
Chapter 2

Basic Topological Properties
of Finite Spaces

In this chapter we present some results concerning elementary topological
aspects of finite spaces. The proofs use basic elements of Algebraic Topology
and have a strong combinatorial flavour. We study further homotopical prop-
erties including classical homotopy invariants and finite analogues of well-
known topological constructions.

2.1 Homotopy and Contiguity

Recall that two simplicial maps ϕ, ψ : K → L are said to be contiguous
if for every simplex σ ∈ K, ϕ(σ) ∪ ψ(σ) is a simplex of L. Two simplicial
maps ϕ, ψ : K → L lie in the same contiguity class if there exists a sequence
ϕ = ϕ0, ϕ1, . . . , ϕn = ψ such that ϕi and ϕi+1 are contiguous for every
0 ≤ i < n.

If ϕ, ψ : K → L lie in the same contiguity class, the induced maps in the
geometric realizations |ϕ|, |ψ| : |K| → |L| are homotopic (see Corollary A.1.3
of the appendix).

In this section we study the relationship between contiguity classes of
simplicial maps and homotopy classes of the associated maps between finite
spaces. These results appear in [11].

Lemma 2.1.1. Let f, g : X → Y be two homotopic maps between finite T0-
spaces. Then there exists a sequence f = f0, f1, . . . , fn = g such that for every
0 ≤ i < n there is a point xi ∈ X with the following properties:

1. fi and fi+1 coincide in X � {xi}, and
2. fi(xi) ≺ fi+1(xi) or fi+1(xi) ≺ fi(xi).

Proof. Without loss of generality, we may assume that f = f0 ≤ g by
Corollary 1.2.6. Let A = {x ∈ X | f(x) �= g(x)}. If A = ∅, f = g and
there is nothing to prove. Suppose A �= ∅ and let x = x0 be a maximal point
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20 3 Basic Topological Properties of Finite Spaces

of A. Let y ∈ Y be such that f(x) ≺ y ≤ g(x) and define f1 : X → Y by
f1|X�{x} = f |X�{x} and f1(x) = y. Then f1 is continuous for if x′ > x,
x′ /∈ A and therefore

f1(x′) = f(x′) = g(x′) ≥ g(x) ≥ y = f1(x).

Repeating this construction for fi and g, we define fi+1. By finiteness of
X and Y this process ends. 
�
Proposition 2.1.2. Let f, g : X → Y be two homotopic maps between finite
T0-spaces. Then the simplicial maps K(f),K(g) : K(X) → K(Y ) lie in the
same contiguity class.

Proof. By the previous lemma, we can assume that there exists x ∈ X such
that f(y) = g(y) for every y �= x and f(x) ≺ g(x). Therefore, if C is a chain
in X , f(C)∪ g(C) is a chain on Y . In other words, if σ ∈ K(X) is a simplex,
K(f)(σ) ∪ K(g)(σ) is a simplex in K(Y ). 
�
Proposition 2.1.3. Let ϕ, ψ : K → L be simplicial maps which lie in the
same contiguity class. Then X (ϕ) � X (ψ).

Proof. Assume that ϕ and ψ are contiguous. Then the map f : X (K) →
X (L), defined by f(σ) = ϕ(σ)∪ψ(σ) is well-defined and continuous. Moreover
X (ϕ) ≤ f ≥ X (ψ), and then X (ϕ) � X (ψ). 
�

2.2 Minimal Pairs

In this section we generalize Stong’s ideas on homotopy types to the case of
pairs (X,A) of finite spaces (i.e. a finite space X and a subspace A ⊆ X).
As a consequence, we will deduce that every core of a finite T0-space can be
obtained by removing beat points from X . Here we introduce the notion of
strong collapse which plays a central role in Chap. 5. Most of the results of
this section appear in [11].

Definition 2.2.1. A pair (X,A) of finite T0-spaces is a minimal pair if all
the beat points of X are in A.

The next result generalizes the result of Stong (the case A = ∅) studied in
Sect. 1.3 and its proof is very similar to the original one.

Proposition 2.2.2. Let (X,A) be a minimal pair and let f : X → X be a
map such that f � 1X rel A. Then f = 1X .

Proof. Suppose that f ≤ 1X and f |A = 1A. Let x ∈ X . If x ∈ X is minimal,
f(x) = x. In general, suppose we have proved that f |Ûx

= 1|Ûx
. If x ∈ A,

f(x) = x. If x /∈ A, x is not a down beat point of X . However y < x implies
y = f(y) ≤ f(x) ≤ x. Therefore f(x) = x. The case f ≥ 1X is similar, and
the general case follows from Corollary 1.2.6. 
�
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Corollary 2.2.3. Let (X,A) and (Y,B) be minimal pairs, f : X → Y ,
g : Y → X such that gf � 1X rel A, gf � 1Y rel B. Then f and g are
homeomorphisms.

Definition 2.2.4. If x is a beat point of a finite T0-space X , we say that
there is an elementary strong collapse fromX to X�x and writeX ↘↘e X�x.
There is a strong collapse X ↘↘ Y (or a strong expansion Y ↗↗ X) if there
is a sequence of elementary strong collapses starting in X and ending in Y .

Stong’s results show that two finite T0-spaces are homotopy equivalent if
and only if there exists a sequence of strong collapses and strong expansions
from X to Y (since the later is true for homeomorphic spaces).

Corollary 2.2.5. Let X be a finite T0-space and let A ⊆ X. Then, X ↘↘ A
if and only if A is a strong deformation retract of X.

