k=1,...,n.

Exercise 2.1 Show that the eigenmodes are those solutions x(t) of the
equation (2.6) in which ‘all particles oscillate in the same phase’ that is,

z(t) = x0T (1),

where xg is a fized non-zero vector and T(t) is a scalar-valued function of t
(the above formula is also well known under the name ‘Fourier ansatz’).
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The eigenvalues uy, taken in the non-decreasing ordering, are given by the
known minimaz formula

2T K 2T Kax (2.8)
M = Imax min = min max .
Sp— k41 €Sy k41 CCTMIZ? Sk IE:k IZ?TMIZ?
z#£0

where S; denotes any subspace of dimension j. We will here skip proving
these — fairly known — formulae, valid for any pair K, M of symmetric matrices
with M positive definite. We will, however, provide a proof later within a more
general situation (see Chap. 10 below).

The eigenfrequencies have an important monotonicity property. We intro-
duce the relation called relative stiffness in the set of all pairs of positive
definite symmetric matrices K, M as follows. We say that the pair K, M is
relatively stiffer than K, M, if the matrices K — K and M — M are positive
semidefinite (that is, if stiffness is growing and the mass is falling).

Theorem 2.2 Increasing relative stiffness increases the eigenfrequencies.
More precisely, if K — K and M — M are positive semidefinite then the
corresponding non-decreasingly ordered eigenfrequencies satisfy

wr < W.

Proof. Just note that

TKr 127Kz

"Mz = 2T Mz
for all non-vanishing z. Then take first minimum and then maximum and the
statement follows from (2.8). Q.E.D.

If in Example 1.1 the matrix K is generated by the spring stiffnesses kAj
then by (1.10) for K = K — K we have

tTSKx = Skt + Z Skj(zj —xj-1)% + 6kpi122, (2.9)
j=2
where R
Ok; = kj — k.

So, l;:j > k; implies the positive semidefiniteness of 6K, that is the relative
stiffness is growing. The same happens with the masses: take M = M — M,
then
n
2l oMax = Zémj:r?, omj =1mj —m;
j=1
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and m; < m; implies the negative semidefiniteness of 6 — the relative
stiffness is again growing. Thus, our definition of the relative stiffness has
deep physical roots.

The next question is: how do small changes in the system parameters
k;,m; affect the eigenvalues? We make the term ‘small changes’ precise as
follows

|0k;| < ekj,  [omy| < mm; (2.10)

with 0 < €,7 < 1. This kind of relative error is typical both in physical
measurements and in numerical computations, in fact, in floating point
arithmetic €, &~ 10~ where d is the number of significant digits in a decimal
number.

The corresponding errors in the eigenvalues will be an immediate conse-
quence of (2.10) and Theorem 2.2. Indeed, from (2.9) and (2.10) it follows

leTo K| < ex” Kz, |27 6Ma| < na” M. (2.11)

Then
(1-—ez"Ke<a2"Ke<(1+e)a2"Ka

and
(1—n)a" Mz < 2" Mz < (1+n)z" Mz

such that the pairs
(1—eK, 1+nM; K, M; (1+oK, (1—nM

are ordered in growing relative stiffness. Therefore by Theorem 2.2 the
corresponding eigenvalues

1—c¢ . 1+e¢
1+T]Mk’ Mk, 1777/“6
satisfy
1—¢€ 1+e€
< g < 2.12
I N (2.12)

(and similarly for the respective wy, &) In particular, for duy = fix, — pi the
relative error estimates

€+
T (2.13)

are valid. Note that both (2.12) and (2.13) are quite general. They depend
only on the bounds (2.11), the only requirement is that both matrices K, M
be symmetric and positive definite.
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In the case M = M = I the more commonly known error estimate holds
i+ mino(K — K) < fip, < i +maxo(K — K) (2.14)

and in particular .
|Opne| < [ K = K. (2.15)

The proof again goes by immediate application of Theorem 2.2 and is left to
the reader.

2.2 Frequencies as Singular Values

There is another way to compute the eigenfrequencies w;. We first make the
decomposition

K=IL,LT, M=1L,LT (2.16)
yi=Liz, yo=L3,
(here L1, Lo may, but need not be Cholesky factors). Then we make the
singular value decomposition

L', =uxv? (2.17)

where U,V are real orthogonal matrices and X' is diagonal with positive
diagonal elements. Hence

Ly'L LT ;T =ux*u”

or
Kb =Mo%? &=1L;"U

Now we can identify this ¢ with the one from (2.4) and X with 2. Thus the
eigenfrequencies of the undamped system are the singular values of the matriz
Ly 11,1 The computation of £2 by (2.17) may have advantages over the one
by (2.2), in particular, if w; greatly differ from each other. Indeed, by setting
in Example 1.1 n =3, k4 = 0, m; = 1 the matrix L is directly obtained as

