Chapter 2
Basic Topological Properties
of Finite Spaces

In this chapter we present some results concerning elementary topological
aspects of finite spaces. The proofs use basic elements of Algebraic Topology
and have a strong combinatorial flavour. We study further homotopical prop-
erties including classical homotopy invariants and finite analogues of well-
known topological constructions.

2.1 Homotopy and Contiguity

Recall that two simplicial maps p,9 : K — L are said to be contiguous
if for every simplex o € K, ¢(0) U (o) is a simplex of L. Two simplicial
maps @, v : K — L lie in the same contiguity class if there exists a sequence
© = Yo,P1,---,n = ¥ such that ¢; and p;;1 are contiguous for every
0<i<n.

If ¢,v : K — L lie in the same contiguity class, the induced maps in the
geometric realizations |¢|, [¢| : | K| — |L| are homotopic (see Corollary A.1.3
of the appendix).

In this section we study the relationship between contiguity classes of
simplicial maps and homotopy classes of the associated maps between finite
spaces. These results appear in [11].

Lemma 2.1.1. Let f,g: X — Y be two homotopic maps between finite Ty-
spaces. Then there exists a sequence f = fo, f1, ..., fn = g such that for every
0 <1i<n there is a point x; € X with the following properties:

1. fi and fi11 coincide in X \ {x;}, and
2. fi(zi) < fira (@) or fiyr(wi) < fi(ws).
Proof. Without loss of generality, we may assume that f = fy < g by

Corollary 1.2.6. Let A = {z € X | f(z) # g(x)}. If A =0, f = g and
there is nothing to prove. Suppose A # () and let x = z¢ be a maximal point
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of A. Let y € Y be such that f(z) < y < g(z) and define f; : X — Y by
filx{ey = flxaz} and fi(z) = y. Then f; is continuous for if 2’ > w,
a’ ¢ A and therefore

Repeating this construction for f; and g, we define f;41. By finiteness of
X and Y this process ends. a

Proposition 2.1.2. Let f,g: X — Y be two homotopic maps between finite
To-spaces. Then the simplicial maps KC(f),K(g) : K(X) — K(Y) lie in the
same contiguity class.

Proof. By the previous lemma, we can assume that there exists x € X such
that f(y) = g(y) for every y # x and f(z) < g(z). Therefore, if C' is a chain
in X, f(C)Ug(C) is a chain on Y. In other words, if o € K(X) is a simplex,
K(f)(e) UK(g)(o) is a simplex in K(Y). O

Proposition 2.1.3. Let ¢, : K — L be simplicial maps which lie in the
same contiguity class. Then X (p) ~ X (V).

Proof. Assume that ¢ and ¢ are contiguous. Then the map f : X(K) —
X (L), defined by f(o) = ¢(o)Utp(0o) is well-defined and continuous. Moreover
X(p) < f > (1), and then X(p) ~ X(). 0

2.2 Minimal Pairs

In this section we generalize Stong’s ideas on homotopy types to the case of
pairs (X, A) of finite spaces (i.e. a finite space X and a subspace A C X).
As a consequence, we will deduce that every core of a finite Ty-space can be
obtained by removing beat points from X. Here we introduce the notion of
strong collapse which plays a central role in Chap.5. Most of the results of
this section appear in [11].

Definition 2.2.1. A pair (X, A) of finite Ty-spaces is a minimal pair if all
the beat points of X are in A.

The next result generalizes the result of Stong (the case A = 0)) studied in
Sect. 1.3 and its proof is very similar to the original one.

Proposition 2.2.2. Let (X, A) be a minimal pair and let f : X — X be a
map such that f ~1x rel A. Then f =1x.

Proof. Suppose that f < 1x and f|a =14. Let z € X. If x € X is minimal,
f(x) = z. In general, suppose we have proved that f|Um = 1|Um' If z € A,
flx)=a. If z ¢ A, x is not a down beat point of X. However y < x implies
y = fly) < f(x) < x. Therefore f(x) = x. The case f > 1x is similar, and
the general case follows from Corollary 1.2.6. a
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Corollary 2.2.3. Let (X, A) and (Y, B) be minimal pairs, f : X — Y,
g:Y — X such that gf ~ 1x rel A, gf ~ 1y rel B. Then f and g are
homeomorphisms.

Definition 2.2.4. If z is a beat point of a finite Ty-space X, we say that
there is an elementary strong collapse from X to X \z and write X ¢ X \z.
There is a strong collapse X N\, Y (or a strong expansion Y 2" X) if there
is a sequence of elementary strong collapses starting in X and ending in Y.

Stong’s results show that two finite Ty-spaces are homotopy equivalent if
and only if there exists a sequence of strong collapses and strong expansions
from X to Y (since the later is true for homeomorphic spaces).

Corollary 2.2.5. Let X be a finite Ty-space and let A C X. Then, X \, 4
if and only if A is a strong deformation retract of X.

