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Matchings and 1-Factors

In this chapter we consider matchings and 1-factors of graphs, and these
results will frequently be used in latter chapters. Of course, they are interesting
on their own, and have many applications in various areas of mathematics and
computer science. The reader is referred to two books [182] by Lovász and
Plummer and [254] by Yu and Liu for a more detailed treatment of matchings
and 1-factors.

2.1 Matchings in bipartite graphs

In this section we investigate matchings in bipartite graphs, and the results
shown in this section will play an important role throughout this book.

Two edges of a general graph are said to be independent if they have no
common end-point and none of them is a loop. A matching in a general graph
G is a set of pairwise independent edges of G (Fig. 2.1). If M is a matching
in a general graph G, then the subgraph of G induced by M , denoted by
〈M〉G or 〈M〉, is the subgraph of G whose edge set is M and whose vertex
set consists of the vertices incident with some edge in M . Then every vertex
of 〈M〉 has degree one. Thus it is possible to define a matching as a subgraph
whose vertices all have degree one, and we often regard a matching M as its
induced subgraph 〈M〉.

Let M be a matching in a graph G. Then a vertex of G is said to be
saturated or covered by M if it is incident with an edge of M ; otherwise, it
is said to be unsaturated or not covered by M . If every vertex of a vertex
subset U of G is saturated by M , then we say that U is saturated by M .
A matching with maximum cardinality is called a maximum matching. A
matching that saturates all the vertices of G is called a perfect matching
or a 1-factor of G (Fig. 2.1). It is easy to see that a maximal matching,
which is a maximal set of independent edges, is not a maximum matching,
and a maximum matching is not a perfect matching. On the other hand, if
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16 2 Matchings and 1-Factors

M1 M2 M3

Fig. 2.1. A maximal matching M1; a maximum matching M2; and a perfect
matching M3.

a matching in a bipartite graph saturates one of its partite sets, then it is
clearly a maximum matching.

For a matching M , we write

||M || = the size of 〈M〉 = the number of edges in M,

|M | = the order of 〈M〉 = the number of vertices saturated by M.

We first give a criterion for a bipartite graph to have a matching that
saturates one of its partite sets. Then we apply this criterion to some problems
on matchings in bipartite graphs.

The criterion mentioned above is given in the following theorem, which was
found by Hall [98] and is called the marriage theorem. This theorem appears
throughout this book, and the proof given here is due to Halmos and Vaughan
[97]. An algorithm for finding a maximum matching in a bipartite graph will
be given in Algorithm 2.25.

Theorem 2.1 (The Marriage Theorem, Hall [98] (1935)). Let G be a
bipartite multigraph with bipartition (A, B). Then G has a matching that
saturates A if and only if

|NG(S)| ≥ |S| for all S ⊆ A. (2.1)

Proof. We first construct a bipartite simple graph H from the given bipartite
multigraph G by replacing all the multiple edges of G by single edges. Then
it is obvious that G has the desired matching if and only if H has such a
matching, and that G satisfies (2.1) if and only if H satisfies it. Therefore, we
may assume that G itself has no multiple edges by considering H as the given
bipartite graph.

Suppose that G has a matching M that saturates A (Fig. 2.2). Then for
every subset S ⊆ A, we have

|NG(S)| ≥ |NM (S)| = |S|.
We next prove sufficiency by induction on |G|. It is clear that we may

assume |A| ≥ 2. We consider the following two cases.
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A B

S
NG(S)

A BM={    }
G

Fig. 2.2. A matching M that saturates A; S and NG(S).

Case 1. There exists ∅ �= S ⊂ A such that |NG(S)| = |S|.
Let H = 〈S ∪ NG(S)〉G and K = 〈(A − S) ∪ (B − NG(S))〉G be induced

subgraphs of G (Fig. 2.3). It is clear that H satisfies condition (2.1), and
so H has a matching MH that saturates S by induction. For every subset
X ⊆ A − S, we have

|NK(X)| = |NG(X ∪ S)| − |NG(S)| ≥ |X ∪ S| − |S| = |X |.
Hence, by induction, K also has a matching MK that saturates A − S.
Therefore MH ∪ MK is the desired matching in G which saturates A.

S
NG(S)

X

A B

S
NG(S)

A-S
B-NG(S)

X

NG(X)

H

KG

NK(X)

Fig. 2.3. The induced subgraphs H and K.

Case 2. |NG(S)| > |S| for all ∅ �= S ⊂ A.

Let e = ab (a ∈ A, b ∈ B) be an edge of G, and let H = G− {a, b}. Then
for every subset ∅ �= X ⊆ A − {a}, by the assumption of this case, we have

|NH(X)| ≥ |NG(X) \ {b}| > |X | − 1, (2.2)

which implies |NH(X)| ≥ |X |. Therefore, H has a matching M ′ that saturates
A−{a} by induction. Then M ′+e is the desired matching in G. Consequently
the theorem is proved. ��
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If the edge set E(G) of a multigraph G is partitioned into disjoint 1-factors
E(G) = F1 ∪ F2 ∪ · · · ∪ Fr, where each Fi = 〈Fi〉 is a 1-factor of G, then we
say that G is 1-factorable, and call this partition a 1-factorization of G.
It is trivial that if G is 1-factorable, then G is regular.

We now give some results on matchings in bipartite graphs, most of which
can be proved by making use of the marriage theorem. We begin with the
following famous theorem, which was obtained by König in 1916 before the
marriage theorem. However, our proof depends on the marriage theorem.

Theorem 2.2 (König [155]). Every regular bipartite multigraph is 1-factor-
able, in particular, it has a 1-factor (Fig. 2.4).

Fig. 2.4. A 3-regular bipartite multigraph and its 1-factorization.

Proof. Let G be an r-regular bipartite multigraph with bipartition (A, B).
Then |A| = |B| since r|A| = eG(A, B) = r|B|. For every subset X ⊆ A, we
have

r|X | = eG(X, NG(X)) ≤ r|NG(X)|,
and so |X | ≤ |NG(X)|. Hence by the marriage theorem, G has a matching M
saturating A, which must saturate B since |A| = |B|. Thus M is a 1-factor of
G.

It is obvious that G − M is a (r − 1)-regular bipartite multigraph, and so
it has a 1-factor by the same argument as above. By repeating this procedure,
we can obtain a 1-factorization of G. ��
Lemma 2.3 (König [155]). Let G be a bipartite multigraph with bipartition
(A, B). If |A| ≥ |B| and the maximum degree of G is Δ, then there exists a
Δ-regular bipartite multigraph which contains G as a subgraph and A as one
of its partite sets.

Proof. By adding |A|−|B| new vertices to B if |A| > |B|, we obtain a bipartite
graph with bipartition (A, B′) such that |A| = |B′|. Add new edges joining
vertices in A to vertices in B′ whose degrees are less than Δ, one at a time
until no new edge can be added. We show that by this procedure, we get the
desired Δ-regular bipartite multigraph.

Suppose that the bipartite multigraph H obtained in this way has a vertex
a ∈ A such that degH(a) < Δ. Then there exists a vertex b ∈ B′ such that
degH(b) < Δ because
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Fig. 2.5. A bipartite multigraph and a regular bipartite graph containing it.

∑

x∈B′
degH(x) = eH(B′, A) =

∑

x∈A

degH(x) < Δ|A| = Δ|B′|.

Hence we can add a new edge ab to H , which is a contradiction. Therefore
every vertex of A has degree Δ in H , which implies that every vertex of B′ has
degree Δ since |A| = |B′|. Consequently, H is the desired Δ-regular bipartite
multigraph. ��

The next theorem says that the chromatic index of a bipartite multigraph
G is equal to the maximum degree of G.

Theorem 2.4 (König [155]). Let G be a bipartite multigraph with maximum
degree Δ. Then E(G) can be partitioned into E(G) = E1 ∪ E2 ∪ · · · ∪ EΔ so
that each Ei (1 ≤ i ≤ Δ) is a matching in G.

Proof. By Lemma 2.3, there exists a Δ-regular bipartite multigraph H which
contains G as a subgraph. Then by Theorem 2.2, E(H) can be partitioned
into 1-factors F1 ∪ F2 ∪ · · · ∪ FΔ. It is obvious that Fi ∩ E(G) (1 ≤ i ≤ Δ)
is a matching in G, and their union is equal to E(G). Therefore the theorem
follows. ��

We now state various properties of matchings in bipartite graphs, some
of which are generalizations of the marriage theorem, and some of which are
properties that are specific to bipartite graphs.

Theorem 2.5. A bipartite multigraph G has a matching that saturates all the
vertices of degree Δ(G).

Proof. Let Δ = Δ(G). By Lemma 2.3, there exists a Δ-regular bipartite
multigraph H that contains G as a subgraph. Then by Theorem 2.2, H has a
1-factor F . It is easy to see that F ∩ E(G) is a matching of G that saturates
all the vertices v of G with degree Δ since every edge of H incident with v is
an edge of G. ��
Theorem 2.6. Let G be a bipartite multigraph with bipartition (A, B). If
|NG(S)| > |S| for all ∅ �= S ⊂ A, then for each edge e of G, G has a matching
that saturates A and contains e.
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Proof. Let e = ab (a ∈ A, b ∈ B) be any edge of G, and H = G−{a, b}. Then
for every subset ∅ �= X ⊆ A − {a}, we have

|NH(X)| ≥ |NG(X) \ {b}| > |X | − 1,

which implies |NH(X)| ≥ |X |. Hence by the marriage theorem, H has a
matching M saturating A − {a}. Thus, M + e is the desired matching in G
that saturates A and contains e. ��
Theorem 2.7 (Hetyei, Theorem 4.1.1 of [182]). Let G be a bipartite multi-
graph with bipartition (A, B) such that |A| = |B|. Then the following three
statements are equivalent.
(i) G is connected, and for each edge e, G has a 1-factor containing e.
(ii) For every subset ∅ �= X ⊂ A, |NG(X)| > |X |.
(iii) For every two vertices a ∈ A and b ∈ B, G − {a, b} has a 1-factor.

Proof. (i)⇒(ii) Suppose that |NG(Y )| ≤ |Y | for some subset ∅ �= Y ⊂ A.
Since G has a 1-factor F , we have |NG(Y )| = |Y | as |NG(Y )| ≥ |NF (Y )|
= |Y |. Since G is connected, G has an edge e joining a vertex in A − Y to
a vertex in NG(Y ). However there exists no 1-factor in G containing e since
|NG(Y )| − 1 < |Y |. This contradicts (i). Thus (ii) holds.

(ii)⇒(iii) Let H = G − {a, b} and X ⊆ A − {a}. Then

|NH(X)| = |NG(X) \ {b}| > |X | − 1,

which implies |NH(X)| ≥ |X |. Hence H has a matching saturating A − {a},
which is obviously a 1-factor of H as |A − {a}| = |B − {b}|.
(iii)⇒(i) Let e = ab (a ∈ A, b ∈ B) be an edge of G. Since G − {a, b} has a
1-factor F , G has a 1-factor F +e, which contains e. The proof of connectivity
is left to the reader. ��
Theorem 2.8 (Exercise 3.1.32 of [244]). Suppose that a bipartite multigraph G
with bipartition (A, B) has a matching saturating A. Then there exists a vertex
v ∈ A possessing the property that every edge incident with v is contained in
a matching in G saturating A.

Proof. We prove the theorem by induction on |A|. It is clear that we may
assume |A| ≥ 2.

If |NG(X)| > |X | for all ∅ �= X ⊂ A, then each vertex in A has the required
property by Theorem 2.6. Hence we may assume that |NG(S)| ≤ |S| for some
∅ �= S ⊂ A. Since G has a matching saturating A, it follows from the marriage
theorem that |NG(S)| = |S|.

By the inductive hypothesis, the induced subgraph H = 〈S ∪ NG(S)〉G
has a vertex v ∈ S such that every edge of H incident with v is contained in
a matching in H saturating S (Fig. 2.6). Note that every edge of G incident
with v is contained in H .
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S NG(S)

|S|=|NG(S)|

H

A B

v
S NG(S)

A B

MH={         }

Fig. 2.6. A bipartite multigraph G and its subgraph H ; A matching M in G
saturating A.

Let M be a matching in G saturating A, and MH be a matching in H
saturating S. Then it is easy to see that (M \ E(H)) ∪ MH is a matching in
G that saturates A (see Fig. 2.6). Therefore the vertex v in S has the desired
property. ��
Theorem 2.9. Let G be a bipartite multigraph with bipartition (A, B) such
that |NG(X)| ≥ |X | for every X ⊆ A. If two subsets S, T ⊆ A satisfy
|NG(S)| = |S| and |NG(T )| = |T |, then

|NG(S ∪ T )| = |S ∪ T | and |NG(S ∩ T )| = |S ∩ T |.
In particular, if such subsets exist, there exists a unique maximum subset
A0 ⊆ A such that |NG(A0)| = |A0|
Proof. Since NG(S∪T ) = NG(S)∪NG(T ) and NG(S)∩NG(T ) ⊇ NG(S∩T ),
we have

|NG(S ∪ T )| = |NG(S)| + |NG(T )| − |NG(S) ∩ NG(T )|
≤ |S| + |T | − |NG(S ∩ T )|
≤ |S| + |T | − |S ∩ T | = |S ∪ T |.

On the other hand, |NG(S∪T )| ≥ |S∪T | by the assumption. Hence |NG(S∪T )|
= |S ∪ T |, and also |NG(S ∩ T )| = |S ∩ T | by the above inequality. ��

The following theorem is a generalization of the marriage theorem since
the subgraph H with f(x) = 1 given in the following theorem is a matching.