Proof. If X ↘↘ A, A ⊆ X is a strong deformation retract. This was already
proved by Stong (see Sect. 1.3). Conversely, suppose A ⊆ X is a strong
deformation retract. Perform arbitrary elementary strong collapses removing
beat points which are not in A. Suppose X ↘↘ Y ⊇ A and that all the beat
points of Y lie in A. Then (Y,A) is a minimal pair. Since A and Y are strong
deformation retracts of X , the minimal pairs (A,A) and (Y,A) are in the
hypothesis of Corollary 2.2.3. Therefore A and Y are homeomorphic and so,
X ↘↘ Y = A. 
�
Example 2.2.6. The space X
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is contractible, but the point x is not a strong deformation retract of X ,
because (X, {x}) is a minimal pair.

Corollary 2.2.7. Let (X,A) be a minimal pair such that A is a minimal
finite space and f � 1(X,A) : (X,A) → (X,A). Then f = 1X.

If X and Y are homotopy equivalent finite T0-spaces, the associated poly-
hedra |K(X)| and |K(Y )| also have the same homotopy type. However the
converse is obviously false, since the associated polyhedra are homotopy
equivalent if and only if the finite spaces are weak homotopy equivalent.

In Chap. 5 we will study the notion of strong homotopy types of simplicial
complexes which have a very simple description and corresponds exactly to
the concept of homotopy types of the associated finite spaces.



22 3 Basic Topological Properties of Finite Spaces

2.3 T1-Spaces

We will prove that Hausdorff spaces do not have in general the homotopy
type of any finite space. Recall that a topological space X satisfies the T1-
separation axiom if for any two distinct points x, y ∈ X there exist open sets
U and V such that x ∈ U , y ∈ V , y /∈ U , x /∈ V . This is equivalent to saying
that the points are closed in X . All Hausdorff spaces are T1, but the converse
is false.

If a finite space is T1, then every subset is closed and so, X is discrete.
Since the core Xc of a finite space X is the disjoint union of the cores of

its connected components, we can deduce the following

Lemma 2.3.1. Let X be a finite space such that Xc is discrete. Then X is
a disjoint union of contractible spaces.

Theorem 2.3.2. Let X be a finite space and let Y be a T1-space homotopy
equivalent to X. Then X is a disjoint union of contractible spaces.

Proof. Since X � Y , Xc � Y . Let f : Xc → Y be a homotopy equivalence
with homotopy inverse g. Then gf = 1Xc by Theorem 1.3.6. Since f is a one
to one map from Xc to a T1-space, it follows that Xc is also T1 and therefore
discrete. Now the result follows from the previous lemma. 
�
Remark 2.3.3. The proof of the previous theorem can be done without using
Theorem 1.3.6, showing that any map f : X → Y from a finite space to a
T1-space must be locally constant.

Corollary 2.3.4. Let Y be a connected and non contractible T1-space. Then
Y does not have the same homotopy type as any finite space.

Proof. Follows immediately from Theorem 2.3.2. 
�
For example, for any n ≥ 1, the n-dimensional sphere Sn does not have

the homotopy type of any finite space. However, Sn does have, as any finite
polyhedron, the same weak homotopy type as some finite space.

2.4 Loops in the Hasse Diagram and the Fundamental
Group

In this section we give a full description of the fundamental group of a finite
T0-space in terms of its Hasse diagram. This characterization is induced from
the well known description of the fundamental group of a simplicial complex.
The Hasse diagram of a finite T0-spaceX will be denoted H(X), and E(H(X))
will denote the set of edges of the digraph H(X).
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Recall that an edge-path in a simplicial complex K, is a sequence (v0, v1),
(v1, v2), . . . , (vr−1, vr) of ordered pairs of vertices in which {vi, vi+1} is a
simplex for every i. If an edge-path contains two consecutive pairs (vi, vi+1),
(vi+1, vi+2) where {vi, vi+1, vi+2} is a simplex, we can replace the two pairs
by a unique pair (vi, vi+2) to obtain an equivalent edge-path. The equivalence
classes of edge-paths are the morphisms of a groupoid called the edge-path
groupoid of K, which is denoted by E(K). The full subcategory of edge-paths
with origin and end v0 is the edge-path group E(K, v0) which is isomorphic
to the fundamental group π1(|K|, v0) (see [75, Sect. 3.6] for more details).

Definition 2.4.1. Let (X,x0) be a finite pointed T0-space. An ordered pair
of points e = (x, y) is called an H-edge of X if (x, y) ∈ E(H(X)) or (y, x) ∈
E(H(X)). The point x is called the origin of e and denoted x = o(e), the
point y is called the end of e and denoted y = e(e). The inverse of an H-edge
e = (x, y) is the H-edge e−1 = (y, x).

An H-path in (X,x0) is a finite sequence (possibly empty) of H-edges
ξ = e1e2 . . . en such that e(ei) = o(ei+1) for all 1 ≤ i ≤ n − 1. The origin of
a non empty H-path ξ is o(ξ) = o(e1) and its end is e(ξ) = e(en). The origin
and the end of the empty H-path is o(∅) = e(∅) = x0. If ξ = e1e2 . . . en,
we define ξ = e−1

n e−1
n−1 . . . e

−1
1 . If ξ, ξ′ are H-paths such that e(ξ) = o(ξ′), we

define the product H-path ξξ′ as the concatenation of the sequence ξ followed
by the sequence ξ′.