Proof. If X \, A, A C X is a strong deformation retract. This was already
proved by Stong (see Sect.1.3). Conversely, suppose A C X is a strong
deformation retract. Perform arbitrary elementary strong collapses removing
beat points which are not in A. Suppose X N\, Y 2 A and that all the beat
points of Y lie in A. Then (Y, A) is a minimal pair. Since A and Y are strong
deformation retracts of X, the minimal pairs (A, A) and (Y, A) are in the
hypothesis of Corollary 2.2.3. Therefore A and Y are homeomorphic and so,
X\ Y =A O

Example 2.2.6. The space X

| X
X

[ ]

[ ]

is contractible, but the point x is not a strong deformation retract of X,
because (X, {z}) is a minimal pair.

.:l)

Corollary 2.2.7. Let (X, A) be a minimal pair such that A is a minimal
finite space and f ~1(x ay: (X,A) = (X, A). Then f = 1x.

If X and Y are homotopy equivalent finite Ty-spaces, the associated poly-
hedra |[K(X)| and |[K(Y)| also have the same homotopy type. However the
converse is obviously false, since the associated polyhedra are homotopy
equivalent if and only if the finite spaces are weak homotopy equivalent.

In Chap.5 we will study the notion of strong homotopy types of simplicial
complexes which have a very simple description and corresponds exactly to
the concept of homotopy types of the associated finite spaces.
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2.3 Ti-Spaces

We will prove that Hausdorff spaces do not have in general the homotopy
type of any finite space. Recall that a topological space X satisfies the T;-
separation axiom if for any two distinct points z,y € X there exist open sets
Uand V suchthat z € U,y € V,y ¢ U, 2 ¢ V. This is equivalent to saying
that the points are closed in X. All Hausdorff spaces are T, but the converse
is false.

If a finite space is 11, then every subset is closed and so, X is discrete.

Since the core X, of a finite space X is the disjoint union of the cores of
its connected components, we can deduce the following

Lemma 2.3.1. Let X be a finite space such that X. is discrete. Then X is
a disjoint union of contractible spaces.

Theorem 2.3.2. Let X be a finite space and let Y be a T1-space homotopy
equivalent to X. Then X is a disjoint union of contractible spaces.

Proof. Since X ~Y, X, ~Y. Let f: X, — Y be a homotopy equivalence
with homotopy inverse ¢g. Then gf = 1x, by Theorem 1.3.6. Since f is a one
to one map from X, to a Ti-space, it follows that X, is also T} and therefore
discrete. Now the result follows from the previous lemma. a

Remark 2.3.3. The proof of the previous theorem can be done without using
Theorem 1.3.6, showing that any map f : X — Y from a finite space to a
Ti-space must be locally constant.

Corollary 2.3.4. LetY be a connected and non contractible T -space. Then
Y does not have the same homotopy type as any finite space.

Proof. Follows immediately from Theorem 2.3.2. O

For example, for any n > 1, the n-dimensional sphere S™ does not have
the homotopy type of any finite space. However, S™ does have, as any finite
polyhedron, the same weak homotopy type as some finite space.

2.4 Loops in the Hasse Diagram and the Fundamental
Group

In this section we give a full description of the fundamental group of a finite
Ty-space in terms of its Hasse diagram. This characterization is induced from
the well known description of the fundamental group of a simplicial complex.
The Hasse diagram of a finite Ty-space X will be denoted H(X), and E(H (X))
will denote the set of edges of the digraph H(X).
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Recall that an edge-path in a simplicial complex K, is a sequence (vg, v1),
(v1,v2),..., (vp—1,v,) of ordered pairs of vertices in which {v;,v;11} is a
simplex for every 7. If an edge-path contains two consecutive pairs (v;, v;t1),
(Vig1,Vit2) where {v;,v;11,v;42} is a simplex, we can replace the two pairs
by a unique pair (v;, v;+2) to obtain an equivalent edge-path. The equivalence
classes of edge-paths are the morphisms of a groupoid called the edge-path
groupoid of K, which is denoted by E(K). The full subcategory of edge-paths
with origin and end vy is the edge-path group E(K,vy) which is isomorphic
to the fundamental group m (| K|, vg) (see [75, Sect. 3.6] for more details).

Definition 2.4.1. Let (X, z) be a finite pointed Tj-space. An ordered pair
of points e = (z,y) is called an H-edge of X if (x,y) € E(H(X)) or (y,x) €
E(H(X)). The point z is called the origin of e and denoted = = o(e), the
point y is called the end of e and denoted y = ¢(e). The inverse of an H-edge
e = (z,y) is the H-edge e~ = (y,x).

An H-path in (X,z0) is a finite sequence (possibly empty) of H-edges
& =eres...e, such that e(e;) = o(e;41) for all 1 < i < n — 1. The origin of
a non empty H-path £ is 0(§) = o(e1) and its end is ¢(§) = e(e,). The origin
and the end of the empty H-path is o(0)) = ¢(0) = zo. If £ = erea...ep,
we define € = e, 't .. eyt If €, & are ‘H-paths such that ¢(€) = o(¢'), we
define the product H-path ££’ as the concatenation of the sequence & followed
by the sequence &'.