Theorem 2.10 (Generalized Marriage Theorem ). Let G be a bipartite
multigraph with bipartition (A, B), and let f : A → N be a function. Then G
has a subgraph H such that

degH(x) = f(x) for all x ∈ A, and (2.3)
degH(y) ≤ 1 for all y ∈ B (2.4)

if and only if

|NG(S)| ≥
∑

x∈S

f(x) for all S ⊆ A. (2.5)
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Fig. 2.7. A bipartite graph G and its subgraph H , where numbers denote f(v); and
G∗.

Proof. We first assume that G has a subgraph H that satisfies (2.3) and (2.4)
(Fig. 2.7). Then for every S ⊆ A, we have

|NG(S)| ≥ |NH(S)| =
∑

x∈S

degH(x) =
∑

x∈S

f(x).

Hence (2.5) holds.
In order to prove the sufficiency, we construct a new bipartite simple graph

G∗ with bipartition A∗ ∪ B as follows. For every vertex v ∈ A, define f(v)
vertices v(1), v(2), . . . , v(f(v)) of A∗, and connect them to all the vertices of
NG(v) by edges (Fig. 2.7). Then

|A∗| =
∑

x∈A

f(x) and NG∗(v(i)) = NG(v) for all v(i) ∈ A∗.

For every subset ∅ �= S∗ ⊆ A∗, let S = {x ∈ A : x(i) ∈ S∗ for some i}. Then
we have by (2.5) that

|NG∗(S∗)| = |NG(S)| ≥
∑

x∈S

f(x) ≥ |S∗|.

Hence by the marriage theorem, G∗ has a matching M∗ that saturates A∗. It
is clear that the subgraph H of G induced by M∗ satisfies

degH(x) = f(x) for all x ∈ A, and degH(y) ≤ 1 for all y ∈ B.

Hence the theorem is proved. ��
The next theorem gives a formula for the size of a maximum matching in

a bipartite graph. Moreover, this formula includes the marriage theorem since
|NG(S)| ≥ |S| for all S ⊆ A implies ||M || = |A| as |∅| −|NG(∅)| = 0.
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Theorem 2.11 (Ore [204]). Let G be a bipartite multigraph with bipartition
(A, B), and M a maximum matching in G. Then the size of M is given by

||M || = |A| − max
X⊆A

{|X | − |NG(X)|}.

Proof. Let M be a maximum matching in G, d = maxX⊆A{|X | − |NG(X)|},
and S ⊆ A such that |S| − |NG(S)| = d. Then

||M || = |NM (A − S)| + |NM (S)|
≤ |A − S| + |NG(S)| = |A| − (|S| − |NG(S)|)
= |A| − d.

In order to prove the inverse inequality, we construct a new bipartite
multigraph H with bipartition (A, B ∪ D) from G by adding a new vertex
set D of d vertices and by joining every vertex of D to all the vertices of A
(Fig. 2.8). Then for every ∅ �= X ⊆ A, since d ≥ |X | − |NG(X)|, we have

|NH(X)| = |NG(X)| + |D| = |NG(X)| + d ≥ |X |.
Hence, by the marriage theorem, H has a matching MH saturating A. Then
MH ∩E(G) is a matching in G that contains at least |A|− d edges. Therefore
||M || ≥ |A| − d, and the theorem is proved. ��

A B

D

NG(S)

H

S

Fig. 2.8. A new bipartite multigraph H .

An induced matching in a general graph G is a matching that is an
induced subgraph of G, that is, an induced matching can be expressed as
〈U〉G for some vertex set U ⊆ V (G).

Theorem 2.12 (Liu and Zhou, [173]). Let G be a connected bipartite simple
graph with bipartition (A, B). Then the size of a maximum induced matching
M in G is given by

||M || = max{|X | : X ⊆ A such that NG(Y ) �= NG(X) for all Y ⊂ X}.
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Proof. We say that a subset X ⊂ A has the property P if NG(Y ) �= NG(X)
for all Y ⊂ X . Let

k = max{|X | : X ⊆ A, X has the property P}.

Let M be a maximum induced matching in G, and let AM and BM be the sets
of vertices of A and B, respectively, which are saturated by M . Since M is an
induced matching, we have EG(AM , BM ) = M . Then for every Y ⊂ AM , we
have NG(Y ) �= NG(AM ) since

|NG(Y ) ∩ BM | = |Y | < |AM | = |NG(AM ) ∩ BM |.

Hence AM has the property P , and thus ||M || = |AM | ≤ k.
We now show that ||M || ≥ k. We may assume k ≥ 2. Let S =

{a1, a2, . . . , ak} be a maximum subset of A that has the property P . Then
NG(Y ) �= NG(S) for all Y ⊂ S. For every 1 ≤ i ≤ k, we have

NG(ai) �⊆
⋃

j �=i

NG(aj) by NG(S − {ai}) �= NG(S),

and so we can choose
bi ∈ NG(ai) \

⋃

j �=i

NG(aj).

Then {aibi | 1 ≤ i ≤ k} is an induced matching with k edges, which implies
||M || ≥ k. Consequently the theorem is proved. ��

It is known that there are polynomial time algorithms for many problems
involving matchings in bipartite graphs, some of which will be shown in
Section 2.3. On the other hand, it is remarkable that the following problem is
NP-complete [41]: Is there an induced matching of size k in a bipartite graph?

2.2 Covers and transversals

In this section we discuss covers of bipartite graphs and transversals of family
of subsets. Some of the results are called min-max theorems because they
say that the minimum value of some invariant is equal to the maximum value
of another invariant.

When a vertex v is incident with an edge e, we say that v and e cover
each other. A vertex cover of a graph G is a set of vertices that cover all
the edges of G. A vertex cover of minimum cardinality is called a minimum
vertex cover, and its cardinality is denoted by β(G) (Fig. 2.9). Similarly, an
edge cover of a graph G is defined to be a set of edges that cover all the
vertices of G. An edge cover with minimum cardinality is called a minimum
edge cover, and its cardinality is denoted by β′(G).
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Recall that a set of vertices of a graph G is said to be independent if no two
of its vertices are adjacent, and a set of edges of G is said to be independent
if no two of its edges have an end-point in common, that is, a set of edges
is independent if and only if it forms a matching. We analogously define a
maximum independent vertex set and a maximum independent edge
set of G, and denote their cardinalities by α(G) and α′(G), respectively.

β(G) = the minimum cardinality of a vertex cover
β′(G) = the minimum cardinality of an edge cover
α(G) = the maximum cardinality of an independent set of vertices
α′(G) = the maximum cardinality of an independent set of edges

U={  } W={   } M={     }(1) (2) (3)

e

f

Fig. 2.9. (1) A maximum independent set of vertices U ; (2) A minimum vertex
cover W = V (G) − U ; (3) A maximum matching M and a minimum edge cover
M + {e, f}.

Lemma 2.13 (Gallai [91]). A vertex set S of a simple graph G is independent
if and only if S = V (G) − S is a vertex cover. Moreover,

α(G) + β(G) = |G|.

Proof. Suppose that S is independent. Then no edge of G joins two vertices
of S, that is, for each edge e of G, at least one end-point of e is contained in
S. Hence S is a vertex cover.

Conversely, if S is a vertex cover, then every edge is incident with a vertex
in S, which implies that no edge joins two vertices in S = V (G)−S, and thus
S is independent.

Moreover, from the above arguments, it follows that S is a maximum
independent set of vertices if and only if S is a minimum vertex cover. Thus
α(G) + β(G) = |S| + |S| = |G|. ��

The next theorem shows that a similar equality also holds for edges.

Theorem 2.14 (Gallai [91]). If a simple graph G has no isolated vertices,
then α′(G) + β′(G) = |G|.
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Proof. Let M be a maximum matching of G. For every vertex v of G
unsaturated by M , by adding one edge incident with v to M , we can obtain
an edge cover which contains the following number of edges:

||M || + |G| − 2||M || = |G| − ||M || = |G| − α′(G).

Hence β′(G) ≤ |G| − α′(G), which implies α′(G) + β′(G) ≤ |G|.
Conversely, if L is a minimum edge cover of G, then 〈L〉 is a spanning

subgraph of G and each component of 〈L〉 is a tree. Thus the number of
components of 〈L〉 is |G|− ||L|| (see Problem 1.3). By choosing one edge from
each component of 〈L〉, we can obtain a matching that contains |G| − ||L||
edges. Hence α′(G) ≥ |G|−β′(G), and thus α′(G)+β′(G) ≥ |G|. Consequently,
we have α′(G) + β′(G) = |G|. ��

It follows that for each edge e of a maximum matching in a graph G, at
least one of the end-points of e must be contained in a vertex cover of G.
Hence α′(G) ≤ β(G). However, the equality α′(G) = β(G) does not hold in
general except for bipartite graphs.

A maximum matching M={      }

S
NG(S)

A B

NG(S)
S

A vertex cover  W={     }=

Fig. 2.10. A maximum matching and a minimum vertex cover in a bipartite graph.

Theorem 2.15 (König [156]). In a bipartite simple graph G without isolated
vertices, α′(G) = β(G). Moreover this implies α(G) = β′(G).

Proof. Since α′(G) ≤ β(G) as shown above, it suffices to prove α′(G) ≥ β(G).
Let (A, B) be the bipartition of G, and let M be a maximum matching in

G. Let S be a subset of A such that

|S| − |NG(S)| = max
X⊆A

{|X | − |NG(X)|},

and W = (A − S) ∪ NG(S). Then W is a vertex cover of G since G has no
edge joining S to B − NG(S) (see Fig. 2.10). By Theorem 2.11, we have

β(G) ≤ |W | = |A| − |S| + |NG(S)| = ||M || = α′(G).

Therefore the theorem is proved. ��
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M =

⎛

⎜⎜⎝

1 1 0 1© 1
0 1© 0 0 0
0 1 0 0 0
1 0 0 1 1©

⎞

⎟⎟⎠
|{©}| = 3
{1st row, 4th row, 2nd column}
contains all the 1-entries.

Fig. 2.11. A (0, 1)-matrix M .

A (0, 1)-matrix is a matrix whose entries are all 0 or 1. The preceding
theorem leads to the following interesting property of (0, 1)-matrices.

Theorem 2.16 (König-Egerváry [155], [74]). Let M = (mij) be a (0, 1)-
matrix. Then the maximum number of 1-entries of M , such that no two of
them lie on the same row or column, is equal to the minimum number of rows
and columns that contain all the 1-entries of M (Fig. 2.11).

a1

a3

a2

a4

b2

b5

b3

b1

b4

Fig. 2.12. The bipartite graph corresponding to the (0, 1)-matrix in Fig. 2.11, where
α′(G) = #{a1b4, a2b2, a4b5} = 3 and β(G) = #{a1, b2, a4} = 3.

Proof. From the given n×m (0, 1)-matrix M = (mij), we construct a bipartite
graph G with bipartite sets A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm} as
follows:

aibj ∈ E(G) if and only if mij = 1. (see Fig. 2.12)

Then a set of 1-entries, no two of which lie on the same row or column,
corresponds to a matching of G, and a set of rows and columns that contains
all the 1-entries corresponds to a vertex cover of G. Therefore the theorem
follows from Theorem 2.15. ��

Let X be a finite set and F = {S1, S2, . . . , Sn} a family of subsets
of X , where the S′

is are not necessarily distinct. We say that F has a
transversal if there exists a set of n distinct elements of X , one from
each Si. For example, a family {{a, b, e}, {b}, {a, c, d}, {b, c}} of subsets
of {a, b, c, d, e} has a transversal {a, b, d, c}. On the other hand, a family
{{a, b, e}, {b, c}, {c}, {b, c}} has no transversal.
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Theorem 2.17 (Hall [98]). A family F = {S1, S2, . . . , Sn} of subsets of X
has a transversal if and only if

|
⋃

i∈I

Si| ≥ |I| for all I ⊆ {1, 2, . . . , n}. (2.6)

Proof. We prove only the sufficiency since the necessity is immediate. We
construct a bipartite graph G with partite sets {S1, S2, . . . , Sn} and X as
follows: a vertex Si is adjacent to a vertex x ∈ X in G if and only if x ∈ Si

(see Fig. 2.13). Then for every subset {Si | i ∈ I} of {S1, S2, . . . , Sn}, we have
by (2.6) that

|NG({Si | i ∈ I})| = |
⋃

i∈I

Si| ≥ |I|.

Hence by the marriage theorem, G has a matching M saturating {S1, S2,
. . . , Sn}. Then we can obtain a transversal from M by taking the set of vertices
of X saturated by M . ��

a

b

c

d
e

S2

S1

S4

S3

Fig. 2.13. The bipartite graph corresponding to {S1 = {a, b, e}, S2 = {b}, S3 =
{a, c, d}, S4 = {b, c}}, its matching saturating {S1, S2, S3, S4}, and a transversal
{a, b, c, d} obtained from it.

Let X be a finite set and F = {S1, S2, . . . , Sn} and H = {T1, T2, . . . , Tn}
be two families of subsets of X . Then we say that F and H have a common
transversal if there exists a set of n distinct elements of X that is a
transversal of both F and H, i.e., there exists a set {x1, x2, . . . , xn} of n
distinct elements of X such that xi ∈ Si ∩ T(i) for all 1 ≤ i ≤ n, where
{T(1), T(2), . . . , T(n)} is a rearrangement of H = {T1, T2, . . . , Tn}.