An H-path ξ = e1e2 . . . en is said to be monotonic if ei ∈ E(H(X)) for all
1 ≤ i ≤ n or e−1

i ∈ E(H(X)) for all 1 ≤ i ≤ n.
A loop at x0 is an H-path that starts and ends in x0. Given two loops ξ, ξ′

at x0, we say that they are close if there exist H-paths ξ1, ξ2, ξ3, ξ4 such that
ξ2 and ξ3 are monotonic and the set {ξ, ξ′} coincides with {ξ1ξ2ξ3ξ4, ξ1ξ4}.

We say that two loops ξ, ξ′ at x0 are H-equivalent if there exists a finite
sequence of loops ξ = ξ1, ξ2, . . . , ξn = ξ′ such that any two consecutive are
close. We denote by 〈ξ〉 the H-equivalence class of a loop ξ and H (X,x0)
the set of these classes.

Theorem 2.4.2. Let (X,x0) be a pointed finite T0-space. Then the product
〈ξ〉〈ξ′〉 = 〈ξξ′〉 is well defined and induces a group structure on H (X,x0).

Proof. It is easy to check that the product is well defined, associative and
that 〈∅〉 is the identity. In order to prove that the inverse of 〈e1e2 . . . en〉 is
〈e−1

n e−1
n−1 . . . e

−1
1 〉 we need to show that for any composable H-paths ξ, ξ′ such

that o(ξ) = e(ξ′) = x0 and for any H-edge e, composable with ξ, one has that
〈ξee−1ξ′〉 = 〈ξξ′〉. But this follows immediately from the definition of close
loops since e and e−1 are monotonic. 
�
Theorem 2.4.3. Let (X,x0) be a pointed finite T0-space. Then the edge-path
group E(K(X), x0) of K(X) with base vertex x0 is isomorphic to H (X,x0).
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Proof. Let us define

ϕ : H (X,x0) −→ E(K(X), x0),

〈e1e2 . . . en〉 �−→ [e1e2 . . . en],

〈∅〉 �−→ [(x0, x0)],

where [ξ] denotes the class of ξ in E(K(X), x0).
To prove that ϕ is well defined, let us suppose that the loops ξ1ξ2ξ3ξ4

and ξ1ξ4 are close, where ξ2 = e1e2 . . . en, ξ3 = e′1e
′
2 . . . e

′
m are monotonic

H-paths. By induction, it can be proved that

[ξ1ξ2ξ3ξ4] = [ξ1e1e2 . . . en−j(o(en−j+1), e(en))ξ3ξ4]

for 1 ≤ j ≤ n. In particular [ξ1ξ2ξ3ξ4] = [ξ1(e(ξ1), e(en))ξ3ξ4].
Analogously,

[ξ1(e(ξ1), e(en))ξ3ξ4] = [ξ1(e(ξ1), e(en))(o(e′1), o(ξ4))ξ4]

and then
[ξ1ξ2ξ3ξ4] = [ξ1(e(ξ1), e(en))(o(e′1), o(ξ4))ξ4]

= [ξ1(e(ξ1), e(en))(e(en), e(ξ1))ξ4] = [ξ1(e(ξ1), e(ξ1))ξ4] = [ξ1ξ4].

If ξ = (x0, x1)(x1, x2) . . . (xn−1, xn) is an edge-path in K(X) with xn = x0,
then xi−1 and xi are comparable for all 1 ≤ i ≤ n. In this case, we can find
monotonic H-paths ξ1, ξ2, . . . , ξn such that o(ξi) = xi−1, e(ξi) = xi for all
1 ≤ i ≤ n. Let us define

ψ : E(K(X), x0) −→ H (X,x0),

[ξ] �−→ 〈ξ1ξ2 . . . ξn〉.

This definition does not depend on the choice of the H-paths ξi since if
two choices differ only for i = k then ξ1 . . . ξk . . . ξn and ξ1 . . . ξ

′
k . . . ξn are

H-equivalent because both of them are close to ξ1 . . . ξkξ−1
k ξ′k . . . ξn.

The definition of ψ does not depend on the representative. Suppose that
ξ′(x, y)(y, z)ξ′′ and ξ′(x, z)ξ′′ are simply equivalent edge-paths in K(X) that
start and end in x0, where ξ and ξ′ are edge-paths and x, y, z are comparable.
In the case that y lies between x and z, we can choose the monotonic H-path
corresponding to (x, z) to be the juxtaposition of the corresponding to (x, y)
and (y, z), and so ψ is equally defined in both edge-paths. In the case that
z ≤ x ≤ y we can choose monotonic H-paths α, β from x to y and from z to x,
and then α will be the corresponding H-path to (x, y), αβ that corresponding
to (y, z) and β to (x, z). It only remains to prove that 〈γ′ααβγ′′〉 = 〈γ′βγ′′〉
for H-paths γ′ and γ′′, which is trivial. The other cases are analogous to the
last one.

It is clear that ϕ and ψ are mutually inverse. 
�
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Since E(K(X), x0) is isomorphic to π1(|K(X)|, x0) (cf. [75, Corollary
3.6.17]), we obtain the following result.

Corollary 2.4.4. Let (X,x0) be a pointed finite T0-space, then H (X,x0) =
π1(X,x0).

Remark 2.4.5. Since every finite space is homotopy equivalent to a finite T0-
space, this computation of the fundamental group can be applied to any finite
space.

2.5 Euler Characteristic

If the homology (with integer coefficients) of a topological space X is finitely
generated as a graded abelian group, the Euler characteristic of X is de-
fined by χ(X) =

∑

n≥0

(−1)nrank(Hn(X)). If Z is a compact CW-complex,

its homology is finitely generated and χ(Z) =
∑

n≥0

(−1)nαn where αn is the

number of n-cells of Z. A weak homotopy equivalence induces isomorphisms
in homology groups and therefore weak homotopy equivalent spaces have the
same Euler characteristic.