An H-path £ = ejes...e, is said to be monotonic if e; € E(H(X)) for all
1§i§nore;1€E(H(X)) foralll1 <i<n.

A loop at xq is an H-path that starts and ends in 2. Given two loops &, &’
at xg, we say that they are close if there exist H-paths &1, &s, €3, &4 such that
& and &3 are monotonic and the set {&, &'} coincides with {€1628384, 6184}

We say that two loops &,&" at zp are H-equivalent if there exists a finite
sequence of loops & = &£1,&s,...,&, = £ such that any two consecutive are
close. We denote by (&) the H-equivalence class of a loop & and (X, x¢)
the set of these classes.

Theorem 2.4.2. Let (X, zq) be a pointed finite Ty-space. Then the product
()& = (&¢') is well defined and induces a group structure on (X, xg).

Proof. 1t is easy to check that the product is well defined, associative and
that (@) is the identity. In order to prove that the inverse of (ejes...e,) is
(exte, !, . el!) we need to show that for any composable H-paths &, &’ such
that 0(¢) = ¢(¢’) = o and for any H-edge e, composable with £, one has that
(Eee 1) = (€¢'). But this follows immediately from the definition of close

loops since e and e~! are monotonic. a

Theorem 2.4.3. Let (X, xq) be a pointed finite To-space. Then the edge-path
group E(K(X),zo) of K(X) with base vertex xo is isomorphic to (X, xo).
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Proof. Let us define
2 %(Xa :170) - E(K(X),Iﬂo),
(e1€g...en) — [e1€2. .. €4],
(@) — [(zo, z0)],

where [¢] denotes the class of £ in E(K(X), xo).

To prove that ¢ is well defined, let us suppose that the loops &1&2€3¢,
and £;& are close, where & = ejea...en, & = €€l .. e}, are monotonic
‘H-paths. By induction, it can be proved that

[£1£28384] = [C1e1e2 ... en_j(0(en—jy1), e(en))E384]

for 1 < j < n. In particular [£1£2€3&4] = [&1(e(&1), e(en))E5€y]-
Analogously,

[€1(e(€1), e(en))€séa] = [€1(e(§1) e(en))(0(€]), 0(£4))8a]

and then

[€162€384] = [€1(e(&1), e(en))(0(€]), 0(€4))E4]
= [§1(e(&1), e(en))(e(en), e(€1))8a] = [E1(e(€1), e(€1))Ea] = [€14]-

If € = (xo,21) (21, 22) . .. (Tn—1,2y) is an edge-path in K(X) with z,, = xo,
then x;_; and x; are comparable for all 1 < i < n. In this case, we can find
monotonic H-paths &1, &a, ..., &, such that o(§;) = x;—1, ¢(&) = ; for all
1 < i < n. Let us define

Y BE(K(X),z0) — H(X,x0),
(€] — (&1 ... &n)-

This definition does not depend on the choice of the H-paths §; since if
two choices differ only for i = k then & ...& ... &, and & ...¢), ... &, are
‘H-equivalent because both of them are close to &; .. .§k§;1§;€ €.

The definition of ¥ does not depend on the representative. Suppose that
&' (z,y)(y, 2)&" and &' (x, 2)§" are simply equivalent edge-paths in K(X) that
start and end in zg, where £ and £ are edge-paths and z, y, z are comparable.
In the case that y lies between z and z, we can choose the monotonic H-path
corresponding to (z, z) to be the juxtaposition of the corresponding to (x,y)
and (y, z), and so 1 is equally defined in both edge-paths. In the case that
z < x < y we can choose monotonic H-paths «, 8 from x to y and from z to x,
and then « will be the corresponding H-path to (z,y), @p that corresponding
to (y,2) and B to (z,2). It only remains to prove that (y'aaBy”) = (v/3v")
for H-paths 4" and ~”, which is trivial. The other cases are analogous to the
last one.

It is clear that ¢ and ¢ are mutually inverse. a
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Since E(K(X),x0) is isomorphic to m(|[K(X)],zo) (cf. [75, Corollary
3.6.17]), we obtain the following result.

Corollary 2.4.4. Let (X,x0) be a pointed finite Ty-space, then 7(X,xg) =
™1 (X, $0).

Remark 2.4.5. Since every finite space is homotopy equivalent to a finite Tj-
space, this computation of the fundamental group can be applied to any finite
space.

2.5 Euler Characteristic

If the homology (with integer coefficients) of a topological space X is finitely
generated as a graded abelian group, the Euler characteristic of X is de-
fined by x(X) = > (—=1)"rank(H,(X)). If Z is a compact CW-complex,
n>0
its homology is finitely generated and x(Z) = Y. (—1)"«,, where a, is the
n>0

number of n-cells of Z. A weak homotopy equivalence induces isomorphisms
in homology groups and therefore weak homotopy equivalent spaces have the
same Euler characteristic.