For example, {S′
1 = S′

2 = {a, b}, S′
3 = {a, c, e}} and {T ′

1 = {b, c}, T ′
2 =

{e}, T ′
3 = {a, b, e}} have a common transversal {b, a, e}, where b ∈ S′

1∩T ′
1, a ∈

S′
2 ∩T ′

3 and e ∈ S′
3 ∩T ′

2. On the other hand, {S1 = S2 = {a, b}, S3 = {a, c, e}}
and {T1 = {b, c}, T2 = {b, d}, T3 = {c, d, e}} have transversals but do not have
a common transversal. Let n = 3, I = {1, 2} and J = {1, 2, 3}, and substitute
these into the left and right sides of (2.7) given in the following theorem. Then

|(S1 ∪ S2) ∩ (T1 ∪ T2 ∪ T3)| = |{b}| = 1 < |I| + |J | − n = 2 + 3 − 3 = 2.

Hence inequality (2.7) does not hold.
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Theorem 2.18. Let F and H be two families of subsets of a set X. Then F
and H have a common transversal if and only if for all subsets I and J of
{1, 2, . . . , n}, it follows that

∣∣∣
( ⋃

i∈I

Si

) ⋂ ( ⋃

j∈J

Tj

)∣∣∣ ≥ |I| + |J | − n. (2.7)

Proof. Let F = {S1, S2, . . . , Sn} and H = {T1, T2, . . . , Tn}. Assume that F
and H have a common transversal {x1, x2, · · · , xn}. Let I and J be subsets of
{1, 2, . . . , n}. We may assume that |I|+ |J | > n since otherwise (2.7) trivially
holds. Then two sets {xr | xr ∈ Si, i ∈ I} and {xr | xr ∈ Tj, j ∈ J} must have
at least |I| + |J | − n elements in common, and these elements are contained
in ( ⋃

i∈I

Si

) ⋂ ( ⋃

j∈J

Tj

)
.

Hence (2.7) holds.
In order to prove sufficiency, we construct a bipartite graph G with

bipartite sets

A = {S1, S2, . . . , Sn} ∪ X and B = {T1, T2, . . . , Tn} ∪ X ′

as follows, where X ′ = {x′ | x ∈ X}. Two vertices Si ∈ A and x′ ∈ X ′ are
joined by an edge if x ∈ Si. Similarly two vertices x ∈ X and Tj ∈ B are
joined by an edge if x ∈ Tj. Moreover, x ∈ X and x′ ∈ X ′ are joined by an
edge, and G has no more edges.

a b c d eS2S1 S3

a' b' c' d'T2T1 T3 e'

G

Fig. 2.14. The bipartite graph corresponding to two families of subsets.

For example, the bipartite graph G given in Fig. 2.14 corresponds to
X = {a, b, c, d, e}, F = {S1 = S2 = {a, b}, S3 = {b, c, e}} and H = {T1 =
{a, c}, T2 = {d, e}, T3 = {a, b, e}}. G has a perfect matching, and these two
families have a common transversal {a, b, e} such that a ∈ S1 ∩T1, b ∈ S2 ∩T3

and e ∈ S3 ∩ T2.

We first show that if the bipartite graph G has a perfect matching M , then
F and H have a common transversal. If M contains an edge Sia

′
k (a′

k ∈ X ′),
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then M must contain an edge akTj (ak ∈ X) for some Tj, and thus ak ∈ Si∩Tj .
Hence it is easy to see that {ak | Sia

′
k ∈ M} forms a common transversal of F

and H. Note that if M contains an edge joining at ∈ X to a′
t ∈ X ′, then this

fact implies that at is not chosen to be an element of the common transversal.

P Q

Q'|J|

|R|=n-|J|

NG(P)

X

X'R

A

B

Fig. 2.15. Illustration of Theorem 2.18; P = {Xi | i ∈ I}, J = {j | Tj ∩ Q = ∅},
and R = {Tj | Tj ∩ Q �= ∅}.

Let
P ⊆ {S1, S2, . . . , Sn} and Q ⊆ X.

Then P ∪ X ⊆ A. Put I = {i : Si ∈ P}, J = {j : Tj ∩ Q = ∅} and
Q′ = {x′ : x ∈ Q} ⊆ X ′. Hence Q′ ⊂ B and

(⋃

i∈I

Si

)′
\ Q′ =

(⋃

i∈I

Si

)′
∩ (X ′ − Q′) ⊇

(⋃

i∈I

Si

)′
∩

(⋃

j∈J

Tj

)′
,

where (
⋃

i∈I Si)′ and (
⋃

j∈J Tj)′ denote the subsets of X ′ (Fig. 2.15). Therefore

|NG(P ∪ Q)| = |(NG(P ) ∪ NG(Q)) ∩ X ′)| + |NG(Q) ∩ {T1, T2, . . . , Tn}|
=

∣∣∣
(⋃

i∈I

Si

)′
∪ Q′

∣∣∣ + #{Tj : Tj ∩ Q �= ∅}

≥
∣∣∣
(⋃

i∈I

Si

)′
\ Q′

∣∣∣ + |Q′| + n − |J |

≥
∣∣∣
(⋃

i∈I

Si

)′
∩

(⋃

j∈J

Tj

)′∣∣∣ + |Q′| + n − |J |

≥ |I| + |J | − n + |Q′| + n − |J | (by (2.7))
= |I| + |Q′| = |P | + |Q| = |P ∪ Q|.

Consequently, G has a matching M saturating A by the marriage theorem.
Since |A| = |B|, M is a perfect matching, and thus the proof is complete. ��
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2.3 Augmenting paths and algorithms

In this section we consider matchings in graphs by using alternating paths
instead of neighborhoods, which is a new approach to matchings and useful
for algorithms. For two sets X and Y of edges of a graph G, we define

X � Y = (X ∪ Y ) − (X ∩ Y ).

Lemma 2.19. Let M1 and M2 be matchings in a simple graph. Then each
component of 〈M1 � M2〉 is either (i) a path whose edges are alternately in
M1 and M2, or (ii) an even cycle whose edges are alternately in M1 and M2

(Fig. 2.16).

Proof. Let H = 〈M1 � M2〉 and v a vertex of H . Then 1 ≤ degH(v) ≤ 2,
and degH(v) = 2 implies that exactly one edge of M1 and one edge of M2

are incident with v. Hence each component C of H is a path or cycle, whose
edges are alternately in M1 and M2. In particular, if C is a cycle, it must be
an even cycle (see Fig. 2.16). ��

M1={       } M2={       } hM1ΔM2i

Fig. 2.16. Matchings M1 and M2; and 〈M1 � M2〉.

Let M be a matching in a simple graph G. Then a path of G is called an
M-alternating path if its edges are alternately in M and not in M . If both
end-vertices of an M -alternating path are unsaturated by M , then such an
M -alternating path is called an M-augmenting path.

For example, in the graph G shown in Fig. 2.17, M = {a, b, c} is
a matching, (d, b, f, a) and (g, c, e) are M -alternating paths, and P =
(d, b, e, c, g) is an M -augmenting path, whose end-vertices u and v are not
saturated by M . Furthermore, it is immediate that M � E(P ) = {a, d, e, g}
is a matching that contains ||M || + 1 edges and is larger than M . The next
theorem states a characterization of maximum matchings by using augmenting
path.

Theorem 2.20 (Berge [25]). A matching M in a simple graph G is maximum
if and only if there exists no M -augmenting path in G.

Proof. The contraposition of the statement, which we shall prove, is the
following. A matching M is not maximum if and only if there exists an M -
augmenting path in G.
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ab

d

c
e f

g

ab

d

c
e f

g

M={      }(1) (2) MΔE(P)

v
u

Fig. 2.17. (1) A matching M = {a, b, c} and an M -augmenting path P = (d, b,
e, c, g); (2) M � E(P ).

Suppose that there is an M -augmenting path P in G. Then M � E(P )
is a matching which contains ||M || + 1 edges, and so M is not a maximum
matching.

We next assume that M is not a maximum matching in G. Let M ′ be a
maximum matching in G. Then by Lemma 2.19, 〈M �M ′〉 contains a path P
in which the number of edges in M ′ is greater than the number of edges in M .
Hence the two pendant edges of P are contained in M ′, which implies that P
is an M -augmenting path of G. Therefore the contraposition is proved. ��

By making use of M -alternating paths and M -augmenting paths, we can
obtain some properties of matchings in a graph and also an algorithm for
finding a maximum matching in a bipartite graph. We begin with one basic
theorem and one result on a game played on a graph.

Theorem 2.21. For any matching M in a simple graph G, G has a maximum
matching that saturates all vertices saturated by M .

Proof. Suppose M is not a maximum matching. By Theorem 2.20, G has
an M -augmenting path P . Then M � E(P ) is a matching which contains
||M ||+1 edges and saturates all the vertices saturated by M . Since a maximum
matching can be obtained by repeating this procedure, we can find a maximum
matching that saturates all the vertices saturated by M . ��
Proposition 2.22 (Exercise 5.1.4 of [34]). Two players play a game on a
connected simple graph G by alternately selecting distinct vertices v1, v2, v3, . . .
so that (v1v2v3 · · · ) forms a path. The player who cannot select a vertex loses,
that is, the player who selects the last vertex wins (Fig. 2.18). The second
player has a winning strategy if G has a perfect matching; otherwise the first
player has a winning strategy.

Proof. Assume that G has a perfect matching M . If the first player selects
a vertex x in his turn, then the second player selects a vertex that is joined
to x by an edge of M . Since M is a perfect matching, the second player can
always select such a vertex. Therefore, he wins since the game is over in a
finite number of moves.
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z

2

3

4

5
6

7

M={       }

1

Fig. 2.18. A graph for which the first player can win, and its maximum matching
M .

Next suppose that G has no perfect matching. Let M be a maximum
matching and z be a vertex unsaturated by M . The first player selects z in
the first turn, and if the second player selects a vertex y in his turn, then the
first player selects a vertex that is joined to y by an edge of M . Then the
vertices selected by the two players form an M -alternating path P starting
at z. Since G has no M -augmenting path by Theorem 2.20, the path P does
not pass through any other vertices unsaturated by M , which implies that the
first player can always select a vertex. Therefore the first player wins. ��

If a matching M in a graph G saturates no vertex in a subset X ⊂ V (G),
then we say that M avoids X .

Theorem 2.23 (Edmonds and Fulkerson [63]). Let A and B be vertex subsets
of a simple graph G such that |A| < |B|. Then
(i) If there exist two matchings, one saturating A and the other saturating B,
then there exists a matching that saturates A and at least one vertex in B \A.
(ii) If there exist two maximum matchings, one avoiding A and the other
avoiding B, then there exists a maximum matching that avoids A and at least
one vertex in B \ A.

Proof. We first prove (i). Let MA and MB be matchings in G which saturate
A and B respectively. If MA saturates one vertex in B \ A, then MA itself is
the desired matching. Hence we may assume that MA avoids B \ A.

Consider 〈MA � MB〉. For every vertex b in B \ A, there exists a path in
〈MA�MB〉 starting at b, which may end at a vertex in A\B. Since |A| < |B|
and no path of 〈MA � MB〉 ends at a vertex in A ∩ B, there exists a path P
in 〈MA �MB〉 that starts at b1 ∈ B \A and ends at x �∈ A (Fig. 2.19). Since
P is an MA-alternating path connecting b1 and x, MA � E(P ) is the desired
matching in G, which saturates A and b1 ∈ B \ A.

We next prove (ii). Let NA and NB be maximum matchings in G which
avoid A and B respectively. We may assume that NA saturates B \ A since
otherwise NA itself is the desired matching. Then by the same argument as
above, there exists an NA-alternating path P in 〈NA�NB〉 starting at a vertex
b ∈ B \A and ending at a vertex not contained in A. This implies that P does
not pass through A. If the both pendant edges of P are contained in NA, then
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A
B

x

b1

MA={       } MB={       } NA={       } NB={       }

A
B

b

P

P

Fig. 2.19. MA-alternating path P and NA-alternating path P .

NB � E(P ) is a matching with ||NB|| + 1 edges, contrary to the maximality
of NB. Thus one pendant edge of P belongs to NB, and thus NA � E(P ) is
the desired maximum matching in G, which avoids A and b ∈ B \ A. ��
Theorem 2.24 (Mendelsohn and Dulmage [187]). Let G be a bipartite simple
graph with bipartition (A, B), and X ⊆ A and Y ⊆ B. If X and Y are
saturated by matchings in G, respectively, then G has a matching that saturates
X ∪ Y .

Proof. Let MX and MY be matchings in G saturating X and Y , respectively.
We may assume that MX does not saturate Y since otherwise MX is the
desired matching.

e

y

A

B

X

Y

f

z

MX ={       ,      } MY ={       ,       }

 MX \   MY ={      }

Fig. 2.20. A path P = (y, e, . . . , f, z) in H = 〈MX � MY 〉.

Let H = 〈MX � MY 〉, and choose a vertex y ∈ Y unsaturated by MX .
Then there exists a path P in H starting at y, which can be expressed as

P = (y, e, . . . , f, z), y, . . . , z ∈ V (H), e, · · · , f ∈ E(H),

where z is the other end-vertex of P and e ∈ MY . It is obvious that the
vertices of P are alternately in B and A, and the edges of P are alternately
in MY and MX . If z ∈ X , then the pendant edge f of P must belong to
MY , which contradicts the fact that X is saturated by MX (Fig. 2.20). Hence
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z �∈ X . Similarly, if z ∈ Y , then f ∈ MX , which contradicts the fact that Y is
saturated by MY . Therefore z �∈ X ∪ Y .

Thus MX � E(P ) is a matching that saturates V (〈MX〉) and y ∈ Y \
V (MX). By repeating this procedure, we can obtain the desired matching in
G, which saturates X ∪ Y . ��

We now give an algorithm for finding a maximum matching in a bipartite
graph, which is often called the Hungarian Method.