Since any finite T0-space X is weak homotopy equivalent to the geometric
realization of K(X), whose simplices are the non empty chains of X , the
Euler characteristic of X is

χ(X) =
∑

C∈C(X)

(−1)#C+1, (2.1)

where C(X) is the set of nonempty chains of X and #C is the cardinality
of C.

We will give a basic combinatorial proof of the fact that the Euler charac-
teristic is a homotopy invariant in the setting of finite spaces, using only the
formula 2.1 as definition.

Theorem 2.5.1. Let X and Y be finite T0-spaces with the same homotopy
type. Then χ(X) = χ(Y ).

Proof. Let Xc and Yc be cores of X and Y . Then there exist two sequences
of finite T0-spaces X = X0 ⊇ . . . ⊇ Xn = Xc and Y = Y0 ⊇ . . . ⊇ Ym = Yc,
where Xi+1 is constructed from Xi by removing a beat point and Yi+1 is
constructed from Yi, similarly. Since X and Y are homotopy equivalent, Xc

and Yc are homeomorphic. Thus, χ(Xc) = χ(Yc).
It suffices to show that the Euler characteristic does not change when a

beat point is removed. Let P be a finite poset and let p ∈ P be a beat
point. Then there exists q ∈ P such that if r is comparable with p then r is
comparable with q.
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Hence we have a bijection

ϕ : {C ∈ C(P ) | p ∈ C, q /∈ C} −→ {C ∈ C(P ) | p ∈ C, q ∈ C},
C �−→ C ∪ {q}.

Therefore

χ(P )−χ(P � {p}) =
∑

p∈C∈CP

(−1)#C+1 =
∑

q/∈C�p

(−1)#C+1 +
∑

q∈C�p

(−1)#C+1

=
∑

q/∈C�p

(−1)#C+1+
∑

q/∈C�p

(−1)#ϕ(C)+1 =
∑

q/∈C�p

(−1)#C+1+
∑

q/∈C�p

(−1)#C =0.


�
The Euler characteristic of finite T0-spaces is intimately related to the

Möbius function of posets, which is a generalization of the classical Möbius
function of number theory. We will say just a few words about this. For proofs
and applications we refer the reader to [29].

Given a finite poset P , we define the incidence algebra A(P ) of P as the
set of functions P × P → R such that f(x, y) = 0 if x � y with the usual
structure of R-vector space and the product given by

fg(x, y) =
∑

z∈P

f(x, z)g(z, y).

The element ζP ∈ A(P ) defined by ζP (x, y) = 1 if x ≤ y and 0 in other
case, is invertible in A(P ). The Möbius fuction μP ∈ A(P ) is the inverse
of ζP .

The Theorem of Hall states that if P is a finite poset and x, y ∈ P , then
μP (x, y) =

∑

n≥0

(−1)n+1cn, where cn is the number of chains of n-elements

which start in x and end in y.
Given a finite poset P , P̂ = P ∪ {0, 1} denotes the poset obtained when

adjoining a minimum 0 and a maximum 1 to P . In particular, (2.1) and the
Theorem of Hall, give the following

Corollary 2.5.2. Let P be a finite poset. Then

χ̃(P ) = μP̂ (0, 1),

where χ̃(P ) = χ(P ) − 1 denotes the reduced Euler characteristic of the finite
space P .

One of the motivations of the Möbius function is the following inversion
formula.
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Theorem 2.5.3 (Möbius inversion formula). Let P be a finite poset
and let f, g : P → R. Then

g(x) =
∑

y≤x

f(y) if and only if f(x) =
∑

y≤x

μP (y, x)g(y).

Analogously,

g(x) =
∑

y≥x

f(y) if and only if f(x) =
∑

y≥x

μP (y, x)g(y).

Beautiful applications of these formulae are: (1) the Möbius inversion
of number theory which is obtained when applying Theorem 2.5.3 to the
order given by divisibility of the integer numbers; (2) the inclusion–exclusion
formula obtained from the power set of a set ordered by inclusion.

2.6 Automorphism Groups of Finite Posets

It is well known that any finite group G can be realized as the automorphism
group of a finite poset. In 1946 Birkhoff [13] proved that if the order of G is
n, G can be realized as the automorphisms of a poset with n(n+1) points. In
1972 Thornton [78] improved slightly Birkhoff’s result: He obtained a poset
of n(2r + 1) points, when the group is generated by r elements.

We present here a result which appears in [10]. Following Birkhoff’s and
Thornton’s ideas, we exhibit a simple proof of the following fact which im-
proves their results

Theorem 2.6.1. Given a group G of finite order n with r generators, there
exists a poset X with n(r + 2) points such that Aut(X) � G.

Recall first that the height ht(X) of a finite poset X is one less than the
maximum number of elements in a chain of X . The height of a point x in a
finite poset X is ht(x) = ht(Ux).