Since any finite Ty-space X is weak homotopy equivalent to the geometric
realization of IC(X), whose simplices are the non empty chains of X, the
Euler characteristic of X is

X(X)= Y (-pFer, (2.1)

cec(X)

where C(X) is the set of nonempty chains of X and #C' is the cardinality
of C.

We will give a basic combinatorial proof of the fact that the Euler charac-
teristic is a homotopy invariant in the setting of finite spaces, using only the
formula 2.1 as definition.

Theorem 2.5.1. Let X and Y be finite Ty-spaces with the same homotopy
type. Then x(X) = x(Y).

Proof. Let X. and Y, be cores of X and Y. Then there exist two sequences
of finite Tp-spaces X = Xg 2 ...2 X, =X,andY =Y, 2 ... DY, =Y,
where X;11 is constructed from X; by removing a beat point and Y;;; is
constructed from Y;, similarly. Since X and Y are homotopy equivalent, X,
and Y. are homeomorphic. Thus, x(X.) = x(Yz).

It suffices to show that the Euler characteristic does not change when a
beat point is removed. Let P be a finite poset and let p € P be a beat
point. Then there exists ¢ € P such that if r is comparable with p then r is
comparable with q.
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Hence we have a bijection

p:{CeC(P)|peC, q¢C} —{CeC(P)|peC, qeC},

C+— CU{q}.
Therefore
(P)=x(P{p) = 3 (DO = Y (CFT 3T cpFen
peCeCP q¢C>op qeC>p
q¢Csp q¢C>p q¢C>p q¢C>p

O

The Euler characteristic of finite Ty-spaces is intimately related to the
Mobius function of posets, which is a generalization of the classical Mdbius
function of number theory. We will say just a few words about this. For proofs
and applications we refer the reader to [29].

Given a finite poset P, we define the incidence algebra A(P) of P as the
set of functions P x P — R such that f(z,y) = 0 if 2 £ y with the usual
structure of R-vector space and the product given by

fg(w,y) =Y [z, 2)9(2,y).

zeP

The element (p € A(P) defined by (p(z,y) = 1 if < y and 0 in other
case, is invertible in 2(P). The Mdbius fuction pp € A(P) is the inverse
of Cp.

The Theorem of Hall states that if P is a finite poset and z,y € P, then

pp(z,y) = S (=1)"*tl¢,, where ¢, is the number of chains of n-elements
n>0
which start in = and end in y.
Given a finite poset P, P = P U{0,1} denotes the poset obtained when
adjoining a minimum 0 and a maximum 1 to P. In particular, (2.1) and the
Theorem of Hall, give the following

Corollary 2.5.2. Let P be a finite poset. Then

where X(P) = x(P) — 1 denotes the reduced Euler characteristic of the finite
space P.

One of the motivations of the Mdbius function is the following inversion
formula.



2.6 Automorphism Groups of Finite Posets 27

Theorem 2.5.3 (Mdbius inversion formula). Let P be a finite poset
and let f,g: P — R. Then

g9(x) =Y fy) if and only if f(x) = pp(y,z)g(y)-

y<z y<xz

Analogously,

g(x) = f(y) if and only if f(z) = pp(y, 2)g(y).

y>z y>x

Beautiful applications of these formulae are: (1) the Mobius inversion
of number theory which is obtained when applying Theorem 2.5.3 to the
order given by divisibility of the integer numbers; (2) the inclusion—exclusion
formula obtained from the power set of a set ordered by inclusion.

2.6 Automorphism Groups of Finite Posets

It is well known that any finite group G can be realized as the automorphism
group of a finite poset. In 1946 Birkhoff [13] proved that if the order of G is
n, G can be realized as the automorphisms of a poset with n(n+ 1) points. In
1972 Thornton [78] improved slightly Birkhoff’s result: He obtained a poset
of n(2r + 1) points, when the group is generated by r elements.

We present here a result which appears in [10]. Following Birkhoff’s and
Thornton’s ideas, we exhibit a simple proof of the following fact which im-
proves their results

Theorem 2.6.1. Given a group G of finite order n with r generators, there
exists a poset X with n(r + 2) points such that Aut(X) ~ G.

Recall first that the height ht(X) of a finite poset X is one less than the
maximum number of elements in a chain of X. The height of a point = in a
finite poset X is ht(z) = ht(Uy).

Proof. Let {hy,ha,...,h.} be a set of r generators of G. We define the poset
X =G x{-1,0,...,r} with the following order

* (gi)<(gj)if-1<i<j<r
Define ¢ : G — Aut(X) by ¢(g)(h,i) = (gh,i). It is easy to see that
?(g) : X — X is order preserving and that it is an automorphism with

inverse ¢(g~!). Therefore ¢ is a well defined homomorphism. Clearly ¢ is a
monomorphism since ¢(g) = 1 implies (g, —1) = ¢(g)(e, —1) = (e, —1).
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(9,7)
(g:7-1) o
(9:2)¢
(9,1) o

(9,0) o

(g,-1) (ghy,-1) (ghs,-1) (ghy—1,-1) (ghy,-1)
Fig. 2.1 U(g,'r’)

It remains to show that ¢ is an epimorphism. Let f : X — X be an
automorphism. Since (e, —1) is minimal in X, so is f(e,—1) and therefore
f(e,—1) = (g, —1) for some g € G. We will prove that f = ¢(g).