Algorithm 2.25 (Hungarian Method) Let G be a bipartite simple graph
with bipartition (A, B). Then a maximum matching in G can be obtained by
the following procedure. Let M be any matching in G, and A0 = A \ V (〈M〉)
be the set of vertices in A unsaturated by M . Let B1 = NG(A0) ⊆ B and
define

Ai = NM (Bi), Bi+1 = NG(Ai) \ (B1 ∪ B2 ∪ · · · ∪ Bi)

for every 1 ≤ i ≤ k until Bk+1 contains an M -unsaturated vertex or Bk+1 = ∅.
If Bk+1 contains an M -unsaturated vertex, say bk+1, then we find an M -
augmenting path P joining bk+1 ∈ Bk+1 to a ∈ A0, and obtain a larger
matching M �E(P ) containing ||M ||+1 edges. We apply the above procedure
to M � E(P ). If Bk+1 = ∅, then M is the desired maximum matching.

A

B

M ={      }

A0 A1 A2

B3B1 B2

a

b

b

a1

An  M-agumenting path 

connecting b and a.

Fig. 2.21. An Algorithm for finding a maximum matching in a bipartite graph; and
an improved algorithm.

Proof. It is easy to see that if Bk+1 contains an M -unsaturated vertex, then we
can find an M -augmenting path P , resulting in a larger matching M �E(P )
(Fig. 2.21). Hence it suffices to show that if Bk+1 = ∅, then M is a maximum
matching.

Suppose Bk+1 = ∅. Let S = A0∪A1 ∪· · ·∪Ak and T = B1∪B2∪· · ·∪Bk.
Then NG(S) = T and NM (T ) = S − A0, and so |T | = |NM (T )| = |S − A0| =
|S| − |A0|. Hence

||M || = |A| − |A0| = |A| − (|S| − |T |)
= |A| − (|S| − |NG(S)|)
≥ |A| − max

X⊆A
{|X | − |NG(X)|}.
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By Theorem 2.11, this implies that M is a maximum matching in G. ��
Of course, we can apply the procedure given in Algorithm 2.25 for each

vertex a ∈ A0 individually, that is, put B1(a) = NG(a) ⊆ B and obtain

Ai(a) = NM (Bi(a)), Bi+1(a) = NG(Ai(a)) \ (B1(a) ∪ · · · ∪ Bi(a))

for every 1 ≤ i ≤ k until Bk+1(a) contains an M -unsaturated vertex or
Bk+1(a) = ∅. If Bk+1(a) contains an M -unsaturated vertex, then we can get
a larger matching than M . If Bk+1(a) = ∅, then we remove S = {a}∪A1(a)∪
· · ·∪Ak(a) and T = B1(a)∪· · · ∪Bk(a) from G, obtain G− (S ∪T ), and then
apply the same procedure in G − (S ∪ T ) for another vertex a′ ∈ A − {a}.

2.4 1-factor theorems

In this section we investigate matchings and 1-factors of graphs. Since a 1-
factor contains neither loops nor multiple edges, we can restrict ourselves
to simple graphs when we consider 1-factors. So in this section, we mainly
consider simple graphs. However, some results hold for multigraphs or general
graphs, and these generalization are useful and interesting. For example, every
2-connected cubic simple graph has a 1-factor, but also every 2-connected
cubic multigraph has a 1-factor. Thus we occasionally consider multigraphs
and general graphs.

A criterion for a graph to have a 1-factor was obtained by Tutte [225] in
1947 and is one of the most important results in factor theory. We begin with
this theorem, which is called the 1-factor theorem. The proof presented here is
due to Anderson [16] and Mader [183]. Tutte’s original proof uses the Pfaffian
of a matrix. Other proofs of the 1-factor theorem are found in Hetyei [102]
and Lovász [180].

After the 1-factor theorem, we discuss some other criteria for graphs
to have 1-factors. For example, a criterion for a graph to have a 1-factor
containing any given edge and a criterion for a tree to have a 1-factor, which
is much simpler than the criterion of the 1-factor theorem, are shown.

For a vertex subset X of G and a component C of G − X , we simplify
notation by denoting

EG(C, X) = EG(V (C), X) and eG(C, X) = eG(V (C), X).

A component of a graph is said to be odd or even according to whether
its order is odd or even. For a graph G, Odd(G) denotes the set of odd
components of G, and odd(G) denotes the number of odd components of G,
that is,

odd(G) = |Odd(G)| = the number of odd components of G.
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Lemma 2.26. Let G be a general graph and S ⊆ V (G). Then

odd(G − S) + |S| ≡ odd(G − S) − |S| ≡ |G| (mod 2). (2.8)

In particular, if G is of even order, then

odd(G − S) ≡ |S| (mod 2), (2.9)

and odd(G − v) ≥ 1 for every vertex v.

Proof. Let C1, C2, . . . , Cm be the odd components of G − S, and D1, D2,
. . . , Dr the even components of G − S, where m = odd(G − S). Then

|G| = |S| + |C1| + · · · + |Cm| + |D1| + · · · + |Dr| ≡ |S| + m (mod 2).

Hence odd(G − S) + |S| ≡ |G| (mod 2). It is obvious that odd(G − S) +
|S| ≡ odd(G − S)− |S| (mod 2). Therefore (2.8) holds. (2.9) is an immediate
consequence of (2.8). ��

Before giving the 1-factor theorem, we make the following remark. A
matching in a general graph contains no loops, and so does not contain a
1-factor. Then a 1-factor of a general graph is a spanning subgraph with all
vertices degree one. Thus it is obvious that a general graph G has a 1-factor
if and only if its underlying graph has a 1-factor, where the underlying
graph of G is a simple graph obtained from G by removing all the loops and
by replacing the multiple edges joining two vertices by a single edge joining
them. Therefore, essential part of the following 1-factor theorem is that the
theorem holds for simple graphs.

Theorem 2.27 (The 1-Factor Theorem, Tutte [225]). A general graph G
has a 1-factor if and only if

odd(G − S) ≤ |S| for all S ⊂ V (G). (2.10)

Proof. As we remarked above, we may assume that the given general graph
G is a simple graph. Assume that G has a 1-factor F . Let ∅ �= S ⊆ V (G),
and C1, C2, . . . , Cm be the odd components of G−S, where m = odd(G−S).
Then for every odd component Ci of G − S, there exists at least one edge in
F that joins Ci to S (Fig. 2.22). Hence

odd(G − S) = m ≤ eF (C1 ∪ C2 ∪ · · · ∪ Cm, S) ≤ |S|.
We now prove the sufficiency by induction on |G|. By setting S = ∅, we

have odd(G) = 0, which implies that each component of G is even. If G is not
connected, then every component of G satisfies (2.10), and so it has a 1-factor
by the inductive hypothesis. Hence G itself has a 1-factor. Therefore, we may
assume that G is connected and has even order.
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Even

components

S

1-factor F={       }      

CmOdd components

C1

Fig. 2.22. For every odd component Ci of G − S, at least one edge of F joins Ci

to S.

It follows from Lemma 2.26 and (2.10) that odd(G − {v}) = |{v}| = 1.
Let S be a maximal subset of V (G) with the property that odd(G −S) = |S|.
Then ∅ �= S ⊂ V (G) and

odd(G − X) < |X | for all S ⊂ X ⊆ V (G). (2.11)

Claim 1. Every component of G − S is of odd order.

Suppose that G − S has an even component D. Let v be any vertex of D.
Then by Lemma 2.26, D − v has at least one odd component, and so

odd(G − (S ∪ {v})) = odd(G − S) + odd(D − v) ≥ |S| + 1,

which implies odd(G − (S ∪ {v})) = |S ∪ {v}| by (2.10). This contradicts the
maximality of S. Hence Claim 1 holds.

Claim 2. For any vertex v of each odd component C of G − S, C − v has a
1-factor.

Let C be an odd component of G− S, and v any vertex of C. Then for every
subset X ⊆ V (C − v), we have by (2.11) that

|S| + 1 + |X | > odd(G − (S ∪ {v} ∪ X))
= odd(G − S) − 1 + odd(C − ({v} ∪ X))
= |S| − 1 + odd((C − v) − X).

Thus odd((C − v) − X) < |X | + 2, which implies odd((C − v) − X) ≤ |X |
by (2.9). Hence C − v has a 1-factor by the induction hypothesis, and thus
Claim 2 is proved.

Let C1, C2, . . . , Cm be the odd components of G−S, where m = odd(G−
S) = |S|. We construct a bipartite graph B with partite sets S and {C1, C2,
. . ., Cm} as follows: a vertex x of S and Ci are joined by an edge of B if and
only if x and Ci are joined by an edge of G (Fig. 2.23).
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Fig. 2.23. G − S and the bipartite graph B.

Claim 3. The bipartite graph B has a 1-factor.

It follows that |NB(S)| = |{C1, C2, . . . , Cm}| = |S| since G is connected.
Assume that |NB(X)| < |X | for some ∅ �= X ⊂ S. Then every vertex Ci ∈
{C1, C2, . . . , Cm}−NB(X) is an isolated vertex of B− (S−X), which implies
Ci is an odd component of G − (S − X), and thus we obtain

odd(G − (S − X)) ≥ |{C1, C2, . . . , Cm} − NB(X)| > m − |X | = |S − X |.
This contradicts (2.10). Therefore |NB(X)| ≥ |X | for all X ⊆ S, and so by
the marriage theorem, B has a matching K saturating S. Since m = |S|, K
must saturate {C1, C2, . . . , Cm}, and thus K is a 1-factor of B.

For every edge xiCi of K, choose a vertex vi ∈ V (Ci) that is adjacent to
xi in G, and take a 1-factor F (Ci) of Ci − vi, whose existence is guaranteed
by Claim 2. Therefore, we obtain the following desired 1-factor of G:

(
F (C1) ∪ · · · ∪ F (Cm)

)

∪ {xivi : xiCi ∈ K, xi ∈ S, vi ∈ V (Ci), 1 ≤ i ≤ m}.
Consequently the theorem is proved. ��

A graph G is said to be factor-critical if G − v has a 1-factor for every
vertex v of G (Fig. 2.24). It is easy to see that if G is factor-critical, then G
is of odd order, connected and not a bipartite graph (Problem 2.8).

Fig. 2.24. Factor-critical graphs.

Theorem 2.28 (Edmonds [62]). A simple graph G of even order has a 1-
factor if and only if for every subset S of V (G), the number of factor-critical
components of G − S is less than or equal to |S|.
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Proof. The necessity follows immediately from the 1-factor theorem since
every factor-critical component of G − S is an odd component of G − S.

We now prove the sufficiency. Suppose that G satisfies the condition in
the theorem, but has no 1-factor. Then by the 1-factor theorem, there exists a
subset ∅ �= X ⊆ V (G) such that odd(G−X) > |X |, which implies X �= V (G).
Take a maximal subset ∅ �= S ⊂ V (G) such that odd(G − S) > |S|. Then

odd(G − Y ) ≤ |Y | for all S ⊂ Y ⊆ V (G). (2.12)

We first show that G−S has no even component, since otherwise for a vertex
u of an even component of G − S, we have by Lemma 2.26 that

odd(G − (S ∪ {u})) ≥ odd(G − S) + 1 > |S| + 1 = |S ∪ {u}|,
contrary to (2.12). We shall next show that every odd component of G− S is
factor-critical. Let C be an odd component of G − S, and v any vertex of C.
Then for every X ⊆ V (C − v), (2.12) implies

|S| + 1 + |X | ≥ odd(G − (S ∪ {v} ∪ X))
= odd(G − S) − 1 + odd(C − ({v} ∪ X))
> |S| − 1 + odd((C − v) − X).

Hence |X | + 2 > odd((C − v) − X), which implies odd((C − v) − X) ≤ |X |
by (2.9). Therefore C − v has a 1-factor by the 1-factor theorem, and so C is
factor-critical. Consequently,

the number of factor-critical components of G − S = odd(G − S) > |S|.
This contradicts the assumption, and thus the theorem is proved. ��

The next theorem gives a necessary and sufficient condition for a tree to
have a 1-factor, and the proof presented here is due to Amahashi [14].

Theorem 2.29 (Chungphaisan ). A tree T of even order has a 1-factor if and
only if odd(T − v) = 1 for every vertex v of T .

Proof. Suppose that T has a 1-factor F . Then for every vertex v of T , let w
be the vertex of T joined to v by an edge of F . It follows that the component
of T − v containing w is odd, and all the other components of T − v are even
(Fig. 2.25). Hence odd(T − v) = 1.

Suppose that odd(T − v) = 1 for every v ∈ V (T ). It is obvious that for
each edge e of T , T − e has exactly two components, and both of them are
simultaneously odd or even. Define a set F of edges of T as follows:

F = {e ∈ E(T ) : odd(T − e) = 2}.
For every vertex v of T , there exists exactly one edge e that is incident with
v and satisfies odd(T − e) = 2 since T − v has exactly one odd component,
where e is the edge joining v to this odd component (Fig. 2.25). Therefore e
is an edge of F , and thus F is a 1-factor of G. ��
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Fig. 2.25. A tree having a 1-factor, and a tree T satisfying odd(T − v) = 1.

We now give a variety of requirements for a graphs to have a 1-factor.
A graph G is said to be 1-extendable if for every edge e, G has a 1-factor
containing e. More generally, for an integer n ≥ 1, a graph G is said to be
n-extendable if every matching of size n in G can be extended to a 1-factor
of G.

Theorem 2.30 (Little, Grant and Holton, [168]). A simple graph G is 1-
extendable if and only if

odd(G − S) ≤ |S| − 2 for all S ⊂ V (G) (2.13)

such that 〈S〉G contains an edge.

Proof. We first prove the necessity. Let S ⊆ V (G) such that 〈S〉G contains an
edge, say e = xy (x, y ∈ S). Since G has a 1-factor F containing e, for each
odd component C of G − S, there exists an edge in F joining C to a vertex
in S − {x, y}, and hence

odd(G − S) ≤ eF (G − S, S − {x, y}) ≤ |S| − 2.