K1 —Rg 0
Li=| 0 ko—ks|, ri= k. (2.18)

0 0 K3
If we take k1 = ko = 1, k3 > 1 (that is, the third spring is almost rigid)
then the way through (2.2) may spoil the lower frequency. For instance, with

Equivalently we may speak of wj as the generalised singular values of the pair L1, Lo.
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the value k3 = 9.999999 - 10'® the double-precision computation with Matlab
gives the frequencies

sqrt(eig(K,M)) svd(L_2\L_1)
7.962252170181258e-01 4.682131924621356e-01
1.538189001320851e+00 1.510223959022110e+00
1.414213491662415e+08 1.414213491662415e+08

The singular value decomposition gives largely correct low eigenfrequen-
cies. This phenomenon is independent of the eigenvalue or singular value
algorithm used and it has to do with the fact that standard eigensolution
algorithms compute the lowest eigenvalue of (2.2) with the relative error
~ ex(KM™'), that is, the machine precision € is amplified by the con-
dition number k(KM™1) ~ 1016 whereas the same error with (2.17) is
~ ek(Ly'L1) = e/k(KM~1) (cf. eg. [19]). In the second case the
amplification is the square root of the first one!

2.3 Modally Damped Systems

Here we study those damped systems which can be completely explained by
their undamped part. In order to do this it is convenient to make a coordinate
transformation; we set

r = o1, (2.19)

where @ is any real non-singular matrix. Thus (1.1) goes over into
M'i' + ¢ + K'2' = g(t), (2.20)
with
M =d" Mo, ' =90TCP, K ="K, g=9o'Ff. (2.21)
Choose now the matrix @ as in the previous section, that is,

TMP =1, STKP =2 =diag(w?, ..., w?).
(The right hand side f(¢) in (2.20) can always be taken into account by
the Duhamel’s term as in (3.1) so we will mostly restrict ourselves to consider
f = 0 which corresponds to a ‘freely oscillating’ system.)
Now, if
D = (djy) = T CP (2.22)
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is diagonal as well then (1.1) is equivalent to

&+ diil + Wil =0, z=0¢
with the known solution
& = akqu(t,wk,dkk) =+ bkuf(t,wk,dkk), (223)

u+(t,w,d) _ eA*(w,d)t7

- er @D §(w,d) #£0
u” (t,w,d) = M (wid) (w,d)
ter WAt §(w,d) =0

where

S(w,d) = d* — 4w?,

 —d+\/§(w,d)
M (w,d) = g :

The constants ay,br in (2.23) are obtained from the initial data xzg,dq
similarly as in (2.7).

However, the simultaneous diagonalisability of the three matrices M, C, K
is rather an exception, as shown by the following theorem.

Theorem 2.3 Let M,C,K be as in (1.1). A non-singular & such that the
matrices @T M, TCP, T KP are diagonal exists, if and only if

CK'M=MK'C. (2.24)

Proof. The ‘only if part’ is trivial. Conversely, using (2.4) the identity (2.24)
yields
CoN2p = T N297C,
hence
PTCPN 2 = 2T CP
and then
9T CP = T CO0?

i.e. the two real symmetric matrices £22 and D = 7 CP commute and 22 is
diagonal, so there exists a real orthogonal matrix U such that U7 22U = 22,
and UTDU = diag(d1, ..., dn,). Indeed, since the diagonal elements of 2
are non-decreasingly ordered we may write

2 = diag(21,...,2,),
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where (21, ..., {2, are scalar matrices corresponding to distinct spectral points
of 2. Now, D§2? = (22D implies D2 = 2D and therefore

D = diag(Dy, ..., Dp),

with the same block partition. The matrices D1, ..., D, are real symmetric, so
there are orthogonal matrices Uy, ..., U, such that all U JT D;U; are diagonal.
By setting &1 = &diag(D1,...,D,) all three matrices &7 M®,, T CPy,
¢T K@, are diagonal. Q.E.D.

Exercise 2.4 Show that Theorem 2.3 remains valid, if M is allowed to be
only positive semidefinite.

Exercise 2.5 Prove that (2.24) holds, if
aM + pC +~vyK =0,

where not all of a, B,~ vanish (proportional damping). When is this the case
with C' from (1.4)—(1.6)?

Exercise 2.6 Prove that (2.24) is equivalent to CM—'K = KM~1C and
also to KC~'M = MC~'K, provided that these inverses exist.

Exercise 2.7 Try to find a necessary and sufficient condition that C from

(1.4)-(1.6) satisfies (2.24).
If C satisfies (2.24) then we say that the system (1.1) is modally damped.
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