Let Y ={z € X | f(x) = ¢(g)(z)}. Y is nonempty since (e, —1) € Y. We
prove first that Y is an open subspace of X. Suppose = (h,i) € Y. Then
the restrictions

flo., o), : Us — Upa)

are isomorphisms. On the other hand, there exists a unique automorphism
U, — U, since the unique chain of ¢ + 2 elements must be fixed by any
such automorphism. Thus, f|am1<;5(g)|Um = 1y,, and then f|y, = ¢(9)|v,,
which proves that U, C Y. Similarly we see that Y C X is closed. Assume
x = (h,i) ¢ Y. Since f € Aut(X), it preserves the height of any point. In
particular ht(f(x)) = ht(z) =i+ 1 and therefore f(z) = (k,i) = ¢p(kh~1)(z)
for some k € G. Moreover k # gh since x ¢ Y. As above, f|y, = ¢(kh™1)|v,,
and since kh~! # g we conclude that U, NY = 0.

We prove now that X is connected. It suffices to prove that any two
minimal elements of X are in the same connected component. Given h, k € G,
we have h = khi hi,...h;, for some 1 < iy, i2...%p, < r. On the
other hand, (khi hi,...h;,,—1) and (khi hi,...h;_,,—1) are connected
via (kh“ hiQ Ce his, —1) < (kh/ilh/iz e hiS,T) > (kh/ilh/iz .. .his+1, —1). This
implies that (k,—1) and (h, —1) are in the same connected component.

Finally, since X is connected and Y is closed, open and nonempty, ¥ = X,
i.e. f = ¢(g). Therefore ¢ is an epimorphism, and then G ~ Aut(X). O
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If the generators hy, ha, ..., h, are non-trivial, the open sets U, ,) are as in
Fig.2.1. In that case it is not hard to prove that the finite space X constructed
above is weak homotopy equivalent to a wedge of n(r — 1) 4+ 1 circles, or in
other words, that the order complex of X is homotopy equivalent to a wedge
of n(r — 1) + 1 circles. The space X deformation retracts to the subspace
Y = G x {—1,r} of its minimal and maximal points. A retraction is given
by the map f : X — Y, defined as f(g,i) = (g,7) if ¢ > 0 and f(g,—1) =
(9,—1). Now the order complex (YY) of Y is a connected simplicial complex
of dimension 1, so its homotopy type is completely determined by its Euler
Characteristic. This complex has 2n vertices and n(r+1) edges, which means
that it has the homotopy type of a wedge of 1—x(K(Y)) = n(r—1)+1 circles.

On the other hand, note that in general the automorphism group of a finite
space, does not say much about its homotopy type as we see in the following

Proposition 2.6.2. Given a finite group G and a finite space X, there exists
a finite space Y which is homotopy equivalent to X and such that Aut(Y)~G.

Proof. We make this construction in two steps. First, we find a finite 7p-space
X homotopy equivalent to X and such that Aut(X ) = 0. To do this, assume
that X is Ty and consider a linear extension z1, 2, . .., T, of the poset X (i.e.

= {z1,22,...,2,} and x; < z; implies ¢ < j). Now, for each 1 < k <n
attach a chain of length kn to X with minimum z,, 1. The resulting space
X deformation retracts to X and every automorphism f : X — X must fix
the unique chain C; of length n? (with minimum z;). Therefore f restricts
to a homeomorphism X ~ C; — X ~ C; which must fix the unique chain C,
of length n(n — 1) of X . €} (with minimum z5). Applying this reasoning
repeatedly, we conclude that f fixes every point of X. On the other hand, we
know that there exists a finite Tp-space Z such that Aut(Z) = G.

Now the space Y is constructed as follows. It contains one copy of X and
one of Z, and the additional relations z < x for every z € Z and x > x; in X.
So, all the elements of Z are smaller than z; € X. Clearly Y deformation
retracts to X. Moreover, if f : ¥ — Y is an automorphism, f(z;) ¢ Z
since f(x1) cannot be comparable with z; and distinct from it (cf. Lemma
8.1.1). Since there is only one chain of n? elements in X, it must be fixed
by f. In particular f(x1) = x1, and then f|z : Z — Z. Thus f restricts to
automorphisms of X and of Z and therefore Aut(Y) ~ Aut(Z) ~ G. O

2.7 Joins, Products, Quotients and Wedges

In this section we will study some basic constructions in the settings of finite
spaces, simplicial complexes and general topological spaces. We will relate
these constructions to each other and analyze them from the homotopical
point of view.
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Recall that the simplicial join K*L (also denoted by K L) of two simplicial
complexes K and L (with disjoint vertex sets) is the complex

K+«L=KULU{oU7|oceK,7€L}.