We next prove the sufficiency. Let e = xy (x, y ∈ V (G)) be any edge of G.
We shall show that G− {x, y} has a 1-factor, which obviously implies that G
has a 1-factor containing e.

Let S ⊆ V (G) − {x, y}. Since 〈S ∪ {x, y}〉G contains an edge e, we have

odd((G − {x, y}) − S) = odd(G − (S ∪ {x, y})) ≤ |S ∪ {x, y}| − 2 = |S|.

Therefore G − {x, y} has a 1-factor by the 1-factor theorem. ��
A criterion for a graph to be n-extendable is given in the following theorem.

Since this theorem can be proved in a similar fashion to the proof of the above
theorem, we omit the proof (Problem 2.10).

Theorem 2.31 (Chen [47]). Let n ≥ 1 be an integer, and G be a simple graph.
Then G is n-extendable if and only if

odd(G − S) ≤ |S| − 2n for all S ⊂ V (G) with α′(〈S〉G) ≥ n, (2.14)

where α′(〈S〉G) denotes the size of a maximum matching in 〈S〉G.
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Similarly, we consider the following problem. When does a graph G possess
the property that for every edge e, G has a 1-factor excluding e? The answer
to this question is given in the next theorem. An edge e of a connected graph
G is called an odd-bridge if e is a bridge of G and G− e consists of two odd
components. In particular, such a graph G has even order. The next theorem
was obtained by C. Chen.

Theorem 2.32 (Chen [45],[47]). Let G be a connected simple graph. Then for
every edge e of G, G has a 1-factor excluding e if and only if

odd(G − S) ≤ |S| − ε2 for all S ⊂ V (G), (2.15)

where ε2 = 2 if G − S has a component containing an odd-bridge; otherwise
ε2 = 0.

Proof. We first prove the necessity. Let S ⊆ V (G). Then odd(G−S) ≤ |S| by
the 1-factor theorem. Assume that G − S has a component D containing
an odd-bridge e. Consider a 1-factor F of G excluding e. Then for each
odd component C of G − S, F contains at least one edge joining C to S.
Furthermore, for each odd component C′ of D−e, at least one edge of F joins
C′ to S. Hence

odd(G − S) + 2 ≤ eF (G − S, S) ≤ |S|.
Consequently, (2.15) holds.

Conversely, assume that G satisfies (2.15). We shall show that for any edge
e of G, G−e has a 1-factor, which is of course a 1-factor of G excluding e. Let
S ⊆ V (G − e) = V (G). If e is an odd-bridge of an even component of G − S,
then odd(G−e−S) = odd(G−S)+2; otherwise odd(G−e−S) = odd(G−S).
For example, if e is a bridge of an odd component C of G−S, then C − e has
exactly one odd component, and so odd(G − S − e) = odd(G − S). Therefore

odd((G − e) − S) = odd(G − S − e) = odd(G − S) + ε2 ≤ |S|.
Hence G − e has a 1-factor. ��
Theorem 2.33 (Corollary 1.6 of [32]). Let G be a simple graph and W a
vertex set of G. Then G has a matching that saturates W if and only if

odd(G − S|W ) ≤ |S| for all S ⊆ V (G), (2.16)

where odd(G − S|W ) denotes the number of those odd components of G − S
whose vertices are all contained in W (Fig. 2.26).

Proof. Assume that G has a matching M which saturates W . Then for every
odd component C of G−S such that V (C) ⊆ W , at least one edge of M joins
C to S. Thus odd(G − S|W ) ≤ eM (V (G) − S, S) ≤ |S|.
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Fig. 2.26. (1) A matching M saturating W ; (2) Each odd component C of G − S
is counted in odd(G − S|W ) but is not an odd component D of G − S; and (3) the
graph H .

We next prove the sufficiency. By the 1-factor theorem, we may assume
that W is a proper subset of V (G), and so V (G) − W �= ∅. Let n = |G|. We
construct a new graph H from G by adding the complete graph Kn and by
joining every vertex in V (G) − W to every vertex of Kn (Fig. 2.26). Then H
has even order, and it is easy to see that G has a matching saturating W if
and only if H has a 1-factor.

Let X ⊆ V (H). If V (Kn) ⊆ X , then odd(H−X) ≤ |G| ≤ |X |. If V (Kn) �⊆
X , then since V (H) − (X ∪ W ) is contained in a component of H − X , we
have by (2.16) that

odd(H − X) ≤ odd(G − V (G) ∩ X |W ) + 1 ≤ |V (G) ∩ X |+ 1 ≤ |X |+ 1,

which implies odd(H − X) ≤ |X | by (2.9). Therefore H has a 1-factor, and
thus G has the desired matching saturating W . ��

For a graph G,

def(G) = max
X⊂V (G)

{odd(G − X) − |X |}

is called the deficiency of G. Note that the deficiency is non-negative as
odd(G − ∅) − |∅| ≥ 0. This concept is introduced in the next theorem.

Theorem 2.34 (Berge [26]). Let M be a maximum matching in a simple
graph G. Then the number |M | of vertices saturated by M is given by

|M | = |G| − max
X⊂V (G)

{odd(G − X) − |X |}. (2.17)

Proof. The proof given here is due to Bollobás [32]. Let d be the deficiency
of G and S a subset of V (G) such that odd(G − S) − |S| = d. Then odd(G −
X) − |X | ≤ d for every X ⊂ V (G).

We first show |M | ≤ |G| − d. Let M be a maximum matching of G. Then
for any odd component C of G − S, if V (C) is saturated by M , then at least
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Fig. 2.27. (1) At least odd(G − S) − |S| = d vertices are not saturated by M ; (2)
The graph H = G + Kd.

one edge of M joins C to S (Fig. 2.27). Thus at least odd(G−S)−|S| = d odd
components of G − S are not saturated by M , which implies |M | ≤ |G| − d.

In order to prove the inverse inequality, we construct the join H = G+Kd,
where Kd is the complete graph of order d. Then for every ∅ �= Y ⊆ V (H), if
V (Kd) �⊆ Y , then odd(H − Y ) ≤ 1 ≤ |Y |; and if V (Kd) ⊆ Y , then

odd(H − Y ) = odd(G − V (G) ∩ Y ) ≤ |V (G) ∩ Y | + d = |Y |.
Hence H has a 1-factor F by the 1-factor theorem. Then F ∩ E(G) = F −
V (Kd) is a matching in G and saturates at least |G|− d vertices. This implies
that |M | ≥ |F ∩ E(G)| ≥ |G| − d. Consequently the theorem is proved. ��

2.5 Graphs having 1-factors

We shall show some classes of graphs that have 1-factors, and give some results
on the sizes of maximum matchings. Among these results, the following is
well-known: every (r − 1)-edge connected r-regular graph of even order has
a 1-factor that contains any given edge. The next lemma is useful when we
prove the existence of 1-factors in regular graphs.

Lemma 2.35. Let r ≥ 2 be an integer. Let G be an r-regular general graph,
and S a vertex subset of G. Then for every odd component C of G − S,

eG(C, S) ≡ r (mod 2), (2.18)

that is, eG(C, S) and r have the same parity. In particular, if G is an (r− 1)-
edge connected r-regular multigraph, then eG(C, S) ≥ r.

Proof. Since |C| is odd, congruence (2.18) follows from

r ≡ r|C| =
∑

x∈V (C)

degG(x) = eG(C, S) + 2||C|| ≡ eG(C, S) (mod 2),

where ||C|| denotes the size of C. If G is an (r − 1)-edge connected r-regular
multigraph, then eG(C, S) ≥ r − 1, and so by combining this inequality and
(2.18), we have eG(C, S) ≥ r. ��
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The next theorem was first proved by Petersen in 1891 in a slightly weaker
form. The stronger version, which we present here, is due to Errera and others
(see Chapter 10 of [31]),

Theorem 2.36 (Petersen [209]). Let G be a connected 3-regular general graph
such that all the bridges of G, if any, are contained in a path of G. Then G
has a 1-factor (Fig. 2.28). In particular, every 2-edge connected 3-regular
multigraph has a 1-factor (Fig. 2.28).

(1)

(2)
(3)

Fig. 2.28. (1) A 3-regular general graph having a 1-factor; (2) A 2-edge connected
3-regular multigraph having a 1-factor; and (3) A 3-regular simple graph having no
1-factor.

Proof. We prove only the first statement since the second statement follows
immediately by noting that a 2-edge connected graph has no bridges. Let
∅ �= S ⊂ V (G), and C1, C2, · · · , Cm, m = odd(G−S), be the odd components
of G − S such that

eG(Ci, S) = 1 for all 1 ≤ i ≤ t, and
eG(Cj , S) ≥ 2 for all t + 1 ≤ j ≤ m.

An edge joining Ci (1 ≤ i ≤ t) to S is a bridge of G and is contained in a
path of G, and thus t ≤ 2. By Lemma 2.35,

eG(Cj , S) ≥ 3 for all t + 1 ≤ j ≤ m.

Therefore

3|S| ≥ eG(C1 ∪ C2 ∪ · · · ∪ Cm, S) ≥ t + 3(m − t) = 3m − 2t ≥ 3m − 4.

Hence m ≤ |S| + 4/3 < |S| + 2, which implies m ≤ |S| by (2.9). Therefore G
has a 1-factor by the 1-factor theorem. ��

The above theorem can be extended to r-regular graphs as follows. Note
that an (r− 1)-edge connected r-regular general graph contains no loops, and
so it must be a multigraph.
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Theorem 2.37 (Bäbler [22]). Let r ≥ 2 be an integer, and G be an (r − 1)-
edge connected r-regular multigraph of even order. Then for every edge e of
G, G has a 1-factor containing e. In particular, G has a 1-factor.

Proof. We use Theorem 2.30, which gives a necessary and sufficient condition
for a multigraph to have a 1-factor containing any given edge. Let ∅ �=
S ⊂ V (G) such that 〈S〉G contains an edge. Let C1, C2, · · · , Cm be the odd
components of G−S, where m = odd(G−S). Then by Lemma 2.35, we have
eG(Ci, S) ≥ r. Hence

r|S| =
∑

x∈S

degG(x) ≥ eG(C1 ∪ C2 ∪ · · · ∪ Cm, S) + 2 ≥ rm + 2.

Hence m ≤ |S| − 2/r < |S|, which implies m ≤ |S| − 2 by (2.9). Therefore the
theorem follows from Theorem 2.30. ��
Theorem 2.38. Let r ≥ 2 be an even integer, and G be an (r − 1)-edge
connected r-regular multigraph of odd order. Then for every vertex v, G − v
has a 1-factor, that is, G is factor-critical.

Proof. Let ∅ �= S ⊂ V (G − v) = V (G) − v. Let C1, C2, · · · , Cm be the odd
components of (G − v) − S = G − (S ∪ {v}), where m = odd((G − v) − S).
Then by Lemma 2.35, we have eG(Ci, S ∪ {v}) ≥ r. Thus

r(|S| + 1) =
∑

x∈S∪{v}
degG(x) ≥ eG(C1 ∪ C2 ∪ · · · ∪ Cm, S ∪ {v}) ≥ rm.

Hence m ≤ |S| + 1, which implies m ≤ |S| by (2.9). Consequently G − v has
a 1-factor by the 1-factor theorem. ��
Theorem 2.39 (Plesńık [211]). Let r ≥ 2 be an integer, and G an (r − 1)-
edge connected r-regular multigraph of even order. Then for any r − 1 edges
e1, e2, . . . , er−1 of G, G has a 1-factor excluding {e1, e2, . . . , er−1}.
Proof. Let H = G − {e1, . . . , er−1}. It suffices to show that H has a 1-factor.
Let ∅ �= S ⊂ V (H) = V (G), and C1, C2, · · · , Cm be the odd components of
H − S. Then by the same argument as in the proof of Lemma 2.35, we have

eG(Ci, V (G) − V (Ci)) ≥ r − 1 and eG(Ci, V (G) − V (Ci)) ≡ r (mod 2).

Hence

r ≤ eG(Ci, V (G) − V (Ci)) = eG(Ci, S) + eG(Ci, V (G) − S − V (Ci)). (2.19)

Since Ci is a component of H − S, it follows that EG(Ci, V (G) − S −
V (Ci)) ⊆ {e1, . . . , er−1}, and it is clear that each ej is contained in at most
two such edge subsets, and thus
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V(G)-S-V(Ci)
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Cj
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2{e1,e2, ...,er-1}           2E(H)

Fig. 2.29. eG(Ci, S) and eG(Ci, V (G)−S−V (Ci)), where Ci and D denote an odd
and even component of H − S, respectively.

m∑

i=1

eG(Ci, V (G) − S − V (Ci)) ≤ 2#{e1, e2, . . . , er−1} = 2(r − 1).

Therefore by (2.19), we have

rm ≤
m∑

i=1

(
eG(Ci, S) + eG(Ci, V (G) − S − V (Ci))

)

≤
∑

x∈S

degG(x) +
m∑

i=1

eG(Ci, V (G) − S − V (Ci))

≤ r|S| + 2(r − 1).

Hence m ≤ |S| + 2(1 − 1/r) < |S| + 2, which implies m ≤ |S| by (2.9).
Consequently H has a 1-factor, and the theorem follows. ��

By Theorem 2.37, every (r − 1)-edge connected r-regular multigraph of
even order has a 1-factor. We can say that this result is the best in the sense
that there exist infinitely many (r − 2)-edge connected r-regular multigraphs
of even order that have no 1-factor. An example is given below.