Proof. Let {h1, h2, . . . , hr} be a set of r generators of G. We define the poset
X = G× {−1, 0, . . . , r} with the following order

• (g, i) ≤ (g, j) if −1 ≤ i ≤ j ≤ r
• (ghi,−1) ≤ (g, j) if 1 ≤ i ≤ j ≤ r

Define φ : G → Aut(X) by φ(g)(h, i) = (gh, i). It is easy to see that
φ(g) : X → X is order preserving and that it is an automorphism with
inverse φ(g−1). Therefore φ is a well defined homomorphism. Clearly φ is a
monomorphism since φ(g) = 1 implies (g,−1) = φ(g)(e,−1) = (e,−1).
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Fig. 2.1 U(g,r)

It remains to show that φ is an epimorphism. Let f : X → X be an
automorphism. Since (e,−1) is minimal in X , so is f(e,−1) and therefore
f(e,−1) = (g,−1) for some g ∈ G. We will prove that f = φ(g).

Let Y = {x ∈ X | f(x) = φ(g)(x)}. Y is nonempty since (e,−1) ∈ Y . We
prove first that Y is an open subspace of X . Suppose x = (h, i) ∈ Y . Then
the restrictions

f |Ux , φ(g)|Ux : Ux → Uf(x)

are isomorphisms. On the other hand, there exists a unique automorphism
Ux → Ux since the unique chain of i + 2 elements must be fixed by any
such automorphism. Thus, f |−1

Ux
φ(g)|Ux = 1Ux , and then f |Ux = φ(g)|Ux ,

which proves that Ux ⊆ Y . Similarly we see that Y ⊆ X is closed. Assume
x = (h, i) /∈ Y . Since f ∈ Aut(X), it preserves the height of any point. In
particular ht(f(x)) = ht(x) = i+ 1 and therefore f(x) = (k, i) = φ(kh−1)(x)
for some k ∈ G. Moreover k �= gh since x /∈ Y . As above, f |Ux = φ(kh−1)|Ux ,
and since kh−1 �= g we conclude that Ux ∩ Y = ∅.

We prove now that X is connected. It suffices to prove that any two
minimal elements ofX are in the same connected component. Given h, k ∈ G,
we have h = khi1hi2 . . . him for some 1 ≤ i1, i2 . . . im ≤ r. On the
other hand, (khi1hi2 . . . his ,−1) and (khi1hi2 . . . his+1 ,−1) are connected
via (khi1hi2 . . . his ,−1) < (khi1hi2 . . . his , r) > (khi1hi2 . . . his+1 ,−1). This
implies that (k,−1) and (h,−1) are in the same connected component.

Finally, since X is connected and Y is closed, open and nonempty, Y = X ,
i.e. f = φ(g). Therefore φ is an epimorphism, and then G � Aut(X). 
�
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If the generators h1, h2, . . . , hr are non-trivial, the open sets U(g,r) are as in
Fig. 2.1. In that case it is not hard to prove that the finite spaceX constructed
above is weak homotopy equivalent to a wedge of n(r − 1) + 1 circles, or in
other words, that the order complex of X is homotopy equivalent to a wedge
of n(r − 1) + 1 circles. The space X deformation retracts to the subspace
Y = G × {−1, r} of its minimal and maximal points. A retraction is given
by the map f : X → Y , defined as f(g, i) = (g, r) if i ≥ 0 and f(g,−1) =
(g,−1). Now the order complex K(Y ) of Y is a connected simplicial complex
of dimension 1, so its homotopy type is completely determined by its Euler
Characteristic. This complex has 2n vertices and n(r+1) edges, which means
that it has the homotopy type of a wedge of 1−χ(K(Y )) = n(r−1)+1 circles.

On the other hand, note that in general the automorphism group of a finite
space, does not say much about its homotopy type as we see in the following

Proposition 2.6.2. Given a finite group G and a finite space X, there exists
a finite space Y which is homotopy equivalent to X and such that Aut(Y )�G.

Proof. We make this construction in two steps. First, we find a finite T0-space
X̃ homotopy equivalent to X and such that Aut(X̃) = 0. To do this, assume
that X is T0 and consider a linear extension x1, x2, . . . , xn of the poset X (i.e.
X = {x1, x2, . . . , xn} and xi ≤ xj implies i ≤ j). Now, for each 1 ≤ k ≤ n
attach a chain of length kn to X with minimum xn−k+1. The resulting space
X̃ deformation retracts to X and every automorphism f : X̃ → X̃ must fix
the unique chain C1 of length n2 (with minimum x1). Therefore f restricts
to a homeomorphism X̃ �C1 → X̃ �C1 which must fix the unique chain C2

of length n(n − 1) of X̃ � C1 (with minimum x2). Applying this reasoning
repeatedly, we conclude that f fixes every point of X̃. On the other hand, we
know that there exists a finite T0-space Z such that Aut(Z) = G.

Now the space Y is constructed as follows. It contains one copy of X̃ and
one of Z, and the additional relations z ≤ x for every z ∈ Z and x ≥ x1 in X̃ .
So, all the elements of Z are smaller than x1 ∈ X̃. Clearly Y deformation
retracts to X̃. Moreover, if f : Y → Y is an automorphism, f(x1) /∈ Z
since f(x1) cannot be comparable with x1 and distinct from it (cf. Lemma
8.1.1). Since there is only one chain of n2 elements in X̃, it must be fixed
by f . In particular f(x1) = x1, and then f |Z : Z → Z. Thus f restricts to
automorphisms of X̃ and of Z and therefore Aut(Y ) � Aut(Z) � G. 
�

2.7 Joins, Products, Quotients and Wedges

In this section we will study some basic constructions in the settings of finite
spaces, simplicial complexes and general topological spaces. We will relate
these constructions to each other and analyze them from the homotopical
point of view.
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Recall that the simplicial join K∗L (also denoted byKL) of two simplicial
complexes K and L (with disjoint vertex sets) is the complex

K ∗ L = K ∪ L ∪ {σ ∪ τ | σ ∈ K, τ ∈ L}.