The simplicial cone a K with base K is the join of K with a vertex a ¢ K.
It is well known that for finite simplicial complexes K and L, the geometric
realization |K * L| is homeomorphic to the topological join |K| * |L|. If K
is the 0-complex with two vertices, |K * L| = |K|* |L| = S° % |L| = X|L|
is the suspension of |L|. Here, S° denotes the discrete space on two points
(0-sphere).

There is an analogous construction for finite spaces.

Definition 2.7.1. The (non-Hausdorff) join (also called the ordinal sum)
X ®Y of two finite Ty-spaces X and Y is the disjoint union X UY keeping
the given ordering within X and Y and setting x < y for every x € X and
yey.

Note that the join is associative and in general X ® Y # Y ® X. Special
cases of joins are the non-Hausdorff cone C(X) = X ® D° and the non-
Hausdorff suspension S(X) = X ® S of any finite Ty-space X. Here D° =
denotes the singleton (0-cell).

Remark 2.7.2. K(X®Y) =K(X)*«K(Y).

Given a point x in a finite Ty-space X, the star C, of x consists of the
points which are comparable with x, i.e. C, = U,UF,. Note that C,, is always
contractible since 1¢, < f > g where f : C; — C, is the map which is the
identity on F, and the constant map x on U,, and g is the constant map z.
The link of x is the subspace Cp = Cy ~ {z}. In case we need to specify the
ambient space X, we will write C’X Note that C, = U, ® F),.

Proposition 2.7.3. Let X and Y be finite Ty-spaces. Then X ® Y is con-
tractible if and only if X orY is contractible.

Proof. Assume X is contractible. Then there exists a sequence of spaces
X:XnQXn—IQ---QXlz{,Tl}

with X; = {x1,22,...,2;} and such that z; is a beat point of X; for every
2 < i <n. Then z; is a beat point of X; ®Y for each 2 < i < n and therefore,
X ® Y deformation retracts to {1} ® Y which is contractible. Analogously,
if Y is contractible, sois X ® Y.

Now suppose X ® Y is contractible. Then there exists a sequence
with X; CX,Y; CY, X;®Y; ={21,22..., 2} such that z; is a beat point
of X; ®Y; for 1 > 2.
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Let i > 2. If z; € X, z; is a beat point of X; unless it is a maximal point
of X; and Y; has a minimum. In the same way, if z; € Y;, z; is a beat point
of Y; or X; has a maximum. Therefore, for each 2 < i < n, either X;_1 C X
and Y;_1 CY; are deformation retracts (in fact, one inclusion is an identity
and the other inclusion is strict), or one of them, X; or Y;, is contractible.
This proves that X or Y is contractible. a

In Proposition 4.3.4 we will prove a result which is the analogue of
Proposition 2.7.3 for collapsible finite spaces.
If X and Y are finite spaces, the preorder corresponding to the topological
product X x Y is the product of the preorders of X and Y (Remark 1.1.2),
e. (x,y) < (2/,y) if and only if x < 2/ and y < ¢/. If X and Y are two
topological spaces, not necessarily finite, and A is strong deformation retract
of a X, then A x Y is a strong deformation retract of X x Y.

Proposition 2.7.4. Let X. and Y, be cores of finite spaces X and Y . Then
X.xY,.is acore of X XY.

Proof. Since X, C X is a strong deformation retract, sois X, xY C X xY.
Analogously X, x Y, is a strong deformation retract of X, x Y and then, so is
X xY, C X xY. We have to prove that the product of minimal finite spaces
is also minimal. Let (z,y) € X, x Y.. If there exists 2’ € X, with 2/ < x and

"€ Y. withy' <y, (z,y) covers at least two elements (z',y) and (z,y'). If
is rmmmal in X, U(w y) is homeomorphic to U Analogously if y is minimal.
Therefore, (x,y) is not a down beat point. Slmllarly, X, x Y. does not have
up beat points. Thus, it is a minimal finite space. O

In particular X x Y is contractible if and only if each space X and Y
is contractible. In fact this result holds in general, when X and Y are not
necessarily finite.

Recall that the product of two nonempty spaces is T} if and only if each
space is.

Proposition 2.7.5. Let X and Y be finite Ty-spaces. Then |[K(X x Y)| is
homeomorphic to |[IC(X)| x |KK(Y)].