Example Let r ≥ 3 be an odd integer. Let Kr−2 = (r − 2)K1 be the totally
disconnected graph of order r − 2 and R an (r − 2)-edge connected simple
graph of odd order such that r − 2 vertices of R have degree r − 1 and all the
other vertices have degree r. Such an R can be obtained from the complete
graph Kr+2 by deleting one cycle with r−2 edges and two independent edges.
It is easy to see that there exist infinitely many such graphs R for any given
r.

We construct an (r − 2)-edge connected r-regular simple graph G from
Kr−2 and r copies of R. Join each vertex of Kr−2 to one vertex of degree r−1
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R= K7

R=K7 - {       }
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Fig. 2.30. A 3-edge connected 5-regular graph G having no 1-factors; numbers
denote the degrees of vertices in R.

in every copy of R. The resulting graph is an (r−2)-edge connected r-regular
simple graph G (Fig. 2.30). Then G has no 1-factor since

odd(G − V (Kr−2)) = the number of copies of R

= r > |V (Kr−2)| = r − 2.

We can similarly construct such graphs for even integers r.

The next theorem shows that an n-edge connected r-regular simple graph
with small order has a 1-factor even if it is not (r − 1)-edge connected. This
result with n = 1 was obtained by Wallis [240], and then generalized and
extended by Zhao [255], Klinkenberg and Volkmann [154] and Volkmann [237].

Theorem 2.40 (Wallis [240]). Let r ≥ 2 be an integer, and G be an n-edge
connected r-regular simple graph of even order. Define an integer n′ ∈ {n, n+
1} so that n′ ≡ r (mod 2). Then the following two statements hold.
(i) If r is odd and ⌊ |G| − 1

r + 2

⌋
<

2r

r − n′ ,

then G has a 1-factor. In particular, every connected r-regular simple graph
with order at most 3(r + 2) has a 1-factor.
(ii) If r is even and ⌊ |G| − 1

r + 1

⌋
<

2r

r − n′ ,

then G has a 1-factor. In particular, every connected r-regular simple graph
with order at most 3(r + 1) has a 1-factor. Furthermore, every connected 4-
regular simple graph with order at most 20 has a 1-factor

Proof. We shall prove only (i) since (ii) can be proved in a similar way. Let
r ≥ 3 be an odd integer. Let ∅ �= S ⊂ V (G), and C1, C2, . . . , Cm be the odd
components of G − S, where m = odd(G − S). If |Ci| ≤ r, then

r|Ci| =
∑

x∈V (Ci)

degG(x) = eG(Ci, S) + 2||Ci||

≤ eG(Ci, S) + |Ci|(|Ci| − 1) ≤ eG(Ci, S) + r(|Ci| − 1).
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Hence eG(S, Ci) ≥ r.
Since r + 1 is an even integer, no Ci has order r + 1. Let us define

m1 = the number of Ci with |Ci| ≤ r; and
m2 = the number of Ci with |Ci| ≥ r + 2.

Then m = m1 + m2, and eG(S, Ci) ≥ r if |Ci| ≤ r, and by Lemma 2.35,
eG(S, Ci) ≥ n′ if |Ci| ≥ r + 2. Hence we have

r|S| ≥ eG(S, C1 ∪ C2 ∪ · · · ∪ Cm) ≥ rm1 + n′m2 = rm + (n′ − r)m2,

which implies m ≤ |S| + (r − n′)m2/r. Therefore the inequality m < |S| + 2
holds if

m2 <
2r

r − n′ . (2.20)

On the other hand, it follows that

|G| ≥ |S| + |C1| + · · · + |Cm| ≥ |S| + (r + 2)m2,

which implies

m2 ≤
⌊ |G| − |S|

r + 2

⌋
≤

⌊ |G| − 1
r + 2

⌋
.

Consequently, if the following inequality holds, then inequality (2.20) holds,
which implies m < |S| + 2 and G has a 1-factor by (2.9).

⌊ |G| − 1
r + 2

⌋
<

2r

r − n′ .

Therefore the first part of (i) is proved.
We next prove the second part of (i). If |G| ≤ 3(r + 2) and n′ = 1, then

⌊ |G| − 1
r + 2

⌋
= 2 <

2r

r − 1
=

2r

r − n′ .

Hence G has a 1-factor by the first part of (i).
Notice that when r is even, every r-regular graph is 2-edge connected.

Thus we can apply the result with n′ = 2 and obtain the latter part of (ii).
��

We next identify some non-regular graphs which have 1-factors. The next
theorem uses the binding number of a graph to give a sufficient condition for
a graph to have a 1-factor.

Theorem 2.41 (Woodall [249]). Let G be a connected simple graph of even
order. If for every ∅ �= S ⊆ V (G),

NG(S) = V (G) or |NG(S)| >
4
3
|S| − 1, (2.21)

then G has a 1-factor. In particular, a connected simple graph H with
bind(H) ≥ 4/3 has a 1-factor.
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Proof. The proof is by contradiction. Assume that G has no 1-factor. Then
by the 1-factor theorem and by (2.9), there exists a subset ∅ �= S ⊂ V (G)
such that odd(G − S) ≥ |S| + 2.

Let X be the set of isolated vertices of G − S, and C1, C2, . . . , Ck the
odd components of G − S with order at least three. Let V = V (G) and
Y = V (C1) ∪ V (C2) ∪ · · · ∪ V (Ck) (Fig. 2.31). Then

odd(G − S) = |X | + k ≥ |S| + 2, |Y | ≥ 3k and
|V | ≥ |S| + |X | + |Y |. (2.22)

We consider two cases:

S

X

C1 C2

Ck

Y

V-(X[Y[S)

Fig. 2.31. The graph G with a subset S.

Case 1. X �= ∅.
Since NG(V − S) ⊆ V − X �= V , it follows from (2.21) that

|NG(V − S)| >
4
3
|V − S| − 1 =

4|V |
3

− 4
3
|S| − 1

and
|NG(V − S)| ≤ |V − X | = |V | − |X |.

By the previous two inequalities, we obtain

|V | < 4|S|+ 3 − 3|X |. (2.23)

On the other hand, it follows from (2.22) that

|V | ≥ |S| + |X | + |Y | ≥ |S| + |X |+ 3k

≥ |S| + |X | + 3(|S| + 2 − |X |)
= 4|S| − 2|X | + 6.

Hence, by this inequality and (2.23), we have

4|S| − 2|X |+ 6 ≤ |V | < 4|S| + 3 − 3|X |,
which is a contradiction.
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Case 2. X = ∅.
In this case odd(G−S) = k. Let Z = V (C2)∪· · ·∪V (Ck). Since NG(Z) ⊆

V (G) − V (C1) �= V (G), it follows from (2.21) that

4
3
|Z| − 1 < |NG(Z)| ≤ |Z| + |S|.

Thus |Z| < 3|S|+ 3. On the other hand, by (2.22) we have that

|Z| ≥ 3(k − 1) = 3(odd(G − S) − 1) ≥ 3(|S| + 2 − 1).

Therefore
3(|S| + 1) ≤ |Z| < 3|S| + 3.

This is again a contradiction. Consequently the theorem is proved. ��

rK1

(r+2)K3

+

S

Fig. 2.32. A graph G = (r +2)K3 + rK1, which has no 1-factor and whose binding
number is (4/3) − (1/3r).

Consider a graph G = (r+2)K3+rK1, where r ≥ 1 is an integer (Fig. 2.32).
Then we can easily show that G has no 1-factor, and setting S = V ((r+1)K3),
we have

bind(G) =
|NG(S)|

|S| =
|V (G) − V (K3)|

|S| =
4(r + 1) − 1

3(r + 1)
=

4
3
− 1

3(r + 1)
.

Hence the condition of Theorem 2.41 is sharp.

Recall that if G is t-tough, then tough(G) ≥ t and for a subset S ⊂ V (G)
with ω(G − S) ≥ 2, it follows that

ω(G − S) ≤ |S|
tough(G)

≤ |S|
t

.

The next theorem uses the idea of toughness to give a sufficient condition for
a graph to have a 1-factor.

Theorem 2.42 (Chvátal [54], Exercise 3.4.11 of [182]). Every 1-tough con-
nected simple graph of even order has a 1-factor. Moreover, for every real
number ε > 0, there exist simple graphs G of even order that have no 1-factors
and satisfy tough(G) > 1 − ε.
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Proof. Let G be a 1-tough connected simple graph of even order, and ∅ �= S ⊂
V (G). If ω(G − S) ≥ 2, then

odd(G − S) ≤ ω(G − S) ≤ |S|
tough(G)

≤ |S|.

If ω(G−S) = 1, then odd(G−S) ≤ ω(G−S) = 1 ≤ |S|. Hence odd(G−S) ≤ |S|
always holds, and thus G has a 1-factor by the 1-factor theorem.

Let G = Km + tKn, which is a join of the complete graph Km and the t
copies of the complete graph Kn, where n is an odd integer (Fig. 2.33 (1)).
Moreover, we can choose m, n and t so that

t > m,
m

t
> 1 − ε and m + nt ≡ 0 (mod 2).

Then G has no 1-factor since odd(G − V (Km)) = t > |V (Km)| = m, and

tough(G) =
|V (Km)|

ω(G − V (Km))
=

m

t
> 1 − ε.

Therefore the theorem is proved. ��
Recall that a graph G is said to be claw-free if G contains no induced

subgraph isomorphic to the claw K1,3 (Fig. 2.33 (2)).

Kn Kn

Km

t

+
(1) (2)

Fig. 2.33. (1) Km + tKn; (2) A claw-free graph and its 1-factor.

Theorem 2.43 (Sumner [218], Las Vergnas [164]). Every connected claw-free
simple graph of even order has a 1-factor.

Proof. We prove the theorem by induction on |G|. We may assume |G| ≥ 3.
Let P = (v1, v2, . . . , vk), (vi ∈ V (G)) be a longest path of G. Then k ≥ 3. It
is immediate that NG(v1) ⊆ V (P ) − {v1}.

We shall show that G − {v1, v2} is connected. If degG(v2) = 2, then G −
{v1, v2} is connected since NG(v1) ⊆ V (P )−{v1}. Thus we may assume that
degG(v2) ≥ 3. For every x ∈ NG(v2)−V (P ), xv3 must be an edge of G, since
otherwise 〈{v2, v1, v3, x}〉G �= K1,3 implies that v1x or v1v3 is an edge of G.
Hence G contains a path longer than P , a contradiction. Therefore G−{v1, v2}
is a connected graph of even order, and is of course claw-free. By the induction
hypothesis, G − {v1, v2} has a 1-factor, and so does G. ��



2.5 Graphs having 1-factors 53

It is known that every 4-connected planar graph has a Hamiltonian cycle
[229], which implies that it has a 1-factor if it is of even order, but, there
are infinitely many 3-connected planar graphs of even order that have no 1-
factors. The next theorem gives a lower bound for the order of a maximum
matching of a planar graph. The proof given here seems to be different from
that of [203].

Theorem 2.44 (Nishizeki and Baybars [203]). Let G be a connected planar
simple graph with δ(G) ≥ 3. Then the number |M | of vertices saturated by a
maximum matching M in G is

|M | ≥ 2|G| + 4
3

. (2.24)

If G is 2-connected, then

|M | ≥ 2|G| + 8
3

. (2.25)

Proof. We first prove (2.25). Let G be a 2-connected planar simple graph. We
may assume that G is drawn in the plane as a plane graph. Let ∅ �= S ⊂ V (G).
Let us denote by X the set of isolated vertices of G−S, and by C1, C2, . . . , Cm

the odd components of G − S of order at least three. Then

odd(G − S) = |X |+ m, and |G| ≥ |S| + |X | + 3m. (2.26)

If |S| = 1, then odd(G − S) ≤ 1 = |S| since G is 2-connected. So odd(G −
S) − |S| ≤ 0. Assume |S| ≥ 2. We construct a planar bipartite graph B with
bipartite sets S and X∪{v1, v2, . . . , vm} from G by contracting C1, C2, . . . , Cm

into single vertices v1, v2, . . . , vm and by replacing all multiple edges in the
resulting graph by single edges, that is, s ∈ S and vi are joined by an edge of
B if and only if s and Ci are joined by an edge of G (Fig. 2.34).

Since G is a 2-connected graph with δ(G) ≥ 3, it follows that

degB(x) ≥ 3 for all x ∈ X, and
degB(vi) ≥ 2 for all 1 ≤ i ≤ m. (2.27)

Since B is a planar bipartite graph, it follows from Theorem 1.10 that

||B|| ≤ 2|B| − 4.

By combining this inequality and (2.27), we obtain

3|X |+ 2m ≤ ||B|| ≤ 2|B| − 4 = 2(|S| + |X | + m) − 4.

Hence |X | − 2|S| ≤ −4DBy this inequality and (2.26), we get
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x1

x2

x3

C2
C3C4

C1

S1

S3

S2

x1

x2

x3

v2

v3
v4

v1

S1

S3

S= [[

S2

S1 S3S2

X={x1,x2,x3}

BG

D1

D2

Fig. 2.34. G is a 2-connected plane graph, x1, x2, x3 are the isolated vertices of
G − S, C1, . . . , C4 are the odd components of G − S with order at least 3, and
D1, D2 are the even components of G − S. B is the corresponding planar bipartite
graph.

odd(G − S) − |S| = |X |+ m − |S|
≤ |X |+ |G| − |S| − |X |

3
− |S| =

|G| + 2(|X | − 2|S|)
3

≤ |G| − 8
3

.

Consequently by (2.17) in Theorem 2.34, we have

|M | = |G| − max
S

(odd(G − S) − |S|) ≥ |G| − |G| − 8
3

=
2|G| + 8

3
,

which implies the desired inequality (2.25).