The simplicial cone aK with base K is the join of K with a vertex a /∈ K.
It is well known that for finite simplicial complexes K and L, the geometric
realization |K ∗ L| is homeomorphic to the topological join |K| ∗ |L|. If K
is the 0-complex with two vertices, |K ∗ L| = |K| ∗ |L| = S0 ∗ |L| = Σ|L|
is the suspension of |L|. Here, S0 denotes the discrete space on two points
(0-sphere).

There is an analogous construction for finite spaces.

Definition 2.7.1. The (non-Hausdorff) join (also called the ordinal sum)
X � Y of two finite T0-spaces X and Y is the disjoint union X � Y keeping
the given ordering within X and Y and setting x ≤ y for every x ∈ X and
y ∈ Y .

Note that the join is associative and in general X � Y �= Y � X . Special
cases of joins are the non-Hausdorff cone C(X) = X � D0 and the non-
Hausdorff suspension S(X) = X � S0 of any finite T0-space X . Here D0 = ∗
denotes the singleton (0-cell).

Remark 2.7.2. K(X � Y ) = K(X) ∗ K(Y ).

Given a point x in a finite T0-space X , the star Cx of x consists of the
points which are comparable with x, i.e. Cx = Ux∪Fx. Note that Cx is always
contractible since 1Cx ≤ f ≥ g where f : Cx → Cx is the map which is the
identity on Fx and the constant map x on Ux, and g is the constant map x.
The link of x is the subspace Ĉx = Cx � {x}. In case we need to specify the
ambient space X , we will write ĈX

x . Note that Ĉx = Ûx � F̂x.

Proposition 2.7.3. Let X and Y be finite T0-spaces. Then X � Y is con-
tractible if and only if X or Y is contractible.

Proof. Assume X is contractible. Then there exists a sequence of spaces

X = Xn � Xn−1 � . . . � X1 = {x1}

with Xi = {x1, x2, . . . , xi} and such that xi is a beat point of Xi for every
2 ≤ i ≤ n. Then xi is a beat point of Xi �Y for each 2 ≤ i ≤ n and therefore,
X � Y deformation retracts to {x1} � Y which is contractible. Analogously,
if Y is contractible, so is X � Y .

Now suppose X � Y is contractible. Then there exists a sequence

X � Y = Xn � Yn � Xn−1 � Yn−1 � . . . � X1 � Y1 = {z1}

with Xi ⊆ X , Yi ⊆ Y , Xi � Yi = {z1, z2 . . . , zi} such that zi is a beat point
of Xi � Yi for i ≥ 2.
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Let i ≥ 2. If zi ∈ Xi, zi is a beat point of Xi unless it is a maximal point
of Xi and Yi has a minimum. In the same way, if zi ∈ Yi, zi is a beat point
of Yi or Xi has a maximum. Therefore, for each 2 ≤ i ≤ n, either Xi−1 ⊆ Xi

and Yi−1 ⊆ Yi are deformation retracts (in fact, one inclusion is an identity
and the other inclusion is strict), or one of them, Xi or Yi, is contractible.
This proves that X or Y is contractible. 
�

In Proposition 4.3.4 we will prove a result which is the analogue of
Proposition 2.7.3 for collapsible finite spaces.

If X and Y are finite spaces, the preorder corresponding to the topological
product X × Y is the product of the preorders of X and Y (Remark 1.1.2),
i.e. (x, y) ≤ (x′, y′) if and only if x ≤ x′ and y ≤ y′. If X and Y are two
topological spaces, not necessarily finite, and A is strong deformation retract
of a X , then A× Y is a strong deformation retract of X × Y .

Proposition 2.7.4. Let Xc and Yc be cores of finite spaces X and Y . Then
Xc × Yc is a core of X × Y .

Proof. Since Xc ⊆ X is a strong deformation retract, so is Xc × Y ⊆ X × Y .
Analogously Xc×Yc is a strong deformation retract of Xc×Y and then, so is
Xc×Yc ⊆ X×Y . We have to prove that the product of minimal finite spaces
is also minimal. Let (x, y) ∈ Xc × Yc. If there exists x′ ∈ Xc with x′ ≺ x and
y′ ∈ Yc with y′ ≺ y, (x, y) covers at least two elements (x′, y) and (x, y′). If x
is minimal in Xc, Û(x,y) is homeomorphic to Ûy. Analogously if y is minimal.
Therefore, (x, y) is not a down beat point. Similarly, Xc × Yc does not have
up beat points. Thus, it is a minimal finite space. 
�

In particular X × Y is contractible if and only if each space X and Y
is contractible. In fact this result holds in general, when X and Y are not
necessarily finite.

Recall that the product of two nonempty spaces is T0 if and only if each
space is.

Proposition 2.7.5. Let X and Y be finite T0-spaces. Then |K(X × Y )| is
homeomorphic to |K(X)| × |K(Y )|.
Proof. Let pX : X×Y → X and pY : X×Y → Y be the canonical projections.
Define f : |K(X×Y )| → |K(X)|× |K(Y )| by f = |K(pX)|× |K(pY )|. In other

words, if α =
k∑

i=0

ti(xi, yi) ∈ |K(X × Y )| where (x0, y0) < (x1, y1) < . . . <

(xk, yk) is a chain in X × Y , f(α) = (
k∑

i=0

tixi,
k∑

i=0

tiyi).