Proof. Let px : XXY — X and py : X XY — Y be the canonical projections.
Define f : [KC(X x ¥)| — [K(X)| x [K(Y)| by f = [K(px)| % |K(py ). In other

k
words, if o = > t;(z4,y:) € [K(X x Y)| where (z0,y0) < (z1,y1) < ... <
i=0

k k
(zkvyk) is a chain in X x Ya f(Oé) = (Z ti'riv Z tlyl)
i= i=0
Since |K(px)| and |[K(py)| are continuous, so is f. [K(X x Y| is compact
and |IC(X)|x|K(Y)] is Hausdorff, so we only need to show that f is a bijection.
Details will be left to the reader. An explicit formula for g = f~! is given by
1

k
Q(Z Uiy, Z viY;) = Z tij (@i, y5),
i=0 .7

=0
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where ¢;; = max{0,min{ug + u1 + ... + u;,v0 + v1 + ...v;} — max{uo+
U1 + ...+ ui—1,v0 + v1 + ...vj_1}}. The idea is very simple. Consider the
segments Uy, Uy, ..., U C I =[0,1], each U; of length u;, U; = [ug+ui+...+
Ui—1, U0 + U1 + ... + u;]. Analogously, define V; = [vg +v1 + ... 4+ vj_1,v0 +
v1 +...4+v;] CTIfor 0 < j <. Then t; is the length of the segment
U; NV;. It is not hard to see that g : [I(X)| x |[K(Y)] — |[K(X x Y| is well
defined since support(>_ ti;(xi,y;)) is a chain and Y t;; = > length(U;N
4 0,7

J ;

Vi) = > length(U;) = 1. Moreover, the compositions ¢gf and fg are the
i

corresponding identities. O

A similar proof of the last result can be found in [81, Proposition 4.1].

If X is a finite Ty-space, and A C X is a subspace, the quotient X /A need
not be Ty. For example, if X is the chain of three elements 0 < 1 < 2 and
A = {0,2}, X/A is the indiscrete space of two elements. We will exhibit a
necessary and sufficient condition for X/A to be Tj.

Let X be a finite space and A C X a subspace. We will denote by ¢ : X —
X/A the quotient map and by gz the class in the quotient of an element
x € X. Recall that A = {z € X | 3 a € A with 2 > a} denotes the closure of
A. We will denote by A={x e X |TJaec Awithae <a}= |J U, C X, the

acA
open hull of A.

Lemma 2.7.6. Let v € X. If v € A, Uyy = qU, UA). Ifx ¢ A, Uy =
q(Us).

Proof. Suppose x € A. A subset U of X/A is open if and only if ¢~ (U) is
open in X. Since ¢~ (q(U, UA)) =U,UA C X is open, q(U, UA) C X/A is
an open set containing gx. Therefore Uy, C ¢(U, U A). The other inclusion
follows from the continuity of ¢ since z € A: if y € A, there exist a,b € A
such that y < a and b < x and therefore qy < qa = ¢b < gx.

If v ¢ A, ¢ *(q(Us)) = Uy, so q(Uy) is open and therefore Uy, C q(U.,).
The other inclusion is trivial. O

Proposition 2.7.7. Let X be a finite space and A C X a subspace. Let
x,y € X, then qr < qy in the quotient X/A if and only if © < y or there
exist a,b € A such that v < a and b < y.

Proof. Assume gz < qy. If y € A, there exists b € A with b < y and by the
previous lemma gz € Uy = ¢(Uy U A). Therefore z € Uy UA and then z <y
or z < a for some a € A. If y ¢ A, gz € Uy, = q(Uy). Hence, x € U,.
Conversely if z < y or there are some a,b € A such that x < a and b <y,
then gz < qy or qxr < ga = gb < qy. a

Proposition 2.7.8. Let X be a finite Ty-space and A C X. The quotient
X/A is not Ty if and only if there exists a triple a < x < b with a,b € A and
x ¢ A.
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Proof. Suppose there is not such triple and that qz < qy, qy < gx. Then
x < y or there exist a,b € A with z < a, b < y, and, on the other hand,
y < x or there are some a’,b’ € A such that y < da/, ¥/ < z. If x < y and
y < x, then = = y. In other case, both z and y are in A. Therefore, qx = qy.
This proves that X/A is Ty. Conversely, if there exists a triple a < z < b as
above, ga < qx < ¢gb = qa, but ga # qx. Therefore, X/A is not Tp. O

__ The non-existence of a triple as above is equivalent to saying that A =
ANA,ie. .
X/Ais T if and only if A = AN A.

For example open or closed subsets satisfy this condition.

Now we want to study how the functors X and K behave with respect
to quotients. Recall that (X (K)) is the barycentric subdivision K’ of K.
Following [80] and [35], the barycentric subdivision of a finite Ty-space X is
defined by X’ = X(K(X)). Explicitly, X’ consists of the nonempty chains of
X ordered by inclusion. This notion will be important in the development of
the simple homotopy theory for finite spaces studied in Chap. 4.

Example 2.7.9. Let X =CDs ={x,a,b} and let A={a, b} be the subspace

of minimal elements.
Te
a® ®

Then X/A is the Sierpinski space & (the finite Tp-space with two points
0 < 1) and |K(X)|/|K(A)| is homeomorphic to St. Therefore [K(X)|/|K(A)]
and |K(X/A)| are not homotopy equivalent. However X’/A’ = S ® S° and
then |[IC(X")|/|IC(A”)| and |KC(X'/A")| are both homeomorphic to a circle. The
application K does not preserve quotients in general. In Corollary 7.2.2 we
prove that if A is a subspace of a finite Tp-space X, |[K(X’)|/|(A’)| and
|K(X’/A")| are homotopy equivalent.