G

x1

D1

u1

y1

D2

a4

u2

e
a1

a2

a3
a5

G1 G2
w

G

Fig. 2.35. A connected plane graph G with bridge e; and a connected plane graph
G with cut vertex w.

We next prove (2.24) by induction on |G|, where G is a connected plane
graph with δ(G) ≥ 3. Since (2.24) holds for a small graph G, we may assume
that the order of G is not small (for example, |G| ≥ 10). Suppose first that
G has a bridge e = u1u2 (Fig. 2.35). Let D1 and D2 be the two components
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of G− e containing u1 and u2, respectively. We shall later show that each Di

has a matching that covers at least (2|Di| + 2)/3 vertices of Di. If the above
statement holds, then G has a matching that covers at least

2|D1| + 2
3

+
2|D2| + 2

3
=

2|G| + 4
3

vertices.

Hence (2.24) holds.
If G has no bridges but has a cut vertex w, then by letting G = G1 ∪

G2, V (G1) ∩ V (G2) = {w} (see Fig. 2.35), we shall show that each Gi has
a matching that covers at least (2|Gi| + 4)/3 vertices of Gi. Then G has a
matching that covers at least the following number of vertices:

2|G1| + 4
3

+
2|G2| + 4

3
− 2 =

2(|G1| + |G2| − 1) + 4
3

=
2|G| + 4

3
.

Hence (2.24) holds.

Let D1 and D2 be the two components of G− e, where e is a bridge of G.
We shall show that each Di has a matching that covers at least (2|Di|+ 2)/3
vertices of Di by using the inductive hypothesis of the theorem. If δ(Di) ≥
3, then the above statement holds by induction. Without loss of generality,
we may assume δ(D1) = 2, which implies degD1

(u1) = 2 as δ(G) ≥ 3 (see
Fig. 2.35). Let a1 and a2 be the two vertices adjacent to u1. If δ(D1−u1) ≥ 3,
then by induction, D1 − u1 has a matching that covers at least

2(|D1| − 1) + 4
3

=
2|D1| + 2

3
vertices.

Note that if D1−u1 is disconnected, we apply the inductive hypothesis to each
component and obtain the above desired matching of D1 − u1. Thus we may
assume that δ(D1−u1) = 2. If a1 and a2 are not adjacent, then D1−u1+a1a2

has minimum degree three, and so by induction it has a matching M1 covering
at least (2(|D1| − 1) + 4)/3 vertices. If M1 contains an edge a1a2, then by
considering M1 − a1a2 + a1u1 we can get the desired matching of D1. So we
may assume that a1 and a2 are adjacent. If degD1−u1

(ai) ≥ 3 for i = 1, 2,
then we can apply the inductive hypothesis to D1−u1 and obtain the desired
statement as above. Thus we may assume that degD1−u1

(a1) = 2.
If δ(D1−u1−a1) ≥ 3, then by induction it has a matching M2 covering at

least (2(|D1|−2)+4)/3 vertices of D1−u1−a1. Hence M2+a1u1 is the desired
matching in D1. By repeating this argument, we can finally find the desired
matching of D1. As an example, in Fig. 2.35, δ(D1−{u1, a1, a2, a3}+a4a5) ≥ 3
and M3 is its matching covering at least 2(|D1| − 4) + 4)/3 vertices, and if
a4a5 ∈ M3, then M3 − a4a5 + a5a3 + a1u1 + a4a2 is the desired matching in
D1.

Let G = G1 ∪ G2, V (G1) ∩ V (G2) = {w}, where w is a cut vertex of G.
We shall show that each Gi has a matching that covers at least (2|Gi|+ 4)/3
vertices of Gi by using the inductive hypothesis of the theorem. We can do
this by a similar argument as above, Consequently the proof is complete. ��
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A surface (a compact orientable 2-manifold) is a sphere on which a number
of handles have been placed. The number of handles is referred to as the
genus of the surface (Fig. 2.36). A surface with genus one is called a torus,
and, of course, a plane is a surface with genus zero. A graph G is said to be
embedded on a surface if G can be drawn on the surface in such a way that
edges intersect only at their common end-points. The genus γ(G) of a simple
graph G is defined to be smallest genus of all surfaces on which G can be
embedded.

Fig. 2.36. A surface with genus two, and an embedding of a graph on the torus.

Theorem 2.45 (Nishizeki [202]). Let G be an n-connected simple graph of
even order. If γ(G) < n(n − 2)/4, then G has a 1-factor. In particular, every
4-connected simple graph of even order which is embedded on the torus has a
1-factor.

2.6 Structure theorem

We now consider the structure of a graph without 1-factors, and characterize
such a graph by using vertex-decomposition together with certain properties.
The resulting theorem is called the Gallai-Edmonds structure theorem and
gives us much information about maximum matchings.

Let G be a graph. For a subset X ⊆ V (G), odd(G−X)− |X | is called the
deficiency of X , and a subset S ⊆ V (G) is called a barrier if

odd(G − S) − |S| = def(G) = max
X⊆V (G)

{odd(G − X) − |X |}. (2.28)

That is, S is a barrier if its deficiency is equal to that of G. A barrier S is
said to be minimal if no proper subset of S is a barrier.

Theorem 2.46. Suppose that a connected simple graph G with even order
has no 1-factor. Let S be a minimal barrier of G. Then every vertex x ∈ S is
joined to at least three odd components of G−S. In particular, x is the center
of a certain induced claw subgraph of G.



2.6 Structure theorem 57

Proof. Since G has no 1-factor and has even order, we have def(G) ≥ 2 by
the 1-factor theorem and Lemma 2.26. If S = {x}, then odd(G − S) ≥ 3
since odd(G − S) ≡ |S| (mod 2). Hence x ∈ S is joined to at least three
odd components of G − S and the theorem holds. Thus we may assume that
|S| ≥ 2.

Suppose that a vertex x ∈ S is joined to at most two odd components of
G − S (Fig. 2.37). Then odd(G − (S − x)) ≥ odd(G − S) − 2, and thus

odd(G − (S − x)) − |S − x| ≥ odd(G − S) − |S| − 1.

By Lemma 2.26, we have

odd(G − (S − x)) − |S − x| ≡ odd(G − S) − |S| ≡ |G| (mod 2).

Hence
odd(G − (S − x)) − |S − x| ≥ odd(G − S) − |S|,

which implies that S − x is also a barrier. This contradicts the minimality of
S. Therefore every x ∈ S is joined to at least three odd components of G−S.

By taking three vertices adjacent to x from each of the three odd
components of G−S, we can obtain an induced subgraph K1,3 with center x.
��

x S

...
odd

odd

odd

even

even

...

odd

x
S-x

...
odd...

odd

Fig. 2.37. Components of G − S and those of G − (S − x).

It is clear that Theorem 2.43, which says that every connected claw-free
simple graph of even order has a 1-factor, is an immediate consequence of
Theorem 2.46.

Consider a simple graph G. Let D(G) denote the set of all vertices v of
G such that v is not saturated by at least one maximum matching of G. Let
A(G) be the set of vertices of V (G) − D(G) that are adjacent to at least one
vertex in D(G). Finally, define C(G) = V (G) − D(G) − A(G). Then V (G) is
decomposed into three disjoint subsets

V (G) = D(G) ∪ A(G) ∪ C(G), (2.29)

where
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D(G) = {x ∈ V (G) : There exists a maximum matching
that does not saturate x}

A(G) = NG(D(G)) \ D(G)
C(G) = V (G) − A(G) − D(G).

Some properties of the above decomposition are given in the following
Gallai-Edmonds structure theorem. This theorem was obtained by Gallai
[92], [93] and Edmonds [62] independently and in different ways. The proof
presented here is based on [120].

C(G) D(G)A(G)
C(G) D(G)A(G)

Fig. 2.38. The decomposition V (G) = D(G) ∪ A(G) ∪ C(G) and a maximum
matching of G.

Theorem 2.47 (Gallai-Edmonds Structure Theorem, [92], [93], [62] ).
Let G be a simple graph, and V (G) = D(G)∪A(G)∪C(G) the decomposition
defined in (2.29). Then the following statements hold (Fig. 2.38):
(i) Every component of 〈D(G)〉G is factor-critical.
(ii) 〈C(G)〉G has a 1-factor.
(iii) Every maximum matching M in G saturates C(G) ∪ A(G), and every
edge of M incident with A(G) joins a vertex in A(G) to a vertex in D(G).
(iv) The number |M | of vertices saturated by a maximum matching M is given
by

|M | = |G| + ω(〈D(G)〉G) − |A(G)|, (2.30)

where ω(〈D(G)〉G) denotes the number of components of 〈D(G)〉G.

Proof. The proof of the theorem is by induction on |G|. We may assume that
G is connected since otherwise each component of G satisfies the statements
of the theorem and so does G. Moreover we may assume that G has no 1-
factor since otherwise D(G) = ∅, A(G) = ∅ and C(G) = V (G), and thus the
theorem holds.

Let S be a maximal barrier of G, that is, S is a subset of V (G) such that

odd(G − S) − |S| = max
X⊂V (G)

{odd(G − X) − |X |} = def(G) > 0 (2.31)
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and

odd(G − Y ) − |Y | < odd(G − S) − |S| for all S ⊂ Y ⊆ V (G). (2.32)

The following claim can be proved in the same way as in the proof of the
1-factor theorem (see Problem 2.9).

Claim 1. Every component of G − S is factor-critical.

Let {C1, C2, . . . , Cm} be the set of components of G − S, where
m = odd(G − S). We define a bipartite graph B with bipartition
S ∪ {C1, C2, . . . , Cm} as follows: a vertex x ∈ S and Ci is joined by an
edge of B if and only if x and Ci are joined by at least one edge of G
(Fig. 2.39). Then B satisfies the following claim.

S={    } BG

S0 T0

Fig. 2.39. A graph G with a maximal barrier S, and the bipartite graph B with
subsets S0 and T0.

Claim 2. |NB(X)| ≥ |X | for all X ⊆ S.

Assume that |NB(Y )| < |Y | for some ∅ �= Y ⊆ S. Then

odd(G − (S − Y )) − |S − Y |
≥ |{C1, C2, . . . , Cm} − NB(Y )| − |S − Y |
> m − |Y | − |S − Y | = m − |S| = odd(G − S) − |S|,

which contradicts (2.31). Hence Claim 2 holds.

Claim 3. There exists a unique maximum proper subset S0 ⊂ S such that
|NB(S0)| = |S0|. Furthermore, |NB(Y ) \ NB(S0)| > |Y | for every ∅ �= Y ⊆
S − S0.

By |NB(S)| = m > |S|, Claim 2 and by Theorem 2.9, there exists a unique
maximum proper subset S0 ⊂ S such that |NB(S0)| = |S0|.

Let ∅ �= Y ⊆ S − S0. Then it follows from the maximality of S0 and
S0 ⊂ Y ∪ S0 that
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|NB(Y ) \ NB(S0)| = |NB(Y ∪ S0) − NB(S0)| > |Y ∪ S0| − |S0| = |Y |.
Therefore the claim is proved.

Let T0 = S − S0. Then

odd(G − T0) = odd(G − S) − |NB(S0)| = odd(G − S) − |S0|
= odd(G − S) − (|S| − |T0|),

and so odd(G − T0) − |T0| = odd(G − S) − |S| = def(G).
Let {C′

1, C
′
2, . . . , C

′
r} be the set of odd components of G−S corresponding

to NB(S0), where r = |NB(S0)| = |S0|, and let {C1, C2, . . . , Ck} be the set of
odd components of G − T0. Then

Odd(G − S) = {C′
1, C

′
2, . . . , C

′
r} ∪ {C1, C2, . . . , Ck},

and the following statements hold by the marriage theorem and Claim 3:
(i) B has a matching saturating S;
(ii) every matching in B saturating S saturates {C′

1, C
′
2, . . . , C

′
r}; and

(iii) for each Ci (1 ≤ i ≤ k), there exists a matching in B that saturates
S but not Ci.

Let H be a matching in B saturating S. Then for every odd component
C′

j (1 ≤ j ≤ r), there exists an edge in H joining C′
j to a vertex xj ∈ S0. Take

an edge ej of G joining xj to a vertex vj in C′
j . By Claim 4, C′

j − vj has a
1-factor R′

j .
Similarly, for an odd component Ci (1 ≤ i ≤ k), if H has an edge joining

Ci to xi ∈ S, then xi ∈ T0 and we can find an edge ei of G joining xi to a
vertex wi of Ci and a 1-factor Ri of Ci − wi. If H has no edge joining Ci to
S, then take a maximum matching Ri in Ci. Define

M =
⋃

1≤j≤r

(R′
j + ej) +

⋃

1≤i≤k

{(Ri + ei) or Ri }. (2.33)

Then by Theorem 2.34, M is a maximum matching of G since the number of
unsaturated vertices in M is k − |T0| = odd(G − T0) − |T0| = def(G).

Conversely, every maximum matching in G is obtained in this way since
every matching in G cannot saturate at least k − |T0| odd components in
{C1, C2, . . . , Ck}, and every maximum matching M ′ does not saturate exactly
k − |T0| = def(G) components of {C1, C2, . . . , Ck}. Therefore M ′ induces a
matching H ′ in B that saturates S and {C′

1, C
′
2, . . . , C

′
r}, and thus M ′ can be

constructed from H ′ as above.

Claim 5. D(G) = V (C1) ∪ V (C2) ∪ · · · ∪ V (Ck) and A(G) = T0.

It is clear that for every vertex vi of any Ci (1 ≤ i ≤ k), B has a matching
that saturates S but not Ci, and Ci − vi has a 1-factor by Claim 1. Hence by
(2.33), we can find a maximum matching in G that does not saturate vi. Thus
V (C1)∪V (C2)∪· · ·∪V (Ck) ⊆ D(G). Since every maximum matching in G is
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obtained in the manner mentioned above, D(G) ⊆ V (C1)∪V (C2)∪· · ·∪V (Ck).
Consequently, D(G) = V (C1) ∪ V (C2) ∪ · · · ∪ V (Ck).