Since |K(pX)| and |K(pY )| are continuous, so is f . |K(X × Y )| is compact
and |K(X)|×|K(Y )| is Hausdorff, so we only need to show that f is a bijection.
Details will be left to the reader. An explicit formula for g = f−1 is given by

g(
k∑

i=0

uixi,

l∑

i=0

viyi) =
∑

i,j

tij(xi, yj),
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where tij = max{0,min{u0 + u1 + . . . + ui, v0 + v1 + . . . vj} − max{u0+
u1 + . . . + ui−1, v0 + v1 + . . . vj−1}}. The idea is very simple. Consider the
segments U0, U1, . . . , Uk ⊆ I = [0, 1], each Ui of length ui, Ui = [u0+u1+. . .+
ui−1, u0 + u1 + . . .+ ui]. Analogously, define Vj = [v0 + v1 + . . .+ vj−1, v0 +
v1 + . . . + vj ] ⊆ I for 0 ≤ j ≤ l. Then tij is the length of the segment
Ui ∩ Vj . It is not hard to see that g : |K(X)| × |K(Y )| → |K(X × Y )| is well
defined since support(

∑

i,j

tij(xi, yj)) is a chain and
∑
tij =

∑

i,j

length(Ui∩
Vj) =

∑

i

length(Ui) = 1. Moreover, the compositions gf and fg are the

corresponding identities. 
�
A similar proof of the last result can be found in [81, Proposition 4.1].
If X is a finite T0-space, and A ⊆ X is a subspace, the quotient X/A need

not be T0. For example, if X is the chain of three elements 0 < 1 < 2 and
A = {0, 2}, X/A is the indiscrete space of two elements. We will exhibit a
necessary and sufficient condition for X/A to be T0.

Let X be a finite space and A ⊆ X a subspace. We will denote by q : X →
X/A the quotient map and by qx the class in the quotient of an element
x ∈ X . Recall that A = {x ∈ X | ∃ a ∈ A with x ≥ a} denotes the closure of
A. We will denote by A = {x ∈ X | ∃ a ∈ A with x ≤ a} =

⋃

a∈A

Ua ⊆ X , the

open hull of A.

Lemma 2.7.6. Let x ∈ X. If x ∈ A, Uqx = q(Ux ∪ A). If x /∈ A, Uqx =
q(Ux).

Proof. Suppose x ∈ A. A subset U of X/A is open if and only if q−1(U) is
open in X . Since q−1(q(Ux ∪A)) = Ux ∪A ⊆ X is open, q(Ux ∪A) ⊆ X/A is
an open set containing qx. Therefore Uqx ⊆ q(Ux ∪ A). The other inclusion
follows from the continuity of q since x ∈ A: if y ∈ A, there exist a, b ∈ A
such that y ≤ a and b ≤ x and therefore qy ≤ qa = qb ≤ qx.

If x /∈ A, q−1(q(Ux)) = Ux, so q(Ux) is open and therefore Uqx ⊆ q(Ux).
The other inclusion is trivial. 
�
Proposition 2.7.7. Let X be a finite space and A ⊆ X a subspace. Let
x, y ∈ X, then qx ≤ qy in the quotient X/A if and only if x ≤ y or there
exist a, b ∈ A such that x ≤ a and b ≤ y.

Proof. Assume qx ≤ qy. If y ∈ A, there exists b ∈ A with b ≤ y and by the
previous lemma qx ∈ Uqy = q(Uy ∪A). Therefore x ∈ Uy ∪A and then x ≤ y
or x ≤ a for some a ∈ A. If y /∈ A, qx ∈ Uqy = q(Uy). Hence, x ∈ Uy.

Conversely if x ≤ y or there are some a, b ∈ A such that x ≤ a and b ≤ y,
then qx ≤ qy or qx ≤ qa = qb ≤ qy. 
�
Proposition 2.7.8. Let X be a finite T0-space and A ⊆ X. The quotient
X/A is not T0 if and only if there exists a triple a < x < b with a, b ∈ A and
x /∈ A.
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Proof. Suppose there is not such triple and that qx ≤ qy, qy ≤ qx. Then
x ≤ y or there exist a, b ∈ A with x ≤ a, b ≤ y, and, on the other hand,
y ≤ x or there are some a′, b′ ∈ A such that y ≤ a′, b′ ≤ x. If x ≤ y and
y ≤ x, then x = y. In other case, both x and y are in A. Therefore, qx = qy.
This proves that X/A is T0. Conversely, if there exists a triple a < x < b as
above, qa ≤ qx ≤ qb = qa, but qa �= qx. Therefore, X/A is not T0. 
�

The non-existence of a triple as above is equivalent to saying that A =
A ∩A, i.e.

X/A is T0 if and only if A = A ∩A.
For example open or closed subsets satisfy this condition.

Now we want to study how the functors X and K behave with respect
to quotients. Recall that K(X (K)) is the barycentric subdivision K ′ of K.
Following [80] and [35], the barycentric subdivision of a finite T0-space X is
defined by X ′ = X (K(X)). Explicitly, X ′ consists of the nonempty chains of
X ordered by inclusion. This notion will be important in the development of
the simple homotopy theory for finite spaces studied in Chap. 4.

Example 2.7.9. Let X = CD2 = {x, a, b} and let A= {a, b} be the subspace
of minimal elements.

x•

		
		
		
	












a• •b

Then X/A is the Sierpinski space S (the finite T0-space with two points
0 < 1) and |K(X)|/|K(A)| is homeomorphic to S1. Therefore |K(X)|/|K(A)|
and |K(X/A)| are not homotopy equivalent. However X ′/A′ = S0 � S0 and
then |K(X ′)|/|K(A′)| and |K(X ′/A′)| are both homeomorphic to a circle. The
application K does not preserve quotients in general. In Corollary 7.2.2 we
prove that if A is a subspace of a finite T0-space X , |K(X ′)|/|K(A′)| and
|K(X ′/A′)| are homotopy equivalent.