A particular case of a quotient X/A is the one-point union or wedge. If
X and Y are topological spaces with base points xg € X, yo € Y, then the
wedge X VY is the quotient X UY/A with A = {x,yo}. Clearly, if X and
Y are finite Tp-spaces, A = {zg,y0} € X LY satisfies A = AN A and then
X VY is also Typ. Moreover, if 2,2’ € X, then x covers 2’ in X if and only if =
covers ' in X VY. The same holds for Y, and if x € X ~ {xo}, vy € Y ~ {yo}
then x does not cover y in X VY and y does not cover z. Thus, the Hasse
diagram of X VY is the union of the Hasse diagrams of X and Y, identifying
o and yo.

If X VY is contractible, then X and Y are contractible. This holds for
general topological spaces. Let i : X — X VY denote the canonical inclusion
and r : X VY — X the retraction which sends all of Y to zq. If H :
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(XVY)xI— X VY is a homotopy between the identity and a constant,
then rH(i x 15) : X x I — X shows that X is contractible. The following
example shows that the converse is not true for finite spaces.

Example 2.7.10. The space X of Example 2.2.6 is contractible, but the
union at x of two copies of X is a minimal finite space, and in particular it
is not contractible.

27NN

However, from Corollary 4.3.11 we will deduce that X VX is homotopically
trivial, or in other words, it is weak homotopy equivalent to a point. This is
the first example we exhibit of a finite space which is homotopically trivial
but which is not contractible. These spaces play a fundamental role in the
theory of finite spaces.

In Proposition 4.3.10 we will prove that if X and Y are finite Ty-spaces,
there is a weak homotopy equivalence |C(X)|V [K(Y)| - X VY.

2.8 A Finite Analogue of the Mapping Cylinder

The mapping cylinder of a map f : X — Y between topological spaces is the
space Zy obtained from (X x I) UY by identifying each point (z,1) € X x I
with f(z) € Y. Both X and Y are subspaces of Zy. We denote by j : Y — Z;
and ¢ : X — Zy the canonical inclusions where ¢ is defined by i(x) = (z,0).
The space Y is in fact a strong deformation retract of Z;. Moreover, there
exists a retraction r : Zy — Y with jr ~ 1z, rel Z;y which satisfies that

= f [75, Theorem 1.4.12].

We introduce a finite analogue of the classical mapping cylinder which will
become important in Chap. 4. This construction was first studied in [8].

Definition 2.8.1. Let f : X — Y be a map between finite Tp-spaces. We
define the non-Hausdor(f mapping cylinder B(f) as the following finite Tp-
space. The underlying set is the disjoint union X UY. We keep the given
ordering within X and Y and for z € X, y € Y we set < y in B(f) if

fz)<yinY.
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It can be proved that B(f) is isomorphic to (X x &) UY/ (4 1)~f(z) Where
G denotes the Sierpinski space. However, we will omit the proof because this
fact will not be used in the applications.

We will denote by i : X < B(f)and j : Y — B(f) the canonical inclusions
of X and Y into the non-Hausdorff mapping cylinder.

Lemma 2.8.2. Let f: X — Y be a map between finite Ty-spaces. Then Y
is a strong deformation retract of B(f).

Proof. Define the retraction r : B(f) — Y of j by r(x) = f(z) for every
r € X. Clearly r is order preserving. Moreover, jr > 1p(s) and then jr ~
1B(f) rel Y. O

By Corollary 2.2.5, for any map f : X — Y there is a strong collapse
B(f) Y.

Since ri = f, any map between finite Ty-spaces can be factorized as a
composition of an inclusion and a homotopy equivalence.

As in the classical setting, the non-Hausdorff mapping cylinder can be used
to reduce many proofs concerning general maps to the case of inclusions. For
example, f satisfies one of the following properties if and only if the inclusion
1 does: being a homotopy equivalence, a weak homotopy equivalence or a
nullhomotopic map.

If X and Y are any two homotopy equivalent spaces there exists a third
space Z containing both X and Y as strong deformation retracts. This space
can be taken as the mapping cylinder of any homotopy equivalence X — Y
(see [38, Corollary 0.21]). If f : X — Y is now a homotopy equivalence
between finite Tp-spaces, Y is a strong deformation retract of B(f) but X in
general is just a (weak) deformation retract. Consider the space X and the
point x € X of Example 2.2.6. The map f : * — X°P that maps * into x is a
homotopy equivalence. However # is not a strong deformation retract of B(f)
by Corollary 2.2.5 because (B(f),*) is a minimal pair. Although X is not
in general a strong deformation retract of B(f) for a homotopy equivalence
f: X =Y, we will see that if two finite Tj-spaces are homotopy equivalent,
there exists a third finite Ty-space containing both as strong deformation
retracts. This is stated in Proposition 4.6.6.
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