Since NB(S0) = {C′
1, C

′
2, . . . , C

′
r}, it follows that NB({C1, C2, . . . , Ck}) =

S − S0 = T0. Therefore

A(D(G)) = NG(D(G)) \ D(G) = T0.

It is easy to see that 〈V (C′
1) ∪ · · · ∪ V (C′

r) ∪ S0〉 has a 1-factor and forms
the even components of G − T0. Consequently the proof is complete. ��

We mention one application of the Gallai-Edmonds structure theorem.
Since every component of 〈D(G)〉G is factor-critical, Theorem 2.28 is an easy
consequence of the Gallai-Edmonds structure theorem.

The following lemma is interesting its own right, but it is also useful
for proving the Gallai-Edmonds structure theorem; we can first prove the
following stability lemma without using Gallai-Edmonds structure theorem,
and then apply the lemma to prove the structure theorem ([182] section 3.2).
However, we shall prove the lemma using Gallai-Edmonds structure theorem
since it is shorter.

Lemma 2.48 (The Stability Lemma). Let G be a simple graph and
V (G) = C(G) ∪ A(G) ∪ D(G). Then for every vertex u ∈ A(G), we have
A(G − u) = A(G) − u, C(G − u) = C(G) and D(G − u) = D(G).

Proof. Let u ∈ A(G). Then every maximum matching M in G has an edge e
incident with u. Thus M − e is a maximum matching in G − u since the size
of a maximum matching in G− u must be less than or equal to ||M || − 1 and
||M −e|| = ||M ||−1. Therefore D(G) ⊆ D(G−u), and the size of a maximum
matching in G − u is ||M || − 1.

Assume that a maximum matching H in G− u does not saturate a vertex
x ∈ A(G) − u. Then H is a matching in G, and H does not saturate at least
ω(〈D(G)〉G)−(|A(G)|−2) vertices in D(G) and two more vertices x, u ∈ A(G).
Therefore |V (H)| ≤ |V (M)|−4, and so ||H || ≤ ||M ||−2. This contradicts the
fact that a maximum matching in G−u has size ||M ||−1. Hence (A(G)−u)∩
D(G − u) = ∅. We can similarly show that H saturates C(G), which implies
C(G) ∩ D(G − u) = ∅. Consequently, D(G − u) = D(G).

The other equalities A(G − u) = A(G) − u and C(G − u) = C(G) follow
immediately from D(G − u) = D(G). ��

Since a factor-critical graph with order at least three is not a bipartite
graph (Problem 2.8), if G is a bipartite graph, then every component of
〈D(G)〉G must be a single vertex. Thus the following theorem holds.

Theorem 2.49. Let G be a connected bipartite simple graph with bipartition
(X, Y ), and let CX = C(G) ∩ X and CY = C(G) ∩ Y . Then the following
statements hold (Fig. 2.40):
(i) 〈D(G)〉G is a set of independent vertices of G.



62 2 Matchings and 1-Factors

S={    } G U1={   }U1={   } U2={   }

C(G) A(G) D(G)

M={      }

Fig. 2.40. The decomposition V (G) = D(G)∪A(G)∪C(G) of a bipartite graph G
with bipartition U1 ∪ U2; and it maximum matching Mx.

(ii) 〈C(G)〉G has a 1-factor, and |CX | = |CY |.
(iii) Every maximum matching M in G consists of a 1-factor of 〈C(G)〉G
and a matching in 〈A(G) ∪ D(G)〉G saturating A(G).
(iv) Both A(G) ∪ CX and A(G) ∪ CY are minimum vertex covers of G.
(v) Both D(G)∪CX and D(G)∪CY are maximum independent vertex subsets
of G.

2.7 Algorithms for maximum matchings

We gave an algorithm for finding a maximum matching in a bipartite graph
in Section 2.3. In this section we shall propose an algorithm for finding a
maximum matching in a simple graph, which was obtained by Edmonds [62].

Before stating the algorithm, let us recall Theorem 2.20, which says that “a
matching M in a graph G is maximum if and only if G has no M -augmenting
path”. Therefore, to find a maximum matching, we should find M -augmenting
paths or determine the non-existence of such paths. In order to effectively
explore M -augmenting paths in a graph, we introduce some new concepts
and notation.

We shall first explain the algorithm and new definitions by using examples.
Let G be a graph and M a matching in G, and let v be a vertex unsaturated
by M . We call v a root, and explore all the M -alternating paths starting with
v. If P = (v, x1, x2, x3, x4, . . . , xk) is an M -alternating path, where each xi is
a vertex of G, then we call x1, x3, . . . inner vertices and v, x2, x4, . . . outer
vertices (Fig. 2.41)

Consider the graph G and the matching M given in Fig. 2.41. We try to
find all the M -alternating paths starting with v as follows:

{v} {a, g}, {b, h}, {c, e, i}, {d, f, j} and {f, k}.
In the last step, we find that f is simultaneously an outer and inner vertex
since (u, a, b, e, f) and (u, a, b, c, d, f) are both M -alternating paths. Then we
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Fig. 2.41. (1) A matching M and an M -unsaturated vertex v; (2) The root v, inner
vertices and outer vertices.

find an odd cycle C0 = (b, c, d, f, e, b) containing f , i.e., if we find a vertex that
is simultaneously outer and inner, then there exists an odd cycle containing
it, which can be easily found.
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Fig. 2.42. The graph G1 = G/C0 with the matching M1; an odd cycle C1 =
(v, a, v1, h, g, a); and the graph G2 = G1/C1 with the matching M2.

Next we contract C0 into a single vertex v1, which also implies that we
delete loops and replace every multiple edge by a single edge, and denote the
resulting graph by G1. The matching of G1 corresponding to M is obtained
by deleting the edges in C0 ∩ M (Fig. 2.42), i.e., we obtain

G1 = G/C0, M1 = M − (E(C0) ∩ M) = M ∩ E(G1), v1 = C0.

In Fig. 2.42, we find an odd cycle C1 = (v, a, v1, h, g) since h is
simultaneously an outer and inner vertex in G1. Then we obtain the new graph
G2 from G1 by contracting C1, where v2 is the new root since C1 contains the
root v. In general, if the odd cycle Ci contains the root, then Ci corresponds
to the new root in Gi/Ci. Otherwise, Ci corresponds to a saturated vertex in
Gi/Ci.
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G2 = G1/C1, M2 = M1 ∩ E(G2), v2 = C1.

Next, we find an M2-augmenting path

P2 = (v2, k, l, m) in G2.

From this path P2, we can obtain an M1-augmenting path

P1 = (v, a, v1, k, l, m) in G1.

Since v2 corresponds to the odd cycle C1 in G1, k and v1 ∈ V (C1) are joined
by an edge in G1. There are two alternating paths in C1 joining v1 to v and
one of them can be added to (k, l, m). Since v1 corresponds to C0 in G and
v1 can be replaced by the alternating path (a, b, e, f) in C0, we obtain the
desired M -augmenting path

P = (v, a, b, e, f, k, l, m) in G.

Therefore we obtain a larger matching M ′ = M � E(P ) in G (Fig. 2.43).
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Fig. 2.43. A matching M ′ in G; and non-existence of M ′-augmenting path in G.

There are two M ′-unsaturated vertices n and o, and by the same argument
as above, we can easily determine that G has no M ′-augmenting paths starting
with n or o, which implies that M ′ is a maximum matching in G.

We conclude this section with an algorithm for finding a maximum
matching in a graph.

Algorithm 2.50 (Algorithm for maximum matchings) Let G be a con-
nected simple graph. Then a maximum matching of G can be obtained by
repeating the following procedure. Let i = 0, G0 = G, M0 be any matching of
G0 and let v0 be any M0-unsaturated vertex of G0. Initially, v0 is the root.

We explore all the Mi-alternating paths starting with vi as explained above.
If we find a vertex xi that is both inner and outer, then we can find an odd
cycle Ci containing xi, and obtain a graph Gi+1 from Gi by contracting Ci.
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The contraction of Ci is the vertex vi+1 of Gi+1. If Ci contains the root
of Gi, then vi+1 is the new root of Gi+1 and is unsaturated by a matching
Mi+1 = Mi − (E(Ci) ∩ Mi). Otherwise, the vertex vi+1 of Gi+1 is a vertex
saturated by Mi+1. Set i = i + 1, and repeat the procedure.

If we find an Mi-augmenting path in Gi connecting the root and another
Mi-unsaturated vertex y, then we can find an Mi−1-augmenting path in Gi−1

connecting the root of Gi−1 and another Mi−1-unsaturated vertex. Set i = i−1,
and repeating the above procedure until i = 1, we get the desired M -augmenting
path starting with v0. Moreover, if Gi has no Mi-augmenting path starting with
the root, then G has no M -augmenting path starting with the root v0.

Some improvements on Algorithm 2.50 results in an algorithm that finds
a maximum matching in O(|G|3) time ([182], Section 9).

2.8 Perfect matchings in cubic graphs

We conclude this chapter with some problems on perfect matchings in cubic
graphs. Notice that matchings of a graph are considered as edge subsets of
the graph, and that for a cubic simple graph, the edge connectivity is equal
to the connectivity. The following conjecture due to Berge and Fulkerson was
appeared first in [89] ([217]).

Conjecture 2.51 (Berge and Fulkerson [89]). Every 2-connected cubic simple
graph G has six perfect matchings with the property that every edge of G is
contained in precisely two of these perfect matchings.

Notice that if the edge set of a cubic graph G is decomposed into three
perfect matchings M1, M2 and M3, then every edge is contained in precisely
one of these perfect matchings, and so by letting M4 = M1, M5 = M2 and
M6 = M3, these six perfect matchings {Mi} satisfy the above conjecture. On
the other hand, Petersen graph of order 10 has perfect matchings but its edge
set cannot be decomposed into three perfect matchings. However, Petersen
graph has six perfect matchings having the property given in Conjecture 2.51
(see Fig. 2.44). Thus the conjecture says that every 2-connected cubic graph
possesses a certain property closed to the decomposition of edge set into three
perfect matchings.

If a cubic graph has six perfect matchings given in Conjecture 2.51, then
any three of these perfect matchings have empty intersection. Thus the next
conjecture holds if the above conjecture is true.

Conjecture 2.52 (Fan and Raspaud [83]). Every 2-connected cubic simple
graph has three perfect matchings M1, M2, M3 such that M1 ∩M2 ∩M3 = ∅.

Related problems concerning the above conjecture are found in [217]. The
following conjecture says that the number of 1-factors of 2-connected cubic
graph is large.
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Fig. 2.44. Petersen graph has six perfect matchings such that every edge is
contained in precisely two of these perfect matchings.

Conjecture 2.53 (Lovász and Plummer [182] Conjecture 8.1.8). The number
of 1-factors of a 2-connected cubic simple graph is exponential in the number
of vertices.

Voorhoeve [239] showned that the conjecture holds for bipartite graphs,
and Chudnovsky and Seymour showed that it holds for planar graphs.
Recently it is announced by Esperet, Kardos, King, Kral and Norine that
the conjecture is settled.

Problems

2.1. Prove the marriage theorem by using Theorem 2.15.

2.2. Prove that if a tree has a 1-factor, then it has the unique 1-factor.

2.3. Prove that for every bipartite simple graph G with maximum degree
Δ, there exists a Δ-regular bipartite simple graph H which contains G as a
subgraph. Note that the two bipartite sets of H might be bigger than those
of G.

2.4. Prove the following theorem: Let G be a bipartite simple graph with
bipartition (A, B), and let k ≥ 1 be an integer. Then G has a spanning
subgraph H such that

degH(x) = 1 for all x ∈ A, and
degH(y) ≤ k for all y ∈ B

if and only if

|NG(S)| ≥ |S|
k

for all S ⊆ A.
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2.5. Let G be a bipartite simple graph with bipartition (A, B). Prove that if
|A| = |B| and δ(G) ≥ |G|/4, then G has a 1-factor.

2.6. Verify Theorem 2.16 for the following matrix:

M =

⎛

⎜⎜⎝

0 1 0 1 1
0 1 1 0 0
0 0 0 0 0
1 0 0 1 1

⎞

⎟⎟⎠

2.7. Describe many graphs that have no 1-factors and satisfy |NG(S)| ≥ |S|
for all S ⊂ V (G).

2.8. Prove that a factor-critical graph is connected, of odd order and is not a
bipartite graph.

2.9. Let S be a maximal barrier of a graph G. Prove that every component
of G − S is factor-critical.

2.10. Prove Theorem 2.31

2.11. For every even integer r ≥ 4, find an (r − 2)-edge connected r-regular
simple graph of even order that has no 1-factor.

2.12. Prove statement (ii) of Theorem 2.40.

2.13. Let G be a simple graph, v a vertex of G and M a maximum matching
in G, and let M ′ be a maximum matching in G − v. Prove that ||M || − 1
≤ ||M ′|| ≤ ||M || and ||M ′|| = ||M || holds if and only if v ∈ D(G).

2.14. Prove statements (iv) and (v) in Theorem 2.49.

2.15. Prove the following part of Algorithm 2.50: if G1 has an M1-augmenting
path starting at the root in G1, then G has an M -augmenting path starting
at the root v.

2.16. Let M be a matching in a connected simple graph G and C be an odd
cycle of G containing (|C| − 1)/2 edges of M , and let G′ = G/C be the graph
obtained from G by contracting C. Prove that M is a maximum matching in
G if and only if M ′ = M ∩ E(G′) is a maximum matching in G′.
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