A particular case of a quotient X/A is the one-point union or wedge. If
X and Y are topological spaces with base points x0 ∈ X , y0 ∈ Y , then the
wedge X ∨ Y is the quotient X � Y/A with A = {x0, y0}. Clearly, if X and
Y are finite T0-spaces, A = {x0, y0} ⊆ X � Y satisfies A = A ∩ A and then
X ∨Y is also T0. Moreover, if x, x′ ∈ X , then x covers x′ in X if and only if x
covers x′ in X ∨Y . The same holds for Y , and if x ∈ X� {x0}, y ∈ Y � {y0}
then x does not cover y in X ∨ Y and y does not cover x. Thus, the Hasse
diagram of X ∨Y is the union of the Hasse diagrams of X and Y , identifying
x0 and y0.

If X ∨ Y is contractible, then X and Y are contractible. This holds for
general topological spaces. Let i : X → X ∨Y denote the canonical inclusion
and r : X ∨ Y → X the retraction which sends all of Y to x0. If H :
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(X ∨ Y ) × I → X ∨ Y is a homotopy between the identity and a constant,
then rH(i × 1I) : X × I → X shows that X is contractible. The following
example shows that the converse is not true for finite spaces.

Example 2.7.10. The space X of Example 2.2.6 is contractible, but the
union at x of two copies of X is a minimal finite space, and in particular it
is not contractible.
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However, from Corollary 4.3.11 we will deduce that X∨X is homotopically
trivial, or in other words, it is weak homotopy equivalent to a point. This is
the first example we exhibit of a finite space which is homotopically trivial
but which is not contractible. These spaces play a fundamental role in the
theory of finite spaces.

In Proposition 4.3.10 we will prove that if X and Y are finite T0-spaces,
there is a weak homotopy equivalence |K(X)| ∨ |K(Y )| → X ∨ Y .

2.8 A Finite Analogue of the Mapping Cylinder

The mapping cylinder of a map f : X → Y between topological spaces is the
space Zf obtained from (X × I)� Y by identifying each point (x, 1) ∈ X × I
with f(x) ∈ Y . Both X and Y are subspaces of Zf . We denote by j : Y ↪→ Zf

and i : X ↪→ Zf the canonical inclusions where i is defined by i(x) = (x, 0).
The space Y is in fact a strong deformation retract of Zf . Moreover, there
exists a retraction r : Zf → Y with jr � 1Zf

rel Zf which satisfies that
ri = f [75, Theorem 1.4.12].

We introduce a finite analogue of the classical mapping cylinder which will
become important in Chap. 4. This construction was first studied in [8].

Definition 2.8.1. Let f : X → Y be a map between finite T0-spaces. We
define the non-Hausdorff mapping cylinder B(f) as the following finite T0-
space. The underlying set is the disjoint union X � Y . We keep the given
ordering within X and Y and for x ∈ X , y ∈ Y we set x ≤ y in B(f) if
f(x) ≤ y in Y .



2.8 A Finite Analogue of the Mapping Cylinder 35

It can be proved that B(f) is isomorphic to (X ×S)� Y/(x,1)∼f(x) where
S denotes the Sierpinski space. However, we will omit the proof because this
fact will not be used in the applications.

We will denote by i : X ↪→ B(f) and j : Y ↪→ B(f) the canonical inclusions
of X and Y into the non-Hausdorff mapping cylinder.

Lemma 2.8.2. Let f : X → Y be a map between finite T0-spaces. Then Y
is a strong deformation retract of B(f).

Proof. Define the retraction r : B(f) → Y of j by r(x) = f(x) for every
x ∈ X . Clearly r is order preserving. Moreover, jr ≥ 1B(f) and then jr �
1B(f) rel Y . 
�

By Corollary 2.2.5, for any map f : X → Y there is a strong collapse
B(f) ↘↘ Y .

Since ri = f , any map between finite T0-spaces can be factorized as a
composition of an inclusion and a homotopy equivalence.

B(f)
r

����
��

��
��

�

X
� �

i
����������� f

�� Y

As in the classical setting, the non-Hausdorff mapping cylinder can be used
to reduce many proofs concerning general maps to the case of inclusions. For
example, f satisfies one of the following properties if and only if the inclusion
i does: being a homotopy equivalence, a weak homotopy equivalence or a
nullhomotopic map.

If X and Y are any two homotopy equivalent spaces there exists a third
space Z containing both X and Y as strong deformation retracts. This space
can be taken as the mapping cylinder of any homotopy equivalence X → Y
(see [38, Corollary 0.21]). If f : X → Y is now a homotopy equivalence
between finite T0-spaces, Y is a strong deformation retract of B(f) but X in
general is just a (weak) deformation retract. Consider the space X and the
point x ∈ X of Example 2.2.6. The map f : ∗ → Xop that maps ∗ into x is a
homotopy equivalence. However ∗ is not a strong deformation retract of B(f)
by Corollary 2.2.5 because (B(f), ∗) is a minimal pair. Although X is not
in general a strong deformation retract of B(f) for a homotopy equivalence
f : X → Y , we will see that if two finite T0-spaces are homotopy equivalent,
there exists a third finite T0-space containing both as strong deformation
retracts. This is stated in Proposition 4.6.6.
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